
Application Report
SPRA420A - February 2000

1

Switched Reluctance Motor Control – Basic Operation and
Example Using the TMS320F240

Michael T. DiRenzo Digital Signal Processing Solutions

ABSTRACT

This report describes the basic operation of switched reluctance motors (SRMs) and
demonstrates how a TMS320F240 DSP-based SRM drive from Texas Instruments (TI) can
be used to achieve a wide variety of control objectives.

The first part of the report offers a detailed review of the operation and characteristics of
SRMs. The advantages and disadvantages of this type of motor are cited.

The second part of the report provides an example application of a four-quadrant, variable
speed SRM drive system using a shaft position sensor. The example has complete hardware
and software details for developing an SRM drive system using the TMS320F240. The SRM
operation is described, along with the theoretical basis for designing the various control
algorithms. The example can be used as a baseline design which can be easily modified to
accommodate a specific application.

This report contains material previously released in the Texas Instruments application report
Developing an SRM Drive System Using the TMS320F240 (literature number SPRA420),
and has been updated for inclusion in the Application Design Kit (ADK) for switched
reluctance motors.

Contents
1 Introduction 2.
2 Motor Characteristics 3.

2.1 Torque-Speed Characteristics 4.
2.2 Electromagnetic Equations 5.
2.3 General Torque Equation 6.
2.4 Simplified Torque Equation 8.

3 Control 9.
4 Example – SRM Drive with Position Feedback 12.

4.1 Hardware Description 12.
4.1.1 SRM Characteristics 12.
4.1.2 Control Hardware 12.
4.1.3 Position Sensor 12.
4.1.4 Power Electronics Hardware 14.

4.2 Software Description 16.
4.2.1 Program Structure 17.
4.2.2 Initialization Routines 20.

TI is a trademark of Texas Instruments Incorporated.

SPRA420A

2 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

4.2.3 Current Controller 21.
4.2.4 Position Estimation 23.
4.2.5 Velocity Estimation 24.
4.2.6 Commutation 27.
4.2.7 Velocity Controller 29.

5 References 32.
Appendix A Software Listings for a TMS320F240-Based SRM Drive With Position Sensor 34. . .

List of Figures
Figure 1. Various SRM Geometries 4.
Figure 2. SRM Torque-Speed Characteristics 5.
Figure 3. Graphical Interpretation of Magnetic Field Energy 7.
Figure 4. Graphical Interpretation of Magnetic Field Co-Energy 7.
Figure 5. Basic Operation of a Current-Controlled SRM – Motoring at Low Speed 9.
Figure 6. Commutation of a 3-Phase SRM 10.
Figure 7. Single-Pulse Mode – Motoring, High Speed 11.
Figure 8. SRM Shaft Position Sensor 13.
Figure 9. Opto-Coupler Output Signals vs. Rotor Angle 13.
Figure 10. Opto-Coupler Connections to the TMS320F240 EVM 14.
Figure 11. Two-Switch Per Phase Inverter 15.
Figure 12. Schematic Diagram of SRM Inverter Using the IR2110 and Connections to the EVM 16. . . .
Figure 13. Block Diagram of the SRM Controller 17.
Figure 14. TMS320F240 SRM Control Program Structure 17.
Figure 15. Processor Timeline Showing Typical Loading and Execution of

 SRM Control Algorithms 18.
Figure 16. Initialization Flowchart 20.
Figure 17. Approximate SRM Current Loop Model 21.
Figure 18. Frequency Response Plots for the SRM Current Loop at the Unaligned Position (Squares)

 and at the Aligned Position (Circles) 22.
Figure 19. State Transition Diagram for the SRM Position Pickoff 23.
Figure 20. Simplified Block Diagram of SRM Velocity Loop Using PI Control 30.
Figure 21. Open-Loop Frequency Response of the SRM Velocity Loop at Several Motor Speeds, for

 a = 0.73 rad/s 31.

List of Tables
Table 1. SRM Parameters 12.
Table 2. Benchmark Data for the Various SRM Drive Software Modules 19.

1 Introduction
Electric machines can be broadly classified into two categories on the basis of how they produce
torque − electromagnetically or by variable reluctance.

In the first category, motion is produced by the interaction of two magnetic fields, one generated
by the stator and the other by the rotor. Two magnetic fields, mutually coupled, produce an
electromagnetic torque tending to bring the fields into alignment. The same phenomenon causes
opposite poles of bar magnets to attract and like poles to repel. The vast majority of motors in
commercial use today operate on this principle. These motors, which include DC and induction
motors, are differentiated based on their geometries and how the magnetic fields are generated.
Some of the familiar ways of generating these fields are through energized windings, with
permanent magnets, and through induced electrical currents.

SPRA420A

3 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

In the second category, motion is produced as a result of the variable reluctance in the air gap
between the rotor and the stator. When a stator winding is energized, producing a single
magnetic field, reluctance torque is produced by the tendency of the rotor to move to its
minimum reluctance position. This phenomenon is analogous to the force that attracts iron or
steel to permanent magnets. In those cases, reluctance is minimized when the magnet and
metal come into physical contact. As far as motors that operate on this principle, the switched
reluctance motor (SRM) falls into this class of machines.

In construction, the SRM is the simplest of all electrical machines. Only the stator has windings.
The rotor contains no conductors or permanent magnets. It consists simply of steel laminations
stacked onto a shaft. It is because of this simple mechanical construction that SRMs carry the
promise of low cost, which in turn has motivated a large amount of research on SRMs in the last
decade. The mechanical simplicity of the device, however, comes with some limitations. Like the
brushless DC motor, SRMs can not run directly from a DC bus or an AC line, but must always be
electronically commutated. Also, the saliency of the stator and rotor, necessary for the machine
to produce reluctance torque, causes strong non-linear magnetic characteristics, complicating
the analysis and control of the SRM. Not surprisingly, industry acceptance of SRMs has been
slow. This is due to a combination of perceived difficulties with the SRM, the lack of
commercially available electronics with which to operate them, and the entrenchment of
traditional AC and DC machines in the marketplace. SRMs do, however, offer some advantages
along with potential low cost. For example, they can be very reliable machines since each phase
of the SRM is largely independent physically, magnetically, and electrically from the other motor
phases. Also, because of the lack of conductors or magnets on the rotor, very high speeds can
be achieved, relative to comparable motors.

Disadvantages often cited for the SRM; that they are difficult to control, that they require a shaft
position sensor to operate, they tend to be noisy, and they have more torque ripple than other
types of motors; have generally been overcome through a better understanding of SRM
mechanical design and the development of algorithms that can compensate for these problems.

2 Motor Characteristics

The basic operating principle of the SRM is quite simple; as current is passed through one of the
stator windings, torque is generated by the tendency of the rotor to align with the excited stator
pole. The direction of torque generated is a function of the rotor position with respect to the
energized phase, and is independent of the direction of current flow through the phase winding.
Continuous torque can be produced by intelligently synchronizing each phase’s excitation with
the rotor position.

By varying the number of phases, the number of stator poles, and the number of rotor poles,
many different SRM geometries can be realized. A few examples are shown in Figure 1.

SPRA420A

4 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

2-phase,
4 rotor poles/2 stator poles

(b)(a)

4-phase,
8 rotor poles/6 stator poles

3-phase,
6 rotor poles/4 stator poles

(c) (d)

5-phase,
10 rotor poles/8 stator poles

Figure 1. Various SRM Geometries

Note that although true of these examples, the number of phases is not necessarily equal to half
the number of rotor poles.

Generally, increasing the number of SRM phases reduces the torque ripple, but at the expense
of requiring more electronics with which to operate the SRM. At least two phases are required to
guarantee starting, and at least three phases are required to insure the starting direction. The
number of rotor poles and stator poles must also differ to insure starting.

2.1 Torque-Speed Characteristics

The torque-speed operating point of an SRM is essentially programmable, and determined
almost entirely by the control. This is one of the features that makes the SRM an attractive
solution. The envelope of operating possibilities, of course, is limited by physical constraints
such as the supply voltage and the allowable temperature rise of the motor under increasing
load. In general, this envelope is described by Figure 2.

SPRA420A

5 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

To
rq

ue

Speed

Base Speed

Current
Limit

Constant Power,

T �
1
�

T �
1
�2

Figure 2. SRM Torque-Speed Characteristics

Like other motors, torque is limited by maximum allowed current, and speed by the available bus
voltage. With increasing shaft speed, a current limit region persists until the rotor reaches a
speed where the back-EMF of the motor is such that, given the DC bus voltage limitation we can
get no more current in the winding—thus no more torque from the motor. At this point, called the
base speed, and beyond, the shaft output power remains constant, and at it’s maximum. At still
higher speeds, the back-EMF increases and the shaft output power begins to drop. This region
is characterized by the product of torque and the square of speed remaining constant.

2.2 Electromagnetic Equations

Although SR motor operation appears simple, an accurate analysis of the motor’s behavior
requires a formal, and relatively complex, mathematical approach. The instantaneous voltage
across the terminals of a single phase of an SR motor winding is related to the flux linked in the
winding by Faraday’s law,

v � iRm �
d�
dt

where, v is the terminal voltage, i is the phase current, Rm is the motor resistance, and φ is the
flux linked by the winding. Because of the double salient construction of the SR motor (both the
rotor and the stator have salient poles) and because of magnetic saturation effects, in general,
the flux linked in an SRM phase varies as a function of rotor position, θ, and the motor current.
Thus, Equation (1) can be expanded as

v � iRm �
��

�i
di
dt

�
��

��

d�
dt

where,
��

�i is defined as L(θ, i), the instantaneous inductance,
��

�� is Kb(θ, i), the instantaneous
back EMF.

(1)

(2)

SPRA420A

6 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

2.3 General Torque Equation

Equation (2) governs the transfer of electrical energy to the SRM’s magnetic field. In this section,
the equations which describe the conversion of the field’s energy into mechanical energy are
developed. Multiplying each side of Equation (1) by the electrical current, i, gives an expression
for the instantaneous power in an SRM,

vi � i 2Rm � i
d�
dt

The left-hand side of Equation (3) represents the instantaneous electrical power delivered to the
SRM. The first term in the right-hand side (RHS) of Equation (3) represents the ohmic losses in
the SRM winding. If power is to be conserved, then the second term in the RHS of Equation (3)
must represent the sum of the mechanical power output of the SRM and any power stored in the
magnetic field. Thus,

i
d�
dt

�
dWm

dt
�

dWf

dt

where,
dWm

dt is the instantaneous mechanical power, and
dWf

dt is the instantaneous power, which
is stored in the magnetic field. Because power, by it’s own definition, is the time rate of change
of energy, Wm is the mechanical energy and Wf is the magnetic field energy.

It is well known that mechanical power can be written as the product of torque and speed,

dWm

dt
� T� � T

d�
dt

where, T is torque, and � �
d�
dt

 is the rotational velocity of the shaft.

Substitution of Equation (5) into Equation (4) gives,

i
d�
dt

� T
d�
dt

�
dWf

dt

and solving Equation (6) for torque yields the equation,

T (�,�) � i (�,�)
d�
d�

�
dWf (�,�)

d�

and for constant flux, Equation (7) simplifies to,

T � �
�Wf
��

Since it is often desirable to express torque in terms of current rather than flux, it is common to
express torque in terms of co-energy, Wc, instead of energy. To introduce the concept of
co-energy, first consider a graphical interpretation of field energy. For constant shaft angle,
d�
dt

� 0 , integration of Equation (6) shows that the magnetic field energy can be given by the

equation,

Wf � �
�

0

i(�,�) d�

(3)

(4)

(5)

(6)

(7)

(8)

(9)

SPRA420A

7 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

and graphically by the shaded area in Figure 3.

φ

F
lu

x
Li

nk
ag

e

i Current

for angle, θ,
magnetization
curve defines
current as a
function of flux
i = i (θ,φ)

Wf , stored field energy

Figure 3. Graphical Interpretation of Magnetic Field Energy

Now, consider Figure 4.

φ

F
lu

x
Li

nk
ag

e

i Current

for angle, θ,
magnetization
curve defines flux
as a function of
current
φ = φ (θ,i)

Wc , stored field co-energy

Figure 4. Graphical Interpretation of Magnetic Field Co-Energy

SPRA420A

8 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

For the fixed angle, θ, let the magnetization curve define flux as a function of current, instead of
current defined as a function of flux. The shaded area below the curve,

Wc � �
i

0

�(�, i) di

is defined as the magnetic field co-energy.

From Figure 3 and Figure 4, we see that the area defining the field energy and co-energy can be
described by the relation,

Wc � Wf � i�

Differentiating both sides of Equation (11) yields

dWc � dWf � �di � id�

Solving for the differential field energy in Equation (12) and substituting back into Equation (7)
gives,

T �
id�� ��di � id�� dWc(�, i)�

d�

For simplification, the general torque equation, Equation (13), is usually simplified for values of
constant current. The differential co-energy can be written in terms of its partial derivatives as,

dWc(�, i) �
�Wc

��
d��

�Wc

�i
di

From Equation (13) and Equation (14), it is fairly easy to show that under constant current,

T �
�Wc

��
, i constant

2.4 Simplified Torque Equation

Often, SRM analysis proceeds under the assumption that, magnetically, the motor remains
unsaturated during operation. This assumption can be useful for “first cut” control designs or
performance predictions. When magnetic saturation is neglected, the relationship from flux to
current is given by,

� � L(�) � i

and the motor inductance varies only as a function of rotor angle. Substituting Equation (16) into
Equation (10) and evaluating the integral yields,

Wc �
i 2

2
L(�)

and then substituting Equation (17) into Equation (15) gives the familiar simplified relationship
for SRM torque,

T �
i 2

2
dL
d�

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

SPRA420A

9 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

3 Control

SRM drives are controlled by synchronizing the energization of the motor phases with the rotor
position. Figure 5 illustrates the basic strategy.

θ

idealized
inductance

ideal
current

current

voltage

Figure 5. Basic Operation of a Current-Controlled SRM – Motoring at Low Speed

As Equation (18) suggests, positive (or motoring) torque is produced when the motor inductance
is rising as the shaft angle is increasing, dL

d�
� 0.

Thus, the desired operation is to have current in the SRM winding during this period of time.
Similarly, a negative (or braking) torque is produced by supplying the SRM winding with current
while dL

d�
� 0.

The exact choice of the turn-on and turn-off angles and the magnitude of the phase current,
determine the ultimate performance of the SRM. The design of commutation angles, sometimes
called firing angles, usually involves the resolution of two conflicting concerns − maximizing the
torque output of the motor or maximizing the efficiency of the motor. In general, efficiency is
optimized by minimizing the dwell angle (the dwell angle is the angle traversed while the phase
conducts), and maximum torque is achieved by maximizing the dwell angle to take advantage of
all potential torque output from a given phase.

A simple and effective commutation scheme is depicted in Figure 6.

SPRA420A

10 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

To
rq

ue

Rotor Electrical Angle (deg)

C
ur

re
nt

0 60 120 240180 300 360

C A B C

phase A

phase C

phase B

Figure 6. Commutation of a 3-Phase SRM

In the top plot of Figure 6, the dashed line shows the torque that would be generated by phase
A, should constant current flow through the phase winding during an entire electrical cycle of the
SRM. With the idealized current waveforms of the figure, the resulting net torque from the motor
is shown by the solid line. The turn-on and turn-off angles coincide with the region where
maximum torque is obtained for the given amount of phase current.

This commutation sequence tends to optimize efficiency. Here, a dwell angle of 120 electrical
degrees is used, which is the minimum dwell angle that can be used for a three-phase SRM,
without regions of zero torque.

Of interest to note from Figure 6 is that constant current results in non-constant torque. As might
be expected, schemes have been proposed by Husain and Ehsani1, Ilic-Spong, et al2, and
Kjaer, et al3 that attempt to linearize SRM output torque by shaping and controlling the phase
currents through some non-linear function that depends upon the motor characteristics. This
application, although not covered in this report, is well suited for DSP implementation.

Figure 6 illustrates the effect that the choice of commutation angles can have upon the SRM
performance. Equally important is the magnitude of the current that flows in the winding.
Commonly, the phase current is sensed and controlled in a closed-loop manner, and as seen in
the voltage curve of Figure 5, the control is typically implemented using PWM techniques.

1 I. Husain and M. Ehsani, ” Torque Ripple Minimization in Switched Reluctance Motor Drives by
PWM Current Control,” Proc. APEC’94, 1994, pp. 72–77.

2 M. Ilic-Spong, T. J. E. Miller, S. R. MacMinn, and J. S. Thorp, “Instantaneous Torque Control of
Electric Motor Drives,” IEEE Trans. Power Electronics, Vol. 2, pp. 55–61, Jan. 1987.

3 P. C. Kjaer, J. Gribble, and T. J. E. Miller, “High-grade Control of Switched Reluctance Machines,”
IEEE Trans. Industry Electronics, Vol. 33, pp. 1585–1593, Nov. 1997.

SPRA420A

11 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

SRM control is often described in terms of ”low-speed” and ”high-speed” regimes. Low-speed
operation is typically characterized by the ability to arbitrarily control the current to any desired
value. Figure 5 illustrates waveforms typical of low-speed SRM operation. As the motor’s speed
increases, it becomes increasingly difficult to regulate the current because of a combination of
the back EMF effects and a reduced amount of time for the commutation interval. Eventually a
speed is reached where the phase conducts (remains on) during the entire commutation
interval. This mode of operation, depicted by Figure 7, is called the single-pulse mode.

idealized
inductance

current

voltage

Figure 7. Single-Pulse Mode – Motoring, High Speed

When this occurs, the motor speed can be increased by increasing the conduction period (a
greater dwell angle) or by advancing the firing angles, or by a combination of both. By adjusting
the turn-on and turn-off angles so that the phase commutation begins sooner, we gain the
advantage of producing current in the winding while the inductance is low, and also of having
additional time to reduce the current in the winding before the rotor reaches the negative torque
region. Control of the firing angles can be accomplished a number of ways, and is based on the
type of position feedback available and the optimization goal of the control, as discussed in
publications by Becerra, et al,4 and Miller.5 When position information is more precisely known,
a more sophisticated approach can be used. One approach is to continuously vary the turn-on
angle with a fixed dwell.

Near turn-on, Equation (2) can be approximated as

v �
��

�i
di
dt

� Lu �
di
dt

4 R. Becerra, M. Ehsani, and T. J. E. Miller, “Commutation of SR Motors,” IEEE Trans. Power
Electronics, Vol. 8, July 1993, pp. 257–262.

5 T. J. E. Miller, “Switched Reluctance Motors and Their Control,” Magna Physics Publishing,
Hillsboro, OH, and Oxford, 1993.

(19)

SPRA420A

12 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

Multiplying each side of Equation (19) by the differential, dθ, and solving for dθ, gives,

d� �
Lu � di

v �
d�
dt

and using first order approximations yields an equation for calculating advance angle,

�adv �
Lu � icmd

Vbus
� �

where icmd is the desired phase current and Vbus is the DC bus voltage.

4 Example – SRM Drive with Position Feedback

This section describes an example application of an SRM drive with position feedback. The
SRM is a 3-phase 12/8 machine that is speed and current controlled.

4.1 Hardware Description

4.1.1 SRM Characteristics

The characteristics of the SRM used in this application report are given by Table 1.

Table 1. SRM Parameters

number of phases, m 3

number of stator poles, NS 12

number of rotor poles, NR 8

nominal phase resistance, Rm 8.1 Ω
nominal aligned inductance, La 240 mH

nominal unaligned inductance, Lu 60 mH

phase current (max) 4 A

DC bus voltage, Vbus 170 VDC

4.1.2 Control Hardware

The control hardware used in this application report is the TMS320F240 evaluation module
(EVM).

4.1.3 Position Sensor

Shaft position information is provided using an 8-slot, slotted disk connected to the rotor shaft
and three opto-couplers mounted to the stator housing as shown in Figure 8.

(20)

(21)

SPRA420A

13 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

SRM Housing

Opto-couplers

Rotor
Shaft

Slotted Disk

Figure 8. SRM Shaft Position Sensor

The opto-couplers are nominally located 30° apart from each other along the circumference of
the disk. This configuration and geometry produces the output waveforms shown in Figure 9.

Opto #1

Opto #2

Opto #3

(mechanical angle)
(electrical angle)

0 15 30 45
0 120 240 360/0

Figure 9. Opto-Coupler Output Signals vs. Rotor Angle

This configuration generates an opto-coupler edge for every 7.5° of mechanical rotation. For
every 45° of mechanical rotation the signal pattern repeats, corresponding to one electrical cycle
of the SRM, of which there are 8 per shaft revolution.

In this report both mechanical angle and electrical angle are referenced. Mechanical angle is
useful when considering velocity control of the SRM, and electrical angle is convenient when
considering commutation. Electrical angle is related to mechanical angle by the number of rotor
poles, NR. In Figure 9, the angles are arbitrarily defined with respect to some convenient point.
Here, 180° electrical is defined as the aligned position for phase A of the motor. This is easily
verified by energizing phase A and then monitoring the opto-coupler output waveforms on an
oscilloscope to observe that the rotor is at the point where opto-coupler #3 switches state, while
opto-coupler #2 is low and opto-coupler #1 is high. For a 3-phase SRM, phases B and C are
related to the position of phase A by adding 120 and 240 electrical degrees, respectively.

SPRA420A

14 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

A fundamentally identical position sensor can be implemented by replacing the opto-couplers
with Hall-effect sensors and embedding permanent magnets within the teeth of the slotted disk.
The opto-couplers are connected to the F240 EVM as shown in Figure 10.

Opto-coupler #x

+5 V

CAPx

IOPx

x = 1,2,3

Figure 10. Opto-Coupler Connections to the TMS320F240 EVM

Here, each opto-coupler output is connected to both a capture input and a digital I/O input. As
will be explained in further detail below, the capture inputs are used once the motor is running,
and the digital I/O inputs are used for estimating initial rotor position and for starting the SRM.

4.1.4 Power Electronics Hardware

The amount of current flowing through the SRM windings is regulated by switching on or off
power devices, such as MOSFETs or IGBTs, which connect each SRM phase to a DC bus. The
power inverter topology is an important issue in SRM control because it largely dictates how the
motor can be controlled.

There are numerous options available, and invariably the decision will come down to trading off
the cost of the driver components against having enough control capability (independent control
of phases, current feedback, etc.) built into the driver. A popular configuration, and the one used
in this application report, uses 2 switches and 2 diodes per phase. This topology is depicted in
Figure 11.

SPRA420A

15 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

Phase
Winding

Vbus

Figure 11. Two-Switch Per Phase Inverter

Publications by Vukosavic and Stfanovic6 and Miller7 offer several other configurations that
require fewer switches per phase, although with some penalty on control flexibility and
maintaining phase independence. A gate drive IC device, such as the IR2110, is used to turn on
and off the semiconductor switches. In the topology of Figure 11, the low-side switch is usually
held on during a commutation interval, while the top switch is used to implement the control. For
independent current control of each phase, a low-ohm sense resistor is placed between the
source of the low-side n-channel power MOSFET and ground.

A schematic diagram of the inverter used in this application report, including the gate drive
circuit and the connections to the EVM, is given in Figure 12.

6 S. Vukosavic and V. Stfanovic, “SRM Inverter Topologies: A Comparative Evaluation,” IEEE IAS
Annual Meeting Conf. Record, 1990.

7 T. J. E. Miller (ed.), “Switched Reluctance Motor Drives,” Intertec Communications Inc., Ventura
CA, 1988.

SPRA420A

16 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

_

+

CMPj /PWMj

CMPi /PWMi

j = 2,4,6

i = 1,3,5

7403

1

2

4

5

3

6

3

5

MC14049

+15

IR2110

2

4

9

12

10

11

13

7

5

6

3

1

2

VDD
HO

LIN

HIN

SD

VSS

VB

VS

VCC

LO

COM

2.2 µF

+15

22

+LOAD

+VBUS

–LOAD

IRF740

IRF710

+15

IRFD123

10k
HFA15TB60

HFA15TB60

22
IRF740

LOGIC
GROUND

SENSE
RESISTOR

ADCINx

x = 1,2,3

POWER GROUND

MUR160

0.01 µF

Figure 12. Schematic Diagram of SRM Inverter Using the IR2110 and Connections to the EVM

The diagram shows the components used for a single phase. Each phase uses two IRF740
n-channel power MOSFETs for the switching elements in the output stage. The IRF740 is rated
at 400 VDC, 10 A. The drain to source on resistance of these devices is 0.55 Ω. The
free-wheeling diodes used in the power stage are HFA15TB60s, fast recovery diodes. The
HFA15TB60 has a reverse recovery time of 60 ns, and is rated at 600 VDC, 15 A. Logic is
implemented at the input to the gate drive IC such that the top power MOSFET can be turned on
only when the bottom MOSFET is also on. The reasons for this limitation, and other circuit
details, are discussed more thoroughly in a publication by Clemente and Dubhashi.8

4.2 Software Description

The software described in this application report is written in C and is designed for operating a
3-phase 12/8 SRM in closed loop current control and closed loop speed control. A block diagram
of the algorithms implemented is given in Figure 13.

8 S. Clemente and A. Dubhashi, “HV Floating MOS-Gate Driver IC,” International Rectifier
Application Note AN-978A, International Rectifier, El Segundo, CA, 1990.

SPRA420A

17 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

}�on

speed
cmd

+

–
� P � I

torque
cmd

DSP

icmd +

–
� K PWM Inverter SRM

current controller

velocity
controller

torque to
current

currentTsamp

�off
commutation

angles

advance
angle
calc

position
estimator

position
edges opto-

couplers
position

DC bus
voltage

velocity
estimator

Figure 13. Block Diagram of the SRM Controller

Velocity is estimated by monitoring the elapsed time between opto-coupler edges, which are a
known distance apart. A velocity compensation algorithm determines the torque required to
bring the motor velocity to the commanded value.

A commutation algorithm converts the torque command into a set of phase current commands,
and the current in each phase is individually regulated using a fixed-frequency PWM scheme.
Further details on each of the algorithms are provided in subsequent sections of this report.

4.2.1 Program Structure

Figure 14 shows the structure of the SRM control software for the TMS320F240 DSP.

Start

Initialization Routines:
– DSP Setup
– Event Manager Initialization
– SRM Algorithm Initialization
– Enable Interrupts
– Start Background

Run Routines:

Background:
– Velocity Estimation
– Visual Feedback

Timer ISR:
– Current Control
– Position Estimation
– Commutation
– Velocity Control

Capture ISR:
– Store Capture Data
– Schedule Position msmt Update
– Schedule Velocity msmt Update

Figure 14. TMS320F240 SRM Control Program Structure

SPRA420A

18 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

At the highest level, the software consists of initialization routines and run routines. Upon
completion of the necessary initialization, the background task is started. The background is
simply an infinite loop, although when required, lower priority processing including velocity
estimation and a visual feedback routine is executed. The velocity estimation involves
double-precision division arithmetic, thus it is executed in background mode so that the timeline
is not violated. This algorithm is initiated in the capture interrupt service routine. The visual
feedback function simply toggles an LED on the EVM board to provide a signal to the user that
the code is running.

All of the time critical motor control processing is done via interrupt service routines. The timer
ISR is executed at each occurrence of the maskable CPU interrupt INT3. This interrupt
corresponds to the event manager group B interrupts, of which we enable only the timer #3
period interrupt, TPINT3. The frequency, F, at which this routine is executed is specified by
loading the timer 3 period register with the desired value. The SRM control algorithms which are
implemented during the timer ISR are the current control, shaft position estimation,
commutation, and velocity control. As illustrated in Figure 15, only the current control and shaft
position estimation are executed at the frequency, F.

Î
Î

5 1 2 3 4 5 1 2 3 4
ÏÏ
ÏÏ

ÏÏ
ÏÏ

ÌÌ
ÌÌ

Ì
Ì

Î
Î

ÎÎ
ÎÎ

ÑÑ
ÑÑ

ÑÑ
ÑÑ

ÓÓ
ÓÓ

ÔÔ
ÔÔ

ÖÖ
ÖÖ

ÏÏ
ÏÏ
ÒÒ
ÒÒ

Ó
Ó

ÕÕ
ÕÕ

ÕÕ
ÕÕ

ÎÎ
ÎÎ

Î
Î

Ó
Ó

ÓÓ
ÓÓ

ŠŠ
ŠŠ

ŠŠ
ŠŠ

ÚÚ
ÚÚ

ÛÛ
ÛÛ

ÜÜ
ÜÜ

Timer ISR
Processing

Capture ISR
Processing

Background
Processing

Total
Processing

capture
interrupts

timer 3 period interrupts

current control and position estimation

commutation

velocity control

read and store capture data

velocity estimation

Figure 15. Processor Timeline Showing Typical Loading and Execution of
SRM Control Algorithms

Because of their lower bandwidth requirements, velocity control and commutation are performed
at a frequency of F/5. Considering the timer ISR as being sliced into fifths with a pattern
repeating every five slices, commutation is run only in the first slice and the velocity loop only in
the second. Current control and position estimation are performed in each slice.

SPRA420A

19 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

The capture interrupt service routine is executed at each occurrence of the maskable CPU
interrupt INT4. This CPU interrupt corresponds to the event manager group C interrupts, of
which we enable the three capture event interrupts, CAPINT1–3. This ISR executes
asynchronously to the timers on board the DSP and the frequency of execution is dependent on
the SRM shaft speed according to the equation,

capture ISR frequency (Hz) � shaft speed (rpm) �
360 (deg)

(rev)
�

1
7.5 (deg)

�
1 (min)
60 (sec)

The capture ISR is used to determine which capture interrupt has occurred, read the appropriate
capture FIFO register, and then store the data. Although no algorithm is explicitly executed in
this ISR, flags are set which initiate velocity and position estimation actions. As described above,
the velocity estimate update calculation is performed in the background. The position estimation
algorithm, which executes during the timer ISR, is notified that a new position measurement has
been received.

Table 2 summarizes the processing requirements for each of the major software functions for the
SRM controller.

Table 2. Benchmark Data for the Various SRM Drive Software Modules

S/W Block Module Number of
Cycles

Execution
Time

@ 50 ns

Execution
Frequency

Relative
Time

@ 5 kHz

Velocity Estimation Background 3620 181.0 µs 800 Hz† 29.0 µs

Visual Feedback Background 60 3.0 µs 2 Hz 0.0 µs

Current Control Timer ISR 948 47.4 µs 5000 Hz 47.4 µs

Position Estimation Timer ISR 258 12.9 µs 5000 Hz 12.9 µs

Commutation Timer ISR 1296 64.8 µs 1000 Hz 13.0 µs

Velocity Control Timer ISR 444 22.2 µs 1000 Hz 4.4 µs

Misc. Overhead Timer ISR 140 7.0 µs 5000 Hz 7.0 µs

Capture ISR Capture ISR 500 25.0 µs 800 Hz† 4.0 µs

C Context Switch RTS.LIB 120 6.0 µs 5800 Hz 7.0 µs

Total 124.7 µs
† at a shaft speed of 1000 rpm

The data in Table 2 shows that when the timer ISR frequency, F, is chosen as 5 kHz, that the
overall processor loading is equal to

processor loading �
124.7 �s
200.0 �s

� 62.4% ,

when running the DSP at a 20 MHz clock frequency. The code size is 2456 words and
167 words are required for variable/data storage. Thus, the total memory requirement is less
than 3K words. Complete code listings are given in Appendix A.

It should be noted that this benchmark data was taken with the program and data memory
located off chip, as can be seen in the link.cmd file located in the appendix. A 2× to 3×
improvement in execution can be achieved by moving the .bss and .stack sections of the
firmware to the on-chip B0/B1 area of the DSP and by moving the .text section of the firmware to
the flash memory.

(22)

(23)

SPRA420A

20 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

4.2.2 Initialization Routines

A flowchart describing the initialization routines is given in Figure 16.

disable interrupts

reset

DSP setup

disable interrupts

initialize event
manager

initialize
SRM algroithm

parameters

initialize program
control counters

and flags

enable interrupts

start background

Figure 16. Initialization Flowchart

The DSP is configured so that the watchdog timer is disabled. The TMS320F240 EVM has a
10 MHz crystal, which is used in conjunction with the PLL module of the DSP to yield a 20 MHz
CPUCLK.

The event manager initialization configures the timer units, the capture units, the compare units,
and the A/D converters. Also, the CAP1–CAP4 and IOPB0–IOPB3 pins, whose functions are
software programmable, are configured to operate as capture pins and digital output pins,
respectively.

SPRA420A

21 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

Each of the timers are programmed to operate in the continuous up count mode. Timer #1
provides the timebase for the fixed-frequency PWM control of the phase current. Timer #2
provides the timebase for the capture events, and timer #3 is used to provide a CPU interrupt at
a fixed rate. The compare units are configured to the PWM mode, where PWMs 1,3, and 5
(used for switching the high-side power MOSFET) are configured as active high.

The SRM algorithm initialization defines the parameters of the position estimation state machine
and sets the initial conditions of the motor, for example, setting the shaft velocity estimate to
zero. Also, during this routine, the logic states of the opto-couplers are read from the digital I/O
pins, and this information used to estimate the rotor position.

Upon initializing several flags and counters which are used for program flow control, the infinite
loop background routine is called, and the normal operation of controlling the SRM drive begins.

See the comments in the code listings found in Appendix A for further information on the
program initialization.

4.2.3 Current Controller

Current is regulated by fixed-frequency PWM signals with varying duty cycles. The
TMS320F240 accomplishes this using compare units and output logic circuits. The compare
units are programmed for PWM mode, to use timer #1 as a time base. The desired output logic
polarity is controlled by the ACTR register. The PWM frequency is specified by loading the
period register of timer #1, T1PER, with a value, P, defined by,

P �
CPUCLK frequency

PWM frequency
� 1

For the F240, the CPUCLK frequency is 20 MHz. The percentage duty cycle for the xth phase is
controlled by loading the appropriate compare register, CMPRx, with an appropriate value
between 0 and P (0 = 0%, P/2 = 50%, P = 100%). A PWM frequency of 20 kHz is used. The
value is significantly higher than the bandwidth of the current loop and also at a frequency which
is inaudible.

The percentage duty cycle command is calculated by the current loop compensation algorithm,
which is designed using linear analysis. The analysis begins with an approximate model of the
current loop, given by Figure 17.

Current Control Algorithm

Loop Gain

icmd
K P

0
1
P

PWM

Vbus

SRM

V i1�Rm

(L�Rm)s � 1

ifb 1 � e�sT

s

ZOH
A/D Converter Feedback

Gain

1023
0

1023
5

Kfb

Figure 17. Approximate SRM Current Loop Model

(24)

SPRA420A

22 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

Using the SRM data of Table 2, and with P = 999, Kfb = 1.17 V/A, the open-loop frequency
response, G(ω), of the SRM current loop, from icmd to ifb , is given in Figure 18 for values of
phase inductance at both the aligned rotor position (L = La) and the unaligned rotor position
(L = Lu).

0

P
ha

se
 (

de
g)

DC gain = 14.1 dB + 20log10(K)

M
ag

ni
tu

de
 (

dB
)

–100

–200

10 1041000100

Frequency (Hz)

desired

0 dB

1.16 decade

slope = –20 dB/decade

370 HzR
Lmin

� 200 rad�s (32 Hz)

desired P.M. = 65 deg

–180 deg

Figure 18. Frequency Response Plots for the SRM Current Loop at the Unaligned Position
(Squares) and at the Aligned Position (Circles)

Because of the digital implementation of the current loop, additional phase loss, beyond the 90°
due to the motor pole, is contributed by the sample and hold process and the processing delay
inherent in the loop. These dynamics essentially limit the current loop bandwidth to an open loop
crossover frequency near 370 Hz. The time delay due to the zero-order hold (ZOH) is equal to
��of the sampling period, in this case � of 200 µsec, or 100 µsec. Since the phase loss at any
frequency, ω, due to a pure time delay, τ, is given by the expression,

�loss � ��

using Equation (25), we calculate that the phase loss due to the ZOH sampling at 370 Hz is
equal to

�loss � 2�� 370 � �100 � 10�6� � 0.232 rad � 13.3o

Assuming that the processing delay is equal to 50% of a loop cycle, or another 100 µsec, then
the net effect of digital implementation yields about 26° of phase loss at 370 Hz. When
combined with the 90° due to the motor pole, the phase loss through the loop is approximately
116°, at 370 Hz. If the loop gain, K, is chosen such that the 0 dB point of the open-loop
magnitude occurs at 370 Hz, then the resulting phase margin in the loop will be about 64°. This
amount of phase margin provides a very stable loop design. The DC gain of the loop is given by,

(25)

(26)

SPRA420A

23 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

K � Vbus � Kfb � 1023
P � 5 � R

� 5.092 K

which, when written in decibels, is equal to,

DC gain � 14.1 dB � 20 log10(K)

For frequencies where ω > (R/L), the magnitude of the loop response is equal to,

|G(�)| � 14.1 dB � 20 log10(K) � 2 �� �
R�L
�

In Equation (29), letting L = Lu provides the most conservative choice, resulting in a stable
design for all rotor positions. Setting the left-hand side of Equation (29) to 0 dB while ω =
2π(370) rad/s, and solving for K, yields the value of K which ensures the desired open-loop
crossover point for the current loop. In this case K = 2.8.

Often, a PI controller is used. In this example adding an integrator to the control law will not
make much difference in the loop performance, except only at very low speeds, because the
integrator action must be slower than the motor pole to stabilize the loop. In this example using a
3-phase, 12/8 SRM, the motor pole is located near 32 Hz. The SRM operating speed required to
produce the equivalent of 32 Hz commands to the SRM current loops is 240 rpm. Thus, in this
case, only at operating speeds lower than 240 rpm would any integrator action be helpful.

The current loop gain is set using the ILOOP_GAIN constant in the file CONSTANT.H. For this
value, Q3 scaling is used, thus setting ILOOP_GAIN = 22 results in K = 2.75, which is
sufficiently close to the desired value of 2.8, for this application.

4.2.4 Position Estimation

Recall that Figure 9 showed six possible combinations of the opto-coupler output states per
electrical cycle of the SRM. The transitions of the outputs define specific angles. This
information can readily be described by a state machine, such as Figure 19.

011
[3]

0°

001
[1]

101
[5]

100
[4]

110
[6]

010
[2]

60°

300°120°

180° 240°

Opto #1 Opto #3

Opto #2 Opto #2

Opto #3 Opto #1

Figure 19. State Transition Diagram for the SRM Position Pickoff

(27)

(28)

(29)

SPRA420A

24 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

The state, [], is defined by ‘zyx’, where z is the logic state of opto-coupler #3, y of
opto-coupler #2, and x is the state of opto-coupler #1.

Position measurements are made by using this state machine and identifying which opto-coupler
transition occurs, using the DSP’s capture units.

The opto-couplers and slotted disk provide position measurements at six discrete points per
electrical cycle of the SRM. Many commutation schemes, however, require continuous position
information to optimize performance. Thus, to provide a position estimate between
measurements, the equation,

�
^
(k) � �

^
(k � 1) � �^ f (k) � 1

fs

is used, where fs is the estimation update rate and k represents the time of the most recent
capture edge. Equation (30) is implemented, using double precision arithmetic, as follows:

long dp; /* delta–position in mechanical angle */
int speed;
int temp;

if (anSRM–>wEst_10xrpm > 0) {
dp = anSRM–>wEst_10xrpm * K_POSITION_EST + anSRM–>dp_remainder;
anSRM–>dp_remainder = dp & 0xffff;
temp = (int) (dp >> 16);
anSRM–>position = anSRM–>position + (temp * NR);

}
else {

speed = –anSRM–>wEst_10xrpm;
dp = speed * K_POSITION_EST + anSRM–>dp_remainder;
anSRM–>dp_remainder = dp & 0xffff;
temp = (int) (dp >> 16);
anSRM–>position = anSRM–>position – (temp * NR);

}

The constant K_POSITION_EST (Q16), compensates for units (shaft velocity is available in the
software as SRM.wEst_10xrpm with units of rpm × 10) and is calculated according to the equation,

K_POSITION_EST �
1

10
(rpm � 10) �

1 (sec)
fs

�
1 (min)
60 (sec)

�
360o

(rev)
�

65535
360o � 216

for, fs = 5 kHz, K_POSITION_EST = 1432.

During startup, the digital I/O ports determine the state of the rotor and initial position is
estimated in the mid-range of the state. For example, a reading of [100], (consistent with
Figure 19) yields an initial position estimate of 270 electrical degrees. The capture units provide
subsequent measurements, by recognizing the edges, or state transitions.

4.2.5 Velocity Estimation

The three opto-coupler outputs produce an edge every 7.5° of mechanical rotation, and each
opto-coupler produces an edge every 22.5° mechanical. At each edge, velocity is calculated
according to the equation,

�^ �
��
�t

�
60 � �� � fclk

N

(30)

(31)

(32)

SPRA420A

25 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

where, �^ is the velocity estimate (rpm)

�� is the distance between opto-coupler edges (rev)

�t is the time between edges (min)

N is the number of clock counts between edges

fclk is the clock frequency (Hz)

The time between edges is determined from the capture units. The capture units are
programmed via the CAPCON register to use timer #2 as a time base, and to trigger on both
rising and falling edges. Timer #2 is programmed to count at 1.25 MHz via the T2CON. Although
we trade-off resolution in measuring ∆t, a clock frequency of 1.25 MHz is chosen, versus a
maximum of 20 MHz, so that the 16-bit registers containing the count do not overflow except at
very low speeds. Using a 1.25 MHz clock, the counter overflows only at shaft speeds less than
71.5 rpm, considered very low for our application. So that we can operate (although degraded)
at speeds lower than about 100 rpm, ∆t in Equation (32) is determined by a software counter of
the number of 5 kHz timer interrupts that occur between opto-coupler edges.

It can be shown that when instantaneous velocity is estimated by Equation (32) that the
quantization of a velocity estimate is given by

Q �
d�^

dN
�

�2

60 � �� � fclk

and, Q is the quantization of velocity (rpm). In our design, ∆θ = 1/16 revolution (22.5°
mechanical) and fclk = 1.25 MHz. Thus, at 1200 rpm, the quantization is 0.31 rpm.

Various filtering can be applied to Equation (32) for smoothing the velocity estimate, depending
upon the application. What has proven useful is a combination of FIR and IIR filtering of the
form:

�^ f (k) � � � �^ f (k � 1) � (1 � �) � �
k

j�(k�5)

�^ (j)

The FIR filter portion of Equation (34) uses six (from k � 5 to k) instantaneous velocity
estimates. Because there are six opto-coupler edges per electrical cycle, once per cycle
estimation errors are removed.

(33)

(34)

SPRA420A

26 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

The FIR filtering and the determination of the instantaneous velocity estimate is calculated using
double precision as follows:

DWORD a1,a2,a3,a4,a5,a6;
DWORD sum_cnt;
int inst_velocity;

/*–––*/
/* Obtain instantaneous velocity estimate */
/*–––*/
if (mode == 1) {/* use timer #2 as time base */

/*–––*/
/* FIR filter for removing once per electrical cycle */
/* effects */
/*–––*/
a1 = (DWORD) anSRM–>capture_delta[0][0];
a2 = (DWORD) anSRM–>capture_delta[0][1];
a3 = (DWORD) anSRM–>capture_delta[1][0];
a4 = (DWORD) anSRM–>capture_delta[1][1];
a5 = (DWORD) anSRM–>capture_delta[2][0];
a6 = (DWORD) anSRM–>capture_delta[2][1];
sum_cnt = a1+a2+a3+a4+a5+a6;

/*––*/
/* apply “velocity = delta_theta/delta_time” algorithm */
/*––*/
sum_cnt = K1_VELOCITY_EST/sum_cnt;
inst_velocity = ((int) sum_cnt) * anSRM–>shaft_direction;

}

else { /* else, use timer ISR count as time base */

/*––*/
/* apply “velocity = delta_theta/delta_time” algorithm */
/*––*/
sum_cnt = K2_VELOCITY_EST/anSRM–>delta_count;
inst_velocity = ((int) sum_cnt) * anSRM–>shaft_direction;

}

Here, K1_VELOCITY_EST and K2_VELOCITY_EST are constants which incorporate ∆θ and
units so that the instantaneous velocity estimate has units of (rpm × 10). The constants are
calculated using,

K1_VELOCITY_EST � 6 � 22.5 (deg) �
1.25e6 (cnts)

(sec)
�

1 (rev)
360 (deg)

�
60 (sec)

(min)
� 10

K2_VELOCITY_EST � 1 � 7.5 (deg) �
5000 (cnts)

(sec)
�

1 (rev)
360 (deg)

�
60 (sec)

(min)
� 10

(35)

SPRA420A

27 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

The IIR filtering is implemented as:

long filt_velocity;

/*–––*/
/* IIR filter for smoothing velocity estimate */
/*–––*/
filt_velocity = (ALPHA * anSRM–>wEst_10xrpm)
+ (ONE_MINUS_ALPHA * inst_velocity);
anSRM–>wEst_10xrpm = (int) (filt_velocity >> 3);

The filter coefficient, α, is chosen equal to 0.875, [ALPHA = 7 (Q3)]. Let α approach zero for a
higher bandwidth velocity estimate (less smoothing, more noise) and let α approach one for
more smoothing, less noise, and lower bandwidth.

4.2.6 Commutation

The commutation strategy ultimately determines the performance of the SRM. Torque-speed
range, machine efficiency, torque ripple, and acoustic noise all depend, to some extent, on the
commutation algorithm. Design of the commutation algorithm must consider requirements in
each of these areas, while trading off cost issues such as the algorithm complexity and the
availability or accuracy of various sensors. For a current controlled SRM, commutation can be
described as the transformation of the desired net motor torque into a set of desired phase
currents. This is described mathematically by the equation,

i j
cmd

� gj (�) � Tcmd

and j = 1,...,m and m is the total number of motor phases. In general, g(), is a non-linear
function of shaft angle θ, shaft speed ω, the desired torque command Tcmd, the DC bus voltage
Vbus, and the motor instantaneous inductance, L. The most simple choice for g() is given by

g(�) ��
	

1,

0,

�ON � � � (�ON � ��)

otherwise

where the dwell angle, δθ, must be at least equal to 360°/m (electrical), to avoid regions of zero
torque production. An example of commutation described by Equation (37) is illustrated by
Figure 6. The turn-on angle, θON, is typically a few degrees beyond the unaligned position of a
phase. Equation (37) is useful for only single-quadrant operation. For four quadrant operation,
Equation (37) must be modified, for example,

g(�, Tcmd) �
�

�
�

	

1,

1,

0,

��ON � � � (�ON � ��)� &Tcmd � 0

otherwise

�(�ON � �) � � � (�ON � �� ��)� &Tcmd � 0

(36)

(37)

(38)

SPRA420A

28 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

where the conduction angles are offset by 180° electrical (π radians) when negative torque is

desired. This allows a phase to conduct during the region where
dL
d� < 0. An even more flexible

approach, which results in a wider operating range for the SRM, allows the turn-on and dwell
angles to vary. For example, Equation (38) is extended to allow θON and δθ, to be functions of
velocity, desired torque, and the DC bus voltage.

Often, for minimizing torque ripple, the commutation is designed such that two phases conduct
simultaneously and share the job of producing the desired SRM torque. In this case,
Equation (38) is further extended to a function of the form,

g(�, Tcmd) �

	

�

�

�(�),

�(�),

0,

��ON � � � (�ON � ��)� &Tcmd � 0

�

�

(�ON � �) � �

� � (�ON � �� ��)

�
&Tcmd � 0

otherwise

where ρ(θ) is the sharing function. Sharing functions are not implemented in this application
report, however, further information on the choice of sharing functions can be found in a
publication by Kjaer, et al. 9 Essentially commutation schemes of the form in Equation (39) use
knowledge of the motor characteristics to design a non-linear function, ρ(θ), that produces a
linear output torque.

In this example, the commutation coefficients, g(), were calculated using Equation (38), where
θON = π/6 + θadv (radians), δθ = π/3 (radians), and the advance angle, θadv, is given by
Equation (21). This yields a single-quadrant, fixed-dwell, variable turn-on commutation
algorithm. This algorithm is implemented as follows:

int phase;
WORD electricalAngle;
WORD angle;
int channel;
long advance;

/*–––––––––––––––––––––––––––*/
/* Advance angle calculation */
/*–––––––––––––––––––––––––––*/
advance = (anSRM–>wEst_10xrpm * anSRM–>desiredTorque);
advance = advance >> 9;

/*–––*/
/* Offset for advance angle negative torque, if required */
/*–––*/
if (anSRM–>desiredTorque > 0) {

electricalAngle = anSRM–>position + (int) advance;
}
else {

electricalAngle = anSRM–>position + PI_16 – (int) advance;
}

9 P. C. Kjaer, J. Gribble, and T. J. E. Miller, pp. 1585–1593.

(39)

SPRA420A

29 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

for (phase=0; phase< NUMBER_OF_PHASES; phase++) {

/*––––––––––––––––––––––––––––––*/
/* 120 degree offsets for phase */
/*––––––––––––––––––––––––––––––*/
angle = electricalAngle – phase * TWOPIBYTHREE_16;
/*–––*/
/* turn phase on, if between desired angles and switch */
/* the mux on the A/D to measure the desired */
/* phase current */
/*–––*/
if ((angle >= (PIBYSIX_16)) && (angle < (FIVEPIBYSIX_16))) {
anSRM–>active[phase] = 1;
channel = anSRM–>a2d_chan[phase];
switch_mux(channel,channel+8);
}
else {
anSRM–>active[phase] = 0;
}
}

}

As seen in the code above, the advance angle calculation (which yields an advance angle in
units of bits, 65535 bits = 360 electrical degrees) is computed according to the equation,

�adv (bits) �
icmd (bits) � �^ (rpm � 10)

K
, K � 29

� 512

From Equation (21) and Equation (40), we can show that the calculation for K which includes
Lmin, Vdc, and accounts for units is given by

1
K
� Lu (H) � 1

Vbus (V)
�

(rpm � 10)
10

�
1 (A)

239.4 (bits)

�
1 (min)
60 (sec)

�
360o (m)

(rev)
�

8o (e)
1o (m)

�
65535 (bits)

360o (e)

With Lu and Vbus given by Table 1, K = 776.25. However, the value of 512 was used because
dividing by multiples of 2 is readily accomplished using simple shift instructions. For our
application, this simplification provided satisfactory results.

4.2.7 Velocity Controller

Speed is regulated in a closed-loop manner by comparing the desired shaft velocity to the
estimated shaft velocity and then compensating the error. We use a PI (proportional plus
integral) control action for the velocity loop compensation, so that the steady-state velocity error
is zero. The PI coefficients are determined using linear analysis.

Figure 20 shows a simplified model of the velocity loop, where the coefficient, γ, having units of
(rad/s)/A, is a non-linear quantity, including the shaft/load inertia and the instantaneous torque
constant of the SRM.

(40)

(41)

SPRA420A

30 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

Velocity Loop Algorithm

Kv (s � a)
s

icmd�cmd
K

Vbus

P

V 1�Rm

(L�Rm)s � 1

i �
s

�

ifb 1 � e�sT

s
1023

5
Kfb

�^
�

ln�
T * 1 � e�sT*

s

Current
Loop
Gain

PWM
Gain

SRM

ZOH A/D
Gain

Feedback
Gain

IIR Filter

ZOH
s �

ln�
T *

Figure 20. Simplified Block Diagram of SRM Velocity Loop Using PI Control

In the figure, Kv controls the loop gain and ‘a’ is the radian frequency of the PI zero.

The non-linearity in γ is due to the non-linear torque/current relationship of the SRM where for
non-saturating conditions is given by Equation (18) and, in general, by Equation (15). Thus, the
open-loop gain of the velocity loop will vary, approximately, as current squared. This variation
can be significant over the operating range of the SRM. From 4 A to 1 A, for example, the gain
variation is 16, or 24 dB. Depending on the application, this gain variation may need to be
compensated, with a square root law, for example, to stabilize the loop. In this example, the loop
compensation was design with sufficient margin, at the expense of dynamic response, so that
this variation can be ignored. The IIR filter used for smoothing the velocity estimate, has a
z-transform given by,

H(z) �
(1 � �)z

z � �

and is modeled in the Laplace domain as shown in Figure 20.

Another interesting feature of this speed loop is that although the velocity loop update rate is a
fixed-frequency of 1 kHz, the feedback (provided by the opto-coupler edges) occurs at a variable
rate which is a function of rotor speed and given by,

fsamp (Hz) � 0.8 � (speed in rpm) � 1
T *

This behavior generates a variable time delay in the velocity loop, due to the zero-order hold,
and also makes the dynamics of the IIR filter time-varying.

Using the information in Table 1 and Figure 20, it is possible to obtain the open-loop frequency

response,
�^

�cmd (see Figure 21) for the velocity loop, independent of γ.

(42)

(43)

SPRA420A

31 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

P
ha

se
 (

de
g)

Frequency (Hz)

–100

–200

–150

–250

0.01 0.1 1 10 100

M
ag

ni
tu

de
300 rpm

600 rpm

1200 rpm

Figure 21. Open-Loop Frequency Response of the SRM Velocity Loop at Several Motor Speeds,
for a = 0.73 rad/s

The phase loss due to the variable time delay as a function of rotor speed is apparent.

The absolute magnitude as a function of frequency is unknown; however, the shape of the
magnitude and the phase are correct. From Figure 21, clearly the desired open-loop crossover
frequency is in the 1–4 Hz range for this particular loop. By moving the PI zero, a, beyond
0.73 rad/s, the bandwidth can be extended, while trading off stability margins. If the load inertia
and motor torque constant information are known (i.e., γ known), then Kv can be determined
analytically; otherwise, the velocity loop gain is set experimentally.

SPRA420A

32 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

The PI algorithm is implemented as:

/*–––––––––––––––––––––––––––––*/
/* calculate error signal */
/*–––––––––––––––––––––––––––––*/
speed_error = anSRM–>wDes_10xrpm – anSRM–>wEst_10xrpm;

/*–––––––––––––––––––––––––––––*/
/* integrate error*/
/*–––––––––––––––––––––––––––––*/
anSRM–>integral_speed_error = anSRM–>integral_speed_error +
(long)speed_error;

/*–––––––––––––––––––––––––––––*/
/* apply integrator limit */
/*–––––––––––––––––––––––––––––*/
if (anSRM–>integral_speed_error > INTEGRAL_LIMIT) {

anSRM–>integral_speed_error = INTEGRAL_LIMIT;
}
if (anSRM–>integral_speed_error < –INTEGRAL_LIMIT) {

anSRM–>integral_speed_error = –INTEGRAL_LIMIT;
}

/*–––––––––––––––––––––––––––––*/
/* PI filter*/
/*–––––––––––––––––––––––––––––*/
integral_error = (int) ((KI*anSRM–>integral_speed_error) >> 13);
anSRM–>desiredTorque = ((KP*speed_error) >> 1) + integral_error;

This implements a PI compensator, with integrator limits, of the form,

KP �
KI
s �

Kv (s � z)
s ��

�

�

Kp � Kv

KI � Kv � z

Through experimentation, it was determined that Kv = 0.5, provided satisfactory performance. In
the software implementation of the integrator, the multiplication by ∆t is not performed. Thus, this
factor is carried implicitly in KI . For z = 0.73 rad/s and ∆t = 1/1000 sec, KI = 0.365. This is
approximately implemented by setting KI = 3 (scaled Q13 × 1000) in the file CONSTANT.H.

The integrator limit value is calculated such that the condition is,
KI � INTEGRAL_LIMIT

212 � 1000.

5 References
Anderson, B. and J. Moore, Optimal Filtering, Prentice-Hall Publishing, Englewood Cliffs,

NJ, 1979.

Becerra, R., M. Ehsani, and T. J. E. Miller, “Commutation of SR Motors,” IEEE Trans.
Power Electronics, Vol. 8, pp. 257–262, July 1993.

Clemente, S. and A. Dubhashi, “HV Floating MOS-Gate Driver IC,” International Rectifier
application note AN–978A, International Rectifier, El Segundo, CA, 1990.

Husain, I. and M. Ehsani, ” Torque Ripple Minimization in Switched Reluctance Motor
Drives by PWM Current Control,” Proc. APEC’94, 1994.

Ilic–Spong, M., T. J. E. Miller, S. R. MacMinn, and J. S. Thorp, “Instantaneous Torque
Control of Electric Motor Drives,” IEEE Trans. Power Electronics, Vol. 2,
Jan. 1987.

(44)

SPRA420A

33 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

Kjaer, P. C., J. Gribble, and T. J. E. Miller, “High-Grade Control of Switched Reluctance
Machines,” IEEE Trans. Industry Electronics, vol. 33, Nov. 1997.

Lewis, F. Applied Optimal Control & Estimation, Prentice Hall Publishing, Englewood
Cliffs, NJ, 1992.

Lyons, J., S. MacMinn, and M. Preston, “Flux/Current Methods for SRM Rotor Position
Estimation,” IEEE IAS Annual Meeting Conf. Record, 1991.

Miller , T. J. E. (ed.), “Switched Reluctance Motor Drives,” Intertec Communications Inc.,
Ventura, CA, 1988.

Miller, T. J. E., “Switched Reluctance Motors and Their Control,” Magna Physics Publish-
ing, Hillsboro, OH, and Oxford, 1993.

Ray, W. F. and I. H. Al-Bahadly, “Sensorless Methods for Determining the Rotor Position
of Switched Reluctance Motors,” Proc. EPE Conf., Vol. 6, 1993.

Vukosavic, S. and V. Stfanovic, “SRM Inverter Topologies: A Comparative Evaluation,”
IEEE IAS Annual Meeting Conf. Record, 1990.

SPRA420A

34 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

Appendix A Software Listings for a TMS320F240-Based SRM Drive With
Position Sensor

This appendix contains the software to implement an SRM drive using a slotted disk type
position sensor for a TMS320F240 DSP.

File Major Modules Description

TYPEDEFS.H header file – data type definitions

C240.H header file – C240 register definitions

CONSTANT.H header file – SRM constant defintions

SRM.H header file – SRM variable declarations

MAIN.C main()

c_int3()

c_int4()

supervisory program

timer ISR

capture ISR

SRM.C Time_Update_Position()

Msmt_Update_Position()

Msmt_Update_Velocity()

Commutation_Algorithm()

velocityController()

currentController()

time update algorithm for position estimation

measurement update algorithm for position
estimation

velocity estimation algorithm

SRM fixed-dwell, variable turn-on commuta-
tion algorithm

shaft velocity loop compensation algorithm

phase current loop compensation algorithm

EVMGR.C modules for event manager initialization and
operating the event manager peripherials

VECTORS.ASM interrupt vectors

LINK.CMD linker command file

SPRA420A

35 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/***
* File: TYPEDEFS.H *
* TMS320x240 Test Bed Code *
* Texas Instruments, Inc. *
* Copyright (c) 1996 Texas Instruments Inc. *
* 11/05/96 Version 1.0 *
* Jeff Crankshaw *
***/
#ifndef TYPEDEFS_H
#define TYPEDEFS_H

#define FALSE 0
#define TRUE 1

typedef unsigned int WORD; /* 16–bit data */
typedef unsigned long DWORD; /* 32–bit data */
typedef volatile WORD * PORT;

#define STR(x) #x

#define OUTMAC(address,data) \
 asm(” LDPK _”STR(data)); \
 asm(” OUT _”STR(data) ”,” STR(address))

#define INMAC(address,data) \
 asm(” LDPK _”STR(data)); \
 asm(” IN _”STR(data) ”,” STR(address))

#define Int_Read(addr) * (int *) (addr)
#define Int_Write(addr,data) * (int *) (addr) = (data)

#endif /* _TYPEDEFS */

/***
* File: C240.H *
* TMS320x240 Test Bed Code *
* Texas Instruments, Inc. *
* Copyright (c) 1996 Texas Instruments Inc. *
* 11/05/96 Version 1.0 *
* Jeff Crankshaw *
* *
* TMS320C240 Peripheral Register Addresses *
* *
***/
#ifndef c240_h
#define c240_h

#include ”typedefs.h”

/*––*/
/* definitions of I/O space macros */
/*––*/
#define STR(x) #x

#define OUTMAC(address,data) \
 asm(” LDPK _”STR(data)); \
 asm(” OUT _”STR(data) ”,” STR(address))

#define INMAC(address,data) \
 asm(” LDPK _”STR(data)); \
 asm(” IN _”STR(data) ”,” STR(address))

#define LED_LOC 000ch /* F240 EVM I/O space location for LEDs */

SPRA420A

36 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*––*/
/* definitions of CPU core registers */
/*––*/
#define IMR_REG ((PORT)0x0004)
#define IFR_REG ((PORT)0x0006)

/*––*/
/* External Memory Interface Registers */
/*––*/
#define WSGR 0x0ffff
/* Wait State Generator Register */

/*––*/
/* System Module Registers */
/*––*/
#define SYSCR ((PORT)0x07018) /* System Module Control Register */
#define SYSSR ((PORT)0x0701A) /* System Module Status Register */
#define SYSIVR ((PORT)0x0701E) /* System Interrupt Vector Register */
#define XINT1_CR ((PORT)0x07070) /* Int1 (type A) Control reg */
#define NMI_CR ((PORT)0x07072) /* Non maskable Int (type A) Control reg */
#define XINT2_CR ((PORT)0x07078) /* Int2 (type C) Control reg */
#define XINT3_CR ((PORT)0x0707A) /* Int3 (type C) Control reg */
#define PDPINT_CR ((PORT)0x0742C) /* Power Drive Protection Int cntl reg */

/* System Interrupt Vector Register – Address offsets */
#define PHANTOM_INT_VECTOR 0x00
#define NMI_INT_VECTOR 0x02
#define XINT1_INT_VECTOR 0x01
#define XINT2_INT_VECTOR 0x11
#define XINT3_INT_VECTOR 0x1f
#define SPI_INT_VECTOR 0x05
#define SCI_RX_INT_VECTOR 0x06
#define SCI_TX_INT_VECTOR 0x07
#define RTI_INT_VECTOR 0x10
#define PDP_INT_VECTOR 0x20
#define EV_CMP1_INT_VECTOR 0x21
#define EV_CMP2_INT_VECTOR 0x22
#define EV_CMP3_INT_VECTOR 0x23
#define EV_SCMP1_INT_VECTOR 0x24
#define EV_SCMP2_INT_VECTOR 0x25
#define EV_SCMP3_INT_VECTOR 0x26
#define EV_T1PER_INT_VECTOR 0x27
#define EV_T1CMP_INT_VECTOR 0x28
#define EV_T1UF_INT_VECTOR 0x29
#define EV_T1OF_INT_VECTOR 0x2a
#define EV_T2PER_INT_VECTOR 0x2b
#define EV_T2CMP_INT_VECTOR 0x2c
#define EV_T2UF_INT_VECTOR 0x2d
#define EV_T2OF_INT_VECTOR 0x2e
#define EV_T3PER_INT_VECTOR 0x2f
#define EV_T3CMP_INT_VECTOR 0x30
#define EV_T3UF_INT_VECTOR 0x31
#define EV_T3OF_INT_VECTOR 0x32
#define EV_CAP1_INT_VECTOR 0x33
#define EV_CAP2_INT_VECTOR 0x34
#define EV_CAP3_INT_VECTOR 0x35
#define EV_CAP4_INT_VECTOR 0x36
#define AC2_INT_VECTOR 0x04

SPRA420A

37 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*––*/
/* Digital I/O Registers */
/*––*/
#define OCRA ((PORT)0x07090) /* Output Control Reg A */
#define OCRB ((PORT)0x07092) /* Output Control Reg B */
#define PADATDIR ((PORT)0x07098) /* I/O port A Data & Direction reg. */
#define PBDATDIR ((PORT)0x0709A) /* I/O port B Data & Direction reg. */
#define PCDATDIR ((PORT)0x0709C) /* I/O port C Data & Direction reg. */

/*–––*/
/* Watch–Dog(WD) / Real Time Int(RTI) / Phase Lock Loop(PLL) Registers */
/*–––*/
#define RTICNTR ((PORT)0x07021) /* RTI Counter reg */
#define WDTCNTR ((PORT)0x07023) /* WD Counter reg */
#define WDTKEY ((PORT)0x07025) /* WD Key reg */
#define RTICR ((PORT)0x07027) /* RTI Control reg */
#define WDCR ((PORT)0x07029) /* WD Control reg */
#define CKCR0 ((PORT)0x0702B) /* PLL control reg 1 */
#define CKCR1 ((PORT)0x0702D) /* PLL control reg 2 */

/*––*/
/* Analog–to–Digital Converter(ADC) registers */
/*––*/
#define ADCTRL1 ((PORT)0x07032) /* ADC Control & Status reg */
#define ADCTRL2 ((PORT)0x07034) /* ADC Configuration reg */
#define ADCFIFO1 ((PORT)0x07036) /* ADC Channel 1 Result Data */
#define ADCFIFO2 ((PORT)0x07038) /* ADC Channel 2 Result Data */

/*––*/
/* Serial Peripheral Interface (SPI) Registers */
/*––*/
#define SPICCR ((PORT)0x07040) /* SPI Config Control Reg */
#define SPICTL ((PORT)0x07041) /* SPI Operation Control Reg */
#define SPISTS ((PORT)0x07042) /* SPI Status Reg */
#define SPIBRR ((PORT)0x07044) /* SPI Baud rate control reg */
#define SPIEMU ((PORT)0x07046) /* SPI Emulation buffer reg */
#define SPIBUF ((PORT)0x07047) /* SPI Serial Input buffer reg */
#define SPIDAT ((PORT)0x07049) /* SPI Serial Data reg */
#define SPIPC1 ((PORT)0x0704D) /* SPI Port control reg1 */
#define SPIPC2 ((PORT)0x0704E) /* SPI Port control reg2 */
#define SPIPRI ((PORT)0x0704F) /* SPI Priority control reg */

/*––*/
/* Serial Communications Interface (SCI) Registers */
/*––*/
#define SCICCR ((PORT)0x07050) /* SCI Comms Control Reg */
#define SCICTL1 ((PORT)0x07051) /* SCI Control Reg 1 */
#define SCIHBAUD ((PORT)0x07052) /* SCI Baud rate control */
#define SCILBAUD ((PORT)0x07053) /* SCI Baud rate control */
#define SCICTL2 ((PORT)0x07054) /* SCI Control Reg 2 */
#define SCIRXST ((PORT)0x07055) /* SCI Receive status reg */
#define SCIRXEMU ((PORT)0x07056) /* SCI EMU data buffer */
#define SCIRXBUF ((PORT)0x07057) /* SCI Receive data buffer */
#define SCITXBUF ((PORT)0x07059) /* SCI Transmit data buffer */
#define SCIPC1 ((PORT)0x0705D) /* SCI Port control reg1 */
#define SCIPC2 ((PORT)0x0705E) /* SCI Port control reg2 */
#define SCIPRI ((PORT)0x0705F) /* SCI Priority control reg */

SPRA420A

38 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*––*/
/* Event Manager (EV) Registers */
/*––*/
#define GPTCON ((PORT)0x07400) /* General Timer Controls */
#define T1CNT ((PORT)0x07401) /* T1 Counter Register */
#define T1CMP ((PORT)0x07402) /* T1 Compare Register */
#define T1PER ((PORT)0x07403) /* T1 Period Register */
#define T1CON ((PORT)0x07404) /* T1 Control Register */
#define T2CNT ((PORT)0x07405) /* T2 Counter Register */
#define T2CMP ((PORT)0x07406) /* T2 Compare Register */
#define T2PER ((PORT)0x07407) /* T2 Period Register */
#define T2CON ((PORT)0x07408) /* T2 Control Register */
#define T3CNT ((PORT)0x07409) /* T3 Counter Register */
#define T3CMP ((PORT)0x0740a) /* T3 Compare Register */
#define T3PER ((PORT)0x0740b) /* T3 Period Register */
#define T3CON ((PORT)0x0740c) /* T3 Control Register */
#define COMCON ((PORT)0x07411) /* Compare Unit Control */
#define ACTR ((PORT)0x07413) /* Full Compare Unit Output Action Ctrl */
#define SACTR ((PORT)0x07414) /* Simple Comp Unit Output Action Ctrl */
#define DBTCON ((PORT)0x07415) /* Dead Band Timer Control */
#define CMPR1 ((PORT)0x07417) /* Full Compare Channel 1 Threshold */
#define CMPR2 ((PORT)0x07418) /* Full Compare Channel 2 Threshold */
#define CMPR3 ((PORT)0x07419) /* Full Compare Channel 3 Threshold */
#define SCMPR1 ((PORT)0x0741a) /* Simple Comp Channel 1 Threshold */
#define SCMPR2 ((PORT)0x0741b) /* Simple Comp Channel 2 Threshold */
#define SCMPR3 ((PORT)0x0741c) /* Simple Comp Channel 3 Threshold */
#define CAPCON ((PORT)0x07420) /* Capture Unit Control */
#define CAPFIFO ((PORT)0x07422) /* FIFO1–4 Status Register */
#define FIFO1 ((PORT)0x07423) /* Capture Channel 1 FIFO Top */
#define FIFO2 ((PORT)0x07424) /* Capture Channel 2 FIFO Top */
#define FIFO3 ((PORT)0x07425) /* Capture Channel 3 FIFO Top */
#define FIFO4 ((PORT)0x07426) /* Capture Channel 4 FIFO Top */
#define IMRA ((PORT)0x0742c) /* Group A Interrupt Mask Register */
#define IMRB ((PORT)0x0742d) /* Group B Interrupt Mask Register */
#define IMRC ((PORT)0x0742e) /* Group C Interrupt Mask Register */
#define IFRA ((PORT)0x0742f) /* Group A Interrupt Flag Register */
#define IFRB ((PORT)0x07430) /* Group B Interrupt Flag Register */
#define IFRC ((PORT)0x07431) /* Group C Interrupt Flag Register */
#define IVRA ((PORT)0x07432) /* Group A Int. Vector Offset Register */
#define IVRB ((PORT)0x07433) /* Group B Int. Vector Offset Register */
#define IVRC ((PORT)0x07434) /* Group C Int. Vector Offset Register */

#endif

/*+++*/
/* */
/*File: CONSTANT.H */
/*Target Processor: TMS320F240 */
/*Compiler Version: */
/*Assembler Version: */
/*Created: 10/1/97 */
/* */
/*–––*/
/* Constants for the SRM control algorithms */
/*+++*/

SPRA420A

39 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*––*/
/* clock frequencies and time related constants */
/*––*/
#define PWM_FREQ 20000 /* PWM frequency (Hz) */
#define SYSCLK_FREQ 20000000 /* DSP clock frequency (Hz) */
#define CPU_INT_FREQ 5000 /* timer ISR frequency (Hz) */
#define ONE_HALF_SECOND (CPU_INT_FREQ/2)

/*––––––––––––––––––––––––––––––––––– */
/* current loop algorithm constants */
/*––––––––––––––––––––––––––––––––––– */
#define ILOOP_GAIN 22 /* current loop gain: */

/* (Q3: gain = 2.75) */
#define ILIMIT 1023 /* current limit: (1023 bits = */

/* 5 V x 0.855 A/V = 4.273 A) */
#define MAXIMUM_DUTYRATIO 999 /* limit on the PWM duty cycle: */

/* 100 % = */
/* (SYSCLK_FREQ/PWM_FREQ – 1) */

/*–––*/
/* velocity loop algorithm constants */
/*–––*/
#define INTEGRAL_LIMIT 2793472 /* integrator limit */
#define KI 3 /* (Q13*1000): Ki = 0.366 */
#define KP 1 /* Q1: Kp = 0.5 */

/*––*/
/* position & velocity estimation algorithm constants */
/*––*/
#define K_POSITION_EST 1432
#define K1_VELOCITY_EST 281250000
#define K2_VELOCITY_EST 62500
#define ALPHA 7 /* Q3: alpha = 0.875 */
#define ONE_MINUS_ALPHA 1 /* Q3: 1–alpha = 0.125 */

/*–––*/
/* motor geometry related */
/*–––*/
#define NR 8 /* number of rotor poles */
#define NUMBER_OF_PHASES 3

/*––*/
/* Electrical Angles: 2*pi (rad) = 65535 */
/*––*/
#define PIBYSIX_16 5461
#define PIBYFOUR_16 8192
#define PIBYTHREE_16 10923
#define TWOPIBYTHREE_16 21845
#define THREEPIBYFOUR_16 24576
#define FIVEPIBYSIX_16 27307
#define PI_16 32768
#define FOURPIBYTHREE_16 43690
#define FIVEPIBYTHREE_16 54613
#define TWOPI_16 65535

/*+++*/
/* */
/*File: SRM.H */
/*Target Processor: TMS320F240 */
/*Compiler Version: */
/*Assembler Version: */
/*Created: 10/1/97 */
/* */
/*–––*/
/* Variable declarations for the SRM control algorithm */
/*+++*/

#include ”constant.h”

SPRA420A

40 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

#include ”typedefs.h”

/*––*/
/* position estimation state machine data structure */
/*––*/
typedef struct {

int state;
WORD position;
int direction;

} state_machine;

/*––*/
/* SRM variables data structure: */
/*––*/
/*a2d_chan[i] –> sets which A/D pin is used for the ith phase current
/*desiredTorque –> torque command (output of velocity loop)
/*integral_speed_error –> velocity loop integrator for PI compensator
/*iDes[i] –> current command for the ith phase
/*capture_edge[i] –> timer #2 count value at the occurence of
/* the most recent ith capture
/*capture_delta[i][2] –> change in the timer #2 count value between
/* the occurences of the ith capture events. The two most
/* recent events are stored.
/*delta_count –> change in the software counter of the timer ISR
/* between occurences of any capture event.
/*wEst_10xrpm –> shaft velocity estimate (units of rpm*10)
/* wDes_10xrpm –> desired shaft velocity (units of rpm*10)
/* active[i] –> flag indicating whether the ith phase is ON (1 = on)
/* iFB[i] –> current feedback measurement for the ith phase
/* dutyRatio[i] –> commanded % duty ratio for the high–side FET of
/* the ith phase
/*position –> shaft position estimate (electrical degrees)
/* scaled: 2*pi (rad) = 65535 bits
/*position_state –> position state of the SRM (defined by opto–couplers)
/*shaft_direction –> direction which the shaft is rotating.
/*trans_lut[7][4] –> the position state machine
/*position_initial_guess[7] –> initial position guess, based on state
/*dp_remainder –> 16–bit remainder used in the position estimation alg
/*last_capture –> the most recent capture to occur
/*––*/
typedef struct {

int a2d_chan[NUMBER_OF_PHASES];
int desiredTorque;
long integral_speed_error;

 WORD iDes[NUMBER_OF_PHASES];
WORD capture_edge[NUMBER_OF_PHASES];
WORD capture_delta[NUMBER_OF_PHASES][2];
WORD delta_count;
int wEst_10xrpm;

 int wDes_10xrpm;
 int active[NUMBER_OF_PHASES];
 WORD iFB[NUMBER_OF_PHASES];
 int dutyRatio[NUMBER_OF_PHASES];

WORD position;
 int position_state;

int shaft_direction;
state_machine trans_lut[7][4];
WORD position_initial_guess[7];
long dp_remainder;
int last_capture;

} anSRM_struct;

SPRA420A

41 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*–––*/
/*PROTOTYPE DEFINITIONS */
/*–––*/
void eventmgr_init();
void initializeSRM(anSRM_struct *anSRM);
void Commutation_Algorithm(anSRM_struct *anSRM);
void Time_Update_Position(anSRM_struct *anSRM);
void velocityController(anSRM_struct *anSRM);
void currentController(anSRM_struct *anSRM);
void computePositionAndVelocity(anSRM_struct *anSRM);
void Msmt_Update_Velocity(anSRM_struct *anSRM, int mode);
void Msmt_Update_Position(anSRM_struct *anSRM);
void switch_lowside(int phaseactive);
void switch_mux(int adc1, int adc2);
void disable_interrupts();
void dsp_setup();
void initialize_counters_and_flags();
void enable_interrupts();
void start_background();
void check_for_stall();

/*+++
/*
/*File: MAIN.C
/*Target Processor: TMS320F240
/*Compiler Version: 6.6
/*Assembler Version: 6.6
/*Created: 10/31/97
/*
/*+++
/* This file is the main program for the control of an SRM drive with a
/*position sensor
/*++*/

/*––*/
/*INCLUDE FILES */
/*––*/
#include ”c240.h”
#include ”srm.h”

/*–––*/
/*GLOBAL VARIABLE DECLARATIONS */
/*–––*/
int count;
int slice;
int old_count;
int Update_Velocity;
int Toggle_LED;
int Msmt_Update;
anSRM_struct SRM;
int LEDvalue;

/*–––*/
/*MAIN PROGRAM */
/*–––*/

void main() {

disable_interrupts();
dsp_setup();
initializeSRM(&SRM);
eventmgr_init();
initialize_counters_and_flags();
enable_interrupts();

start_background();

}

SPRA420A

42 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*+++ */
/*BACKGROUND TASKS */
/*––– */
/*Upon completion of the required initialization, the main
/*program starts the background task. The background is
/*simply an infinite loop. Time critical motor control
/*processing is done via interrupt service routines and lower
/*priority processing is done in the background, when they
/*are needed. Two background operations are defined:
/*
/*1) Update_Velocity – when a capture interrupt occurs,
/* the ISR stores the capture data and then intiates
/* this task. The velocity update is done in
/* background, because it is doing a floating point
/* division.
/*2) Toggle_LED – this task toggles an LED on the EVM to
/* provide visual feedback to the user that the code
/* is running. This task is initiated at a fixed
/* rate set by the ONE_HALF_SECOND value.
/*
/*+++ */
void start_background()
{

while (1)

{
 /*––––––––––––––––––––––*/
 /* Velocity update task */
 /*––––––––––––––––––––––*/
 if (Update_Velocity) {

if (Update_Velocity == 1) { /* use capture data */
/* as time base */

 Msmt_Update_Velocity(&SRM,1);
}
else { /* else shaft is rotating too slowly, capture

 /* data may be in error by overflow.
 /* use count of timer ISR’s between captures
 /* as time base. */

 Msmt_Update_Velocity(&SRM,2);
}
Update_Velocity = 0;

 }

 /*–––––––––––––––––––––––*/
 /* Visual feedback task */
 /*–––––––––––––––––––––––*/
 if (Toggle_LED) {

LEDvalue = –LEDvalue;
if (LEDvalue == 1) {

asm(” OUT 1, 000ch”);
}
else {

 asm(” OUT 0, 000ch”);
}
Toggle_LED = 0;
SRM.wDes_10xrpm = 6000; /* motor speed command units = (rpm x 10) */

/* just hard–coded here, but setup */
/* another background task to allow */
/* command from an external input */

 }

} /* infinite loop */

}
/*+++*/
/*TIMER ISR */
/*–––*/

SPRA420A

43 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*
/*This interrupt service routine is executed at each
/*occurence of the maskable CPU interrupt INT3. This CPU
/*interrupt corresponds to the event manager group B interrupts,
/*of which we enable only the timer #3 period interrupt, TPINT3.
/*The frequency, F, at which this routine is executed is specified
/*using the CPU_INT_FREQ parameter.
/*
/*The SRM control algorithms which are implemented during the
/*timer ISR are:
/*
/* 1. Current control (frequency = F)
/* 2. Rotor position estimation (frequency = F)
/* 3. Commutation (frequency = F/5)
/* 4. Velocity control (frequency = F/5)
/*
/*Additionally, time can be measured (coarsely) by counting
/*the number of executions of this ISR, which runs at a
/*known fixed rate. This measure of time is used for several
/*reasons, including:
/*
/*– For precaution against over–current, a simple
/*test is made to determine if the rotor has stalled.
/*
/*– Also, the visual feedback task is initiated if the correct
/*amount of time has elapsed.
/*
/*+++*/
void c_int3()
{

IFR_REG = 0x0004; / clear interrupt flags */
*IFRB = 0xff;

currentController(&SRM); /* current loop algorithm */

if (Msmt_Update) { /* position estimation */
 Msmt_Update_Position(&SRM); /* if recent capture edge */
 Msmt_Update = 0; /* use this information */
}
else { /* else, propagate pos est */
 Time_Update_Position(&SRM); /* using algorithm */
}

check_for_stall();

count = count + 1; /* increment count */
slice = slice + 1; /* increment slicer */

if (slice == 1) {
 Commutation_Algorithm(&SRM); /* do commutation in the 1st */

} /* slice. */
else if (slice == 2) { /* velocity loop algorithm in */
 velocityController(&SRM); /* the 2nd */
}
else if (slice == 5) {
 slice = 0; /* reset slicer */
}

if (count == ONE_HALF_SECOND) { /* set flag for toggling the */
 Toggle_LED = 1; /* EVM LED, if time */
 count = 0;
}

}

/*+++ */
/*CAPTURE ISR */
/*––– */

SPRA420A

44 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*
/*This interrupt service routine is executed at each
/*occurence of the maskable CPU interrupt INT4. This CPU
/*interrupt corresponds to the event manager group C interrupts,
/*of which we enable the three capture event interrupts,
/*CAPINT1–3. This ISR executes asynchronously and the
/*frequency of execution is dependent on the shaft speed
/*of the SRM.
/*
/*The ISR performs the following processing:
/*
/* clear interrupt flags;
/* determine which capture has occured;
/* read the appropriate capture FIFO register;
/* store capture data;
/* set flag for position update using measurement;
/* set flag for initiating velocity estimate
/* update in background;
/* return;
/*
/*+++*/
void c_int4()
{

int groupc_flags;
int capture;
int n;
int delta_count;
WORD edge_time;

IFR_REG = 0x0008; / clear CPU interrupt flag */

/*––*/
/* determine which capture interrupt occured and read */
/* the appropriate FIFO */
/*––*/
groupc_flags = *IFRC; /* read event manger interrupt */

/* flag register */

if (groupc_flags & 0x1){ /* capture #1 */
 IFRC = 0xf9; / clear flag register */
 capture = 1; /* */
 edge_time = read_fifo(capture); /* read FIFO */

 }
else if (groupc_flags & 0x2) { /* capture #2 */
 *IFRC = 0xfa;
 capture = 2;
 edge_time = read_fifo(capture);
}
else if (groupc_flags & 0x4) { /* capture #3 */
 *IFRC = 0xfc;
 capture = 3;
 edge_time = read_fifo(capture);
}
else { /* not a valid capture */
 *IFRC = 0xff;
 capture = 0;
}

/*–––*/
/* if a valid capture occured, store capture data and set flags */
/* foor position and velocity estimate updates. The most */
/* recent two time intervals between edges is saved */
/* to allow for some filtering of the velocity estimate. */
/* The number of timer ISR’s which occur between capture */
/* interrupts is also checked. When this time exceeds a */
/* certain value, then the capture data could be in error */
/* by an overflow, so the lower resolution delta–time */
/* associated with the ISR count is used in the velocity */
/* estimate calculation. */

SPRA420A

45 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*––– */
if (capture > 0) {

 SRM.last_capture = capture; /* save capture data */
 n = capture–1;
 SRM.capture_delta[n][1] = SRM.capture_delta[n][0];
 SRM.capture_delta[n][0] = edge_time – SRM.capture_edge[n];
 SRM.capture_edge[n] = edge_time;

 Msmt_Update = 1; /* position update flag */

 /*–––*/
 /* Set flags & select time base for use with velocity update */
 /*–––*/
 delta_count = count – old_count;
 old_count = count;
 if (delta_count < 0) delta_count = delta_count + ONE_HALF_SECOND;

 if (delta_count > 100) { /* low shaft speed use */
/* ISR counter */

SRM.delta_count = delta_count;
Update_Velocity = 2;

 }

 else { /* else, shaft speed ok */
/* use 1.25MHz clk */

SRM.delta_count = delta_count;
Update_Velocity = 1;

 }
}

}

/*+++ */
/*UTILITY SUBROUTINES */
/*+++ */

/***/
void disable_interrupts()
{

asm(” SETC INTM”);
}

***/
void dsp_setup() {

int temp;

/*––––––––––––––––––––––––*/
/* Disable watchdog timer */
/*––––––––––––––––––––––––*/
temp = *WDCR;
temp = temp | 0x68;
*WDCR = temp;

SPRA420A

46 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*––––––––––––––––––––––––––––––––––––––*/
/* initialize PLL module (10 MHz XTAL1) */
/*––––––––––––––––––––––––––––––––––––––*/
CKCR1 = 0xb1; / 20MHz CPUCLK = 10MHz crystal */

/* and 2x PLL mult ratio */
CKCR0 = 0xc3; / low–power mode 0, */

/* ACLK enabled, */
/* PLL enabled, */
/* SYSCLK=CPUCLK/2 */

*SYSCR = 0x40c0;

}

/**/
void initialize_counters_and_flags() {

count = 0; /* current timer ISR count */
slice = 0; /* ISR slice count */
old_count = 0; /* timer ISR count at last */

/* capture edge */
Toggle_LED = 0; /* flag for visual feedback */

/* background task */
LEDvalue = 1; /* current LED value */
Update_Velocity = 0; /* flag for velocity update */

/* background task */
Msmt_Update = 0; /* flag for mode of position */

/* estimate update */

}

/**/
void enable_interrupts() {

IFR_REG = 0xffff; / Clear pending interrupts */
*IFRA = 0xffff;
*IFRB = 0xffff;
*IFRC = 0xffff;
IMR_REG = 0x000c; / Enable CPU Interrupts: */

/* INT4 & INT3 */
IMRA = 0x0000; / Disable all event manager */

/* Group A interrupts */
IMRB = 0x0010; / Enable timer 3 period */

/* interrupt */
IMRC = 0x0007; / Enable CAP1–CAP3 interrupts*/
asm(” CLRC INTM”); /* Global interrupt enable */

}

/**/
void check_for_stall()
{

int delta_count;

/*–––*/
/* The SRM is assumed to have stalled if the number of timer */
/* ISR’s which are executed exceeds 1000. At F = 5 kHz */
/* this corresponds to roughly 6 rpm. If this condition */
/* is detected, the opto–coupler levels are read and the */
/* rotor position is re–initialized */
/*–––*/
delta_count = count – old_count;
if (delta_count < 0) delta_count = delta_count + ONE_HALF_SECOND;
if (delta_count > 1000) {
 SRM.wEst_10xrpm = 0;
 SRM.position_state = *PBDATDIR & 0x7;

 SRM.position = SRM.position_initial_guess[SRM.position_state];
}

SPRA420A

47 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

}

/*+++ */
/* File: SRM.C */
/*Target Processor: TMS320F240 */
/*Compiler Version: 6.6 */
/*Assembler Version: 6.6 */
/*Created: 10/31/97 */
/*––– */
/* This file contains the algorithms for control of anSRM using */
/*a position sensor. The position sensor consists of a slotted */
/*disk and opto–couplers. */
/*+++ */

/*––– */
/*INCLUDE FILES */
/*–– */
#include ”srm.h”
#include ”c240.h”

/*+++ */
/*TIME UPDATE OF THE ROTOR POSITION ESTIMATE */
/*–– */
/* Between the capture events, which provide a shaft position */
/*measurement, position is estimated according to the equation */
/* */
/* theta(k) = theta(k–1) + w * delta_t; */
/* */
/*where theta = the position measurement (electrical angle) */
/* w = the current shaft velocity estimate */
/* delta_t = the execution frequency of the algorithm */
/* */
/*The arithmetic is performed using double precision. */
/* */
/*input: old position (where 2^16 = 2*pi radians) */
/* w (units of rpm * 10) */
/* K (constant incorporate delta_t and units) */
/* */
/*output: new position (where 2^16 = 2*pi radians) */
/* */
/*pseudo–code: dp = w * K; */
/* position = position + (dp * NR) */
/* */
/*+++ */
void Time_Update_Position(anSRM_struct *anSRM)
{

 long dp; /* delta–position in mechanical angle */
 int speed;
 int temp;

 if (anSRM–>wEst_10xrpm > 0) {
 dp = anSRM–>wEst_10xrpm * K_POSITION_EST + anSRM–>dp_remainder;
 anSRM–>dp_remainder = dp & 0xffff;

temp = (int) (dp >> 16);
 anSRM–>position = anSRM–>position + (temp * NR);
 }
 else {

speed = –anSRM–>wEst_10xrpm;
 dp = speed * K_POSITION_EST + anSRM–>dp_remainder;
 anSRM–>dp_remainder = dp & 0xffff;

temp = (int) (dp >> 16);
 anSRM–>position = anSRM–>position – (temp * NR);
 }

} /* end Time_Update_Position */

SPRA420A

48 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*+++ */
/*MEASUREMENT UPDATE OF THE ROTOR POSITION ESTIMATE */
/*––– */
/* At a capture interrupt, the rotor is at 1 of 6 positions. */
/* In between interrupts, the pickoff will be at 1 of six states, */
/* defined by the opto–couplers. The states are defined by [zyx] */
/* where: z = output of opto–coupler #3 */
/* y = output of opto–coupler #2 */
/* x = output of opto–coupler #1 */
/* */
/*State 2: 010 */
/*State 3: 011 */
/*State 1: 001 */
/*State 5: 101 */
/*State 4: 100 */
/*State 6: 110 */
/* */
/*+++ */
void Msmt_Update_Position(anSRM_struct *anSRM)
{

 int old_state, new_state;
 int cap;

 /*–– */
 /* Based on capture and current state, get new state from the */
 /* state–machine look–up table */
 /*–– */
 cap = anSRM–>last_capture;
 old_state = anSRM–>position_state;
 new_state = anSRM–>trans_lut[old_state][cap].state;

 /*––*/
 /* If transition is valid, update position and state */
 /*––*/
 if (new_state != 0) { /* valid transition, update data */

anSRM–>position = anSRM–>trans_lut[old_state][cap].position;
 anSRM–>shaft_direction = anSRM–>trans_lut[old_state][cap].direction;

anSRM–>position_state = new_state;
 }

 else { /* else, not a valid transition, use opto–coupler */
 /* level & re–initialize position estimate */

anSRM–>position_state = *PBDATDIR & 0x7;

 }

}

SPRA420A

49 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*++ */
/*VELOCITY ESTIMATION ALGORITHM */
/*––– */
/* This algorithm estimates the SRM shaft velocity. It is executed */
/*after each capture interrupt is received. If the shaft is */
/*moving fast enough, this routine is called with mode = 1 and */
/*the capture data is used. Otherwise, the # of timer ISRs */
/*which are executed between capture events is used in the */
/*velocity calculation. */
/* */
/*Velocity is calculated according to the equation: */
/* */
/* w = delta_theta / delta_t */
/* */
/*where delta_theta is known: */
/* (7.5 mech deg between each capture) */
/* (22.5 mech deg between the same capture) */
/*and delta_t is the measured number of clock cycles. */
/* */
/*The algorithm is implemented in double precision and is of */
/*the form: */
/* w = Kx_VELOCITY_EST/count */
/* */
/*where the constant Kx_VELOCITY_ESTIMATE (x=1,2) incorporates */
/*delta_theta and other units so that */
/*w has units of (rpm * 10). */
/* */
/*+++ */
void Msmt_Update_Velocity(anSRM_struct *anSRM, int mode)
{
 DWORD a1,a2,a3,a4,a5,a6;
 DWORD sum_cnt;
 int inst_velocity;
 long filt_velocity;

 /*––– */
 /* Obtain instantaneous velocity estimate */
 /*––– */
 if (mode == 1) { /* use timer #2 as time base */

/*––*/
/* FIR filter for removing once per electrical cycle effects */
/*––*/

 a1 = (DWORD) anSRM–>capture_delta[0][0];
 a2 = (DWORD) anSRM–>capture_delta[0][1];
 a3 = (DWORD) anSRM–>capture_delta[1][0];
 a4 = (DWORD) anSRM–>capture_delta[1][1];
 a5 = (DWORD) anSRM–>capture_delta[2][0];
 a6 = (DWORD) anSRM–>capture_delta[2][1];

sum_cnt = a1+a2+a3+a4+a5+a6;

/*–––*/
/* apply velocity = delta_theta/delta_time algorithm */
/*–––*/
sum_cnt = K1_VELOCITY_EST/sum_cnt;
inst_velocity = ((int) sum_cnt) * anSRM–>shaft_direction;

 }

 else { /* else, use timer ISR count as time base */

/*–––*/
/* apply velocity = delta_theta/delta_time algorithm */
/*–––*/
sum_cnt = K2_VELOCITY_EST/anSRM–>delta_count;

 inst_velocity = ((int) sum_cnt) * anSRM–>shaft_direction;
 }

 /*––– */
 /* IIR filter for smoothing velocity estimate */
 /*––– */

SPRA420A

50 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

 filt_velocity = (ALPHA * anSRM–>wEst_10xrpm)
 + (ONE_MINUS_ALPHA * inst_velocity);

 anSRM–>wEst_10xrpm = (int) (filt_velocity >> 3);

} /* end, velocity estimation */

/*++ */
/*COMMUTATION ALGORITHM */
/*–– */
/* A four quadrant commutation algorithm, using a fixed–dwell angle */
/* of 120 electrical degrees and a variable turn on angle. With */
/*a fixed dwell of 120 electrical degrees, only a single phase */
/*is active at any one time. The advance angle is calculated as */
/*a function of speed and desired current. */
/*++ */
void Commutation_Algorithm(anSRM_struct *anSRM)
{
 int phase;
 WORD electricalAngle;
 WORD angle;
 int channel;
 long advance;
 int whats_active;
 int desiredCurrent;
 int temp;

 /*–––––––––––––––––––––––––––*/
 /* Advance angle calculation */
 /*–––––––––––––––––––––––––––*/
 advance = (anSRM–>wEst_10xrpm * anSRM–>desiredTorque);
 advance = advance >> 9;

 /*–––*/
 /* Offset for advance angle negative torque, if required */
 /*–––*/
 if (anSRM–>desiredTorque > 0) {

electricalAngle = anSRM–>position + (int) advance;
desiredCurrent = anSRM–>desiredTorque;

 }
 else {

electricalAngle = anSRM–>position + PI_16 – (int) advance;
desiredCurrent = –anSRM–>desiredTorque;

 }

 /*–––––––––––––––––––––––––––––––– */
 /* for each phase do ... */
 /*–––––––––––––––––––––––––––––––– */
 whats_active = 0x0;
 for (phase=0; phase< NUMBER_OF_PHASES; phase++) {

/*––––––––––––––––––––––––––––––*/
/* 120 degree offsets for phase */
/*––––––––––––––––––––––––––––––*/
angle = electricalAngle – phase * TWOPIBYTHREE_16;

/*–––*/
/* turn phase on, if between desired angles and switch */
/* the mux on the A/D to measure the desired */
/* phase current */
/*–––*/
if ((angle >= (PIBYSIX_16)) && (angle < (FIVEPIBYSIX_16))) {
 anSRM–>active[phase] = 1;
 temp = 0x1 << phase;
 channel = anSRM–>a2d_chan[phase];
 switch_mux(channel,channel+8);
 anSRM–>iDes[phase] = desiredCurrent;
 if (anSRM–>iDes[phase] > ILIMIT) anSRM–>iDes[phase] = ILIMIT;
}
else {

SPRA420A

51 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

 anSRM–>active[phase] = 0;
 temp = 0;
 anSRM–>iDes[phase] = 0;
}
whats_active = whats_active | temp;

 }

 /*––––––––––––––––––––––––––––––––––––*/
 /* switch low–side FETs, as required */
 /*––––––––––––––––––––––––––––––––––––*/
 switch_lowside(whats_active);

}

/*++ */
/*VELOCITY CONTROL LOOP ALGORITHM */
/*–– */
/* The algorithm implements a PI compensator for the velocity */
/*control of the SRM. The PI filter limits the integrator */
/*to prevent windup */
/* */
/*++ */
void velocityController(anSRM_struct *anSRM)
{

 int speed_error;
 int integral_error;

 /*––––––––––––––––––––––––––––––*/
 /* calculate error signal */
 /*––––––––––––––––––––––––––––––*/
 speed_error = anSRM–>wDes_10xrpm – anSRM–>wEst_10xrpm;

 /*––––––––––––––––––––––––––––––*/
 /* integrate error */
 /*––––––––––––––––––––––––––––––*/
 anSRM–>integral_speed_error = anSRM–>integral_speed_error + (long)speed_error;

 /*––––––––––––––––––––––––––––––*/
 /* apply integrator limit */
 /*––––––––––––––––––––––––––––––*/

if (anSRM–>integral_speed_error > INTEGRAL_LIMIT) {
anSRM–>integral_speed_error = INTEGRAL_LIMIT;

 }
 if (anSRM–>integral_speed_error < –INTEGRAL_LIMIT) {

anSRM–>integral_speed_error = –INTEGRAL_LIMIT;
 }

 /*––––––––––––––––––––––––––––––*/
 /* PI filter */
 /*––––––––––––––––––––––––––––––*/
 integral_error = (int) ((KI*anSRM–>integral_speed_error) >> 13);
 anSRM–>desiredTorque = ((KP*speed_error) >> 1) + integral_error;

} /* end velocityController */

SPRA420A

52 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/** */
/*CURRENT CONTROL LOOP ALGORITHM */
/*+++ */
void currentController(anSRM_struct *anSRM) {

 int phase;
 int ierr;

 for (phase=0; phase < NUMBER_OF_PHASES; phase++) {

/*––*/
/* for each active phase do ... */
/*––*/
if (anSRM–>active[phase] > 0) {

 /*––––––––––––––––––––*/
 /* read A/D converter */
 /*––––––––––––––––––––*/
 anSRM–>iFB[phase] = read_a2d(1);

 /*–––––––––––––––––––––––––––*/
 /* calculate error signal */
 /*–––––––––––––––––––––––––––*/
 ierr = anSRM–>iDes[phase] – anSRM–>iFB[phase];

 /*–––––––––––––––––––––––––––*/
 /* current loop compensation */
 /*–––––––––––––––––––––––––––*/

 anSRM–>dutyRatio[phase] = ILOOP_GAIN * ierr;
 anSRM–>dutyRatio[phase] = (anSRM–>dutyRatio[phase] >> 3);

 /*––––––––––––––––––*/
 /* limit duty ratio */
 /*––––––––––––––––––*/
 if (anSRM–>dutyRatio[phase] < 0) {

anSRM–>dutyRatio[phase] = 0;
 }
 if (anSRM–>dutyRatio[phase] > MAXIMUM_DUTYRATIO) {

anSRM–>dutyRatio[phase] = MAXIMUM_DUTYRATIO;
 }

}

/*––*/
/* else, phase is not active */
/*––*/
else {
 anSRM–>iFB[phase] = 0;
 anSRM–>dutyRatio[phase] = 0;
}

 } /* end for loop */

 /*–––––––––––––––––––––––––––––––––––––––*/
 /* output PWM signals to high–side FET’s */
 /*–––––––––––––––––––––––––––––––––––––––*/
 *CMPR1 = anSRM–>dutyRatio[0];
 *CMPR2 = anSRM–>dutyRatio[1];
 *CMPR3 = anSRM–>dutyRatio[2];

} /* end currentController */

/** */
/*SRM ALGORITHM INITIALIZATION */
/*––– */
void initializeSRM(anSRM_struct *anSRM)
{

 int i,j;

SPRA420A

53 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

 /*–––*/
 /* define mux positions for current feedback of each phase */
 /*–––*/
 anSRM–>a2d_chan[0] = 1; /* phase A current on pin ADCIN1 */
 anSRM–>a2d_chan[1] = 2; /* phase B current on pin ADCIN2 */
 anSRM–>a2d_chan[2] = 3; /* phase C current on pin ADCIN3 */

 /*–– */
 /* Define position estimation state machine. */
 /* */
 /* Given current state, i, and capture event, j, with */
 /* every transition (capture event), 3 parameters are defined: */
 /* 1. trans_lut[i][j].state = the new state */
 /* 2. trans_lut[i][j].position = the shaft position */
 /* 3. trans_lut[i][j].direction = the shaft direction */
 /*–– */

/*–––*/
/* fill table with zeros. zeros will define illegal */
/* transitions */
/*–––*/

 for (i=0; i<7; i++) {
for (j=0; j<4; j++) {

 anSRM–>trans_lut[i][j].state = 0;
 anSRM–>trans_lut[i][j].position = 0;
 anSRM–>trans_lut[i][j].direction = 0;

}
 }

/*––––––––––––––––––––––––––––––*/
/* ’new–state’ definitions */
/*––––––––––––––––––––––––––––––*/

 anSRM–>trans_lut[1][2].state = 3;
 anSRM–>trans_lut[1][3].state = 5;
 anSRM–>trans_lut[2][1].state = 3;
 anSRM–>trans_lut[2][3].state = 6;
 anSRM–>trans_lut[3][1].state = 2;
 anSRM–>trans_lut[3][2].state = 1;
 anSRM–>trans_lut[4][1].state = 5;
 anSRM–>trans_lut[4][2].state = 6;
 anSRM–>trans_lut[5][1].state = 4;
 anSRM–>trans_lut[5][3].state = 1;
 anSRM–>trans_lut[6][2].state = 4;
 anSRM–>trans_lut[6][3].state = 2;

/*––––––––––––––––––––––––––––––––––––––*/
/* ’shaft direction’ definitions */
/*––––––––––––––––––––––––––––––––––––––*/

 anSRM–>trans_lut[1][2].direction = –1;
 anSRM–>trans_lut[1][3].direction = 1;
 anSRM–>trans_lut[2][1].direction = 1;
 anSRM–>trans_lut[2][3].direction = –1;
 anSRM–>trans_lut[3][1].direction = –1;
 anSRM–>trans_lut[3][2].direction = 1;
 anSRM–>trans_lut[4][1].direction = –1;
 anSRM–>trans_lut[4][2].direction = 1;
 anSRM–>trans_lut[5][1].direction = 1;
 anSRM–>trans_lut[5][3].direction = –1;
 anSRM–>trans_lut[6][2].direction = –1;
 anSRM–>trans_lut[6][3].direction = 1;

SPRA420A

54 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*––––––––––––––––––––––––––––––––––––––*/
/* ’shaft position’ definitions */
/*––––––––––––––––––––––––––––––––––––––*/

 anSRM–>trans_lut[1][2].position = TWOPIBYTHREE_16;
 anSRM–>trans_lut[1][3].position = PI_16;
 anSRM–>trans_lut[2][1].position = PIBYTHREE_16;
 anSRM–>trans_lut[2][3].position = 0;
 anSRM–>trans_lut[3][1].position = PIBYTHREE_16;
 anSRM–>trans_lut[3][2].position = TWOPIBYTHREE_16;
 anSRM–>trans_lut[4][1].position = FOURPIBYTHREE_16;
 anSRM–>trans_lut[4][2].position = FIVEPIBYTHREE_16;
 anSRM–>trans_lut[5][1].position = FOURPIBYTHREE_16;
 anSRM–>trans_lut[5][3].position = PI_16;
 anSRM–>trans_lut[6][2].position = FIVEPIBYTHREE_16;
 anSRM–>trans_lut[6][3].position = 0;

 /*––– */
 /* define initial guesses for each state. The initial position */
 /* is assumed at the midpoint of each state */
 /*––– */
 anSRM–>position_initial_guess[1] = TWOPIBYTHREE_16 + PIBYSIX_16;
 anSRM–>position_initial_guess[2] = PIBYSIX_16;
 anSRM–>position_initial_guess[3] = PIBYTHREE_16 + PIBYSIX_16;
 anSRM–>position_initial_guess[4] = FOURPIBYTHREE_16 + PIBYSIX_16;
 anSRM–>position_initial_guess[5] = PI_16 + PIBYSIX_16;
 anSRM–>position_initial_guess[6] = FIVEPIBYTHREE_16 + PIBYSIX_16;

 /*––*/
 /* read opto–couplers and get initial position estimate */
 /*––*/
 anSRM–>position_state = *PBDATDIR & 0x7;
 anSRM–>position = anSRM–>position_initial_guess[anSRM–>position_state];

 /*–––––––––––––––––––––––––*/
 /* set initial conditions */
 /*–––––––––––––––––––––––––*/
 for(i = 0; i < NUMBER_OF_PHASES; i++) {

anSRM–>iDes[i] = 0;
 anSRM–>active[i] = 0;
 anSRM–>iFB[i] = 0;

anSRM–>capture_delta[i][0] = 65535;
anSRM–>capture_delta[i][1] = 65535;

 }

 anSRM–>wEst_10xrpm = 0;
 anSRM–>shaft_direction = 0;
 anSRM–>dp_remainder = 0;
 anSRM–>integral_speed_error = 0;
 anSRM–>wDes_10xrpm = 0;

}

/*+++
/*
/*File: EVMGR.C
/*Target Processor: TMS320F240
/*Compiler Version: 6.6
/*Assembler Version: 6.6
/*Created: 10/31/97
/*
/*+++
/* This file contains the routines for initializing and using the event
/* manager peripherials.
/*++*/

/*––– */

SPRA420A

55 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*INCLUDE FILES */
/*––– */
#include ”c240.h”
#include ”constant.h”

/*+++ */
/*EVENT MANAGER INITIALIZATION */
/*+++ */
/* Through appropriate programming of the event manager control
/*registers, this routine sets up the event manager so that:
/*
/*all timers run in the continuous up count mode
/*timer 1 provides the desired PWM frequency timebase
/*timer 2 counts at 1/16 of the CPUCLK and is used as the time
/* base for capture events. Prescaling prevents overflow
/* except at only low shaft speeds.
/*timer 3 provides the CPU interrupt
/*A/D conversions are synchronized with timer 3 period occurences
/*compare units are configured to the PWM mode
/*PWMs 1,3, and 5 (used for high–side switching) are active low
/*PWMs 2,4, and 6 (used for low–side switching) are forced hi/low
/*sets up shared pins as capture inputs and digital inputs for
/* interface with the opto–couplers
/*initiates continuous A/D conversions.
/*
/*––*/
/* GPTCON Initialization parameters
/* GPTCON = 0x1055
/*
/* xxx1 0000 0101 0101
/* ___–––__–––_–– __––
/* | | | | | | | |
/* (15–13) Read–only status bits –––––––––| | | | | | | |
/* (12–11) Start A/D on timer 3 period ––––––| | | | | | |
/* (10–9) No timer 2 event starts A/D ––––––––| | | | | |
/* (8–7) No timer 1 event starts A/D –––––––––––| | | | |
/* (6) Enable timer compares –––––––––––––––––––| | | |
/* (5–4) Timer 3 active low ––––––––––––––––––––––––| | |
/* (3–2) Timer 2 active low –––––––––––––––––––––––––––| |
/* (1–0) Timer 1 active low –––––––––––––––––––––––––––––|
/*

/*––*/
/* T3CON Initialization parameters
/* T3CON = 0x9040
/*
/* 1001 0000 0100 0000
/* __––––___ –_–– __–_
/* | | | || | | ||
/* (15–14) Stop on suspend ––––––––––––––| | | || | | ||
/* (13–11) Continuous up–count mode ––––––––| | || | | ||
/* (10–8) Clock prescaler = 1 –––––––––––––––––| || | | ||
/* (7) Use own TENABLE bit ––––––––––––––––––––|| | | ||
/* (6) Enable timer –––––––––––––––––––––––––––| | | ||
/* (5–4) Use internal clock source –––––––––––––––––| | ||
/* (3–2) Reload at zero ––––––––––––––––––––––––––––––| ||
/* (1) disable timer compare –––––––––––––––––––––––––||
/* (0) Use own period register ––––––––––––––––––––––––|
/*
/*––*/
/* T2CON Initialization parameters
/* T2CON = 0x9440
/*
/* 1001 0100 0100 0000
/* __––––___ –_–– __–_
/* | | | || | | ||

SPRA420A

56 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/* (15–14) Stop on suspend ––––––––––––––| | | || | | ||
/* (13–11) Continuous up–count mode ––––––––| | || | | ||
/* (10–8) Clock prescaler = 1/16 ––––––––––––––| || | | ||
/* (7) Use own TENABLE bit ––––––––––––––––––––|| | | ||
/* (6) Enable timer –––––––––––––––––––––––––––| | | ||
/* (5–4) Use internal clock source –––––––––––––––––| | ||
/* (3–2) Reload at zero ––––––––––––––––––––––––––––––| ||
/* (1) disable timer compare –––––––––––––––––––––––––||
/* (0) Use own period register ––––––––––––––––––––––––|
/*
/*––*/
/* T1CON Initialization parameters
/* T1CON = 0x9040
/*
/* 1001 0000 x100 0000
/* __––––___ –_–– __–_
/* | | | || | | ||
/* (15–14) Stop on suspend ––––––––––––––| | | || | | ||
/* (13–11) Continuous up–count mode ––––––––| | || | | ||
/* (10–8) Clock prescaler = 1 –––––––––––––––––| || | | ||
/* (7) Reserved on timer 1 ––––––––––––––––––––|| | | ||
/* (6) Enable timer –––––––––––––––––––––––––––| | | ||
/* (5–4) Use internal clock source –––––––––––––––––| | ||
/* (3–2) Reload at zero ––––––––––––––––––––––––––––––| ||
/* (1) Disable timer compare –––––––––––––––––––––––––||
/* (0) Use own period register ––––––––––––––––––––––––|
/*
/*––*/
/* COMCON Initialization parameters
/*
/* COMCON = 0x8207
/*
/* 1000 0010 xxxx x111
/* _––_ ––_– –__–––_–_
/* | || | || | | | |||
/* (15) Enable compares ––––––––––––––| || | || | | | |||
/* (14–13) Reload compare at 0 ––––––––––––|| | || | | | |||
/* (12) Disable Space Vector PWM ––––––––| | || | | | |||
/* (11–10) Reload ACTR at 0 ––––––––––––––––––| || | | | |||
/* (9) Enable full compare output pins –––––|| | | | |||
/* (8) Hi–Z simple compare output pins ––––––| | | | |||
/* (7) Simple compare time base –––––––––––––––| | | |||
/* (6–5) Simple compare reload ––––––––––––––––––––| | |||
/* (4–3) Simple compare SACTR reload ––––––––––––––––| |||
/* (2) Compare #3 to PWM mode –––––––––––––––––––––––|||
/* (1) Compare #2 to PWM mode ––––––––––––––––––––––––||
/* (0) Compare #1 to PWM mode –––––––––––––––––––––––––|
/*
/*––*/
/* ACTR Initialization parameters
/* ACTR = 0x0111
/*
/* xxxx 0001 0001 0001
/* ____ ––__ ––__ ––__
/* | | | | | | |
/* (15–12) Space vector PWM related ––––––| | | | | | |
/* (11–10) PWM6 = Force Low ––––––––––––––––––| | | | | |
/* (9–8) PWM5 = Active Low ––––––––––––––––––––| | | | |
/* (7–6) PWM4 = Force Low –––––––––––––––––––––––| | | |
/* (5–4) PWM3 = Active Low ––––––––––––––––––––––––| | |
/* (3–2) PWM2 = Force Low ––––––––––––––––––––––––––––| |
/* (1–0) PWM1 = Active Low ––––––––––––––––––––––––––––––|
/*
/*––*/
/* ADCTRL1 Initialization parameters
/* ADCTRL1 = 0x2c00
/*
/* 0010 110x 0000 0000

SPRA420A

57 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/* _–_– _–_– _––– ___–
/* |||| |||| | | | |
/* (15) Suspend – Soft –––––––––––––––|||| |||| | | | |
/* (14) Suspend – Free ––––––––––––––––||| |||| | | | |
/* (13) Start A/D Conversions ––––––––––|| |||| | | | |
/* (12) Disable Channel 1 –––––––––––––––| |||| | | | |
/* (11) Enable Channel 2 ––––––––––––––––––|||| | | | |
/* (10) Continuous conversion –––––––––––––||| | | | |
/* (9) Disable interrupt ––––––––––––––––––|| | | | |
/* (8) ADC Interrupt flag –––––––––––––––––––| | | | |
/* (7) Conversion status ––––––––––––––––––––––| | | |
/* (6–4) ADC1 mux select ––––––––––––––––––––––––––| | |
/* (3–1) ADC2 mux select ––––––––––––––––––––––––––––––| |
/* (0) Start conversion bit –––––––––––––––––––––––––––|
/*
/*+++*/
void eventmgr_init() {

WORD iperiod;

/*––*/
/* Initialize GP timer 3 to provide desired CPU interrupt */
/*––*/
iperiod = (SYSCLK_FREQ/CPU_INT_FREQ) – 1;

GPTCON = 0x1055; / Setup general–purpose control reg */
T3PER = iperiod; / Load timer #2 period register */
T3CON = 0x9040; / Initialize timer #3 control register */

/*–––*/
/* Initialize GP timer 1 to provide a 20 kHz time base for */
/* fixed frequency PWM generation */
/*–––*/
iperiod = (SYSCLK_FREQ/PWM_FREQ) – 1;

T1PER = iperiod; / Load timer #1 period */
T1CON = 0x9040; / Initialize timer #1 control register */

/*–––*/
/* Initialize GP timer 2 to provide time base for clocking */
/* capture events */
/*–––*/
T2PER = 0xffff; / Load timer #2 period */
T2CON = 0x9440; / Initialize timer #2 control register */

/*–––––––––––––––––––––––––––––––––––––*/
/* Setup Compare units for PWM outputs */
/*–––––––––––––––––––––––––––––––––––––*/
ACTR = 0x0111; / Initialize action on output pins */
DBTCON = 0x0; / Disable deadband */
CMPR1 = 0x0; / Clear period registers */
*CMPR2 = 0x0;
*CMPR3 = 0x0;
COMCON = 0x0207; / Setup COMCON w/o enable */
COMCON = 0x8207; / Setup COMCON and enable */

/*–––––––––––––––––––*/
/* Setup shared pins */
/* ––––––––––––––––––*/
OCRA = 0x0; / pins IOPB0–IOPB7 & IOPA0–IOPA3 to I/O pins */
OCRB = 0xf1; / pins are: ADSOC, XF, /BIO, CAP1–CAP4 */
PBDATDIR = 0xf0f0; / inputs IOPB0–IOPB3 */

/* outputs IOPB4–IOPB7, set high */

/*–––––––––––––––––––––*/
/* Setup capture units */
/*–––––––––––––––––––––*/
CAPCON = 0x0; / reset capture control register */
CAPFIFO = 0xff; / Clear FIFO’s */
CAPCON = 0xb0fc; / enable #1–3, use Timer2, both edges */

SPRA420A

58 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*–––––––––––––––––––––*/
/* Setup A/D converter */
/*–––––––––––––––––––––*/
ADCTRL1 = 0x2c00; / Initialize A/D control register */
ADCTRL2 = 0x0403; / Clear FIFO’s, Pre–scaler = 4 */

}

/**/
/*SWITCH A/D INPUT CHANNEL */
/*––*/
/* Each A/D converter unit has an 8:1 input multiplexer which
/* must be selected to the desired channel, prior to sampling.
/* The channel is selected by manipulating bits
/* of the ADCTRL1 control register
/*
/* inputs: adc1 = desired input channel for A/D #1
/* range: 0–7
/* adc2 = desired input channel for A/D #2
/* range: 8–15
/*outputs: none
/*
/*+++ */
void switch_mux(int adc1, int adc2)
{

WORD ctrl_word;

ctrl_word = 0x2c00; /* mask channel select bits */
ctrl_word = ctrl_word | (adc1 << 4); /* set ADC1 channel bits */
ctrl_word = ctrl_word | ((adc2–8) << 1); /* set ADC2 channel bits */
*ADCTRL1 = ctrl_word;
*ADCTRL2 = 0x0403;

}

/** */
/*READ A/D FIFO REGISTER */
/*––– */
/* This routine is used to read the sampled A/D data from the
/*appropriate FIFO. The 10–bit A/D data is stored in the
/*FIFO in bits 15–6. A right shift of 6, limits the data
/*to the range 0–1023.
/*
/*inputs: a2d_chan = which FIFO to read
/* range: 1–2
/*outputs: inval = A/D data
/* range: 0–1023
/* 0 VDC = 0 bits
/* 5 VDC = 1023 bits
/*+++ */
WORD read_a2d(int a2d_chan)
{

WORD inval;

if (a2d_chan == 1) {
 inval = (*ADCFIFO1 >> 6) & 0x03ff;
}
else if (a2d_chan == 2) {
 inval = (*ADCFIFO2 >> 6) & 0x03ff;
}

return inval;
}

/***/
/*SWITCH LOW–SIDE MOSFETS */

SPRA420A

59 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/*–– */
/* The state of the low–side power MOSFETS is controlled by the
/*level on the PWM2, PWM4, and PWM6 output pins, for phases
/*A, B, and C, respectively. Active high logic is used,
/*but since the low–side switches are used for commutation
/*instead of PWM control, we just use the force–low or
/*force–high action options.
/*
/*inputs: phaseactive = bits 0,1, and 2 control
/* the state of the PWM2, PWM4, and
/* PWM6 output pins, respectively.
/*
/* (ex. phaseactive = 0x5 will force PWM2 &
/* PWM6 high, PWM4 low)
/*outputs: none
/*
/*+++ */
void switch_lowside(int phaseactive)
{

WORD action;

/*––*/
/* load action register and mask PWM2, PWM4, and PWM6 */
/* to force low */
/*––*/
action = *ACTR;
action = action & 0xf333;

/*–––––––––––––––––––––––––––––––––––––––*/
/* Force hi PWM2 if phase0 (A) is active */
/*–––––––––––––––––––––––––––––––––––––––*/
if (phaseactive & 0x1) {
 action = action | 0x000c;
}

/*–––––––––––––––––––––––––––––––––––––––*/
/* Force hi PWM4 if phase1 (B) is active */
/*–––––––––––––––––––––––––––––––––––––––*/
if (phaseactive & 0x2) {
 action = action | 0x00c0;
}

/*–––––––––––––––––––––––––––––––––––––––*/
/* Force hi PWM6 if phase2 (C) is active */
/*–––––––––––––––––––––––––––––––––––––––*/
if (phaseactive & 0x4) {
 action = action | 0x0c00;
}

/*–––––––––––––––––––––––––––––––––––*/
/* Write new word to action register */
/*–––––––––––––––––––––––––––––––––––*/
*ACTR = action;

}

SPRA420A

60 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

/** */
/*READ CAPTURE FIFO REGISTERS */
/*––– */
/* This routine is used to read the data from the capture FIFO
/*registers.
/*
/*inputs: capture = which FIFO to read?
/* range = 1–3
/*outputs fifo_data =
/* range = 0–65535
/*
/*+++ */
WORD read_fifo(int capture)
{

WORD fifo_data;
int fifo_status;

if (capture == 1) {
 do {
 fifo_data = *FIFO1; /* read value */
 fifo_status = *CAPFIFO & 0x0300; /* read status register, mask bits */
 } while (fifo_status != 0);

 }
else if (capture == 2) {
 do {

 fifo_data = *FIFO2; /* read value */
 fifo_status = *CAPFIFO & 0x0c00; /* read status register, mask bits */
 } while (fifo_status != 0);
}
else if (capture == 3) {
 do {

 fifo_data = *FIFO3; /* read value */
 fifo_status = *CAPFIFO & 0x3000; /* read status register, mask bits */
 } while (fifo_status !=0);
}
else {
 fifo_data = 0xffff; /* error, not a valid capture */
}

return fifo_data;
}

++
* *
* File: VECTORS.ASM *
* Target Processor: TMS320F240 *
* Assembler Version: 6.6 *
* Created: 10/31/97 *
* *
––
* This file contains the interrupt vectors *
**

 .length 58
 .option T
 .option X

*** *
* ILLEGAL INTERRUPT ROUTINE *
*** *;

 .text
 .def _int_0

_int_0: B _int_0 ; ILLEGAL INTERRUPT SPIN

SPRA420A

61 Switched Reluctance Motor Control – Basic Operation and Example Using the TMS320F240

*** *
* INTERRUPT VECTORS *
*** *

 .sect ”VECTOR”
 .ref _c_int0

 .ref _c_int3
 .ref _c_int4

 B _c_int0 ; RESET
 B _int_0 ; INT1
 B _int_0 ; INT2
 B _c_int3 ; INT3
 B _c_int4 ; INT4
 B _int_0 ; INT5
 B _int_0 ; INT6
 B _int_0 ; Reserved
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ; TRAP
 B _int_0 ; NMI
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;

 .end

/* Linker command file for TMS320F240 EVM */

vectors.obj
evmgr.obj
srm.obj

–c /* use ROM autoinitialization model */
–m main.map
–o main.out
–l c:\2xxtools\rts2xx.lib

MEMORY
{
 PAGE 0: VECTORS: origin = 0x0000 length = 0x0040 /* EMIF */
 PAGE 0: CODE: origin = 0x0040 length = 0x1FC0 /* EMIF */
 PAGE 1: MMRS: origin = 0x0000 length = 0x0060 /* MMRS */
 B2: origin = 0x0060 length = 0x0020 /* DARAM */

 B0: origin = 0x0100 length = 0x0100 /* DARAM */
 B1: origin = 0x0300 length = 0x0100 /* DARAM */
 DATA: origin = 0xa000 length = 0x2000 /* EMIF */

}

SECTIONS
{
 .VECTOR > VECTORS PAGE 0
 .text > CODE PAGE 0
 .cinit > CODE PAGE 0
 .switch > CODE PAGE 0
 .mmrs > MMRS PAGE 1 /* Memory Mapped Registers */
 .data > DATA PAGE 1
 .bss > DATA PAGE 1
 .const > DATA PAGE 1
 .stack > DATA PAGE 1
 .sysmem > DATA PAGE 1

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

