

August 2001, ver. 1.0 Application Note 165

Synplify and Quartus II
LogicLock Design Flow
Introduction To maximize the benefits from the Quartus® II design software’s
LogicLockTM incremental design capability, a new design can be
partitioned into a hierarchy of Verilog Quartus mapped (.vqm) files. This
type of hierarchical structure allows the designer to have greater control
over placement and preserve fMAX performance. A hierarchical structure
contains one VQM file for the top-level design and one or more VQM files
for lower-level modules. By maintaining separate VQM files, you can
place individual modules into LogicLock regions to control placement in
the programmable logic device (PLD) and maintain performance of the
module even as other modules are added to the project.

This application note describes how to generate multiple VQM files in the
Synplify® software that allow you to use the LogicLock design flow in the
Quartus II design software. This application note assumes that you are
familiar with the Synplify software.

1 This application note applies to Synplify versions 6.2 and lower.
To obtain the Synplify software, see the Synplify web site at
http://www.synplify.com.

f For more information on LogicLock regions and the LogicLock design
flow, see Application Note 161: Using the LogicLock Methodology in the
Quartus II Design Software.

Design
Hierarchy

Figure 1 shows an example design hierarchy that separates several
modules into separate VQM files. In Figure 1, modules TOP, A, B, C, and
D are separate files that are coded in the same HDL language.
Altera Corporation 1

A-AN-165-01

Synplify and Quartus II LogicLock Design Flow

Figure 1. Example Design Hierarchy

In this example, there are four designers that are working on the project:
designer A works on module A (including module C), designer B works
on module B, and designer D works on module D. The fourth designer,
designer TOP, is the system designer who performs the final
place-and-route.

Generating
Multiple VQM
Files in the
Synplify
Software

To create multiple VQM files in the Synplify software, the general flow
requires you to create a separate project for each module that you want to
maintain as a separate VQM file and for the top-level design. The top-level
design includes black-box instantiations of lower-level modules.

When synthesizing the lower-level modules and top-level design in the
Synplify software, follow these guidelines.

For lower-level modules:

■ Turn-on Disable I/O Insertion for the target technology.
■ Read in HDL files for modules.

– Modules may include black-box instantiations of lower-level
modules that are also maintained as separate VQM files.

■ Add constraints with SCOPE.
– Enter the clock frequency with SCOPE to ensure that the design

is correctly optimized.
– In the Attributes tab, set syn_netlist_hierarchy to 0.

Top.vqm/

A.vqm/

B.vqm/

D.vqm/

Constraint Files

Synthesis Output Files

Top.V

B.V

A.V

C.V

D.V (IP)

User Design Files Hierarchy

Designer
TOP

DC

BA

Designer A Designer B

Designer D (IP)

Logical User Hierarchy
2 Altera Corporation

Synplify and Quartus II LogicLock Design Flow

For top-level designs:

■ Turn-off Disable I/O Insertion for the target technology.
■ Read-in HDL files for top-level designs.

– Black-box lower-level modules in the top-level design.
■ Add constraints with SCOPE.

– The constraints that affect lower-level modules should be the
same as the constraints used when optimizing lower-level
modules separately.

– Enter the clock frequency with SCOPE to ensure that the design
is correctly optimized.

– In the Attributes tab, set syn_netlist_hierarchy to 0.

This section describes how to generate multiple VQM files in the Synplify
software. By generating multiple VQM files, you can take advantage of
the LogicLock incremental design flow in the Quartus II software.

Generating VQM Files for Lower-Level Modules

To generate VQM files for lower-level modules, the following steps must
be completed:

■ Set the target technology
■ Read-in files
■ Perform synthesis

Setting the Target Technology

To set the target technology:

1. From the Options for Implementation dialog box (see Figure 2), set
the target technology (Technology pull-down menu) to a family that
supports the LogicLock design flow. At this time, the LogicLock
design flow supports APEXTM II, APEX 20KE, APEX 20KC, and
ARM®-based ExcaliburTM devices.

2. Turn-on the Disable I/O Insertion option.

3. Click Apply.
Altera Corporation 3

Synplify and Quartus II LogicLock Design Flow

Figure 2. Options for Implementation Dialog Box

Notes to Figure 2:
(1) Set device family.
(2) Turn on Disable I/O Insertion.

Reading-In Files

To read-in files:

1. From the Synplify window, click Add. The Select Files to Add to
Project dialog box appears (see Figure 3).

2. From the Select Files to Add to Project dialog box, click the
appropriate HDL file(s).

3. Click Add.

4. Click OK.

The HDL files have now been added to the project.
4 Altera Corporation

Synplify and Quartus II LogicLock Design Flow

Figure 3. Select Files to Add to Project Dialog Box

Performing Synthesis

To perform synthesis:

1. Use the SCOPE dialog box to enter any user constraints to the
module (see Figure 4). To ensure that the design is optimized, enter
the desired clock frequency.

2. In the Attributes tab (SCOPE dialog box), set
syn_netlist_hierarchy to 0.
Altera Corporation 5

Synplify and Quartus II LogicLock Design Flow

Figure 4. SCOPE Dialog Box

3. From the Synplify window, click Run (see Figure 5). The VQM
netlist file is created.

You can now use the netlist for place-and-route.
6 Altera Corporation

Synplify and Quartus II LogicLock Design Flow

Figure 5. Synplify Window

Generating VQM Files for the Top-Level Design

To generate a VQM file for the top-level design, follow all of the steps
described in the “Generating VQM Files for Lower-Level Modules” on
page 3 section except for one: turn-off Disable I/O Insertion
(see Figure 6).

1 Although VHDL is not case-sensitive, VQM (a subset of Verilog)
is case-sensitive. Entity names and their port declarations are
forwarded to the VQM. Black-box names and port declarations
are similarly forwarded to the VQM. To prevent case-sensitive
mismatches between VQM, use the same capitalization for
black-box and entity declarations in VHDL designs.
Altera Corporation 7

Synplify and Quartus II LogicLock Design Flow

Figure 6. Options for Implementation Dialog Box

Notes to Figure 6:
(1) Set device family.
(2) Turn off Disable I/O Insertion.

Black-Boxing Modules Example

This section describes an example of black-boxing modules using the files
described in Figure 1 on page 2. This example includes the following
steps:

■ Black-boxing the modules.
■ Synthesizing the top-level file.
■ Performing flow in batch mode.

VHDL and Verilog HDL examples are included in the black-boxing
modules example.

Black-Boxing the Modules

To black-box the modules:

1. Generate a VQM file for module D (see “Generating VQM Files for
Lower-Level Modules” on page 3). Use D.V as the source file.
8 Altera Corporation

Synplify and Quartus II LogicLock Design Flow

2. Generate a VQM file for module A (see “Generating VQM Files for
Lower-Level Modules” on page 3). Use A.V and C.V as the source
files. Make sure to black-box module D, which was already
optimized in the previous step.

Verilog Black-Boxing

The attribute syn_black_box instructs the Synplify software to treat the
instance U1 as a black-box. To black-box module D in Verilog, use the
following A.V file example (see Figure 7):

Figure 7. A.V File Example for Verilog Black-Boxing

module A (data_in,clk,clrn,e,ld,data_out);

input [15:0] data_in;
clk, clrn, e, ld;
output [15:0] data_out;
reg [15:0] cnt_out;
reg [15:0] reg_a_out;

D U1(.data_in (data_in),.clk (clk), .clrn (clrn), .e(e), .ld (ld),
.data_out(cnt_out));

C U2 (.d(cnt_out), .clk (clk),.clrn (clrn), e(e), .q (reg_out));

endmodule

// Module Declarations of Sub-Blocks C and D follow here

// Insert Module Declaration for C

// Insert Module Declaration for D with the syn_black_box
// directive
module D (data_in, clk, clrn, e, ld, data_out) /* synthesis syn_black_box */;

input [15:0] data_in;
clk, clrn, e, ld;
output [15:0] data_out;

endmodule

VHDL Black-Boxing

The syn_black_box attribute can also be used in the VHDL flow. To
black-box module D in VHDL, use the following A.VHD file example (see
Figure 8):
Altera Corporation 9

Synplify and Quartus II LogicLock Design Flow

Figure 8. A.VHD File Example for VHDL Black-Boxing (Part 1 of 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
use synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk : IN STD_LOGIC;
clrn : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);

END A;

ARCHITECTURE a_arch OF A IS

COMPONENT C PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
clrn : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

COMPONENT D PORT(
d : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
clrn : IN STD_LOGIC;
e : IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

attribute syn_black_box of D: component is true;

signal cnt_out : INTEGER RANGE 0 TO 15;
signal reg_a_out : INTEGER RANGE 0 TO 15;

BEGIN
CNT : C
PORT MAP (

data_in => data_in,
clk => clk,
clrn => clrn,
e => e,
10 Altera Corporation

Synplify and Quartus II LogicLock Design Flow

Figure 8. A.VHD File Example for VHDL Black-Boxing (Part 2 of 2)

ld => ld,
data_out => cnt_out
);

REG_A : D
PORT MAP (

d => cnt_out,
clk => clk,
clrn => clrn,
e => e,
q => reg_a_out
);

REG_B : D
PORT MAP (

d => reg_a_out,
clk => clk,
clrn => clrn,
e => e,
q => data_out
);

END a_arch;

Creating the Top-Level File

Using the file examples created in the previous section, create a top-level
file that instantiates the modules and black-box them in the HDL file (see
“Generating VQM Files for the Top-Level Design” on page 7).

Verilog Top-Level File

For a Verilog top-level file, use the following Verilog framework (see
Figure 9):

Figure 9. Verilog Framework (Part 1 of 2)

module top (data_in,clk,clrn,e,ld,data_out);

// port declarations

A U1 (.data_in (data_in),.clk (clk), .clrn (clrn), .e(e), .ld (ld),
.data_out(cnt_out));

B U2 (.d(cnt_out), .clk (clk),.clrn (clrn), e(e), .q (reg_out));

endmodule
Altera Corporation 11

Synplify and Quartus II LogicLock Design Flow

Figure 9. Verilog Framework (Part 2 of 2)

// Module Declarations of Sub-Blocks A and B follow here

// Insert Module Declaration for A with syn_black_box directive
module A (data_in, clk, clrn, e, ld, data_out) /* synthesis syn_black_box */;

// Insert Module Declaration for B with syn_black_box directive
module (data_in, clk, clrn, e, ld, data_out) /* synthesis syn_black_box */

VHDL Top-Level File

For a VHDL top-level file, use the following VHDL framework
(see Figure 10).

Figure 10. VHDL Framework (Part 1 of 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
use synplify.attributes.all;

ENTITY top IS

PORT
(
-- Insert Port Declarations Here

);

END top;

ARCHITECTURE a OF top IS
COMPONENT A PORT (
-- Insert Port Declarations Here

);
END COMPONENT;

COMPONENT B
PORT(
-- Insert Port Declarations Here

);

END COMPONENT;

attribute syn_black_box of A: component is true;
attribute syn_black_box of B: component is true;
12 Altera Corporation

Synplify and Quartus II LogicLock Design Flow

Figure 10. VHDL Framework (Part 2 of 2)

BEGIN
CNT : A
PORT MAP (
-- Insert Port Mapping Here

);

REG_A : B
PORT MAP(
-- Insert Port Mapping Here

);

END a;

Synthesizing the Top-Level File

Synthesize the top-level file (see “Generating VQM Files for the Top-Level
Design” on page 7).

Performing Flow in Batch Mode

To perform this flow in batch mode, you can modify the examples shown
in Figures 11 through 13.

Setting the Target Technology

To set the target technology, use the following settings (see Figure 11):

Figure 11. Batch Mode Target Technology Settings

set_option -technology APEX20KC
set_option -part EP20K400C
set_option -grade -7
set_option -package BC652

Reading-In and Synthesizing (Modules)

To read-in and synthesize modules, use the following insertion (see
Figure 12):

Figure 12. Module Insertion for Batch Mode

add_file D:/my_proj/B.VHD
project -run synthesis
Altera Corporation 13

Synplify and Quartus II LogicLock Design Flow

Repeat this for the other modules to generate A.VQM and D.VQM.

Reading-In and Synthesizing (Top-Level File)

To read-in and synthesize the top-level file, use the following insertion
(see Figure 13):

Figure 13. Top-Level File Insertion for Batch Mode

add_file D:/my_proj/TOP.VHD
project -run synthesis

After you have completed the steps outlined in this section, you will have
four VQM files: Top.vqm, A.vqm, B.vqm, D.vqm. These files can now be
used in the Quartus II software and the LogicLock incremental design
methodology.

Conclusion The LogicLock incremental design flow uses multiple VQM files to help
designers preserve performance of modules and have control over
placement. Generating multiple VQM files is simple, and can be done by
following the guidelines in this document.
14 Altera Corporation

Printed on Recycled Paper.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
lit_req@altera.com

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all
other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the
trademarks and service marks of Altera Corporation in the U.S. and other countries. Synplify and Synplicity
are trademarks of Synplicity. All other product or service names are the property of their respective holders.
All rights reserved. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to
current specifications in accordance with Altera’s standard warranty, but reserves the right to make changes
to any products and services at any time without notice. Altera assumes no responsibility
or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of device specifications before relying on
any published information and before placing orders for products or services. All rights
reserved.

Copyright 2001 Altera Corporation

	AN 165: Synplify and Quartus II LogicLock Design Flow
	Introduction
	Design Hierarchy
	Generating Multiple VQM Files in the Synplify Software
	Generating VQM Files for Lower�Level Modules
	Setting the Target Technology
	Reading�In Files
	Performing Synthesis

	Generating VQM Files for the Top�Level Design
	Black�Boxing Modules Example
	Black�Boxing the Modules
	Verilog Black�Boxing
	VHDL Black�Boxing

	Creating the Top-Level File
	Verilog Top�Level File
	VHDL Top�Level File

	Synthesizing the Top-Level File
	Performing Flow in Batch Mode
	Setting the Target Technology
	Reading�In and Synthesizing (Modules)
	Reading-In and Synthesizing (Top�Level File)

	Conclusion

