
1. Introduction

Once a design is committed to silicon, you

want it to be right. Time, money, and your

reputation can be wasted on a malfunctioning

ASIC. This paper will cover the steps to take

before fabrication that will minimize your

chances of failure and maximize your chances

of success for first silicon. These steps include

how to write a specification, top-down design,

simulation, test vector generation, and good

procedural practices.

This paper is aimed at the engineer who is

facing an ASIC design or wants to be prepared

for one. Those who have never designed an

ASIC will find this paper especially beneficial,

and experienced ASIC designers will find this

paper to be useful reference.
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1.1 What is an ASIC?

An Application Specific Integrated Circuit, or
ASIC, is a chip that can be designed by an engineer
with no particular knowledge of semiconductor
physics or semiconductor processes. The ASIC
vendor has created a library of cells and functions
that the designer can use without needing to know
precisely how these functions are implemented in
silicon. The ASIC vendor also typically supports
software tools that automate such processes as
synthesis and circuit layout. The ASIC vendor may
even supply application engineers to assist the
ASIC design engineer with the task. The vendor
then lays out the chip, creates the masks, and
manufactures the ASICs.

Just as a board designer does not need to have an
intimate knowledge of the integrated circuits that
he places on a PC board, the ASIC designer does
not need such knowledge of the individual cells
that are used in an ASIC design. This is not to say
that no knowledge is required. Just as a PC board
designer needs to know interface characteristics
such as capacitive loading and trace impedance, an
ASIC designer needs to understand the ASIC
vendor’s specifications for the particular library of
cells and functions that he is using in his design.

1.2 Gate Array vs. Standard Cell

There are two varieties of ASICs, and each has its
own advantages - gate arrays and standard cells.
Each variety has a different architecture as shown
in Figure 1. These architectural differences result in

different manufacturing techniques, different costs,
and different development times. Depending on
your requirements, one type of ASIC will be
optimal, and it is good to understand which one fits
your needs before beginning the design process.

1.2.1 The Gate Array

The gate array consists of rows and columns of
regular transistor structures. Each basic cell, or
gate, consists of the same small number of
transistors which are not connected. In fact, none
of the transistors on the gate array are initially
connected at all. The reason for this is that the
connection is determined completely by the design
that you implement. Once you have your design,
the layout software figures out which transistors to
connect. First, your low level functions are
connected together. For example, six transistors
could be connected to create a D flip-flop. These
six transistors would be located physically very
close to each other.  After your low level functions
have been routed, these would in turn be connected
together. The software would continue this process
until the entire design is complete.

The ASIC vendor manufactures many unrouted
die which contain the arrays of gates and which it
can use for any gate array customer. An integrated
circuit consists of many layers of materials
including semiconductor material (e.g., silicon),
insulators (e.g., oxides), and conductors (e.g.,
metal). An unrouted die is processed with all of the
layers except for the final metal layer that connects
the gates together. Once your design is complete,
the vendor simply needs to add the last metal layer
to the die to create your chip.

The advantages of gate arrays is that they have a
fast turnaround time. In addition, since the vendor
can produce many unrouted arrays for many
customers, each customer shares in some of the
development cost, resulting in a lower development
charge, also know as non-recurring expense
(NRE).

1.2.2 The Standard Cell

The standard cell ASIC is designed using cells of
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transistors which are already connected together
and compactly routed to form higher level
functions such as flip-flops, adders, and counters.
The ASIC designer connects these cells together
just as he would connect TTL packages together on
a PC board. The software that lays out a standard
cell ASIC attempts to place these cells on the die
and connect them together in as efficient a way as
possible.

Since each cell consists of all of the material
layers needed to produce the transistors and to
connect them, and since each customer’s design is
different, each standard cell ASIC must be created
from scratch. This results in a much longer
turnaround time than for a gate array. Each mask to
produce each layer is custom for each user.
Therefore, customers cannot share development
costs as they can with gate arrays.

The advantages of a standard cell approach is that
the resulting die is typically much smaller than the
equivalent gate array. For a gate array, the die size
is fixed and many transistors in the array will
typically not be used in the design. For a standard
cell design, only those transistors that are needed
are placed on the die. A smaller die results in more
die per wafer, which results in a smaller cost per
part. This can be a big advantage for parts which
are used in high volume.

Another advantage is that standard cell ASICs
can use very complex functions if those functions
are available as cells in the vendor’s library. Many
vendors include microprocessor cores in their
libraries. These cells would be very difficult to
design and would take up a great deal of die area if
they were implemented in a gate array.

1.3 Which ASIC type is right for you?

Which ASIC type to use depends on your project
and budget. Use gate arrays when you want to hold
down the initial cost, when you need fast
turnaround on prototypes, and when you expect
low production volumes. Use standard cells when
you need to implement very complex functions and
when you expect high production volumes.

2. Design Issues

There are many design issues that are common to
both ASIC design and other forms of digital
design. In the next sections of this paper, we will
discuss those areas that are unique to ASIC design
or that are particularly critical to ASIC design.

2.1 Top-Down Design

Top-down design is the design method whereby
high level functions are defined first, and the lower
level implementation details are filled in later. An
ASIC schematic can be viewed as a hierarchical
tree as shown in Figure 3. The top level block
represents the entire ASIC. Each lower level block
represents major functions of the ASIC.
Intermediate level blocks may contain smaller
functionality blocks combined with gate-level
logic.  The bottom level contains only gates and



macrofunctions which are vendor-supplied high
level functions. Fortunately, schematic capture
software and hardware description languages used
for ASIC design easily allows use of the top-down
design methodology.

Top-down design is the preferred methodology
for ASIC design for several reasons. First, ASICs
often incorporate a large number of gates and a
very high level of functionality. This methodology
simplifies the design task and allows more than one
engineer, when necessary, to design the chip.
Second, it allows flexibility in the design. Sections
can be removed and replaced with a higher-
performance or optimized designs without
affecting other sections of the ASIC.

Also important is the fact that simulation is much
simplified using this design methodology.
Simulation is an extremely important consideration
in ASIC design since an ASIC cannot be blue-
wired after production. For this reason, simulation
must be done extensively before the ASIC is sent
for fabrication. A top-down design approach allows
each module to be simulated independently from
the rest of the design. This is important for
complex designs where an entire design can take
weeks to simulate and days to debug. Simulation is
discussed in more detail later in this paper.

2.2 NAND Gates

On the lowest level, most ASIC technologies are
optimal if they are designed using NAND gates as
opposed to other kinds of gates such as AND, OR,
or NOR gates. First, NAND gates are typically
more symmetric. In other words, the rise and fall
times are close to equal which means you are less
likely to have timing problems. Also, NAND gates
are implemented with the fewest levels of
transistors, making the propagation times lower
than for other basic gates.

If you design your ASIC using schematic capture
tools, you will produce faster parts if you use
NAND gates. If you use synthesis tools to convert
a high level description to a gate level design, you
may want to check that the tool synthesizes into

NAND gates, particularly if you are concerned
about performance.

2.3 Macrofunctions - Soft and Hard

Macrofunctions are pre-defined functions which
are common to many designs and can be used in
blocks without understanding their internal design.
They might include designs for counters, flip-flops,
adders, or registers. These macros are used like ICs
are used in a PC Board design. In fact, many
vendors supply common 74LS part functions in
their libraries of macrofunctions. They are useful
because they allow the designer to integrate
common higher level functionality into the design
without needing to design these parts each time.

There are two types of macrofunctions - hard and
soft - and it is important to know the difference in
order decide when to use each type. Soft macros
are high level blocks that include the low level
gates that are needed to create the specific function.
When the ASIC is laid out, these gates will be
treated like every other gate in the design and will
be placed on the die and routed. A hard macro, on
the other hand, consists of a number of gates that
have been placed and routed together to achieve
optimal performance. The hard macro is treated
like a single gate, and the relative placement of
each internal gate cannot be modified.

The advantage to a soft macro is that it can be
easily modified to fit your own particular need. For
example, if you have a macro for an up/down
counter, but you only need an up counter, you can
go into the macro and take out those gates that are
used for counting down. In this way, you did not
need to design the counter from  scratch, and you
could eliminate any unnecessary functionality from
the macro.

Another advantage of soft macros is that they can
be lifted from one design and, with slight or no
changes, be incorporated into another design, even
a design using a different technology. Soft macros
are easily routed in the design since the individual
gates can be placed anywhere in the layout. The
timing between a soft macro and the other blocks
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in the design can be optimized by the place-and-
route software. The disadvantages of soft macros
are that, like the rest of your design, the timing is
not completely predictable until the entire design
has been routed. This is because the timing will
depend on the routing lengths.

The advantage of a hard macro is that the timing
is completely predictable since the gate layout
cannot change. Hard macros are usually designed
to optimize performance and get the best timing
possible from the process. The disadvantage is that
they cannot be changed to eliminate unneeded
functionality or to incorporate additional
functionality. Since they are larger blocks, they
may not be easily incorporated into the layout. The
timing between a hard macro and the rest of the
design may not be good, and hard macros are not
portable to other technologies. The cells of a
standard cell ASIC are hard macros. Higher level
functions may be either hard or soft macros. A
comparison of hard and soft macros is shown in
Figure 4.

2.4 Synchronous Design

One of the most important concepts in ASIC
design, and one of the hardest to enforce on novice
ASIC designers, is that of synchronous design.
Once an ASIC designer uncovers a problem due to
asynchronous design and attempts to fix it, he or
she usually becomes an evangelical convert to
synchronous design. This is because asynchronous
design problems are due to marginal timing

problems that may appear intermittently, or may
appear only when the ASIC vendor changes its
semiconductor process. Asynchronous designs that
work for years in one process may suddenly fail
when the ASIC is manufactured using a newer
process.

Synchronous design simply means that all data is
passed through combinatorial logic and flip-flops
which are synchronized to a single clock. No signal
that is generated by combinatorial logic can be fed
back to the same group of combinatorial logic
without first going through a synchronizing flip-
flop. Clocks cannot be gated - in other words,
clocks must go directly to the clock inputs of the
flip-flops without going through any combinatorial
logic.

The following sections cover common
asynchronous design problems and how to fix them
using synchronous logic.

2.4.1 Race conditions

Figure 5 shows an asynchronous race condition
where a clock signal is used to reset a flip-flop.
When SIG2 is low, the flip-flop is reset to a low
state. On the rising edge of SIG2, the designer
wants the output to change to the high state of
SIG1. Unfortunately, since we don’t know the
exact internal timing of the flip-flop or the routing
delay of the signal to the clock versus the reset
input, we cannot know which signal will arrive first
- the clock or the reset. This is a race condition. If



feeds may not recognize it at all. A synchronous
pulse generator is shown in Figure 8. This pulse
depends only on the clock period. Changes to the
process will not cause any significant change in the
pulse width.
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the clock rising edge appears first, the output will
remain low. If the reset signal appears first, the
output will go high. A slight change in
temperature, voltage, or process may cause an
ASIC that works correctly to suddenly work
incorrectly. A more reliable synchronous solution
is shown in Figure 6. Here a faster clock is used,
and the flip-flop is reset on the rising edge of the
clock. This circuit performs the same function, but
as long as SIG1 and SIG2 are produced
synchronously - they change only after the rising
edge of CLK - there is no race condition.

2.4.2 Delay dependent logic

Figure 7 shows logic used to create a pulse. The
pulse width depends very explicitly on the delay of
the individual logic gates. If the process should
change, making the delay shorter, the pulse width
will shorten also, to the point where the logic that it
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Figure 9 shows an asynchronous circuit with a
hold time violation. Hold time violations occur
when data changes around the same time as the
clock edge. It is uncertain which value will be
registered by the clock. The circuit in Figure 10
fixes this problem by putting both flip-flops on the
same clock and using a multiplexer to either load
new data or keep the previous data.

2.4.4 Glitches

A glitch can occur due to small delays in a circuit
such as that shown in Figure 11. An inverting
multiplexer contains a glitch when switching
between two signals, both of which are high. Yet
due to the delay in the inverter, the output goes
high for a very short time. Synchronizing this
output by sending it through a flip-flop as shown in
Figure 12, ensures that this glitch will not appear

on the output and will not affect logic further
downstream.

2.4.5 Bad clocking

Figure 13 shows an example of asynchronous
clocking. This kind of clocking will produce
problems of the type discussed previously. The
correct way to enable and disable outputs is not by
putting logic on the clock input, but by putting
logic on the data input as shown in Figure 14.

2.4.6 Metastability

One of the great buzzwords, and often
misunderstood concepts, of synchronous design is
metastability. Metastability refers to a condition
which arises when an asynchronous signal is
clocked into a synchronous flip-flop. While ASIC
designers would prefer a completely synchronous
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world, the unfortunate fact is that signals coming
into an ASIC will depend on a user pushing a
button or an interrupt from a processor, or will be
generated by a clock which is different from the
one used by the ASIC. In these cases, the
asynchronous signal must be synchronized to the
ASIC clock so that it can be used by the internal
circuitry. The designer must be careful how to do
this in order to avoid metastability problems as
shown in Figure 15. If the ASYNC_IN signal goes
high around the same time as the clock, we have an
unavoidable ryace condition. The output of the flip-
flop can actually go to an undefined voltage level
that is somewhere between a logic 0 and logic 1.
This is because an internal transistor did not have
enough time to fully charge to the correct level.



Floating Nodes - The Problem

SEL_A
A

SEL_B
B

NOTE: SEL_A and SEL_B are mutually exclusive

OUT

NOTE: SEL_A and SEL_B are mutually exclusive

Floating Nodes - Solutions

SEL_A
A

SEL_B
B

PULLUP

SEL_A
A

SEL_B
B

OUT

OUT

Figure 17

Figure 18

2.4.7 Allowable uses of asynchronous logic

Now that I’ve gone through a long argument
against asynchronous design, I will tell you the few
exceptions that I have found to this rule. These
exceptions, however, must be designed with
extreme caution and only as a last resort when a
synchronous solution cannot be found.

2.4.7.1 Asynchronous reset

There are times when an asynchronous reset is
acceptable, or even preferred. If the ASIC vendor’s
library includes asynchronously resettable flip-
flops, the reset input can be tied to a master reset in
order to reduce the routing congestion and to
reduce the logic required for a synchronous reset.
This reset should be used only for resetting the
entire ASIC and should not occur during normal
functioning of the chip. After reset, you must
ensure that the ASIC is in a stable state such that
no flip-flops will change until an input changes.
You must also ensure that the inputs to the ASIC
are stable and will not change for at least one clock
cycle after the reset is removed.

2.4.7.2 Asynchronous latches on inputs

Some buses, such as the VME bus, are designed
to be asynchronous. In order to interface with these
buses, it is necessary to use asynchronous latches
to capture addresses or data. Once the data is
captured, it must be synchronized to the internal
clock. However, it is usually much more efficient
to use asynchronous latches to capture the data
initially. Unless your ASIC uses a clock which has
a frequency much higher than that of the bus,
attempting to synchronously latch these signals
will cause a large amount of overhead and may
actually produce timing problems rather than
reduce them.

2.4.7.3 Other asynchronous circuits

Occasionally, circuits are needed to operate
before a clock has started running or when a clock
has stopped running. Circuits that generate system
resets, and watchdog circuits are examples of these.
Every attempt should be made to design these

circuits synchronously or move them off chip and
use discrete chips whose worst case and best case
timing is very explicitly defined. If this cannot be
done, design these circuits with care and realize
that changes to the semiconductor process may
make your ASIC unusable.

2.5 Floating Nodes

Floating nodes, or internal nodes of a circuit
which are not continually driven, should be
avoided. An example of a potential floating node is
shown in Figure 17. If signals SEL_A and SEL_B
are both not asserted, signal OUT will float to an
unknown level. Downstream logic may interpret
OUT as a logic 1, a logic 0, or it may produce a
metastable state. In addition, any CMOS circuitry
that has OUT as an input will use up power since
CMOS uses power when the input is in the
threshold region.
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Two solutions to the floating node problem are
shown in Figure 18. At the top, signal OUT is
pulled up using an internal pull-up resistor. This
ensures that when both select signals are not
asserted, OUT will be pulled to a good logic level.
The other solution, shown at the bottom of the
figure, is to make sure that something is driving the
output at all times. A third select is generated
which drives the output to a good level when
neither of the select signals are asserted.

2.6 Bus Contention

Bus contention occurs when two outputs drive the
same signal at the same time as shown in Figure
19. For obvious reasons, this is bad and reduces the
reliability of the ASIC. If bus contention occurs
even for short times during a clock cycle, after

many clock cycles the possibility of damage to one
of the drivers increases. The solution is to ensure
that both drivers cannot be asserted simultaneously.
This can be accomplished by inserting additional
logic as shown in Figure 20. The ideal solution is
to avoid tri-state drivers altogether, and use muxes
whenever possible.

2.7 Power and Ground Pins

For an ASIC to operate correctly, it must have
sufficient power and ground pins evenly distributed
around the chip so that all transistors receive good
solid voltages even when sinking or sourcing the
maximum current expected while in the system.
The number of power pins and their distribution
depends heavily on the vendor’s process, the size
of the ASIC, and your system’s demands on the
output drivers. For resolving this issue, you must
work very closely with the ASIC vendor who can
guide you.

3. Design For Test (DFT)

“Design for test” is a concept which means your
ASIC is designed in such a way that testing it is
easy. Test logic plays two roles. First, it helps
debug an ASIC which has design flaws. Second, it
can catch manufacturing problems. Both are
particularly important for ASIC design because of
the black box nature of ASICs where internal
nodes are simply not accessible to you when there
is a problem. The following DFT techniques allow
for better testing of an ASIC. While not all of these
techniques need to be included in your design,
those that are needed should be included at design
time. DFT techniques should be taken into account
during the design process rather than afterwards.
Otherwise, circuits can be designed that are later
found to be difficult, if not impossible, to test.

One important consideration that can be
overlooked, is that test logic is intended to increase
the testability and reliability of your ASIC. If test
logic becomes too large, it can actually decrease
reliability because the test logic can itself have
problems which cause the ASIC to malfunction. A
rule of thumb is that test circuitry should not make
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up more than 10% of the logic of the entire ASIC.
Similarly, if you spend more than 10% of your
time designing and simulating your test logic
independently of the functionality of the ASIC,
then you have more test circuitry than you need.

3.1 Testing Redundant Logic

The top of Figure 21 shows a circuit which has
duplicated logic in order to increase the reliability
of the design. However, since the circuit is not
testable, the effect is not as useful as it could be.
The circuit on the bottom shows how test lines can
be added to allow the entire circuit to be tested.

3.2 Initializing State Machines

It is important that all state machines, and in fact
all registers in your design be able to be initialized.
This ensures that if a problem arises, the ASIC can
be put into a know state from which to begin
debugging. Also, for simulation purposes,
simulation software needs to start out from a
known state before useful results can be obtained.

3.3 Observable Nodes

As many nodes as possible in your ASIC design
should be observable. In other words, it should be
possible to determine the values of these nodes
using the I/O pins of the chip. On the left side of
Figure 22, an unobservable state machine is shown.
On the right side, the state machine has been made
observable by taking each state machine through a

mux to an external pin. Test signals can be used to
select which output is being observed. If no pins
are available, the state bits can be muxed onto an
existing pin which, during testing, is used to
observe the state machine. This allows for much
easier debugging of internal state machines.

3.4 Scan Techniques

Scan techniques, shown in Figure 23, allow the
nodes of the ASIC to be scanned out so that they
can be observed externally. There are two main
scan techniques - full scan and boundary scan. Full
scan is extremely flexible, especially since it can
also allow values to be scanned into the ASIC so
that you can start it from a known state. This is
particularly useful if a problem occurs only after
the ASIC has been operating for a long time. A
state can be quickly scanned into the ASIC which
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corresponds to the state which would normally be
reached after a long time in operation. The
drawback of scan techniques are that they require a
lot of software development to support. Also, if
states are scanned into the ASIC, you must be
careful not to scan in illegal states. It is possible to
turn on multiple drivers to a single net internally
which would normally not happen, but which
would burn out the chip. Similarly, outputs must be
disabled while the chip is being scanned since
dangerous combinations of outputs may be
asserted that can harm your system. There are other
considerations, also, such as what to do with the
clock and what to do with the rest of the system
while the ASIC is being scanned.

Boundary scan is somewhat easier to implement
and does not add as much logic to the entire ASIC
design. Boundary scan only scans nodes around the
boundary of the chip, but not internal nodes. In this
way, internal contention problems are avoided,
although contention problems with the rest of the
system still need to be considered. Boundary scan
is also useful for testing the rest of your system,
since the outputs can be toggled and the effect on
the rest of the system observed.

3.5 Fault Coverage

Fault coverage refers to the percentage of faults
that can be found when testing an ASIC. A fault is
defined as a bad, or malfunctioning node. A node is
the output of any gate in the design. Common
faults can be “stuck-at”, “open”, or “short”. Other

faults have been identified in recent years, but these
seem to be the most common. A stuck-at fault
involves a node that is accidentally tied to a logic 0
or logic 1 due to a manufacturing defect. An open
fault is a node that is not connected to anything. A
short fault refers to a node that is shorted to some
other node that should not be connected. Your
manufacturing tests should uncover as many faults
as possible. As shown in Figure 24, however, even
extensive tests may not uncover many faults. In the
diagram, if node X is stuck at a logic 0, six out of
eight combinations of signals A and B will still
produce the correct output and never indicate a
problem. To uncover this fault, it is necessary to
run one of the remaining two test vectors to reveal
this fault.

One hundred percent fault coverage is very
difficult to obtain. As the number of nodes
increases, the number of potential faults rises
exponentially. Software is available to help
automate this procedure. The user must decide how
much fault coverage is tolerable for the particular
ASIC.

3.6 Automatic Test Pattern Generation (ATPG)

Automatic test pattern generation, or ATPG, is a
method of managing fault coverage. As ASICs
become complex, it is often not obvious how to
generate tests that improve the fault coverage.
ATPG software analyzes the design and generates
tests that allow you to increase the fault coverage
with minimal effort.

3.7 Built-In Self Test

Another method of testing your ASIC is to put all
of the test circuitry on the chip in such a way that
the chip tests itself. This is called built-in self test
or BIST. In this case, some circuitry inside the chip
can be activated by asserting a special input or
combination of inputs. This circuitry then runs a
series of test on the chip. If the result of the tests
does not match the expected result, the chip signals
that there is a problem. The details of what type of
tests to run and how to signal a good or bad chip is
left up to the designer.



3.8 Signature Analysis

Signature analysis involves putting a pseudo-
random sequence of ones and zeroes into the chip
and noting the ones and zeroes that come out. This
output sequence is referred to as the ASIC’s
signature. This type of testing can be accomplished
with the chip in a normal mode of operation, but is
usually performed in scan mode as described
above. By repeating the same pseudo-random
series of bits, the resulting signature should be the
same for each chip. Any chip that produces an
incorrect signature is a bad chip. This type of
testing is probabilistic and assumes that a pseudo-
random sequence of events has a good chance of
catching errors, which may not be true. However, it
requires very little hardware to implement and can
be used as a simple form of BIST.

4. Simulation Issues

Perhaps the most important phase of ASIC
design, and the most often overlooked phase, is
that of simulation. Simulation beforehand
significantly increases your chance of getting
working parts back from the vendor. Doing a good
job at simulation uncovers errors before they are
set in silicon, and can help determine that your chip
will function correctly in your system.

There are two main aspects of your design for
which simulation is used to determine correctness -
functionality and timing. Functionality refers to
how the chip functions as a whole, and how it
functions in your system. An ASIC which is
designed to function as an Ethernet controller may
function correctly on its own. In a system that
requires an ATM controller, for example, it will not
work at all. It is important to look not only at the
functionality of the chip as an independent design,
but also to test its functionality within the system in
which it will be incorporated.

The second aspect of your design which
simulation examines is timing. Will your chip meet
all of its timing requirements under all possible
conditions? Are there any race conditions? Are the
setup and hold time requirements met for each flip-

flop? Do the I/O signals of the ASIC meet the
timing requirements of the system? The following
sections discuss ways of using timing to determine
both correct functionality and correct timing.

4.1.1 Functional Simulation

Functional simulation involves simulating the
functionality of a device without taking the timing
of the device into account. This type of simulation
is important initially in order to get as many bugs
out of the device as possible and to determine that
the ASIC will work correctly in your system.
During the first phases of simulation, you shouldn’t
be very concerned about timing because it will
change as the design changes. In fact, the final
timing will not be known precisely until the layout
is complete. Of course you need to know initially
that, in general, the timing of the ASIC process can
support the speed and the I/O requirements of your
design.

When performing functional simulation, a rough
estimate of the amount of simulation to perform is
called toggle coverage, which measures the
percentage of flip-flops in the ASIC that change
state during simulation. Many simulation packages
will give you a number for the toggle coverage, and
you should have 100 percent coverage before
feeling good about the amount of simulation. This
coverage can still leave many potential faults
uncovered, but it signifies that each state machine
has been simulated and no part of the circuit has
gone unexamined.

4.1.2 Static Timing Analysis

Static timing analysis is a process that looks at a
synchronous design and determines the highest
operating frequency of the design which does not
violate any setup and hold times. You can also use
the static timing analysis software to specify a
specific frequency, and the tool will list all paths
that violate the timing requirements. These paths
can then be adjusted to meet your requirements.
Any asynchronous parts of your design (they
should be few, if any) must be examined by hand.
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Static timing analysis, or some sort of timing
analysis must be performed immediately before
layout of your ASIC. At this point, the timing
numbers will be estimates that take expected trace
lengths into account. After layout, timing analysis
must be performed again to determine that the real
chip, with real trace lengths and delays, still meets
you timing requirements.

4.1.3 Timing Simulation

This method of timing analysis is growing less
and less popular. It involves including timing
information in a functional simulation so that the
real behavior of the chip is simulated. The
advantage of this kind of simulation, is that timing
and functional problems can be examined and
corrected. Also, asynchronous designs must use
this type of analysis because static timing analysis
only works for synchronous designs. This is
another reason for designing synchronous ASICs
only.

As ASICs become larger, though, this type of
compute intensive simulation takes longer and
longer to run. Also, simulations can miss particular
transitions that result in worst case results. This
means that certain long delay paths never get
evaluated and an ASIC with timing problems can
pass timing simulation. If you do need to perform
timing simulation, it is important to do both worst
case simulation and best case simulation. The term
“best case” can be misleading. It refers to a chip
that, due to voltage, temperature, and process
variations, is operating faster than the typical
ASIC. However, hold time problems become
apparent only during the best case conditions.

4.2 Automatic Tester Issues

When an ASIC is fabricated, each production
ASIC is sent through an automatic tester to
determine that it is working correctly and meets
both the functional specifications and timing
requirements. Test vectors, which are sequences of
inputs to the I/O of the chip, are used by the tester
for this purpose. The vendor will guide you
through the tester requirements. The following
sections describe common tests for your ASIC.

4.2.1 Open/Short Test

This test tests for I/O pins that are not connected
to pads on the ASIC, and for I/O pins that are
shorted together.

4.2.2 Power

A power test tests the total current used by the
ASIC to make sure that it is within the expected
value. This ensures that there is not an internal
short that is drawing too much power, and that the
semiconductor process is within specification.

4.2.3 Functional Testing

Functional testing determines that the functionality
of the ASIC is exactly according to the specification.
Test vectors are created based on a subset of the
functional simulation. These vectors are then used by
the tester as inputs to the ASIC. The outputs are
recorded and compared to the expected outputs of the
simulation. If there is a mismatch, the ASIC is flagged
as bad and discarded.

Testers are designed to require a periodic application
of test vectors. A clock period is defined, and new test
vectors are applied to the ASIC during each period, as
shown in  Figure 25.

Figure 26 shows different methods of specifying
when to apply test vector signals during the test
period. Signals do not need to change at the beginning
of the test period. They also do not need to change
each period. There are four ways of specifying when
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to change the inputs. They are as follows:

NRZ Non-Return-to-Zero

A signal which is defined as NRZ changes only at
the beginning of the test period if it changes at all.

DNRZ Delayed-Non-Return-to-Zero

A signal which is defined as DNRZ changes at a
fixed delay (D1) after the beginning of the period.

RZ Return-to-Zero

A signal which is defined as RZ begins each test
period at 0 value. At a fixed delay (D1) it changes
to a 1 value. After another fixed delay (D2) it
changes back to a 0 value. The sum of the delays
(D1+D2) must be less than or equal to the test
period.

RTO Return-To-One

A signal which is defined as RTO is exactly like an
RZ signal, except that is begins each test period
with a 1 value, then goes to a 0 value, then
returns to a 1 value.

Figure 27 shows a test period and a strobe. A
strobe is defined at a particular time during the test
period. Different testers allow different numbers of
strobes. Output signals are sampled at the strobe
time in order to compare their values against the
expected values. It is important to define strobe
points for groups of outputs such that each output
that is to be sampled can be guaranteed to be stable
at the strobe time.

4.3 Three-State Functional Test

The three-state functional test puts the chip into a
state where all tri-state pins are high impedance.
These pins are monitored by the tester to make
certain that they can, in fact, be put into a high
impedance state.

4.3.1 Timing Test

The timing test is based on the timing analysis.
Essentially, a simple test is used on a very long
path output. The output strobe is placed at a time
such that if the timing is too slow, the strobe will
record an incorrect output.

4.3.2 Electrical Tests

These tests check for correct electrical
characteristics to make certain that they are within
the specifications of the semiconductor process.
They are:

• VIL/VIH test ..........Tests the correct threshold
voltage of the inputs.

• VOL/VOH test .......Tests the correct voltage
levels of the outputs.

• IOS test ..................Tests the maximum current
during a short of I/O pins.

• IIL/IIH test .............Tests the input leakage
current of the inputs.

• IOZ test ..................Tests the current drawn by a
high-impedance output.



5. The Design Flow

This last section examines the design flow. This is
the entire process for designing an ASIC that
guarantees that you will not overlook any steps and
that you will have the best chance of getting back a
working prototype ASIC that functions correctly in
your system. The design flow consists of the
following steps, with design reviews occurring at
the appropriate places in the process:

• Writing a specification

• Choosing a technology

• Design entry - design review

• Designing the ASIC

• Simulating - design review

• Place and Route

• Resimulating - final review

• Testing

5.1 Writing a Specification

The importance of a specification cannot be
overstated. This is an absolute must, especially as a
guide for choosing the right ASIC technology and
for making your needs known to the ASIC vendor.
As ASICs grow larger in scale, and more engineers
are involved in the design, a specification allows
each engineer to understand the entire design and
his or her piece of it. It allows the engineer to
design the correct interface to the rest of the pieces
of the chip. It also saves time and
misunderstanding. There is no excuse for not
having a specification.

A specification should include the following
information:

• An external block diagram showing how the
ASIC fits into the system.

• An internal block diagram showing each major
functional section.

• A description of the I/O pins including

• output drive capability

• input threshold level

• Timing estimates including

• setup and hold times for input pins

• propagation times for output pins

• clock cycle time

• Estimated gate count

• Package type

• Target power consumption

• Target price

• Test procedures including in-system test
requirements

It is also very important to understand that this is
a living document. Many sections will have best
guesses in them, but these will change as the ASIC
is being designed.

5.2 Choosing a Technology

Once a specification has been written, it can be
used to find the best vendor with an ASIC
technology and price structure that best meets your
requirements.

5.3 Design Entry - design review

You must decide at this point which design entry
method you prefer. For smaller ASICs, schematic
entry is often the method of choice, especially if
the design engineer is already familiar with the
tools. For larger designs, however, a hardware
description language such as Verilog or VHDL is
used because of its portability, flexibility, and
readability. When using a high level language,
synthesis software will be required to “synthesize”
the design. This means that the software creates
low level gates from the high level description.

At the end of this phase it is very important to
have a design review. All appropriate personnel
should review the decisions to be certain that the
specification is correct, and that the correct tech-
nology and design entry method have been chosen.

5.4 Designing the ASIC

When designing the ASIC, remember to design
synchronously and take into account the design
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issues that were discussed previously. These
include:

• Top-down design

• Use NAND gates predominantly

• Macros

• Synchronous design

• Protect against metastability

• Avoid floating nodes

•  Avoid bus contention

• Check the number of power and ground pins

5.5 Simulating - design review

Simulation is an ongoing process while the
design is being done. Small sections of the design
should be simulated separately before hooking
them up to larger sections. Once design and
simulation are finished, another design review must
take place so that the design can be checked. It is
important to get others to look over the simulations
and make sure that nothing was missed and that no
improper assumption was made.

5.6 Place and Route

The next step is to place and route the ASIC,
resulting in a real layout for a real chip. This step is
typically done by engineers at the vendor’s facility,
with input from the design engineer. This is
because the vendor’s engineers have more
knowledge about their semiconductor processes
and about the layout tools.

5.7 Resimulating - final review

After layout, the ASIC must be resimulated with
the new timing numbers produced by the actual
layout. If everything has gone well up to this point,
the new simulation results will agree with the pre

dicted results. Otherwise, the design will need to
be tweaked and a new layout obtained. This
process continues until the final simulation is
within specification.

At this point, a final review is necessary just to
confirm that nothing has been overlooked.

5.8 Testing

Now, prototype ASICs are manufactured by the
vendor, tested in their automatic tester, and sent to
you. You have the responsibility to place these
prototypes in your system and determine that the
entire system actually works correctly. If you have
followed the procedure up to this point, chances
are very good that your system will perform
correctly with only minor problems. These
problems can often be worked around by
modifying the system or changing the system
software. These problems need to be tested and
documented so that they can be fixed on the next
revision of the ASIC.

When the ASICs are put into production, it is
necessary to have some sort of burn-in test of your
system that continually tests your system over
some long amount of time. If an ASIC has been
designed correctly, it will only fail because of
electrical or mechanical problems that will usually
show up with this kind of stress testing.

6. Conclusion

This paper has intended to present guidelines for
developing an ASIC based on my experience
designing ASICs for a large number of companies
and a large number of applications. If all of these
guidelines are followed, the chances of creating a
working ASIC in a short time at minimum expense
is excellent. 


