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Preface

Synthesizable Verilog is a subset of the full Verilog HDL [9] that lies within

the domain of current synthesis tools (both RTL and behavioral).

This document speci�es a subset of Verilog called V0.1 This subset is intended

as a vehicle for the rapid prototyping of ideas.

The method chosen for developing a semantics of all of synthesizable Verilog

is to start with something too simple { V0 { and then only to make it more

complicated when the simple semantics breaks. This way it is hoped to avoid

unnecessary complexity. It is planned to de�ne sequence of bigger and bigger

subsets (V1, V2 etc.) that will converge to the version of Verilog used in the

VFE project2 at Cambridge.

Di�erent tools interpret Verilog di�erently: industry standard simulators like

Cadence's Verilog XL are based on the scheduling of events. Synthesizers and

cycle-simulators are based on a less detailed clocked register transfer level

(RTL) semantics.

It is necessary to give an explicit semantics to Verilog to provide a basis for

de�ning what it means to check the equivalence between behavioral proto-

types and synthesized logic. The normal semantics of Verilog is based on

events, i.e. changes in the values on wires and in registers. Such event se-

mantics can accurately model detailed asynchronous behavour, but are very

�ne-grained and do not easily support formal veri�cation. Most practical

formal methods (e.g. model checking and theorem proving) are oriented to-

wards descriptions of systems in terms of their execution traces, which are

1To avoid confustion with the Synchronous Verilog (SV) developed by Dr Ching-Tsun

Chou at Fujitsu [2], the subset SV0 in Version 0.1 of this document has been renamed V0

(similarly for V1, V2 etc).
2VFE stands for Verilog Formal Equivalence. This is our internal name for the EPSRC

project entitled Checking Equivalence Between Synthesised Logic and Non-synthesisable

Behavioural Prototypes .
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sequences (or trees) of states. One might characterise simulation semantics

as `edge-oriented' and trace semantics as `level-oriented'. The relationship

between the two views is obtained by accumulating the changes (events)

during a simulation cycle to obtain the state holding at the end of the cycle.

The sequence of states that the simulation cycle quiesces to at successive

instants of simulation time will be called simulation trace semantics or just

trace semantics. If there are race conditions, then there may be several pos-

sible successor states to a given state, so a tree will be needed to accurately

characterise the event semantics (i.e. branching time). However, standard

hardware synthesis methods create deterministic sequential machines whose

executions can be characterised by linear traces. The trace semantics given

to Verilog here will thus consist of sequences not trees. Part of our goal is to

provide su�cient syntactic conditions to guarantee the linear trace seman-

tics equivalent to the event semantics. Hardware synthesized from Verilog

meeting these conditions will simulate the same as the source.

The trace semantics has the same timescale as the event (simulation) seman-

tics { namely simulation time { but abstracts away from the individual events

within a single simulation cycle (delta-time). Clocked sequential systems can

also be viewed more abstractly in terms of the sequence of states held in reg-

isters during successive clock cycles. This view will be called the clock cycle

semantics or just cycle semantics.3 Certain kinds of hardware (e.g. transpar-

ent level sensitive latches) are rather badly approximated if only the states

latched at clock edges are considered, so equivalences between such hardware

is best done with trace semantics.

In the VFE project, �ne-grain equivalence will be formulated in terms of

trace semantics and a coarser grain (RTL) equivalence in terms of the cycle

semantics. It is also intended to look at even looser equivalences at the

behavioural level, in which operations can be moved across sequences of

clock cyles (e.g. within the same `super state').

In addition to the immediate goal of de�ning equivalence between Verilog

texts, explicit semantics provide a standard for ensuring that di�erent tools

(e.g. simulators and synthesizers) have a consistent interpretation of the lan-

3In earlier versions of this document the term \cycle semantics" was used confusingly

to sometimes mean the trace semantics and sometimes the clock cycle semantics. We

are having some di�cultly converging on a good terminology, and further changes might

occur.
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guage constructs.

Some of the features in synthesizable Verilog missed out of V0 are listed

below. Consideration of these omitted features may fatally break the style

of semantics given here.

1. The syntax and semantics of expressions is not speci�ed in detail.

2. Module hierarchy is ignored: only a single module is considered.

3. Modules and sequential blocks cannot have local declarations.

4. Vectors, arrays, memories, gates, gate instantiations, drive strengths,

delays, and tasks are all omitted.

The semantics is speci�ed by translating the programming constructs to a

`semantic pseudo-code'. The pseudo-code provides a simpler representation

on which to de�ne semantics. It is also hoped to be a �rst step towards a

Verilog/VHDL neutral level (though what, if anything, needs to be added to

support VHDL has not been investigated).
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Chapter 1

Syntax

A complete speci�cation in V0 consists of a single module of the general form:

module <module name> (<port name>, : : : ,<port name>);

function <function name>;
input <name>, : : : , <name>;
<statement>

endfunction
...

function <function name>;
input <name>, : : : , <name>;
<statement>

endfunction

assign <wire name> = <expression>
...

assign <wire name> = <expression>

always <statement>
...

always <statement>

endmodule

The order in which the function declarations, continuous assignments and

always blocks are listed is not signi�cant.

For simplicity, V0 has no explicit variable declarations. A variable is a wire

if it occurs on the left hand side of a continuous assignment, otherwise it is

a register. Wires are ranged over by the syntactic meta-variableW, registers

are ranged over by R and both wires and registers are ranged over by V.

Details of Verilog's datatypes (e.g. bit widths) are ignored in V0.

The results of functions are returned by an assignment to the function name

inside its body. Thus a function name is also a register name.

A port is an output port if it is a wire and occurs on the left hand side of a
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continuous assignment or is a register and occurs on the left of a (blocking

or non-blocking) procedural assignment. Ports that are not output ports are

input ports.

In the BNF that follows, constructs enclosed between the curley braces \f"
and \g" are optional.

1.1 Expressions

The structure of expressions is not elaborated in detail for V0.

It is assumed that there is an `unde�ned' expression x (1'bx in Verilog),

that wires and registers are expressions and that there is an operation of

substituting an expression E1 for a variable V (which can be either a wire

or a register) in another expression E2. This is denoted by E2[V  E1].

Note that in standard Verilog such substitution is not always possible. For

example, r[0] is legitimate, but substituting s+t for r results in the illegal

expression (s+t)[0].

For the purpose of giving examples, the normal expression syntax of Verilog

will be used.

1.2 Module items

Module items I in V0 are constructed from expressions (ranged over by E),

event expressions (ranged over by T ) and statements (ranged over by S).

I ::= function F; (Function declaration)

input V1; : : : Vn;

S

endfunction

j assign W = E (Continuous assignment)

j always S (Always block)

The bodies of functions are not allowed to contain event expressions (see 1.3).
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1.3 Event expressions

Event expressions T only occur as components of timing controls @(T ). They

can be used both to delimit cycle boundaries and to specify combinational

logic. Only the following kinds of event expressions are allowed in V0:

T ::= V (Change of value)

j posedge V (Positive edge)

j negedge V (Negative edge)

j T 1 or � � � or T n (Compound sensitivity list)

1.4 Statements

The syntax of statements S is given by the BNF below. The variables R and

B range over register names and block names, respectively; n ranges over

positive numbers.

S ::= () (Empty statement)

j R = E (Blocking assignment)

j R <= E (Non-blocking assignment)

j beginf:Bg S1; � � � ; Sn end (Sequencing block)

j disable B (Disable statement)

j if (E) S1 felse S2g (Conditional)

j case (E) (Case statement)

E1: S1
...

En: Sn
fdefault: Sn+1g
endcase

j while (E) S (While-statement)

j repeat (n) S (Repeat statement)

j for (R1=E1; E; R2=E2) S (For statement)

j forever S (Forever-statement)

j @(T ) S (Timing control)

The following syntactic restrictions are assumed in V0:
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1. Each register can be assigned to in at most one always block.

2. Every disable statement disable B occurs inside a sequential block

begin:B � � � end.

3. Every path through the body of a while, forever or for statement must

contain a timing control. This is checked by the symbolic exection

algorithm in 4.2.

Other restrictions will be needed to ensure that the cycle semantics is con-

sistent with the event semantics.

Case-statements, repeat-statements and for-statements are regarded as ab-

breviations for combinations of other statements (see 2.3).



Chapter 2

Semantic Pseudo-Code

The semantics of V0 is given in two stages. First, all statements are con-

verted to a semantic pseudo-code. This reduces Verilog's sequential control

ow constructs to a simple uniform form. Second the pseudo-code is inter-

preted. A simpli�ed event semantics in given Chapter 3, a trace semantics

in Chapter 4 and a cycle semantics in Chapter 5.

It is hoped that a common pseudo-code can be developed to provide a `deep

structure' for both Verilog and VHDL, thus reducing the di�erences between

the two languages to just `surface structure'.

2.1 Pseudo-code instructions

Statements are compiled to pseudo-code consisting of sequences of instruc-

tions from the following instruction set:

R = E blocking assignment

R <= E non-blocking assignment

@(T ) timing control

go n unconditional jump to instruction n

ifnot E go n jump to instruction n if E is not true

disable B disable (break out of) block B

2.2 Example translations

Before giving the straightforward algorithm for translating from V0 statement

to pseudo-code, some example translations are presented.
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2.2.1

if (E)
begin a<=b; b<=a; end

else

begin a=b; b=a; end

translates to:

0: ifnot E go 4

1: a <= b

2: b <= a

3: go 6

4: a = b

5: b = a

2.2.2

if (E)
begin a<=b; @(posedge clk) b<=a; end

else

begin a=b; b=a; end

translates to

0: ifnot E go 5

1: a <= b

2: @(posedge clk)

3: b <= a

4: go 7

5: a = b

6: b = a

2.2.3

if (E)
begin a<=b; @(posedge clk) b<=a; end

else

begin a=b; @(posedge clk) b=a; end
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translates to

0: ifnot E go 5

1: a <= b

2: @(posedge clk)

3: b <= a

4: go 8

5: a = b

6: @(posedge clk)

7: b = a

2.2.4

if (E)
begin:b1 a<=b; disable b1; b<=a; end

else

begin a=b; @(posedge clk) b=a; end

translates to

0: ifnot E go 5

1: a <= b

2: go 4

3: b <= a

4: go 8

5: a = b

6: @(posedge clk)

7: b = a

2.2.5

forever @(b or c) a = b + c;

translates to

0: @(b or c)

1: a = b + c

2: go 0
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2.2.6

forever

begin

@(posedge clk) total = data;

@(posedge clk) total = total + data;

@(posedge clk) total = total + data;

end

translates to

0: @(posedge clk)

1: total = data

2: @(posedge clk)

3: total = total + data)

4: @(posedge clk)

5: total = total + data

6: go 0

2.2.7

forever

@(posedge clk)

begin

case (state)

0: begin total = data;

state = 1;

end

1: begin total = total + data;

state = 2;

end

default:

begin total = total + data;

state = 0;

end

endcase

end

translates to
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0: @(posedge clk)

1: ifnot state === 0 go 5

2: total = data

3: state= 1

4: go 11

5: ifnot state === 1 go 9

6: total = total + data

7: state = 2

8: go 11

9: total = total + data

10: state = 0

11: go 0

2.3 Macro-expansion of derived constructs

The �rst step in translating statements to pseudo-code is to `macro-expand'

case, repeat and for statements.

2.3.1 Case statements

case (E)

E1: S1
E2: S2
...

En: Sn
fdefault: Sn+1g

endcase

is expanded to:

if (E===E1) S1 else if (E===E2) S2 � � � else if (E===En) Sn felse Sn+1g

2.3.2 Repeat statements

repeat (n) S

is expanded to:
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begin S; : : : ;S
| {z }

n copies of S

end

2.3.3 For statements

for (R1=E1; E; R2=E2) S

is expanded to:

begin R1=E1; while (E) begin S; R2=E2 end end

2.4 The size of a statement

The size function de�ned in this section is used in the translation algorithm

described in 2.5. Let the size jSj of S be as de�ned below inductively on the

structure of S. It will turn out that jSj is the number of instructions that S
is translated to.

jR = Ej = 1

jR <= Ej = 1

jbeginf:Bg endj = 0

jbeginf:Bg S1; � � � ; Sn endj = jS1j+ � � � + jSn j

jdisable Bj = 1

jif (E) Sj = jSj+ 1

jif (E) S1 else S2j = jS1j+ jS2j+ 2

jwhile (E) Sj = jSj+ 2

jforever Sj = jSj+ 1

j@(T )j = 1

The size of a sequence of statements is de�ned to be the sum of the sizes

of the components of the sequence. Thus if hS1; : : : ; Sni is a sequence of

statements, then de�ne:

jhij = 0

jhS1; : : : ; Snij = jS1j+ � � � + jSn j
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2.5 Translation algorithm

The sequence hi0; : : : ; ini of instructions that statement S is translated to is

denoted by [[S]] p, where p is the position of the �rst instruction (e.g. go p

jumps to the start of the program).

To handle sequential blocks, it is convenient to de�ne in parallel the transla-

tion of a sequence hS1; : : : ; SN i of statements (see the third and forth clauses

of the de�nition below).

In the de�nition below a is sequence concatenation and s[u  v ] denotes

the result of replacing all occurrences of u in s by v .

[[R = E ]] p = hR = Ei

[[R <= E ]] p = hR <= Ei

[[hi]] p = hi

[[hS1; S2; : : : ;Sni]] p = [[S1]] p
a [[hS2; : : : ;Sni]](p+jS1j)

[[beginf:Bg S1; � � � ; Sn end]] p = [[hS1; : : : ;Sni]] p [disable B  go p+jhS1; : : : ;Snij]

[[disable B]] p = hdisable Bi

[[if (E) S]] p = hifnot E go p+jSj+1ia [[S ]](p + 1)

[[if (E) S1 else S2]] p = hifnot E go p+jS1j+2i
a [[S1]](p+1)
a hgo p+jS1j+jS2j+2i
a [[S2]](p+jS1j+2)

[[while (E) S]] p = hifnot E go p+jSj+2ia [[S ]](p+1)a hgo pi

[[forever S]] p = [[S]] p a hgo pi

[[@(T ) S]] p = h@(T )ia [[S]](p+1)
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Chapter 3

Event Semantics

The event semantics given here is a highly simpli�ed version of the the se-

mantics of the V language [3]. V has been used by Daryl Stewart as the basis

for an accurate simulation semantics of most of the behavioral constructs of

P1364 Verilog [5] and by David Greaves as the basis of his CSIM simulator.

V0 only requires a simpli�ed semantics because it has no delay controls (#n).

With an event semantics each always block and continuous assignment is

represented by a concurrently running thread. The simulation cycle then non-

deterministically executes threads according to the timing controls present.

It is assumed that each input port is driven by the environment with a se-

quence of values: the elements of the sequence being the values at successive

instants of simulation time. When time advances, the values being input at

the new time may change from their previous value. This change may cause

an event expression T to `�re' and any threads waiting on @(T ) will then

become enabled. The simulation cycle consists of repeatedly choosing an en-

abled thread, executing the next instruction in it, and then enabling any new

threads that are waiting on timing controls that �re. If several threads are

simultaneously enabled, then the choice of which thread to advance is non-

deterministic. If there are no more enabled threads, pending non-blocking

assignments are performed and further threads may become enabled and the

cycle continues. If the cycle ever quiesces (i.e. no enabled thread and all

pending non-blocking assignments processed), then time is advanced, the

next set of inputs is considered and the whole process repeats.

Thus sequences of values on the input ports non-deterministically generate

sequences on the output ports.

In V0, functions are eliminated by `inlining' them using the equation gen-

erated by symbolic evaluation. Thus each function call F(E1; : : : ; En) is re-

placed by E[V1; : : : ; Vn  E1; : : : ; En ] where F j (V
1
j
; : : : ; V

ij

j ) = E j is the
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equation generated from the declaration of F , as described at the end of 4.2.

In V0, there is no semantic di�erence between wires and registers and a

continuous assignment assign W = E is considered to be the always block

always @(T E) W = E where T E is V1 or � � � or Vn (V1, : : :, Vn being the

variables occurring in E).

After inlining functions and converting continuous assignments to always

blocks, a module can be considered to consist of a set of blocks always S i .

The event semantics is speci�ed by compiling forever S i to pseudo code,

for each i . The execution of the resulting pseudo code programs give rise to

a separate simulation (execution) thread for each block.

Di�erent always blocks in a module are assumed to have di�erent program

counters.

3.1 The simulation cycle

The state of a module during simulation consists of the simulation time (a

non-negative integer), a state specifying the values of all variables (inputs,

registers and wires) and the value of the program counter of each thread.

It is assumed that the environment to the module (which would normally be

other Verilog code { e.g. a test harness) supplies a value for each inputs at

each instant of simulation time.

During each simulation cycle a set of pending non-blocking assignments is

accumulated. They are executed when there are no more enabled threads.

The instruction pointed to by the program counter of a thread is called the

current instruction. A thread is called waiting if its current instruction is a

timing control instruction @(T ), otherwise it is called enabled.

The concept of an event expression �ring is de�ned as follows:

� V �res if the current value of V di�ers from the previous one;

� posedge V �res if the current value of V is 1 and the previous values

was not 1;

� negedge V �res if the current value of V is 0 and the previous values

was not 0;
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� T 1 or � � � or T n �res if any of the T i �res (1 � i � n).

Note that an event expression can only �re during or after the second sim-

ulation cycle (since there needs to be both a current state and a previous

state). A waiting thread �res whenever its event expression �res.

Inititially simulation time is 0, each program counter is set to 0 and each vari-

able (both registers and inputs) has an `unde�ned' value x. The simulation

cycle is as follows:

1 If there are no enabled threads then go to 3 , else non-deterministically

choose an enabled thread and execute its current instruction as follows:

(a) V = E | change the V component of the state to the value of E in

the current state, increment the program counter and then go to

2 ;

(b) V <= E | add V <= E 0 to the list of pending non-blocking assign-

ments, where E 0 is the value of E in the current state (override any

previously generated pending addignments to V), increment the

program counter and then go to 1 ;

(c) go n | set the program counter to n then go to 1 ;

(d) ifnot E go n | if E 0 === 1, where E 0 is the value of E in the

current state, then increment the program counter, otherwise set

it to n, then go to 1 ;

2 Increment the program counters of all threads whose current instruction

is a timing control that �res and then go to 1 .

3 If there are no pending non-blocking assignments then go to 4 , else

execute all pending non-blocking assignments (in any order and over-

riding any assignments in the state) then go to 2 .

4 Increment the simulation time, update the state with any changes from

the inputs and go to 2 .
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3.2 Examples

To illustrate the simulation cycle, a number of simple examples will be anal-

ysed. The �rst four will be analysed in more detail than the rest.

A state is represented by a set of pairs associating registers with expressions

(i.e. a �nite function). The following notation is used:

fR1 7! E1; : : : ;Rn 7! Eng

This denotes a state in which register Ri has the value E i (1 � i � n).

3.2.1 Asynchronous timing control (single thread)

A combinational adder (Example 2.2.5 on page 7) is speci�ed by:

forever @(b or c) a = b + c;

and translates to

0: @(b or c)

1: a = b + c

2: go 0

If there is only this thread and if b and c are inputs and a a state variable,

then the initial state might be:

Time = 0 fpc 7! 0; a 7! x; b 7! 0; c 7! 0g

where Time indicates the simulation time. At the start of simulation there

is an empty set of pending non-blocking assignments. The simulation cycle

starts at 1 . The current instruction is 0, which is a timing control and so

the thread is not enabled. The cycle moves to 3 and then, as there are no

pending non-blocking assignments, to 4 .

Suppose b changes to 2 at the next simulation time, so the new state is:

Time = 1 fpc 7! 0; a 7! x; b 7! 2; c 7! 0g

Control passes from 4 to 2 . The timing control @(b or c) �res, so the

program counter is incremented to get a new state:
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Time = 1 fpc 7! 1; a 7! x; b 7! 2; c 7! 0g

and simulation returns to 1 . Now the current instruction 1 is enabled so,

by 1 (a), the value of a is updated in the state and the program counter

incremented to get:

Time = 1 fpc 7! 2; a 7! 2; b 7! 2; c 7! 0g

Simulation moves to 2 and then, as nothing �res, to 1 . The current instruc-

tion is now the jump go 0, which is enabled and so, by 1 (c), the program

counter is set to 0 to get a new state:

Time = 1 fpc 7! 0; a 7! 2; b 7! 2; c 7! 0g

and simulation moves to 2 and then, as there are no other threads to �re,

to 1 . The thread is no longer enabled, so simulation moves to 3 and then

to 4 and the simulation cycle quiesces and so ends.

Thus, at the end of the cycle the value of a is the sum of the values of b and

c. In general, it seems clear that a single thread

always @(T E) W = E

will simulate so that the value of W at the end of the cycle will be the value

of E at its start.

3.2.2 Asynchronous timing control (disjoint threads)

Consider now two threads:

forever @(b or c) a1 = b + c;

forever @(b) a2 = b + 1;

These translate to:

Thread 1 Thread 2

0: @(b or c) 0: @(b)

1: a1 = b + c 1: a2 = b + 1

2: go 0 2: go 0
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Suppose there are only these two threads, b and c are inputs, a1 and a2 are

state variable, pc1 and pc2 are the program counters for the two threads

listed above, respectively, and the initial state is:

Time = 0 fpc1 = 0; pc2 = 0; a1 7! x; a2 7! x; b 7! 0; c 7! 0g

Initially nether thread is enabled, so simulation time advances. Suppose b

changes to 2 as before, so the new state is:

Time = 1 fpc1 = 0; pc2 = 0; a1 7! x; a2 7! x; b 7! 2; c 7! 0g

Control passes from 4 to 2 . Both the timing control @(b or c) and @(b)

�re, so both program counters are incremented to get a new state:

Time = 1 fpc1 = 1; pc2 = 1; a1 7! x; a2 7! x; b 7! 2; c 7! 0g

and simulation returns to 1 . Now both current instructions are enabled,

so a non-deterministic choice is made of which thread to advance. Suppose

thread 1 is chosen. The value of a1 is updated and the program counter

incremented to get:

Time = 1 fpc1 = 2; pc2 = 1; a1 7! 2; a2 7! x; b 7! 2; c 7! 0g

and simulation moves to 2 . The change of a1 from x to 2 doesn't �re any

timing controls and so simulation moves to 1 . Thread 1 is still enabled, so a

non-derterministic choice must be made. Suppose now thread 2 is chosen: a2

will be set to the value of b + 1, i.e. 3, and pc2 incremented. The resulting

state is:

Time = 1 fpc1 = 2; pc2 = 2; a1 7! 2; a2 7! 3; b 7! 2; c 7! 0g

Simulation moves to 2 , nothing �res, so it moves to 1 . Both threads are

still enabled so, in a non-deterministic order, �rst one program counter and

then the other one will be set to 0. The cycle now quiesces in the state:

Time = 1 fpc1 = 0; pc2 = 0; a1 7! 2; a2 7! 3; b 7! 2; c 7! 0g

Thus, at the end of the cycle the value of a1 is the sum of the values of b and

c and the value of a2 is one plus the value of b. Various non-deterministic

choices were made, but it is clear that if di�erent choices were made the

resulting state at the end of the cycle would be the same. In general, it

seems clear that two disjoint threads

always @(T E1) W1 = E1

always @(T E2) W2 = E2
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will simulate so that for i = 1; 2 the value of W i at the end of the cycle will,

respectively, be the value of E i at its start. Disjointness means that the wires

being written (viz. W1 and W2) do not occur in the expressions E1 and E2.

3.2.3 Asynchronous timing control (interacting threads)

Consider now two threads in which b is an input and a and c registers.

forever @(b or c) a = b + c;

forever @(b) c = b + 1;

Note that �rst thread reads the register c written by the second one. These

translate to:

Thread 1 Thread 2

0: @(b or c) 0: @(b)

1: a = b + c 1: c = b + 1

2: go 0 2: go 0

Suppose there are only these two threads with program counters pc1 and

pc2 and the initial state is:

Time = 0 fpc1 = 0; pc2 = 0; a 7! x; b 7! 0; c 7! xg

Initially nether thread is enabled, so simulation time advances. Suppose b

changes to 2 as before, so the new state is:

Time = 1 fpc1 = 0; pc2 = 0; a 7! x; b 7! 2; c 7! xg

Control passes from 4 to 2 . Both the timing control @(b or c) and @(b)

�re, so both program counters are incremented to get a new state:

Time = 1 fpc1 = 1; pc2 = 1; a 7! x; b 7! 2; c 7! xg

and simulation returns to 1 . Now both current instructions are enabled,

so a non-deterministic choice is made of which thread to advance. Suppose

thread 1 is chosen. The value of a is updated (assume 2+x = x) and the

program counter incremented to get:

Time = 1 fpc1 = 2; pc2 = 1; a 7! x; b 7! 2; c 7! xg
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and simulation moves to 2 and then 1 . Thread 1 is still enabled, so a

non-derterministic choice must be made. Suppose now thread 2 is chosen: c

will be set to the value of b + 1, i.e. 3, and pc2 incremented. The resulting

state is:

Time = 1 fpc1 = 2; pc2 = 2; a 7! x; b 7! 2; c 7! 3g

Simulation moves to 2 , nothing �res, so it moves to 1 . Both threads are

still enabled, so in a non-deterministic order �rst one program counter and

then the other one will be set to 0. The cycle now quiesces in the state:

Time = 1 fpc1 = 0; pc2 = 0; a 7! x; b 7! 2; c 7! 3g

Thus, at the end of the cycle the value of a is unde�ned and the value of c

is one plus the value of b.

Suppose now that when the state was

Time = 1 fpc1 = 1; pc2 = 1; a 7! x; b 7! 2; c 7! xg

thread 2 had been chosen. The value of c would be updated and the program

counter incremented to get:

Time = 1 fpc1 = 2; pc2 = 1; a 7! x; b 7! 2; c 7! 3g

and simulation moves to 2 and then 1 . Suppose now thread 1 is chosen: a

will be set to the value of b + c, i.e. 5, and pc1 incremented. The resulting

state is:

Time = 1 fpc1 = 2; pc2 = 2; a 7! 5; b 7! 2; c 7! 3g

Eventually the cycle will quiesces in a di�erent state:

Time = 1 fpc1 = 0; pc2 = 0; a 7! 5; b 7! 2; c 7! 3g

Thus in this case the result depends on the non-deterministic choices made.

3.2.4 Asynchronous timing control (latch inference)

The signi�cant feature of the following example is that for some combinations

of the inputs (viz. when clk is false) the value of the output q is not driven.

Since q is a register this means that it retains its value from the previous

simulation cycle, so a hardware synthesiser must generate a latch.

The Verilog source is:
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forever @(clk or d) if (clk) q = d;

which translates to:

0: @(clk or d)

1: ifnot clk go 3

2: q = d

3: go 0

Suppose this is the only thread being simulated and that the state at the end

of the cycle at simulation time n is:

Time = n fpc 7! 0; clk 7! 0; d 7! d ; q 7! qg

here d and q are the values of input d and output q, respectively. Their exact

values are unimportant.

Suppose now that clk goes to 1 at time n+1, so at the start of the simulation

cycle the state is:

Time = n + 1 fpc 7! 0; clk 7! 1; d 7! d ; q 7! qg

The simulation at time n + 1 will start and 2 and the timing control

@(clk or d) will �re, so simulation will move to 1 with state:

Time = n + 1 fpc 7! 1; clk 7! 1; d 7! d ; q 7! qg

By 1 (d) (as clk === 1) the program counter is incremented and simulation

returns to 1 with state

Time = n + 1 fpc 7! 2; clk 7! 1; d 7! d ; q 7! qg

q is then updated to d and (after a few more steps) the cycle quiesces in

state

Time = n + 1 fpc 7! 0; clk 7! 1; d 7! d ; q 7! dg

If clk stays at 1 and d changes, then q will be updated to d's new value.

If clk falls to 0, then the assignment q = d will be jumped over and any

changes to d ignored.

Thus then clk is 1 the output q is combinationally driven by d, but as soon

as clk drops to 0 the value of d at the last simulation time when clk was 1

is latched and drives q.

Thus
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forever @(clk or d) if (clk) q = d;

is a transparent latch with clock line clk and g Fixed. ate input d.

3.2.5 Synchronous timing control (ip-op)

Consider:

forever @(posedge clk) q = d;

which translates to:

0: @(posedge clk)

1: q = d

2: go 0

Whenever the input clk changes to 1 the output q is set to the value of q,

and then simulation quiesces.

This is just the behaviour of an edge-triggered ip-op.

3.2.6 Two ip-ops in series

Consider:

forever @(posedge clk) i = d;

forever @(posedge clk) q = i;

which translates to two threads

0: @(posedge clk) 0: @(posedge clk)

1: i = d 1: q = i

2: go 0 2: go 0
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Whenever posedge clk �res there is a race between i = d and q = i. If

i = d is done �rst then q ends up with the value of d. If q = i is done �rst

then q ends up with the previous value of i.

Synthesizers usually generate two ip-ops in series, which correspond to

q = i being done �rst.

The event semantics can be made unambiguous by changing i = d to i <= d,

so that q = i is done before i is updated.

The trace semantics given in Chapter 4 currently does not correspond to the

synthesis semantics { q is assigned d (see 4.4.3. This may change.

3.2.7 Synchronous timing control

(ip-op with built-in multiplexer)

Consider:

forever @(posedge clk) q <= a ? b : c;

which translates to:

0: @(posedge clk)

1: q = a ? b : c

3: go 0

Whenever the posedge clk �res the output q is set to the value of a ? b : c.

This is just the behaviour of an edge-triggered ip-op whose input is con-

nected to the output of a combinational multiplexer.

3.2.8 Synchronous timing control

(ip-op with separate multiplexer)

Consider:

forever @(posedge clk) q <= d;

forever @(a or b or c) if (a) d = b; else d = c;



24 Event Semantics

which translates to two threads:

0: @(posedge clk)

1: q = d

2: go 0

0: @(a or b or c)

1: ifnot a go 4

2: d = b

3: go 5

4: d = c

5: go 0

In any cycle in which @(posedge clk) �res, but @(a or b or c) doesn't

q will be updated with the value of d.

In any cycle in which @(a or b or c) �res, but @(posedge clk) doesn't d

will be updated with the value of a ? b : c.

If both @(posedge clk) and @(a or b or c) �re at the same time then

there is a race condition. If d is updated in the second thread before before

q is updated in the �rst thread, then the result is to set q to the value of

a ? b : c. However, if the �rst thread runs faster and q is updated before

d then q will end up with the previous value of d. In both cases d will get

the value a ? b : c.

If the values on the internal line d are ignored, this example behaves like the

previous example as long as none of a, b or c change at the same time as a

rising edge on clk.



Chapter 4

Trace Semantics

The event semantics describes the execution of Verilog in terms of the prop-

agation of changes to wires and registers (i.e. events) via a simulation cycle.

Thus event semantics is `edge-oriented'.

The term trace semantics will be used here to mean a semantics that de-

scribes the execution of Verilog in terms of sequences of states at successive

simulation times.

In general, Verilog programs can have race conditions which make them non-

deterministic. The evolution of states is thus a tree rather than a sequence.

However, it is desirable that synthesized hardware be deterministic, so race

conditions will be excluded by (as yet unformulated) syntactic restrictions.

One of our goals, not addressed in this document, is to prove that the re-

strictions guarantee consistency of the event and trace semantics (and hence

guarantee determinacy of the event semantics). This will be a step towards

establishing that synthesised hardware will simulate the same as the source

(when the restrictions are obeyed).

The clock cycle semantics is obtained from the trace semantics by temporal

abstraction [6] on clock edges. The kind of edge to abstract on (i.e. posedge

or negedge) depends on the particular components used. The abstraction

to cycle semantics is thus component dependent. With some kinds of com-

ponents (e.g. transparent level sensitive latches) the abstraction to the clock

cycle level is problematical. In contrast, the trace semantics is meaningful

for all common components used in clocked synchronous design.

The extraction of the trace semantics is based on the computation of steps1.

A step describes the cumulative e�ect of a sequence of simulation events that

are started by the �ring of a timing control and ended when another timing

1\Steps" were called \next-state assertions" in an earlier version of this document {

further name changes are possible.
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control is reached. Steps are obtained by symbolically executing pseudo code

starting from a timing control instruction.

The steps provide a compact representation of the event semantics of each

always block considered in isolation (i.e. ignoring interleaving within a single

simulation cycle). If programs satisfy suitable syntactic restrictions guaran-

teeing non-interference, then it is hoped to prove that the steps are a correct

description of the event semantics.

The trace semantics of a module is represented by a set of sequences of

states (a trace being a sequence of states). In general, di�erent traces are

obtained with di�erent inputs. The state consists of the registers written by

assignments in each always block together with additional control registers,

called program counters. Program counters are local to each block. In the

initial state program counters are assumed to be 0 and each input and register

is assumed to contain x.

The traces will be characterised by interpreting the steps as constraints that

relate the values of variables to each other, either at the same simulation

time or at the preceding time. Steps are written in an explicit-state style of

Verilog. For example, the step extracted from:

always

begin

@(posedge clk) tmp = d1;

@(negedge clk) r = tmp + d2;

end

is:

case (pc)

0 : @(posedge clk)

begin

pc <= 1;

tmp <= d1;

r <= previous(r);

end

1 : @(negedge clk)

begin

pc <= 0;

tmp <= previous(tmp);

r <= previous(tmp) + d2;

end

endcase
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This step should be read as

9pc.
pc(0)=0 ^ clk(0)=x ^ d1(0)=x ^ d2(0)=x ^ tmp(0)=x ^ r(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1) 6=1 ^ clk(t)=1

then pc(t)=1 ^ tmp(t)=d1(t) ^ r(t)=r(t-1)

else pc(t)=pc(t-1) ^ tmp(t)=tmp(t-1) ^ r(t)=r(t-1)

^
pc(t-1)=1 ) if clk(t-1) 6=0 ^ clk(t)=0

then pc(t)=0 ^ tmp(t)=tmp(t-1) ^ r(t)=tmp(t-1)+d2(t)

else pc(t)=pc(t-1) ^ tmp(t)=tmp(t-1) ^ r(t)=r(t-1)

Here the logical variable t ranges over simulation times. The formula above

asserts that at any time t greater than 0:

1. if the value of pc at t-1 is 0 then:

(a) if there is a positive edge on clk ending at t then set pc to 1,

set tmp to the input on d1 and keep the value of r at its previous

value;

(b) if there is no positive edge then pc, tmp and r keep their previous

values;

2. if the value of pc at t-1 is 1 then:

(a) if there is a negative edge on clk ending at t then set pc to 0,

keep tmp at its previous value and set output r to the sum of the

previous value of tmp and the current value of the input d2;

(b) if there is no positive edge then pc, tmp and r keep their previous

values.

At time 0 the program counter pc is initialised to 0 and all the inputs and

registers to x.

Given the values of the inputs clk, d1 and d2 for all times t > 0, this formula

uniquely determines the values of pc, tmp and r at all times t > 0.

Note that the free variables of the formula are clk, d1, d2, tmp and r. The

program counter pc is made `local' by existential quanti�cation. Variables
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local to a module (i.e. not inputs or outputs) will also be existentially quan-

ti�ed. The time variable t is universally quanti�ed.

A function declaration like

function F;

input V1; : : : Vn;

S

endfunction

generates an equation that of the form

F(V1; : : : ; Vn) = E,

where E is obtained from the function body S. This equation is then used to

eliminate (inline) function calls.

For example:

function f;

input a, b, c, d;

begin

f = a;

if (b)

begin

if (c) f = d; else f = !d;

end

end

generates the step:

case (pc)

0 : begin

pc <= 1;

f <= b ? c ? d : !d : a;

end

endcase

and hence the equation:

f(a; b; c; d) = b ? c ? d : !d : a.

How this equation is derived is explained in a bit more detail later.
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4.1 Examples

The examples in this section are intended to convey the idea of steps.

4.1.1

The example below sets a to 0 on the �rst edge and then sets b to a on the

second edge. Thereafter a and b are updated with 0 on each cycle.

always @(posedge clk) begin a=0; @(posedge clk) b=a; end

generates:

case (pc)

0 : @(posedge clk)

begin

pc <= 1;

a <= 0;

b <= previous(b);

end

1 : @(posedge clk)

begin

pc <= 0;

a <= previous(a);

b <= previous(a);

end

endcase

4.1.2

The following example is a state machine described in an implicit style. It

is Example 8-16 from the Synopsys HDL Compiler for Verilog Reference

Manual [8].

always

begin

@(posedge clk) total = data;

@(posedge clk) total = total + data;

@(posedge clk) total = total + data;

end

which generates:



30 Trace Semantics

case (pc)

0 : @(posedge clk)

begin

pc <= 1;

total <= data;

end

1 : @(posedge clk)

begin

pc <= 2;

total <= previous(total) + data;

end

2 : @(posedge clk)

begin

pc <= 0;

total <= previous(total) + data;

end

endcase

4.1.3

An explicit style of description of the machine in Example 4.1.2 is given next.

This is Example 8-17 from the Synopsys HDL Compiler for Verilog Reference

Manual [8].

always

@(posedge clk)

begin

case (state)

0: begin total = data;

state = 1;

end

1: begin total = total + data;

state = 2;

end

default:

begin total = total + data;

state = 0;

end

endcase

end

This generates:
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case (pc)

0 : @(posedge clk)

begin

pc <= 0;

total <= previous(state) === 0

? data : previous(total) + data;

state <= previous(state) === 0

? 1 : previous(state) === 1 ? 2 : 0;

end

endcase

Note that the program counter generated from the implicit state machine

speci�cation corresponds to the register state in the explicit state speci�-

cation. The explicit states style of state machine speci�cation makes the

program counter pc redundant.

4.1.4

Another example illustrating a redundant program counter is:

always @(posedge clk)

if (p) begin a=b; b=a; end

else begin a<=b; b<=a; end

generates

case (pc)

0 : @(posedge clk)

begin

pc <= 0;

a <= previous(b);

b <= p ? previous(b) : previous(a);

end

endcase

4.1.5

Asynchronous (combinational) always blocks also lead to a redundant pro-

gram counter. For example:

always @(b or c) a = b + c;
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generates

case (pc)

0 : @(b or c)

begin

pc <= 0;

a <= b + c;

end

endcase

Since whenever b and c change, a is updated, it follows (hopefully by in-

duction over time { details to be worked out elsewhere) that this step is

equivalent to the equation a = b+c. However consider instead:

always @(b or c or p) if (p) a = b+c;

which generates:

case (pc)

0 : @(b or c or p)

begin

pc <= 0;

a <= p ? b + c : previous(a);

end

endcase

Suppose a equals b+c. If b or c then changes when p is false, then a will

become di�erent from b+c. Thus a's value must be latched { hence the need

for synthesizers to do latch inference.

4.1.6

Here is a combinational example that doesn't lead to any latch inference.

always

@(a or b or c or d)

begin

f = a;

if (b)

begin

if (c) f = d; else f = !d;

end

end
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generates:

case (pc)

0 : @(a or b or c or d)

begin

pc <= 0;

f <= b ? c ? d : !d : a;

end

endcase

4.1.7

The sequential block in Example4.1.6, namely:

begin

f = a;

if (b)

begin

if (c) f = d; else f = !d;

end

end

was the body of the example function named f given on page 28. This

statement is not an always block, so it does not translate to an in�nite loop.

Its translation to pseudo-code is:

0: f = a

1: ifnot b go 6

2: ifnot c go 5

3: f = d

4: go 6

5: f = !d

It is equivalent to a single assignment done once. On the next cycle the

program counter, instead of pointing at the beginning of the program again,

points outside the pseudo-code (to instruction 6, which is renumbered to

instruction 1 after symbolic execution).

The pseudo-code symbolically executes to:
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case (pc)

0 : begin

pc <= 1;

f <= b ? c ? d : !d : a;

end

endcase

The expression assigned to the function name f is used to generate the equa-

tion de�ning f (see page 39 at the end of 4.2).

If the assignment f = a; is deleted the resulting step becomes:

case (pc)

0 : begin

pc <= 1;

f <= b ? c ? d : !d : x;

end

endcase

This shows that for some combinations of inputs the function is `not de�ned'

{ i.e. returns x.

4.1.8

Each step, except for any initialisation, is guarded by a separate timing

control. This allows for the possibility (usually prohibited by synthesizers)

that there may be di�erent timing controls along di�erent paths.

always if (p) begin

a=1;

@(posedge clk) b=2;

@(negedge clk) c=3;

end

else begin

a=5;

@(clk) b=6;

end

generates:
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case (pc)

0 : begin

pc <= p ? 1 : 3;

c <= x;

a <= p ? 1 : 5;

b <= x;

end

1 : @(posedge clk)

begin

pc <= 2;

c <= previous(c);

a <= previous(a);

b <= 2;

end

2 : @(negedge clk)

begin

pc <= p ? 1 : 3;

c <= 3;

a <= p ? 1 : 5;

b <= previous(b);

end

3 : @(clk)

begin

pc <= p ? 1 : 3;

c <= previous(c);

a <= p ? 1 : 5;

b <= 6;

end

endcase

4.2 Symbolic execution

Steps are generated from the pseudo-code by symbolic execution until a tim-

ing control is reached. When a conditional jump is encountered, both paths

are followed and then the results combined.

As pseudo-code is symbolically executed, blocking assignments are performed

on a symbolic representation of the state, but non-blocking assignments are

accumulated and only performed at the end of the cycle { i.e. when a timing

control is reached.

A symbolic state is represented by a set of pairs associating registers with
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expressions (i.e. a �nite function). The following notation is used:

fR1 7! E1; : : : ;Rn 7! Eng

This denotes a state in which register Ri has the value E i (1 � i � n).

A special control register, pc, called the program counter is assumed.

The accumulating set of pending non-blocking assignments will be denoted

by:

fR1<=E1; : : : ;Rn<=Eng

The symbolic execution algorithm starts at a given instruction and then

steps through the pseudo-code, updating the state and pending non-blocking

assignments until a timing control is reached. The pending assignments are

then performed.

Programs whose symbolic execution generates an in�nite loop can result from

while-statements that have a path through their body that is not broken by

a timing control. Such statements are excluded from V0.

Recall that the instruction set is:

R = E blocking assignment

R <= E non-blocking assignment

@(T ) timing control

go n unconditional jump to instruction n

ifnot E go n jump to instruction n if E is not true

disable B disable (break out of) block B

The result of simultaneously (i.e. in parallel) substituting the expressions

E1, : : : , En for the variables V1, : : : , Vn in an expression E is denoted by:

E[V1; : : : ; Vn  E1; : : : ; En ]

The symbolic execution algorithm takes a state and a set of pending non-

blocking assignments and returns a state.

The `current instruction' is the one pointed to by the program counter.
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The symbolic execution algorithm is as follows.

1. If pc 7! i and instruction i is R = E then:

� let E 0 = E[R1; : : : ;Rn  E1; : : : ; En ] (so E
0 is the value of E in the

current state);

� if the state doesn't contain any assignment to R, then extend the

state with R 7! E 0;

� if the state contains an assignment to R (e.g. R 7! Ri , for some

i) then replace this assignment with R 7! E 0;

� increment the program counter so that pc 7! i + 1;

� recursively invoke symbolic execution with the modi�ed state and

the same pending non-blocking assignments.

2. If pc 7! i and instruction i is R <= E then:

� let E 0 = E[R1; : : : ;Rn  E1; : : : ; En ]

� if the set of pending non-blocking assignments doesn't contain any

assignment to R, then extend the set with R <= E 0;

� if the pending non-blocking assignments contains an assignment

to R then replace this assignment with R <= E 0 (thus later non-

blocking assignments override earlier ones to the same variable);

� increment the program counter so that pc 7! i + 1;

� recursively invoke symbolic execution with the modi�ed state and

the extended list of pending non-blocking assignments.

3. If pc 7! i and instruction i is a timing control, or if i points outside the

program, then perform the pending non-blocking assignments (overrid-

ing any assignments in the state, if necessary) and return the resulting

state. This state consists of pc 7! i + 1 and those Ri 7! E i in the sym-

bolic state for which there is no pending non-blocking assignment to

Ri together with all R 7! E where R <= E is a pending non-blocking

assignment.

4. If pc 7! i and instruction i is go n then set pc to n and recursively in-

voke symbolic execution with the modi�ed state and the same pending

non-blocking assignments.
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5. If pc 7! i and instruction i is ifnot E go n then:

� let E 0 = E[R1; : : : ;Rn  E1; : : : ; En ]

� let fpc 7! j ; R1 7! E
f

1; : : : ; Rn 7! E f
n
g be the state resulting

from recursively symbolically executing with pc 7! n;

� let fpc 7! k ; R1 7! E
t

1; : : : ; Rn 7! E
t

n
g be the state resulting

from recursively symbolically executing with pc 7! i + 1;

� return as the result of the symbolic execution the state

fpc 7! E 0 ? k : j ; R1 7! E 0 ? E 0
t

1 : E
0f

1; : : : ; Rn 7! E 0 ? E 0
t

n
: E 0

f

n
g

6. The instruction disable B should not be generated. V0 assumes that

only an enclosing block can be disabled and all such disables are re-

placed by jumps during the compilation of sequential blocks.

The symbolic execution algorithm given above is used to generate a step from

a statement as follows.

If the �rst instruction is not a timing control, then generate a case item:

0 : begin pc <= j ; R1 <= E1; : : : ; Rn <= En ; end

where fpc 7! j ;R1 7! E1; : : : ;Rn 7! Eng is the state resulting from symbolic

execution starting with fpc 7! 0;R1 7! x; : : : ;Rn 7! xg and the empty set

of pending non-blocking assignments.

Next, for each value i of the program counter that points to a timing control

instruction @(T ) generate a case item:

i : @(T ) begin pc <= j ; R1 <= E1; : : : ; Rn <= En ; end

where fpc 7! j ;R1 7! E1; : : : ;Rn 7! Eng results from symbolic execution

starting with fpc 7! i + 1;R1 7! previous(R1); : : : ;Rn 7! previous(Rn)g
and the empty set of pending non-blocking assignments.

The step from an always block always S is obtained by generating the step

from the statement forever S. In the examples shown earlier in 4.1, the

values that the program counter ranges over have been compacted to a con-

tiguous sequence of numbers starting from 0.



4.3 The meaning of a module 39

4.3 The meaning of a module

A module in V0 has the general form:

module M (V1, : : : ,Vq);

function F1; input V11, : : : ,V
i1

1 ; SF1
endfunction

...
function Fr; input V1

r
, : : : ,V ir

r
; SFr

endfunction

assign W1 = E1...
assign Ws = E s

always S1...
always St

endmodule

In V0, there is no semantic di�erence between wires and registers and a

continuous assignment assign W = E is considered to be the always block

always @(T E) W = E where T E is V1 or � � � or Vn (V1, : : :, Vn being the

variables occurring in E).

Function calls are eliminated by replacing (inlining) them with expressions

obtained from the step extracted from the function body. The equation for:

function F;

input V1; : : : Vn;

S

endfunction

is obtained by generating the step from the body S which, if the function is

well-formed, should be of the form:

case (pc)

0 : begin

pc <= 1;

...

F <= E;
...

end

endcase
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The equation de�ning F is then:

F(V1; : : : ; Vn) = E

Instances of the left hand side { i.e. function calls { can be eliminated by

replacing them with the corresponding instance of the right hand side.

The trace semantics of a module is de�ned by the conjuntion of the predicates

corresponding to the steps, after continuous assignments and function calls

have been eliminated.

4.4 Examples of trace semantics

This section contains some examples to illustrate trace semantics. The se-

mantics will �rst be expressed directly in terms of predicates on traces using

explicit quanti�cation over time and then in a more compact form (with no

explicit time) using abbreviations based on temporal logic. The direct form

can be generated uniformly from Verilog via the computation of steps. It is

not clear whether the temporal logic form without explicit time variables can

be uniformly generated for arbitrary Verilog, but it is plausible that it can

be generated for the synthesizable subset.

The temporal abbreviations use constants and logical operators `lifted' point-

wise to predicates. These are denoted with bigger and bolder versions of the

normal symbols, for example:

� 8 t : 1(t) = 1

� 8 t : (f1+ f2)(t) = f1(t)+f2(t)

� 8 t : (f1? f2: f3)(t) = f1(t)?f2(t):f3(t)

Two traces are equal if and only if they are equal as functions, i.e. equal at

all times:

� f1 � f2 means 8 t : f1(t) = f2(t)

Latches and ip-ops `freeze' the values of variables to the value they had

the last time an event (edge) happened.



4.4 Examples of trace semantics 41

Suppose p represents a set of events in the sense that p t is true exactly when

an event happens at time t . De�ne last p f t to be the value of f at the

last time before (or including) t that p was true. If p is not true at any time

up to and including t , then last p f t = x.

Note that last p f is a trace that only changes when events speci�ed by p

occur and hence last p (last p f ) � last p f .

If f is a trace, then de�ne the trace previous(f ) by:

� previous(f )(0) = x

� previous(f )(t+1) = f (t)

If f is a trace, then de�ne the boolean-valued traces posedge f and negedge f

to satisfy:

� posedge f 0 is false and

8 t > 0. posedge f t = (f (t�1) 6= 1 ^ f (t) = 1)

� negedge f 0 is false and

8 t > 0. negedge f t = (f (t�1) 6= 0 ^ f (t) = 0)

Thus last (posedge clk) f t is the value of f at the last time before or

equal to t when clk has just �nished a rising edge { i.e. f (t 0), where t 0 is

the greatest time t 0 � t such that clk(t 0-1)6=1 and clk(t 0)=1.

Also observe that last (posedge clk) (previous(f )) t is the value of f at

the last time before or equal to t when clk has just started a rising edge {

i.e. f (t 0-1) where t 0 is as above.

Warning: the logical manipulations that are asserted to hold for the ex-

amples below have not been fully veri�ed. However, it is expected to

be straightforward to mechanically check them with a theorem prover.

For VFE it is planned to implement a semantics extractor, that auto-

matically derives from a module text a simpli�ed formula representing

its trace semantics.
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4.4.1 Combinational logic

Here is a combinational incrementer:

forever @(i) q = i+1;

This generates the step:

case (pc)

0 : @(i)

begin

pc <= 0;

q <= i+1;

end

endcase

which denotes the following trace speci�cation:

9pc.
pc(0)=0 ^ i(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if i(t-1)6=i(t)

then pc(t)=0 ^ q(t)=i(t)+1

else pc(t)=pc(t-1) ^ q(t)=q(t-1)

By induction over t this is logically equivalent to:

i(0)=x ^ q(0)=x ^ 8t>0. q(t)=i(t)+1

i.e.:

i(0)=x ^ q(0)=x ^ q � i+1

4.4.2 Flip-ops

forever @(posedge clk) q = d;

generates the step:
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case (pc)

0 : @(posedge clk)

begin

pc <= 0;

q <= d;

end

endcase

which denotes the following trace speci�cations:

9pc.
pc(0)=0 ^ d(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1) 6=1 ^ clk(t)=1

then pc(t)=0 ^ q(t)=d(t)

else pc(t)=pc(t-1) ^ q(t)=q(t-1)

which is equivalent to:

d(0)=x ^ clk(0)=x ^ q(0)=x ^
8t>0. if clk(t-1)6=1 ^ clk(t)=1

then q(t)=d(t)

else q(t)=q(t-1)

which is equivalent to:

d(0)=x ^ clk(0)=x ^ q(0)=x ^ q� last(posedge clk)d

4.4.3 Flip-ops in series

forever @(posedge clk) i = d;

forever @(posedge clk) q = i;

generates the steps:
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case (pc)

0 : @(posedge clk)

begin

pc <= 0;

i <= d;

end

endcase

case (pc)

0 : @(posedge clk)

begin

pc <= 0;

q <= i;

end

endcase

which denote the following trace speci�cations:

9pc.
pc(0)=0 ^ d(0)=x ^ i(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1)6=1 ^ clk(t)=1

then pc(t)=0 ^ i(t)=d(t)

else pc(t)=pc(t-1) ^ i(t)=i(t-1)

and

9pc.
pc(0)=0 ^ clk(0)=x ^ i(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1)6=1 ^ clk(t)=1

then pc(t)=0 ^ q(t)=i(t)

else pc(t)=pc(t-1) ^ q(t)=q(t-1)

which are equivalent to:

d(0)=x ^ clk(0)=x ^ i(0)=x ^ q(0)=x ^
8t>0. if clk(t-1) 6=1 ^ clk(t)=1

then i(t)=d(t)

else i(t)=i(t-1)

and
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clk(0)=x ^ i(0)=x ^ q(0)=x ^
8t>0. if clk(t-1)6=1 ^ clk(t)=1

then q(t)=i(t)

else q(t)=q(t-1)

which, when conjoined together, are equivalent to:

d(0)=x ^ clk(0)=x ^ i(0)=x ^ q(0)=x ^
8t>0. if clk(t-1)6=1 ^ clk(t)=1

then q(t)=d(t) ^ i(t)=d(t)

else q(t)=q(t-1) ^ i(t)=i(t-1)

Using temporal operators, the two components are equivalent to:

d(0)=x ^ clk(0)=x ^ i(0)=x ^ i� last(posedge clk)d

i(0)=x ^ clk(0)=x ^ q(0)=x ^ q� last(posedge clk)i

Since

last(posedge clk)(last(posedge clk)d) = last(posedge clk)d

it follows by substitution with respect to � that the conjunction of these is

equivalent to:

i(0)=x ^ d(0)=x ^ clk(0)=x ^ q(0)=x ^
i � last(posedge clk)d ^ q � last(posedge clk)d

4.4.4 Flip-op with built-in incrementer

forever @(posedge clk) q = d+1;

generates the step:

case ( pc )

0 : @(posedge clk)

begin

pc <= 0;

q <= d + 1;

end

endcase
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which denotes the following trace speci�cation:

9pc.
pc(0)=0 ^ clk(0)=x ^ d(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1)6=1 ^ clk(t)=1

then pc(t)=0 ^ q(t)=d(t)+1

else pc(t)=pc(t-1) ^ q(t)=q(t-1)

which simpli�es to:

clk(0)=x ^ d(0)=x ^ q(0)=x ^
8t>0. if clk(t-1) 6=1 ^ clk(t)=1

then q(t)=d(t)+1

else q(t)=q(t-1)

Using temporal operators:

clk(0)=x ^ d(0)=x ^ q(0)=x ^ q � last(posedge clk)(d+1)

Note that since 1 is a constant trace, the equation with � is equivalent to:

q � (last(posedge clk))d+1

4.4.5 Flip-op with separate incrementer

forever @(posedge clk) i = d;

forever @(i) q = i+1;

generates the steps:

case (pc)

0 : @(posedge clk)

begin

pc <= 0;

i <= d;

end

endcase
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and

case (pc)

0 : @(i)

begin

pc <= 0;

q <= i+1;

end

endcase

which denote the following trace speci�cations:

9pc.
pc(0)=0 ^ clk(0)=x ^ d(0)=x ^ i(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1) 6=1 ^ clk(t)=1

then pc(t)=0 ^ i(t)=d(t)

else pc(t)=pc(t-1) ^ i(t)=i(t-1)

9pc.
pc(0)=0 ^ i(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if i(t-1) 6=i(t)

then pc(t)=0 ^ q(t)=i(t)+1

else pc(t)=pc(t-1) ^ q(t)=q(t-1)

which simplify to:

clk(0)=x ^ d(0)=x ^ i(0)=x ^
8t>0. if clk(t-1)6=1 ^ clk(t)=1

then i(t)=d(t)

else i(t)=i(t-1)

i(0)=x ^ q(0)=x ^
8t>0. q(t)=i(t)+1

If these are conjoined together, and i is made local (i.e. existentially quanti-

�ed) then the result simpli�es to:
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9i.
clk(0)=x ^ d(0)=x ^ i(0)=x ^ q(0)=x ^
8t>0. if clk(t-1) 6=1 ^ clk(t)=1

then i(t)=d(t)

else i(t)=i(t-1)

^
q(t)=i(t)+1

which further simpli�es to:

clk(0)=x ^ d(0)=x ^ q(0)=x ^
8t>0. if clk(t-1) 6=1 ^ clk(t)=1

then q(t)=d(t)+1

else q(t)=q(t-1)

which is the same as the ip-op with a built-in incrementer (previous ex-

ample).

Using temporal operators, the two components are:

clk(0)=x ^ d(0)=x ^ i(0)=x ^ i � last(posedge clk)d

i(0)=x ^ q(0)=x ^ q � i+1

Conjoining these and existentially quantifying i yields:

9i.
clk(0)=x ^ d(0)=x ^ i(0)=x ^ i � last(posedge clk)d

^
i(0)=x ^ q(0)=x ^ q � i+1

which simpli�es to:

clk(0)=x ^ d(0)=x ^ q(0)=x ^ q � last(posedge clk)(d+1)

4.4.6 A Simple Moore machine

The program below describes a machine with a synchronous set. Asserting

input set sets the state to 0 on the next positive edge of a clock. If set is

not asserted, then at each positive edge of the clock the value of q is set to

its current value plus the value being input on d.
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forever

@(posedge clk)

if (set) q = 0; else q = q + d;

This generates the step:

case (pc)

0 : @(posedge clk)

begin

pc <= 0;

q <= set ? 0 : previous(q) + d;

end

endcase

which denotes the following trace speci�cations:

9pc.
pc(0)=0 ^ d(0)=x ^ set(0)=x ^ clk(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1) 6=1 ^ clk(t)=1

then pc(t)=0 ^ q(t)=set(t)?0:(q(t-1)+d(t))

else pc(t)=pc(t-1) ^ q(t)=q(t-1)

which is equivalent to:

d(0)=x ^ set(0)=x ^ clk(0)=x ^ q(0)=x ^
8t>0. if clk(t-1)6=1 ^ clk(t)=1

then q(t)=set(t)?0:(q(t-1)+d(t))

else q(t)=q(t-1)

which is equivalent to:

d(0)=x ^ set(0)=x ^ clk(0)=x ^ q(0)=x ^
q � last(posedge clk)(set?0:(previous(q)+d))

4.4.7 Behavioral description of a transparent latch

forever @(clk or d) if (clk) q = d;
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generates the step:

case (pc)

0 : @(clk or d)

begin

pc <= 0;

q <= clk ? d : previous(q);

end

endcase

which denotes:

9pc.
pc(0)=0 ^ clk(0)=x ^ d(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1)6=clk(t) _ d(t-1)6=d(t)

then pc(t)=0 ^ q(t)=clk(t)?d(t):q(t-1)

else pc(t)=pc(t-1) ^ q(t)=q(t-1)

and simpli�es to:

clk(0)=x ^ d(0)=x ^ q(0)=x ^
8t>0. if clk(t-1) 6=clk(t) _ d(t-1)6=d(t)

then q(t)=clk(t)?d(t):q(t-1)

else q(t)=q(t-1)

This is equivalent to:

clk(0)=x ^ d(0)=x ^ q(0)=x ^ q � clk?d:last(negedge clk)d

4.4.8 Implementation of a transparent latch

A transparent latch can be implemented with a negative edge-triggered ip-

op and some combinational logic to connect the input to the output when

the enable signal (clk) is high. Assume i is local.

forever @(negedge clk) i = d;

forever @(clk or d or i) q = clk ? d : i;
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generates the steps:

case (pc)

0 : @(negedge clk)

begin

pc <= 0;

i <= d;

end

endcase

case (pc)

0 : @(clk or d or i)

begin

pc <= 0;

q <= clk ? d : i;

end

endcase

which, taken together, denote:

9i.
9pc.
pc(0)=0 ^ clk(0)=x ^ d(0)=x ^ i(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1) 6=0 ^ clk(t)=0

then pc(t)=0 ^ i(t)=d(t)

else pc(t)=pc(t-1) ^ i(t)=i(t-1)

^
9pc.
pc(0)=0 ^ clk(0)=x ^ d(0)=x ^ i(0)=x ^ q(0)=x ^
8t>0.
pc(t-1)=0 ) if clk(t-1) 6=clk(t) _ d(t-1)6=d(t) _ i(t-1)6=i(t)

then pc(t)=0 ^ q(t)=clk(t)?d(t):i(t)

else pc(t)=pc(t-1) ^ q(t)=q(t-1)

which simpli�es to:
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9i.
clk(0)=x ^ d(0)=x ^ i(0)=x ^ q(0)=x

^
8t>0. if clk(t-1) 6=0 ^ clk(t)=0

then i(t)=d(t)

else i(t)=i(t-1)

^
if clk(t-1) 6=clk(t) _ d(t-1)6=d(t) _ i(t-1)6=i(t)
then q(t)=clk(t)?d(t):i(t)

else q(t)=q(t-1)

One would hope to be able to show this equivalent to the trace semantics of

the behavioural description of a transparent latch (previous example), but

the equivalence is not immediately obvious. However, working with temporal

operators makes the equivalence clearer.

The two components are:

clk(0)=x ^ d(0)=x ^ i(0)=x ^ i � last(negedge clk)d

clk(0)=x ^ d(0)=x ^ i(0)=x ^ q(0)=x ^ q � clk?d:i

Conjoining these and existentially quantifying i yields:

9i.
clk(0)=x ^ d(0)=x ^ i(0)=x ^ i � last(negedge clk)d

^
clk(0)=x ^ d(0)=x ^ i(0)=x ^ q(0)=x ^ q � clk?d:i

which simpli�es, via substitution with respect to � , to:

clk(0)=x ^ d(0)=x ^ q(0)=x ^ q � clk?d:last(negedge clk)d
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Cycle Semantics

The cycle semantics is a sequential machine (a Mealy machine, in general)

whose state transitions are determined by a clock. Only certain programs

can be sensibly interpreted as clocked sequential machines, and so only a

subset of V0 has a cycle semantics. Furthermore, the kind of clock events

that clock the system depends on the design style. For V0, it is assumed that

clocking is done on the positive edge of a single global clock called clk.

A module has a cycle semantics if its trace semantics can be expressed as a

conjunction of combinational equations and next-state assertions.

Combinational equations have the form

V �M

where V is a variable andM is an expression built out of trace constants (like

0, 1 etc), input and state variables using trace operators (like + , �?�:�
etc).

Next state assertions have the form:

V � last(posedge clk)N

where V is a state variable and N is an expression built out of trace constants

(like 0, 1 etc), input variables and expressions of the form previous(S)

(where S is a state variable) using trace operators (like + , �?�:� etc).

If the input variables are I1; : : : ; Im , the state variables are S1; : : : ; Sn and

the output variables are O1; : : : ;Op then the general form required for cycle

semantics extraction is:
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O1 �M1[I1; : : : ; Im ;S1; : : : ;Sn ]

^
...

^

Op �Mp [I1; : : : ; Im ;S1; : : : ;Sn ]

^

S1 � last(posedge clk)N1[I1; : : : ; Im ;previous(S1),: : : ;previous(Sn)]

^
...

^

Sn � last(posedge clk)Nn [I1; : : : ; Im ;previous(S1),: : : ;previous(Sn)]

Here Mi [I1; : : : ; Im ; S1; : : : ; Sn ] indicates an expression built using 0, 1, + ,

�?�:� etc and the variables indicated between the square brackets. Sim-

ilarly for Ni .

The machine speci�ed by a conjunction in the form above has output func-

tion:

hi1; : : : ; im ; s1; : : : ; sni 7! hfM1
(i1; : : : ; im ; s1; : : : ; sn); : : : ; fMp

(i1; : : : ; im ; s1; : : : ; sn)i

and next-state function:

hi1; : : : ; im ; s1; : : : ; sni 7! hfN1
(i1; : : : ; im ; s1; : : : ; sn); : : : ; fNn

(i1; : : : ; im ; s1; : : : ; sn)i

where the functions fMi
; : : : ; fMp

; fN1
; : : : ; fNn

are the `obvious' ones derived

from Mi ; : : : ;Mp ;N1; : : : ;Nn by replacing operators like 0, 1, + , �?�:�
by 0, 1, +, �?�:� respectively.

It may be that state variables are also output variables (see the example

below), in which case there is no output function.

In the VFE project it is hoped to provide automated tools for manipulating

trace semantics into the above form and then to extract the cycle semantics.

It is assumed that initially all variables have the value x.
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Example

Recall the simple Moore machine:

forever

@(posedge clk)

if (set) q = 0; else q = q + d;

The trace semantics of this (after simpli�cation) was:

d(0)=x ^ set(0)=x ^ clk(0)=x ^ q(0)=x ^
q � last(posedge clk)(set?0:(previous(q)+d))

It is assumed that the state q is output, so there is no output function. The

next-state function is given by:

f (d; set; q) = set ? 0 : q+d
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