
The
VHDL

Golden
Reference

Guide

DOULOS

DOULOS
Church Hatch,
22 Market Place,
Ringwood.
Hampshire.
BH24 1AW
England.

Tel (+44) (0)1425 471223
Fax (+44) (0)1425 471573

Email info@doulos.co.uk

© Copyright 1995, Doulos, All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the
prior written permission of DOULOS. Printed in the United
Kingdom of Great Britain and Northern Ireland.

Version 1.1, December 1995

The VHDL Golden Reference Guide is a compact quick reference
guide to the VHDL language, its syntax, semantics, synthesis and
application to hardware design.

The VHDL Golden Reference Guide is not intended as a replacement
for the IEEE Standard VHDL Language Reference Manual. Unlike
that document, the Golden Reference guide does not offer a
complete, formal description of VHDL. Rather, it offers answers to
the questions most often asked during the practical application of
VHDL, in a convenient reference format.

Nor is The VHDL Golden Reference Guide intended to be an
introductory tutorial. Information is presented here in a terse
reference format, not in the progressive and sympathetic manner
necessary to learn a subject as complex as VHDL. However,
acknowledging that those already familiar with computer languages
may wish to use this guide as a VHDL text book, a brief informal
introduction to the subject is given at the start.

The main feature of The VHDL Golden Reference Guide is that it
embodies much practical wisdom gathered over many VHDL
projects. It does not only provide a handy syntax reference; there are
many similar books which perform that task adequately. It also
warns you of the most common language errors, gives clues where
to look when your code will not compile, alerts you to synthesis
issues, and gives advice on improving your coding style.

The VHDL Golden Reference Guide was developed to add value to
the Doulos range of VHDL training courses, and also to complement
VHDL PaceMaker, the VHDL Computer Based Training package
from Doulos.

3

Preface

The main body of this guide is organised alphabetically. Each section
is indexed by a key term which appears prominently at the top of
each page. Often you can find the information you want by flicking
through the guide looking for the appropriate key term. If that fails,
there is a full index at the back.

Most of the information in this guide is organised around the VHDL
syntax headings, but there are additional special sections on Coding
Standards, Design Flow, Errors, Reserved Words and VHDL 93, and
also listings of the standard packages Standard, TEXTIO,
Std_logic_1164 and Numeric_std.

If you are new to VHDL, you should start by reading A Brief
Introduction to VHDL, which follows overleaf.

The Index

Bold index entries have corresponding pages in the main alphabetical
reference section. The remaining index entries are followed by a list
of appropriate page references in the main alphabetical reference
section, given in order of importance.

Key To Notation Used To Define VHDL Syntax

The syntax definitions are written to look like examples whereever
possible, but it has been necessary to introduce some extra notation.
In brief, square brackets [] enclose optional items, three dots ... means
repetition, and curly brackets {} enclose comments. ItalicNames
represent parts of the syntax defined elsewhere. A full description of
the notation follows:

Curly brackets {} enclose comments that are not part of the VHDL
syntax being defined, but give you further information about the
syntax definition.

Syntax enclosed in square brackets [] is optional (except in the
definition of a signature, where square brackets are part of the VHDL
syntax!)

... means zero or more repetitions of the preceding item or line, or
means a list, as follows:

Item ... means zero or more repetitions of the Item.
, ... means repeat in a comma separated list (e.g. A, B, C).
; ... means repeat in a semicolon separated list.
| ... means repeat in a bar separated list.

4

Using This Guide

There must be at least one item in the list. There is no , ; or | at the
end of the list, unless it is given explicitly (as in ; ... ;).

Underlined syntax belongs to the VHDL'93 language, but not to
VHDL'87. (For the sake of clarity, underlining has been omitted
where words contain the underscore character.)

words in lower case letters are reserved words, built into the VHDL
language (e.g. entity)

Capitalised Words (not in italics) are VHDL identifiers, i.e. user
defined or pre-defined names that are not reserved identifiers (e.g.
TypeName, BlockLabel).

Italic Words are syntactic categories, i.e. the name of a syntax
definition given in full elsewhere. A syntactic category can be either
defined on the same page, defined on a separate page, or one of the
two special categories defined below.

Italics = indicates a syntactic category which is defined and used on
the same page.

Special syntactic categories:

SomethingExpression = Expression, where the Something gives
information about the meaning of the expression (e.g.
TimeExpression).

Condition = Expression, where the type of the expression is Boolean.

5

The following paragraphs give a brief technical introduction to
VHDL suitable for the reader with no prior knowledge of the
language. As will be evident from these paragraphs, VHDL uses a lot
a specialised technical jargon!

Background

The letters VHDL stand for the VHSIC (Very High Speed Integrated
Circuit) Hardware Description Language. VHDL is a language for
describing the behaviour and structure of electronic circuits, and is
an IEEE standard (1076).

VHDL is used to simulate the functionality of digital electronic
circuits at levels of abstraction ranging from pure behaviour down to
gate level, and is also used to synthesize (i.e. automatically generate)
gate level descriptions from more abstract (Register Transfer Level)
descriptions. VHDL is commonly used to support the high level
design (or language based design) process, in which an electronic
design is verified by means of thorough simulation at a high level of
abstraction before proceeding to detailed design using automatic
synthesis tools.

VHDL became an IEEE standard in 1987, and this version of the
language has been widely used in the electronics industry and
academia. The standard was revised in 1993 to include a number of
significant improvements.

The Language

In this section as in the rest of the guide, words given in Capitalised
Italics are technical terms whose definitions may be found in the
main body of this guide.

An hierarchical portion of a hardware design is described in VHDL
by an Entity together with an Architecture. The Entity defines the
interface to the block of hardware (i.e. the inputs and outputs), whilst
the Architecture defines its internal structure or behaviour. An Entity
may possess several alternative Architectures.

Hierarchy is defined by means of Components, which are analogous
to chip sockets. A Component is Instantiated within an Architecture to
represent a copy of a lower level hierarchical block. The association
between the Instance of the Component and the lower level Entity and
Architecture is only made when the complete design hierarchy is
assembled before simulation or synthesis (analogous to plugging a
chip into a chip socket on a printed circuit board). The selection of

6

A Brief Introduction To VHDL

which Entity and Architecture to use for each Component is made in
the Configuration, which is like a parts list for the design hierarchy.

The structure of an electronic circuit is described by making Instances
of Components within an Architecture, and connecting the Instances
together using Signals. A Signal represents an electrical connection, a
wire or a bus. A Port Map is used to connect Signals to the Ports of a
Component Instantiation, where a Port represents a pin.

Each Signal has a Type, as does every value in VHDL. The Type
defines both a set of values and the set of operations that can be
performed on those values. A Type is often defined in a Package,
which is a piece of VHDL containing definitions which are common
to several Entities, Architectures, Configurations or other Packages.
Individual wires are often represented as Signals of type Std_logic,
which are defined in the package Std_logic_1164, another IEEE
standard.

The behaviour of an electronic circuit is described using Processes
(which represent the leaves in the hierarchy tree of the design). Each
Process executes concurrently with respect to all other Processes, but
the statements inside a process execute in sequential order and are in
many ways similar to the statements in a software programming
language. A Process can be decomposed into named Procedures and
Functions, which can be given parameters. Common Procedures and
Functions can be defined in a Package.

Compilation

VHDL source code is usually typed into a text file on a computer.
That text file is then submitted to a VHDL compiler which builds the
data files necessary for simulation or synthesis. The proper jargon for
the steps performed by the compiler are Analysis, which checks the
VHDL source for errors and puts the VHDL into a Library, and
Elaboration, which links together the Entities and Architectures of the
hierarchy.

7

library IEEE;
use IEEE.Std_logic_1164.all;
entity EntName is
 port (P1, P2: in Std_logic;
 P3: out Std_logic_vector(7 downto 0));
end EntName;
architecture ArchName of EntName is
 component CompName
 port (P1: in Std_logic;
 P2: out Std_logic);
 end component;
 signal SignalName, SignalName2: Std_logic := 'U';
begin

 P: process (P1,P2,P3) -- Either sensitivity list or wait statements!
 variable VariableName, VarName2: Std_logic := 'U';
 begin
 SignalName <= Expression after Delay;
 VariableName := Expression;
 ProcedureCall(Param1, Param2, Param3);
 wait for Delay;
 wait until Condition;
 wait;
 if Condition then

 -- sequential statements
 elsif Condition then

 -- sequential statements
 else

 -- sequential statements
 end if;
 case Selection is
 when Choice1 =>

 -- sequential statements
 when Choice2 | Choice3 =>

 -- sequential statements
 when others =>

 -- sequential statements
 end case;
 for I in A'Range loop

 -- sequential statements
 end loop;
 end process P;
 SignalName <= Expr1 when Condition else Expr2;
 InstanceLabel: CompName port map (S1, S2);
 L2: CompName port map (P1 => S1, P2 => S2);
 G1: for I in A'Range generate

 -- concurrent statements
 end generate G1;
end ArchName;

8

Syntax Summary

package PackName is
 type Enum is (E0, E1, E2, E3);
 subtype Int is Integer range 0 to 15;
 type Mem is array (Integer range <>) of
 Std_logic_vector(7 downto 0);
 subtype Vec is Std_logic_vector(7 downto 0);

 constant C1: Int := 8;
 constant C2: Mem(0 to 63) := (others => "11111111");

 procedure ProcName (ConstParam: Std_logic;
 VarParam: out Std_logic;
 signal SigParam: inout Std_logic);

 function "+" (L, R: Std_logic_vector)
 return Std_logic_vector;
end PackName;

package body PackName is

 procedure ProcName (ConstParam: Std_logic;
 VarParam: out Std_logic;
 signal SigParam: inout Std_logic) is

 -- declarations
 begin

 -- sequential statements
 end ProcName;

 function "+" (L, R: Std_logic_vector)
 return Std_logic_vector is

 -- declarations
 begin

 -- sequential statements
 return Expression;
 end "+";
end PackName;

configuration ConfigName of EntityName is
 for ArchitectureName
 for Instances: ComponentName
 use LibraryName.EntityName(ArchName);
 end for;
 end for;
end ConfigName;

This quick reference syntax summary does not follow the notational conventions
used in the rest of the Guide.

9

10

The
VHDL

Golden
Reference

Guide

Alphabetical Reference Section

11

A data type which allows dynamic memory allocation, equivalent to pointers in
C or Pascal. Used to model large memories. The type Line in package
TEXTIO is an access type. An incomplete type declaration is used to permit
recursively defined data structures, e.g. linked lists.

Syntax
type NewName is access DataType ;

type IncompleteTypeName;

Where
See Declaration

Rules

Only variables can be of access type, and they must point to a value
allocated dynamically using new (not to another variable).

An access variable is initialised to the value null .

A procedure DEALLOCATE(Ptr) is implicitly defined and can be called to
release the storage allocated using new .

Gotchas!
VHDL suffers from dangling pointers. If you copy a pointer then deallocate the
memory, the copied pointer still points to the now deallocated location.

Synthesis
Not synthesizable.

Tips
Can be used to reduce the amount of memory needed to simulate a large
memory by only allocating host computer memory when needed.

Example
type Link; -- Incomplete type declaration
type Item is record
 Data: Std_logic_vector(7 downto 0);
 NextItem: Link;
end record;
type Link is access Item;
variable StartOfList, Ptr: Link;

-- Add item to start of list
Ptr := new Item; -- Allocate storage
Ptr.Data := "01010101";

Ptr.NextItem := StartOfList; -- Link item into list
StartOfList := Ptr;

12

Access

-- Delete entire list
while StartOfList /= null loop
 Ptr := StartOfList.NextItem;
 DEALLOCATE(StartOfList);
 StartOfList := Ptr;
end loop;

See Also
New, Type, Null, Record

13

A way to write a value for any array or record.

Syntax
([Choices =>] Expression , ...)

Choices = Choice | ...

Choice = { either}
ConstantExpression
Range

others { the last choice}

Where
See Expression, Target

Rules

An aggregate must give a value for every element of the array or record.

The two forms of syntax (ordered list or explicitly named choices) can be
mixed, but the ordered values must come before the named choices.

Gotchas!
Aggregates frequently need to be qualified to disambiguate their type (see
example below).

Synthesis
Many synthesis tools do not allow aggregates as targets of assignments.

Tips
The aggregate (others => Expression) is a very useful way of setting all the
elements of an array to the same value; you do not even have to know how
big the array is! For example, to set the value of a parameter of an
unconstrained array type.

Example
('0', '1', '0', '1')
(1, 2, 3, 4, 5)
(1 => A, 2 => B, 3 => C)
(1, 2, 3, others => 4)
(others => 'Z')

(A, B, C) := D; -- Aggregate as the target of an assignment
T'(others => '0') -- Qualified expression
(others => T'(others => '0'))

See Also
Array, Record, Expression, Range

14

Aggregate

Lets you give an alternative name for almost anything. Particularly useful for
renaming a slice of an array, as it avoids the need to define a new signal or
variable. Also allows one package to inherit procedures and functions from
another package by aliasing them.

Syntax
alias AliasName [: Datatype] is Name [Signature];

Signature = [TypeName, ...] return TypeName

Where
See Declaration

Rules

The AliasName may be an identifier, character or operator.

An aliased procedure, function or enumeration literal must be identified
unambiguously by a signature, which identifies the parameter types and
return type (to allow for overloading).

Gotchas!
The DataType and the Name being aliased must both be static, so an aliased
slice name must have a static index constraint.

Synthesis
Not supported by many synthesis tools.

Example
function F (A, B: Std_logic_vector) return BOOLEAN is
 alias P1: Std_logic_vector(1 to A'LENGTH) is A;
 alias P2: Std_logic_vector(1 to B'LENGTH) is B;

 -- Alias is used to create 2 local vectors with the same range
begin
 for I in P1'RANGE loop
 if P1(I) = P2(I) then
 ...

alias ">" is
 F[Std_logic_vector, Std_logic_vector] return BOOLEAN;

See Also
Constant

15

Alias

Defines the internal view of a block of hardware, i.e. the functionality,
behaviour or structure of the hardware. Belongs with an entity, which defines
the interface. An entity may have several alternative architectures.

Syntax
architecture ArchitectureName of EntityName is
 Declarations ...
begin
 ConcurrentStatements ...
end [architecture] [ArchitectureName];

Where
See (VHDL) File

Rules
All the architectures of a particular entity must have different names, but the
architectures of two different entities can have the same name.

Gotchas!
It is easy to forget the begin , or put it in the wrong place!

Example
library IEEE;
use IEEE.STD_LOGIC_1164.all;

architecture BENCH of TEST_MUX4 is
 subtype V2 is STD_LOGIC_VECTOR(1 downto 0);

 -- Component declaration...
 component MUX4
 port (SEL, A, B, C, D: in V2;
 F : out V2);
 end component;

 -- Internal signal...
 signal SEL, A, B, C, D, F: V2;
begin
 P: process
 begin
 SEL <= "00";
 wait for 10 NS;
 SEL <= "01";
 wait for 10 NS,
 SEL <= "10";
 wait for 10 NS,
 SEL <= "11";
 wait for 10 NS;
 wait;
 end process P;

16

Architecture

 -- Concurrent assignments...
 A <= "00";
 B <= "01";
 C <= "10";
 D <= "11";

 -- Component instantiation...
 M: MUX4 port map (SEL, A, B, C, D, F);
end BENCH;

See Also
Entity, Configuration, Concurrent Statement

17

A data type which consists of a vector or a multi-dimensional set of values of
the same base type. Can be used to describe RAMs, ROMs, FIFOs, or any
regular multi-dimensional structure.

Syntax
type NewName is { unconstrained}
 array (IndexTypeName range <>, ...) of DataType ;

type NewName is { constrained}
 array (Range, ...) of DataType ;

Where
See Declaration

Rules

The base type DataType must not be an unconstrained array type.

A signal or variable cannot be an unconstrained array, unless it is a generic,
port or parameter.

Synthesis
Some synthesis tools do not support multi-dimensional arrays, only support
arrays of bits or arrays of vectors, or do not permit ports to be arrays of
arrays.

Tips

Large arrays should be variables or constants, rather than signals. A large
signal array would be inefficient for simulation.

The values within an array can be read or written using an indexed name or a
slice name.

Example
subtype Word is Std_logic_vector(15 downto 0);
type Mem is array (0 to 2**12-1) of Word;
variable Memory: Mem := (others => Word'(others=>'U'));
...
if MemoryRead then
 Data <= Memory(To_Integer(Address));
elsif MemoryWrite then
 Memory(To_Integer(Address)) := Data;
end if;

See Also
Range, Name, String, Type

18

Array

A sequential or concurrent statement used to write out a message when an
exception occurs. If the condition is False, the simulator writes out a report to
the screen or log file. The simulator may be instructed to halt if the severity is
above a particular level.

Syntax
[Label:] assert Condition
 [report StringExpression]
 [severity Expression];

Where
entity-begin-<HERE>-end
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

See Sequential Statement

Rules

Sequential statements can be labelled in VHDL'93, but not in VHDL'87.

The severity Expression must be of type Severity_level, which has the values
Note, Warning, Error, Failure. The default severity is Error.

Gotchas!
Check carefully the sense of the Condition. The message is written when the
Condition is False!

Synthesis
Assertions do not represent hardware. Synthesis tools ignore them or give a
warning.

Example
assert not (Reset = '0' and Set = '0')
 report "R-S conflict" severity Failure;
assert Outputs = ExpectedOutputs
 report "Outputs differ from expected response";

See Also
Report, TEXTIO

19

Assert

A user defined attribute is used to attach arbitrary information to a specific
part of a VHDL description for use by downstream tools (e.g. synthesis or
device fitting). Any attribute not recognized by a particular tool is ignored.
Each attribute must be both declared and specified as shown below.

Syntax
{ declaration}
attribute AttributeName: TypeName;

{ specification}
attribute AttributeName of Name [Signature]: Class is
 Expression ;

Signature = [TypeName, ...] return TypeName

Class = { either} signal type function architecture { etc}

Where

See Declaration

An attribute specification must be in the region in which the Name is declared.
Attributes of an entity, architecture, configuration or package must be
specified inside that region. Neither attribute declaration nor specification is
allowed in a Package Body.

Rules

Name Signature may be replaced by others , all , or a list.

A procedure, function or enumeration literal must be identified unambiguously
by a Signature, which identifies the parameter types and return type (to allow
for overloading).

Example
attribute Pin_number: Positive;
attribute Pin_number of Clk: signal is 1;
attribute Enum_encoding: String;
attribute Enum_encoding of State: type is "11 00 01 10";

See Also
Attribute Name, Group

20

Attribute

An attribute gives extra informific part of a VHDL description, and can be
usation about a specer defined or predefined. User defined attributes are
constants, whereas predefined attributes can be constants, functions or
signals.

Syntax
Name[Signature]'AttributeName[(Expression)]

Signature = [TypeName, ...] return TypeName

Where
See Expression

Rules
A procedure, function or enumeration literal must be identified unambiguously
by a signature, which identifies the parameter types and return type (to allow
for overloading).

Predefined Type Attributes

T is an enumeration, integer, floating or physical type or subtype

T'BASE The base type of T. Only allowed as prefix to another
attribute

T'LEFT Left bound of T

T'RIGHT Right bound of T

T'LOW Lower bound of T

T'HIGH Upper bound of T

T'ASCENDING TRUE if range of T is to , FALSE if downto

T'IMAGE(X) The string representation of X in T

T'VALUE(X) The value of type T whose string representation is X

T'POS(X) Position number of X in T

T'VAL(X) Value with position number X in T

T'SUCC(X) Successor = T'VAL(T'POS(X)+1)

T'PRED(X) Predecessor = T'VAL(T'POS(X)-1)

T'LEFTOF(X) Value to the left of X in T

T'RIGHTOF(X) Value to the right of X in T

Predefined Array Attributes

A is an array signal, variable, constant, type or subtype

A'LEFT[(N)] Left bound of Nth index range

A'RIGHT[(N)] Right bound of Nth index range

21

Attribute Name

A'LOW[(N)] Lower bound of Nth index range

A'HIGH[(N)] Upper bound of Nth index range

A'RANGE[(N)] Range of Nth index from left to right

A'REVERSE_RANGE[(N)]
Range of Nth index from right to left

A'LENGTH[(N)] The number of values in the Nth index range

A'ASCENDING[(N)]
TRUE if Nth index range of A is to , FALSE if downto

Predefined Signal Attributes

S is a signal

S'DELAYED[(T)] A signal with the value that signal S had at time NOW-T

S'STABLE[(T)] A signal which is TRUE if and only if no event has occurred
on signal S for time T

S'QUIET[(T)] A signal which is TRUE if and only if no transaction has
occurred on S for time T

S'TRANSACTION
A signal of type BIT which toggles whenever there is a
transaction on S (A signal assignment creates a transaction.
A transaction that causes a change in value is an event)

S'EVENT TRUE if and only if there is an event on S in the current
delta

S'ACTIVE TRUE if and only if there is a transaction on S in the current
delta

S'LAST_EVENT The time since the last event on S

S'LAST_ACTIVE The time since the last transaction on S

S'LAST_VALUE The value of S before the last event

S'DRIVING FALSE if and only if the value of the driver of S in the
current process is null

S'DRIVING_VALUE
The value of the driver for S in the current process

Predefined General Attributes

E is the name of just about anything!

E'SIMPLE_NAME
The string representation of the name of E

E'INSTANCE_NAME
The string representation of the hierarchical path name of E,
including the names of instantiated entities. Of the form

22

":ent(arch):componentlabel@ent(arch):componentlabel@en
t(arch):thing" or ":lib:pack:thing"

E'PATH_NAME The string representation of the hierarchical path name of E,
excluding the names of instantiated entities. Of the form
":ent:componentlabel:componentlabel:thing" or
":lib:pack:thing"

Gotchas!

Type and array attributes have subtly different meanings. T'HIGH gives the
maximum value of integer or enumeration type T, but A'HIGH gives the
maximum value of the index of array A, not the maximum value that can be
stored in A.

The attribute S'EVENT is not a signal, so should not be used in a context
where a signal is needed to trigger a process. The expression not S'STABLE
can be used instead. For example, the following will not work:

wait until A'EVENT or B'EVENT; -- waits forever!

Synthesis
Attributes of enumeration types should not be used for synthesis, nor should
the attributes POS, VAL, SUCC, PRED, LEFTOF, RIGHTOF. Many synthesis
tools do not support these particular attributes, and attributes of enumeration
types can become invalid during optimization.

Tips
Type and array attributes should be used wherever possible to make code
easier to read and maintain. The RANGE attribute is particularly useful for
looping through arrays.

23

Example
type T is (A, B, C, D, E);
subtype S is T range D downto B;
S'LEFT = D
S'RIGHT = B
S'LOW = B
S'HIGH = D
S'BASE'LEFT = A
T'ASCENDING = TRUE
S'ASCENDING = FALSE
T'IMAGE(A) = "a"
T'VALUE("E") = E
T'POS(A) = 0
S'POS(B) = 1
T'VAL(4) = E
S'SUCC(B) = C
S'PRED(C) = B
S'LEFTOF(B) = C
S'RIGHTOF(C) = B
signal A: STD_LOGIC_VECTOR(7 downto 0);
A'LEFT = 7
A'RIGHT = 0
A'LOW = 0
A'HIGH = 7
A'RANGE = 7 downto 0
A'REVERSE_RANGE = 0 to 7
A'LENGTH = 8
A'ASCENDING = FALSE

See Also
Attribute, Name, Range, Signal

24

A concurrent statement used to group together concurrent statements, and
make local declarations. Guarded blocks provide an alternative (but little
used) way to write Register Transfer Level descriptions. The execution of
guarded signal assignments within the block is controlled by the guard
expression at the top.

Syntax
BlockLabel: block [(GuardExpression)] [is]
 [Generic ;
 [GenericMap ;]]
 [Port ;
 [PortMap ;]]
 Declarations ...
begin
 ConcurrentStatements ...
end block [BlockLabel];

Where
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

Gotchas!
Some commercial synthesis tools do not support blocks.

Tips
It is not necessary to learn and use blocks and related syntax such as
guarded signal assignments. It is generally more efficient for simulation to use
processes instead.

Example
signal P, Q, R: STD_LOGIC;
...
Logic: block
 port (A, B: in STD_LOGIC;
 F : out STD_LOGIC);
 port map (A => P, B => Q, F => R);
begin
 F <= A nand B;
end block Logic;

Sync: block (Rising_edge(Clock))
begin

 Q <= guarded D; -- This assignment occurs on the clock edge
 QB <= not Q; -- This assignment occurs when Q changes
end block Sync;

25

Block

See Also
Signal Assignment, Concurrent Statement, Disconnect

26

A sequential statement which conditionally executes one branch only,
depending on the value of the expression at the top.

Syntax
[Label :] case Expression is
when Choices =>
 SequentialStatements ...
when Choices =>
 SequentialStatements ...

... { any number of when parts}
end case [Label];

Choices = Choice | Choice | ...

Choice = { either}
ConstantExpression
Range

others { the last branch}

Where
See Sequential Statement

Rules

The Expression must not be enclosed in parenthesis.

The type of the Expression must be enumeration, integer, physical, or a one
dimensional array.

Every case of the Expression must be covered once and only once by the
Choices.

Gotchas!
The | is not the "or" operator; the Choices are not or'd together!

Synthesis

Assignments within case statements generally synthesize to multiplexers.

Incomplete assignments (i.e. where outputs remain unassigned for certain
input conditions) in unclocked processes synthesize to transparent latches.
Incomplete assignments in clocked processes synthesize to recirculation
around registers.

27

Case

Example
case ADDRESS is

when 0 => -- Select a single value
 A <= '1';
when 1 =>

 A <= '1'; -- More than one statement in a branch
 B <= '1';

when 2 to 15 => -- Select a range of ADDRESS values
 C <= '1';

when 16 | 20 | 24 => -- Pick out several ADDRESS values
 B <= '1';
 C <= '1';
 D <= '1';

when others => -- Mop up the rest
 null;
end case;

See Also
If, Select, Null, Range

28

Coding standards are divided into two categories. Lexical coding standards,
which control text layout, naming conventions and commenting, are intended
to improve readability and ease of maintenance. Synthesis coding standards,
which control VHDL style, are intended to avoid common synthesis pitfalls
and find synthesis errors early in the design flow.

The following lists of coding standards will need to be modified according to
the choice of tools and personal preferences.

Lexical Coding Standards

Limit the contents of each VHDL source file to one entity and its architectures,
one package and its package body, or several related configurations.

Source file names should relate to the file contents (e.g. EntityName.vhdl,
PackageName.vhdl or configs.vhdl).

Adopt a naming convention for architectures (e.g. Reference, Behaviour,
RTL, GateLevel, TestBench).

Write only one declaration or statement per line.

Use indentation as shown in the examples.

Be consistent about the case of keywords (e.g. lower case), predefined
names (e.g. upper case), and user defined names (e.g. first letter a capital).

User defined names should be meaningful and informative, although local
names (e.g. loop parameters) may be terse.

Label all processes and concurrent assignments, both as documentation and
to aid debugging.

Write comments to explain (not duplicate) the VHDL code. It is particularly
important to comment interfaces (e.g. generics, ports, parameters and
packages).

Use constants and attributes wherever possible, instead of directly
embedding literal numbers and strings in declarations and statements.

Write use clauses at the top of each entity, package or configuration, to make
dependencies easy to find.

Synthesis Coding Standards

Partition the design into small functional blocks, and use a behavioural style
for each block. Avoid gate level descriptions except for critical parts of the
design.

Have a well defined clocking strategy, and implement that strategy explicitly in
VHDL (e.g. single clock, multi-phase clocks, gated clocks, multiple clock
domains). Ensure that clock and reset signals in VHDL are clean (i.e. not
generated from combinational logic or unintentionally gated).

Have a well defined (manufacturing) testing strategy, and code up the VHDL
appropriately (e.g. all flipflops resettable, test access from external pins, no
functional redundancy).

29

Coding Standards

Every VHDL process should conform to one of the standard synthesizable
process templates (see Process).

VHDL processes describing combinational and latched logic must have all of
their inputs in the sensitivity list.

Combinational processes must not contain incomplete assignments, i.e. all
outputs must be assigned for all combinations of input values.

Processes describing combinational and latched logic must not contain
feedback, i.e. signals and variables assigned as outputs from the process
must not be read as inputs to the process.

Clocked processes with a sensitivity list must have only the clock and any
asynchronous control inputs (usually reset or set) in the sensitivity list.

Clocked processes without a sensitivity list must have only one wait
statement, of the form wait until clock_edge_expression , as the first
executable statement in the process.

Avoid unwanted latches. Unwanted latches are caused by incomplete
assignments in an unclocked process.

Avoid unwanted flipflops. Flipflops are synthesized when signals are assigned
in a clocked process, or when variables assigned in a clocked process retain
their value between process executions (and thus between clock cycles).

All internal state registers must be resettable, in order that the Register
Transfer Level and gate level descriptions can be reset into the same known
state for verification. (This does not apply to pipeline or synchronization
registers.)

For finite state machines and other sequential circuits with unreachable states
(e.g. a 4 bit decade counter has 6 unreachable states), if the behaviour of the
hardware in such states is to be controlled, then the behaviour in all 2N

possible states must be described explicitly in VHDL, including the behaviour
in unreachable states. This allows safe state machines to be synthesized.

Avoid delays in signal assignments, except where necessary to solve the
problem of delta delay clock skew at register transfer level.

Do not initialise signals or variables to values other than 'U' or 'X'. Take great
care when using types with no uninitialised value (e.g. integers), because the
VHDL simulation will not reveal initialisation problems.

Do not write VHDL code which relies on the order of values within an
enumeration type, because the order might be changed during optimization.
Such code is also harder to maintain.

Signals and variables of type INTEGER should have a range constraint,
otherwise they will synthesize to 32 bit busses.

Check carefully any VHDL code which uses dynamic indexing (i.e. an index
expression containing signals or variables), loop statements, or arithmetic
operators, because such code can synthesize to large numbers of gates
which can be hard to optimize.

30

A component is analogous to a chip socket; it gives an indirect way to use
one hierarchical block within another. A component is instantiated within an
architecture, and is associated with a (lower level) entity and architecture
during elaboration using information from a configuration.

Syntax
component ComponentName [is]
 [Generic ;]
 [Port ;]
end component [ComponentName];

Where
package-<HERE>-end
architecture-is-<HERE>-begin-end
block-<HERE>-begin-end
generate-<HERE>-begin-end

See Declaration

Rules
For default configuration, the component name must match the name of the
corresponding entity to be used in its place, and generics and ports must also
match in name, mode and type.

Synthesis
A component without a corresponding design entity is synthesized as a black
box.

Tips
In VHDL'93, components are not necessary. It is possible instead to directly
instantiate an entity within an architecture.

Example
component Counter
 generic (N: INTEGER);
 port (Clock, Reset, Enable: in Std_logic;
 Q: buffer Std_logic_vector (N-1 downto 0));
end component;

See Also
Instantiation, Generic, Port, Generic Map, Port Map, Configuration, Entity

31

Component

A statement which is concurrent with respect to all other such statements.
The following are concurrent statements:

Process

Instantiation

Signal assignment

Generate

Assert

Procedure call

Block

Where
entity-begin-<HERE>-end
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

Rules
The concurrent signal assignment, concurrent assert and concurrent
procedure call are defined in terms of equivalent process statements. Thus,
their labels are optional, and they may be postponed .

See Also
Sequential Statement

32

Concurrent Statement

A concurrent statement which assigns one of several expressions to a signal,
depending on the values of boolean conditions which are tested in sequence.
Equivalent to a process containing an if statement.

Syntax
[Label:] Target <= [Options]
 Expression [after TimeExpression] when Condition else
 Expression [after TimeExpression] when Condition else
 ...
 Expression [after TimeExpression] [when Condition];

Target = { either} SignalName Aggregate

Options = { either}
guarded
transport
reject Time Expression inertial

Where
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

Rules

The reserved word guarded may only appear in a signal assignment within a
guarded block. A guarded assignment only executes when the guard
expression on the surrounding block is true.

An Expression on the right hand side may be replaced by the reserved word
unaffected .

Synthesis
Conditional signal assignments are synthesized to combinational logic. The
Expressions on the right hand side are multiplexed onto the Target signal.
The resulting logic will be priority encoded, because the Conditions are tested
in sequence.

Tips

In VHDL'93, adding a final when part or replacing an expression by
unaffected both cause the target signal to retain its value under certain
conditions, allowing flipflops and latches to be described as shown below.

Conditional and selected signal assignments are a concise way to describe
combinational logic in Register Transfer Level descriptions, although
processes can be easier to read and maintain in some cases.

A conditional assignment is a neat way to convert from a Boolean condition to
the type Std_logic. See the first example below.

33

Conditional Assignment

Example
L: Equal <= '1' when A = B else '0';

NextState <= Idle when State = Clear else
 Start when State = Idle else
 Stop when State = Start else
 Clear;

Flipflop: Q <= D when Rising_edge(Clock);
Latch: Q <= D when Enable = '1' else unaffected;

See Also
Signal Assignment, Select, If, Block

34

A configuration declaration defines how the design hierarchy is linked
together during elaboration, by listing the entities and architectures used in
place of each component instantiation within an architecture. A configuration
may also patch up differences between the names and types of generics and
ports of the component and the entity.

Syntax
configuration ConfigurationName of EntityName is

 Declarations... { use, attribute or group}
 for ArchitectureName { of entity named above}
 Use...
 ConfigurationItems
 end for;
end [configuration] [ConfigurationName];

ConfigurationItems = { one or more of the following}

for BlockName { a nested block or generate statement}
 Use...
 ConfigurationItems
end for;

for InstanceLabel, ... : ComponentName
 [use WhatToUse
 [GenericMap]
 [PortMap] ;]

 [for ArchitectureName { going down the hierarchy}
 Use...
 ConfigurationItems
 end for;]
end for;

BlockName = { either}
BlockLabel
GenerateLabel(ConstantExpression)
GenerateLabel(Range)

WhatToUse = { either}
entity EntityName[(ArchitectureName)]
configuration ConfigurationName

open { unconfigured}

Where
See (VHDL) File

35

Configuration

Rules

The instance labels in front of the component name can be replaced by
others or all .

Each component instance can be explicitly configured once only.

In the absence of a configuration, component instances get configured by
default to use an entity with the same name, port names and port types as the
component, and to use the most recently compiled architecture.

Synthesis
Although configurations are relevant and useful for selected which entities
and architectures make up the design hierarchy, many synthesis tools do not
support them. Instead, write a script to synthesize the correct architectures.

Tips

Put the configurations for a design in a separate file.

Write a configuration for the top level test bench (initially an empty
configuration). Write a configuration for an architecture only when there exists
more than one entity or architecture which can be used for the components in
that architecture (i.e. when there are choices to be made), and reference that
configuration from a higher level configuration.

Example
use Work.Types.all;

entity Top is -- Top level H/W description
 port (A, B: in Int8; F, G: out Int8);
end Top;

architecture Structure of Top is
 component Blk
 port (A: in Int8; F: out Int8);
 end component;
begin
 B1: Blk port map (A, F);
 B2: Blk port map (B, G);
end Structure;

use Work.Types.all;

entity Blk is -- Pre-synthesis
 port (A: in Int8; F: out Int8);
end Blk;

architecture RTL of Blk is
begin
 ...
end RTL;

36

library IEEE;
use IEEE.Std_logic_1164.all;

entity GateLevelBlk is -- Post-synthesis
 port (IP: in Std_logic_vector(7 downto 0);
 OP: out Std_logic_vector(7 downto 0));
end GateLevelBlk;

architecture Synth of GateLevelBlk is
begin
 ...
end Synth;

use Work.Types.all;
configuration TopMixed of Top is
 for Structure
 for B1: Blk
 use entity Work.Blk(RTL);
 end for;
 for B2: Blk
 use entity Work.GateLevelBlk(Synth)
 port map (IP => To_Vector(A),
 To_Int8(OP) => F);
 end for;
 end for;
end TopMixed;

use Work.Types.all;

entity Test is -- Test bench for Top
end Test;

architecture Bench of Test is
 component Top
 port (A, B: in Int8; F, G: out Int8);
 end component;
 signal A, B, F, G: Int8;
begin
 ...
 Inst: Top port map (A, B, F, G);
end Bench;

configuration TestMixed of Test is
 for Bench
 for all: Top
 use configuration Work.TopMixed;
 end for;
 end for;
end TestMixed;

37

See Also
Configuration Specification, Component, Entity, Architecture

38

A configuration specification defines which entity and architecture is used in
place of the instances of a single component during elaboration. A
configuration specification may also patch up differences in the names and
types of generics and ports for that single component.

Syntax
for InstanceLabel, ... : ComponentName
 use WhatToUse
 [GenericMap]
 [PortMap];

WhatToUse = { either}
entity EntityName[(ArchitectureName)]
configuration ConfigurationName
open

Where
architecture-is-<HERE>-begin-end
block-<HERE>-begin-end
generate-<HERE>-begin-end

See Declaration

Rules

The instance labels in front of the component name can be replaced by
others or all .

Each component instance can be explicitly configured once only.

Tips
Configuration specifications are inflexible, because changing the configuration
requires editing the architecture containing the configuration. It is usually
better to use separate configuration declarations.

39

Configuration Specification

Example
-- (See Configuration)
architecture FullyBound of Top is
 component Blk
 port (A: in Int8; F: out Int8);
 end component;

 for B1: Blk use entity Work.Blk(RTL);

 for B2: Blk use entity Work.GateLevelBlk(Synth)
 port map (IP => To_Vector(A),
 To_Int8(OP) => F);
begin
 B1: Blk port map (A, F);
 B2: Blk port map (B, G);
end FullyBound;

See Also
Configuration, Component, Entity, Architecture

40

A constant is used to give a name to a value, in order to make code easier to
read and maintain.

Syntax
constant NewName: DataType := Expression ;

Where
See Declaration

Rules
The value of a constant cannot be changed using an assignment statement.

Example
constant Width: POSITIVE := 8;
constant Mask: STD_LOGIC_VECTOR := "0001000011111";

-- Range determined by length of string

See Also
Alias, Variable

41

Constant

A data type (known as a subtype indication in the VHDL standard) appears in
a declaration to identify the type used at that point. A data type can also
include a constraint, which further restricts the values of the type during
simulation or synthesis. A data type can also include the name of a resolution
function to define the behaviour of a bus when there are conflicts between the
drivers. The resolution function is called by the simulator whenever a signal is
assigned.

Syntax
[ResolutionFunctionName] TypeName [Constraint]

Constraint = { either}
range Range { range constraint}
(Range, ...) { index constraint}

Rules

The constraint must be consistent with the type; range constraint for an
integer, floating, enumeration or physical type, index constraint for an
unconstrained array type.

If the value goes outside the constraint during simulation, this is an error and
simulation halts with the message "Constraint Violation".

Gotchas!

Signals and variables cannot be unconstrained arrays. You must remember
the index constraint.

A resolution function should be written such that is independent of the order of
its inputs; otherwise, the results of simulation will be indeterminate!

Synthesis

Resolution functions are ignored by most synthesis tools.

Both range and index constraints are used to determine the widths of busses.

Example
BOOLEAN -- no constraint
INTEGER range 0 to 255
STD_LOGIC_VECTOR(7 downto 0)

RESOLVED STD_ULOGIC -- resolution function

See Also
Type, Signal, Disconnect, Subtype, Range, Function

42

Data Type

The following parts of the language can be written in those sections of the
syntax where declarations are allowed:

Procedure

Procedure Body

Function

Function Body

Type

Subtype

Constant

Signal

Variable

Shared Variable

File

Component

Configuration Specification

Alias

Attribute

Disconnect

Use

Group Template

Group

Where
package-<HERE>-end
package body-<HERE>-end
entity-is-<HERE>-begin-end
architecture-is-<HERE>-begin-end
block-<HERE>-begin-end
generate-<HERE>-begin-end
process-<HERE>-begin-end
function-is-<HERE>-begin-end
procedure-is-<HERE>-begin-end

Exclusions

Region Cannot contain Declaration

Entity Component, Configuration, Variable

Architecture Variable

Block Variable

Generate Variable

43

Declaration

Package Configuration, Variable, Function Body, Procedure Body

Package Body Component, Configuration, Signal, Variable, Attribute,
Disconnect

Process Component, Configuration, Signal, Shared Variable,
Disconnect

Function Component, Configuration, Signal, Shared Variable,
Disconnect

Procedure Component, Configuration, Signal, Shared Variable,
Disconnect

Declaration Not Allowed In Region

Attribute Package Body

Component Entity, Package Body, Process, Function, Procedure

Configuration Entity, Package, Package Body, Process, Function,
Procedure

Disconnect Package Body, Process, Function, Procedure

Signal Package Body, Process, Function, Procedure

Function Body Package

Procedure Body Package

Shared Variable Process, Function, Procedure

Variable Entity, Architecture, Block, Generate, Package, Package
Body

44

The basic flow for using VHDL and synthesis to design an ASIC or complex
FPGA is shown below. Iteration around the design flow is necessary, but is
not shown here. Also, the design flow must be modified according to the kind
of device being designed and the specific application.

1 System analysis and specification

2 System partitioning

2.1 Top level block capture

2.2 Block size estimation

2.3 Initial floorplanning

3 Block level design. For each block:

3.1 Write Register Transfer Level VHDL

3.2 Synthesis coding checks

3.3 Write VHDL test bench

3.4 VHDL simulation

3.5 Write synthesis scripts - constraints, boundary conditions, hierarchy

3.6 Initial synthesis - analysis of gate count and timing

4 Chip integration. For complete chip:

4.1 Write VHDL test bench

4.2 VHDL simulation

4.3 Synthesis

4.4 Gate level simulation

5 Test generation

5.1 Modify gate level netlist for test

5.2 Generate test vectors

5.3 Simulate testable netlist

6 Place and route (or fit) chip

7 Post layout simulation and timing analysis

45

Design Flow

Defines the delay with which the drivers of a guarded signal are disconnected
from the resolution function, when the signal is assigned by a guarded signal
assignment. A driver is disconnected by assigning the signal the value null .

Syntax
disconnect SignalName, ... : TypeName
 after TimeExpression ;

Where
package-<HERE>-end
entity-is-<HERE>-begin-end
architecture-is-<HERE>-begin-end
block-<HERE>-begin-end
generate-<HERE>-begin-end

See Declaration

Rules

The list of signal names may be replaced by others or all .

Each signal must be declared as a guarded signal, and must be assigned in a
guarded signal assignment.

Synthesis
Not synthesizable.

Tips
Don't use guarded signals or disconnection!

Example
disconnect Foo: Std_logic after 10 NS;

See Also
Signal, Signal Assignment, Block, Data Type, Null

46

Disconnect

Defines the interface to an hierarchical block. An entity is used in combination
with an architecture, which together describe the behaviour or structure of an
hierarchical block of hardware (a design entity).

Syntax
entity EntityName is
 [Generic ;]
 [Port ;]
 Declarations ...
[begin

 ConcurrentStatements ...] { passive processes}
end [entity] [EntityName];

Where
See (VHDL) File

Rules
Concurrent statements within the entity must be equivalent to passive
processes, i.e. contain no signal assignments.

Synthesis
Each entity is synthesized as a separate hierarchical block, allowing you to
control the hierarchy of the synthesized netlist, although some synthesis tools
flatten the hierarchy by default.

Tips

If you need two versions of an entity with different ports, you must make two
different entities. Entities cannot be overloaded.

It is not necessary to write declarations and statements inside an entity. It is
usually clearer and simpler to put them in the architecture.

Example
library IEEE;
use IEEE.Std_logic_1164.all;
use IEEE.Numeric_std.all;

entity Counter is
 generic (N: INTEGER);
 port (Clock, Reset, Enable: in Std_logic;
 Q: buffer Std_logic_vector (N-1 downto 0));
end Counter;

See Also
Architecture, Generic, Port, Component, Instantiation

47

Entity

A data type defined by listing the values it can take. Each value is either a
name or a character. A character is one printable character enclosed in single
quotes.

Syntax
type NewName is (EnumLiteral , ...);

EnumLiteral = { either}
Identifier

'{ One printable character}'

Where
See Declaration

Rules
The same value cannot appear twice in the same type, but may appear in two
different enumeration types. This is called overloading.

Gotchas!

Characters are case sensitive, e.g. 'x' is not the same as 'X'

Don't use attributes of enumeration types with synthesis, in case the encoding
is changed during optimization.

Synthesis
A user defined enumeration type of N values synthesizes to a bus of log2N
bits. The 1st value becomes binary 0, the 2nd binary 1, the third binary 10 and
so on. Finite state machine optimization changes the encoding.

Example
type STD_ULOGIC is
 ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-');
type Opcode is (Idle, Start, Stop, Clear);

See Also
Type, Standard, Attribute Name

48

Enumeration

This is a list of the most common VHDL errors. The Top 10 account for about
40% of all errors. The Top 20 account for about 60% of all errors.

The Top 20: Errors 1-10

Missing or misplaced begin in architecture / process / subprogram

Swapping <= := and =

Missing or extra end if / end case / end loop / end process etc

Wrong quotes around characters / strings / integers

Incompatible types in assignments / operators

Missing or extra ; at end of declaration / statement

Misspelt identifier

Undefined signal / variable / constant

Missing library / use

Wrong separator , / ; / : / .

The Top 20: Errors 10-20

Missing sensitivity list / wait statement in process

Sensitivity list and wait statement in same process

Same name used twice

elseif or endif (instead of elsif and end if respectively)

Using the wrong user defined identifier

Extra / missing / mistyped character

Missing signals in sensitivity list

Mismatched vector lengths

Using a reserved identifier

Reading out ports

49

Errors

A sequential statement which jumps straight out of a loop.

Syntax
[Label :] exit [LoopLabel] [when Condition];

Where
loop-<HERE>-end loop

See Sequential Statement

Rules
The exit must be inside a loop with the given LoopLabel, or inside any loop if
there is no LoopLabel.

Example
L1: loop
 L2: for I in A'RANGE loop
 if A(I) = 'U' then

 exit L1; -- Leave outer loop L1
 end if;

 exit when I = N; -- Leave inner loop L2
 end loop L2;
 ...
end loop L1;

See Also
Next, For Loop, While Loop, Loop

50

Exit

An expression calculates a value from a set of operators, names, literal
values and sub-expressions. A static expression is an expression whose
value can be calculated during compilation or elaboration.

Syntax
{ either}
Expression Operator Expression
Operator Expression
(Expression)
Name
Number
PhysicalLiteral
Character
String
Aggregate
QualifiedExpression
New
FunctionCall

Rules

Operators are evaluated in the following order:

1st: ** abs not
2nd: * / mod rem
3rd: + - &
4th: sll srl sla sra rol ror
5th: = /= < <= > >=
6th: and or xor nand nor xnor

Example
A + B
not A
(A nand B) nor C

A(7 downto 0) -- name
'0' -- character
(others => '0') -- aggregate
To_integer(V) -- function call
T'(A, B) -- qualified expression
new T

See Also
Operator, Name, Aggregate, New, Qualified Expression

51

Expression

A file is a stream of values of a specified type which can be read or written
during simulation. Files belong to a special kind of data type called a file type.
The only files which are commonly used are text files, read or written using
package TEXTIO.

Syntax
type NewName is file of TypeName;

file NewName: DataType is [Mode] FileName ; { '87 only}
Mode = { either} in out { '87 only}

file NewName: DataType open FileKind is FileName ;

FileKind = { either} Read_mode Write_mode Append_mode

FileName = StringExpression

Where
See Declaration

Rules

The following are defined implicitly for all file types:

procedure FILE_OPEN (file F: FT;
External_name: in STRING;
Open_kind: in FILE_OPEN_KIND :=

READ_MODE);
procedure FILE_OPEN (Status : out FILE_OPEN_STATUS;

file F: FT;
External_name: in STRING;
Open_kind: in FILE_OPEN_KIND :=

READ_MODE);
procedure FILE_CLOSE (file F: FT);
procedure READ (file F: FT; VALUE: out TM);
procedure WRITE (file F: FT; VALUE: in TM);
function ENDFILE (file F: FT) return BOOLEAN;

Gotchas!

File declarations are incompatible between VHDL'87 and VHDL'93.

Files (except those written using TEXTIO) cannot necessarily be read into
another VHDL simulator, or even be read using a standard text editor!

Synthesis
Files are not synthesizable.

Tips
Always use package TEXTIO to read or write files.

52

File

Example
type T2 is file of T1;

file F: T2 is out "filename"; -- VHDL'87
file F: T2 open Write_mode is "filename" ; -- VHDL'93

See Also
TEXTIO, Type

53

VHDL source code is contained in text files. A file can contain one or many
Design Units, i.e. entities, architectures, configurations, packages, or package
bodies.

Syntax
{ A file contains one or many DesignUnits}

DesignUnit = { both}
ContextClause ...
LibraryUnit

ContextClause = { either}
Library
Use

LibraryUnit = { either}
Entity
Architecture
Configuration
Package
PackageBody

Gotchas!
Library and use definitions are not global throughout a file; they must be
repeated for every entity or package.

Tips
It is best to restrict the contents of a file to one entity and the associated
architectures, one package and the associated package body, or a set of
related configurations. This makes the VHDL source files easy to manage
and avoids unnecessary re-compilation:

Put only one entity together with its architectures in the same file.

Do not put a package in the same file as an entity.

Do not put a configuration in the same file as an entity.

An alternative approach is to put each design unit in a separate file. This
minimizes re-compilation. but there are more files to manage.

See Also
Entity, Architecture, Configuration, Package, Library, Use

54

(Vhdl) File

A data type representing an abstraction of a mathematical floating point
number. The maximum values for the range are at least +/- 1038, precision is
at least 6 decimal digits.

Syntax
type NewName is range Range;

Where
See Declaration

Rules
The lower and upper bounds of the Range must be static floating point
Expressions.

Gotchas!
The occurrence of an event on a floating point signal can be
non-deterministic. An event is a change in value, and whether a floating point
value changes depends on how it is represented in the simulator.

Synthesis
Not synthesizable.

Tips
Used for high level simulations, but cannot be used to accurately describe
floating point hardware, because it cannot model accuracy, truncation,
normalization etc.

Example
type T is range 0.0 to 1.0;

See Also
Number, Range, Type, Subtype, Integer

55

Floating

A sequential statement used to execute a set of sequential statements
repeatedly, with the loop parameter taking each of the values in the given
Range from left to right.

Syntax
[LoopLabel:] for ParameterName in Range loop
 SequentialStatements ...
end loop [LoopLabel];

Where
See Sequential Statement

Rules

The loop parameter is implicitly declared by the loop statement itself, and only
exists inside the loop.

The loop parameter is a constant (i.e. cannot be assigned).

Synthesis
Synthesis make multiple copies of the logic implied by the statements inside
the loop. Only synthesizable if the Range is static .

Example
type Opcode is (Idle, Start, Stop, Clear);
...
for I in 0 to 7 loop
 V := V xor A(I);
 for J in Opcode loop
 S <= J;
 wait for 10 NS;
 end loop;
end loop;

See Also
While Loop, Loop, Exit, Next, Range

56

For Loop

Used to group together executable, sequential statements to define new
mathematical or logical functions. Also used to define bus resolution
functions, operators, and conversion functions between data types. When
defined in a package, the function must be split into a declaration and a body.

Syntax
{ declaration}
[Kind] function FunctionName

[(ParameterDeclaration ; ...)]
return TypeName;

{ body}
[Kind] function FunctionName

[(ParameterDeclaration ; ...)]
return TypeName is

 Declarations ...
begin
 SequentialStatements ...end [function] [FunctionName];

Kind = { either} pure impure

ParameterDeclaration = { either}
constant ConstantName,... :[in] DataType [:= Expression]
signal SignalName, ... :[in] DataType [:= Expression]
file FileName , ... : DataType

Where

See Declaration

A Function Body is not allowed in a Package Declaration.

Rules

The FunctionName may be an identifier or an operator.

Functions cannot assign signals or variables defined outside themselves, nor
can then contain wait statements.

A function must execute a return statement.

Pure functions cannot have side effects - they must do nothing but return a
value.

Gotchas!

The return type must be a name; it cannot include a constraint.

Variables defined inside a function are initialized each time the function is
called.

The declaration and body must conform, i.e. the parameters and return type
must be identical between the two.

57

Function

The function declaration ends with a ";", whereas the function body has is at
the corresponding point in the syntax.

Synthesis
Each call to a function is synthesized as a separate block of combinational
logic.

Tips
Parameters may be unconstrained arrays; you can use array attributes (e.g.
'RANGE) to find their bounds.

Example
package P is

function To_Std_logic_vector (Value, Width: INTEGER)
 return Std_logic_vector;

function "+" (A, B: Std_logic_vector)
 return Std_logic_vector is
end;

package body P is

function To_Std_logic_vector (Value, Width: INTEGER)
 return Std_logic_vector is
 variable V: INTEGER := Value;
 variable Result: Std_logic_vector (1 to Width);
begin
 for I in Result'REVERSE_RANGE loop
 if V mod 2 = 1 then
 Result(I) := '1';
 else
 Result(I) := '0';
 end if;
 if V >= 0 then
 V := V / 2;
 else
 V := (V - 1) / 2;
 end if;
 end loop;
 return Result;
end To_Std_logic_vector;

58

function "+" (A, B: Std_logic_vector)
 return Std_logic_vector is
 variable LV: Std_logic_vector(A'Length-1 downto 0);
 variable RV: Std_logic_vector(B'Length-1 downto 0);
 variable Result:
 Std_logic_vector(A'Length-1 downto 0);
 variable Carry: Std_logic := '0';
begin
 LV := A;
 RV := B;
 assert A'Length = B'Length
 report "function +: operands have different widths"
 severity Failure;
 for I in Result'Reverse_range loop
 Result(I) := LV(I) xor RV(I) xor Carry;
 Carry := (LV(I) and RV(I)) or (LV(I) and Carry) or
 (RV(I) and Carry);
 end loop;
 return Result;
end "+";

end P;

See Also
Function Call, Return, Procedure, Package, Type Conversion, Operator

59

Calls a function, which returns a value for use in an expression.

Syntax
FunctionName [([Formal =>] Actual , ...)]

Formal = { either} Name FunctionCall
Actual = Expression

Where
See Expression

Rules
The two forms of syntax (ordered list or explicitly named parameters) can be
mixed, but the ordered list must come before the named parameters.

Tips
Use the parameter names rather than parameter order to improve readability
and reduce the risk of making errors.

Example
B := To_Std_logic_vector(J, 2+2);
C := IEEE.Numeric_std."+" (L => A, R => B);

 -- (Equivalent to C := A + B;)

See Also
Function, Expression, Operator, Procedure Call

60

Function Call

A concurrent statement used to create regular structures or conditional
structures during elaboration.

Syntax
Label: for ParameterName in Range generate
 [Declarations ...
begin]
 ConcurrentStatements ...
end generate [Label];

Label: if Condition generate
 [Declarations ...
begin]
 ConcurrentStatements ...
end generate [Label];

Where
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

Rules
The Range and Condition must both be static, i.e. they cannot include signals.

Gotchas!
The Label at the beginning of the generate statement cannot be omitted.

Synthesis
Synthesis is straightforward, but not all synthesis tools support generate!

Tips

For...generate is useful to replace repeated instances of the same
component.

In VHDL'87 a generate statement cannot contain declarations. To include
declarations in a generate you would have to nest a block statement.

Example
G1: for I in 1 to Depth generate

 L: BLK port map (A(I), B(I+1)); -- Repeated instance
end generate G1;

61

Generate

G2: if Option = TRUE generate

 process -- Optional process
 begin
 ...
 end process;
end generate;

See Also
Concurrent Statement, For Loop, If, Range

62

Used to parameterize a design entity. Different Instances of the same design
entity can have different values for the generic parameters. Generics are
given values in the generic map of an Instance.

Syntax
generic (GenericName, ... : DataType [:= Expression];
 ...);

Where
entity-is-<HERE>-port-end
component-<HERE>-port-end
block-<HERE>-generic map-port-begin-end

Rules

The Expression gives the default value, and must be static. Only a generic
with a default value can be omitted from the corresponding generic map.

Generics are constants; they cannot be assigned new values.

Gotchas!
The generics of an entity must be duplicated in the corresponding component,
to allow instances of the component to be configured implicitly via the default
rules.

Synthesis
Many synthesis tools support only integer generics.

Example
generic (N, M: Positive;
 Mask: Std_logic_vector := "11111111");

See Also
Generic map, Entity, Component, Port

63

Generic

Used to define the values of generics. Usually given in an Instance, but may
also appear in a configuration.

Syntax
generic map ([Formal =>] Actual , ...)

Formal = { either} Name FunctionCall
Actual = Expression

Where
Label: Component Name <HERE> port map(-);
for-use- <HERE> port map(-)
block-generic(-); <HERE> ; port-begin-end

Rules
The two forms of syntax (ordered list or explicitly named choices) can be
mixed, but the ordered list must come before the named choices.

Gotchas!
A generic map does not end with a semicolon!

Example
architecture Structure of Ent is
 component NAND2
 generic (TPLH, TPHL: TIME := 0 NS);
 port (A, B: in STD_LOGIC;
 F : out STD_LOGIC);
 end component;
begin
 G1: NAND2 generic map (1.9 NS, 2.8 NS)
 port map (N1, N2, N2);
 G2: NAND2 generic map (TPLH => 2 NS, TPHL => 3 NS)
 port map (N4, N5, N6);
end Structure;

See Also
Generic, Instantiation, Block, Configuration

64

Generic Map

A group is a named collection of items. A group template defines the kind of
items that can appear in a group (analogous to the type of a data object).
Groups have no meaning for simulation, but (like attributes) can be used to
pass information to downstream tools (e.g. synthesis).

Syntax
group TemplateName is (Class , ...);

Class = { either} label signal function group { etc} [<>]

group GroupName: TemplateName (Name, ...);

Where
See Declaration

Rules
Class <> allows a list of items at that point in the group, and must be the last
item in the group template.

Example
architecture RTL of Ent is
 group Operations is (function, label <>);
 group Adders: Operations ("+", A1, A2, A3);
begin
 A1: X <= A + B;
 A2: Y <= C + D;
 A3: Z <= E + F;
end RTL;

See Also
Attribute

65

Group

A sequential statement which executes one branch from a set of branches
dependent upon the Conditions, which are tested in sequence.

Syntax
[Label :] if Condition then
 SequentialStatements ...
[elsif Condition then
 SequentialStatements ...]

... { any number of elsif parts}
[else
 SequentialStatements ...]
end if [Label];

Where
See Sequential Statement

Gotchas!
Be careful about the spelling of elsif and end if

Synthesis

Assignments within if statements generally synthesize to multiplexers.

Incomplete assignments, where outputs remain unchanged for certain input
conditions, synthesize to transparent latches in unclocked processes, and to
recirculation in clocked processes.

In some circumstances, nested if statements synthesize to multiple logic
levels. This can be avoided by using a case statement instead.

Tips
A set of elsif branches can be used to give priority to the conditions tested
first. To decode a value without giving priority to certain conditions, use a
case statement instead.

Example
if C1 = '1' and C2 = '1' then
 V := not V;
 W := '0';
 if C3 = '0' then
 X := A;
 elsif C4 = '0' then
 X := B;
 else
 X := C;
 end if;
end if;

66

If

See Also
Case, Conditional Assignment, Generate

67

A concurrent statement used to define the design hierarchy by making a copy
of a lower level design entity within an architecture. In VHDL'93, a direct
instantiation of an entity bypasses the component and configuration.

Syntax
InstanceLabel: [component] ComponentName

[GenericMap] [PortMap];
InstanceLabel : entity EntityName [(ArchitectureName)]

[GenericMap] [PortMap];
InstanceLabel : configuration ConfigurationName

[GenericMap] [PortMap];

Where
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

Rules
An entity, architecture or configuration must be compiled into a library before
the corresponding instance can be compiled. However, an instance of a
component can be compiled before the corresponding design entity has even
been written.

Tips

EntityName (or ConfigurationName) usually takes the form of a selected
name, because the identifier is not directly visible by default (see example).

Example
G1: NAND2 generic map (1.2 NS) port map (N1, N2, N3);
G2: entity WORK.Counter(RTL) port map (Clk, Rst, Count);

See Also
Generic map, Port map, Component, Entity, Architecture, Configuration

68

Instantiation

An integer type represents a mathematical integer. The maximum values for
the range are at least +/- (231 - 1).

Syntax
type NewName is range Range;

Where
See Declaration

Rules
The lower and upper bounds of the Range must be static integer expressions.

Gotchas!

Integer types are not mutually compatible; they cannot be mixed unless
explicit Type Conversions are used.

An unconstrained INTEGER synthesizes to 32 bits, so always give a
constraint for synthesis!

Synthesis
An integer range 0 to N-1 synthesizes to a bus of width log2N bits. The value
is represented as a binary number. Negative numbers are represented in
two's complement format.

Tips
It is more convenient to create a subtype of the predefined type INTEGER
(e.g. subtype T is INTEGER range 0 to 7;) rather than defining a new integer
type.

Example
type INT is range -8 to 7;

See Also
Number, Type, Subtype, Range, Floating, Standard

69

Integer

Defines a library name. The library name is mapped to the pathname of a
directory in the host file system by the VHDL tool, not within the language.

Syntax
library LibraryName, ... ;

Where
<HERE>-entity
<HERE>-architecture
<HERE>-package
<HERE>-package body
<HERE>-configuration

See (VHDL) File

Tips
The library name WORK is implicitly defined to mean the working library, so it
is confusing to create libraries named WORK.

Example
library IEEE, Project;

See Also
(VHDL) File, Use

70

Library

A sequential statement used to execute a set of sequential statements
repeatedly.

Syntax
[LoopLabel:] loop
 SequentialStatements ...
end loop [LoopLabel];

Where
See Sequential Statement

Gotchas!
A loop is an infinite loop (and thus an error) unless it contains an exit or wait
statement.

Synthesis
Not generally synthesizable. Some tools do allow loops containing wait
statements to describe implicit finite state machines, but this is not
recommended practice.

Example
loop
 wait until Clock = '1';
 exit when Reset = '1';
 Div2 <= not Div2;
end loop;

See Also
For Loop, While Loop, Exit, Next

71

Loop

Any VHDL "thing" is identified by its name. A selected name is commonly
used to pick an item out of a library or package. An indexed name is used to
pick an individual item out of an array. A slice name is used to pick out part of
an array.

Syntax
Identifier
\ExtendedIdentifier \
"Operator"

Name. Name. ... { selected name}
Name(Expression , ...) { indexed name}
Name(Range) { slice name}
AttributeName

Rules

An identifier consists of letters, digits and underscores. The first character
must be a letter. The last character must not be an underscore, nor can a
name contain two adjacent underscores.

An extended identifier consists of any printable characters.

One name cannot have more than one meaning at any particular point in the
VHDL text, with the exception of procedures, functions and enumeration
literals, which may be overloaded. Inner declarations of names hide outer
declarations.

Gotchas!
The direction (i.e. to or downto) of the range in a slice name must be
consistent with the subtype of the thing being sliced; otherwise it is a null
range, i.e. an array of length zero.

Tips
Generally, choose names which are meaningful to the reader. However, this
is more important for global names than for local names. For example, G0123
is a bad name for a global reset signal, but I is an acceptable name for a loop
parameter.

Example
A_99_Z -- Identifier
\$%^&*()\ -- Extended identifer
"+" -- Operator
IEEE.STD_LOGIC_1164."nand" -- Selected name
RecordVariable.ElementName -- Selected name
Vector(7) -- Indexed name
Matrix(I, J, K) -- Indexed name
Vector(23 downto 16) -- Slice name
Vector(J to K) -- Slice name
Clock'EVENT -- Attribute name

72

Name

See Also
Attribute Name, Operator, Expression, Range, Array, Record

73

Used to dynamically allocate memory for an access type. Given a data type,
new allocates storage for a value of that type, and returns a pointer to that
value. Optionally, a qualified expression can be used to initialize the newly
allocated value.

Syntax
{ either}
new DataType
new QualifiedExpression

Where
See Expression

Synthesis
Not synthesizable.

Tips
Use the built in procedure DEALLOCATE(Ptr) to release memory allocated
with new .

Example
Link := new Std_logic_vector(7 downto 0);
NewPointer := new Word'(Link, "10000000");

See Also
Access, Type, Qualified Expression, Null

74

New

A sequential statement which jumps back to the top of a loop. In the case of a
for loop , the loop parameter takes the next value in its range.

Syntax
[Label :] next [LoopLabel] [when Condition];

Where
loop-<HERE>-end loop

See Sequential Statement

Rules
The next must be inside a loop with the given LoopLabel, or inside any loop if
there is no LoopLabel.

Example
L1: loop
 L2: for I in A'RANGE loop

 next when I = N; -- Jump to next iteration of inner loop L2
 if A(I) = 'U' then

 next L1; -- Jump to top of outer loop L1
 end if;
 end loop L2;
 ...
end loop L1;

See Also
Exit, For Loop, While Loop, Loop

75

Next

A sequential statement that does nothing, normally used within an if or case
statement as an explicit way to take no action under certain conditions. Also,
the value assigned to a guarded signal to mean disconnection, and the value
assigned to an access variable by the procedure DEALLOCATE(Ptr).

Syntax
[Label :] null; { sequential statement}
null { value}

Where
See Sequential Statement and Expression respectively.

Rules
The null statement is not mandatory - it is possible to leave a blank instead.

Example
case Flag is
when TRUE =>

 Q := null; -- null value
when FALSE =>

 null; -- null statement
end case;

See Also
Case, If, Access, Disconnect

76

Null

An integer or real mathematical number. The default number base is decimal.
For based integers with exponents, the BasedInteger value is multiplied by
the Base raised to the power of the Exponent.

Syntax
{ either}
Integer [. Integer][Exponent]
Base#BasedInteger [.BasedInteger]#[Exponent]

Base = Integer { decimal number between 2 and 16}
BasedInteger = { hex digits 0-9, A-F and underscores}
Exponent = E+/- Integer

Integer = { decimal digits 0-9 and underscores}

Where
See Expression

Rules

A number must not contain embedded spaces, nor can it contain adjacent
underscores.

A number with no radix point is an integer; the exponent of an integer must
not be negative.

Example
30 = 3E1 = 16#1E# = 2#11_11#e1
30.0 = 300.0e-1 = 16#1E.0# = 2#11.11#E+3

See Also
Integer, Floating, String

77

Number

Numeric_std is a new IEEE standard package which defines arithmetic
operations on arrays of Std_logic. The intent is that this package should be
supported by all synthesis tools. The package defines two new types to
represent numbers:

 type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
 type SIGNED is array (NATURAL range <>) of STD_LOGIC;

Operators overloaded on combinations of the types UNSIGNED and
NATURAL, and on combinations of the types SIGNED and INTEGER:

 "+" "-" "*" "/" "rem" "mod" ">" ">=" "<" "<=" "=" "/="

Shift operators overloaded on types UNSIGNED and SIGNED:

 "sll " "srl " "rol " "ror "

Operators overloaded on type SIGNED only:

 "abs" "-" { signs}

Logical operators overloaded on types UNSIGNED and SIGNED:

 "not" "and" "or" "nand" "nor" "xor" "xnor "

Functions to do signed and unsigned extension:

 function RESIZE (ARG: SIGNED; NEW_SIZE: NATURAL)
 return SIGNED;
 function RESIZE (ARG: UNSIGNED; NEW_SIZE: NATURAL)
 return UNSIGNED;

Type conversion functions:

 function TO_INTEGER (ARG: UNSIGNED) return NATURAL;
 function TO_INTEGER (ARG: SIGNED) return INTEGER;
 function TO_UNSIGNED(ARG, SIZE: NATURAL)

return UNSIGNED;
 function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL)

return SIGNED;

Functions which match '-' with any value, but match 'U', 'X', 'W' and 'Z' with
nothing except '-'.

 function STD_MATCH (L, R: STD_ULOGIC) return BOOLEAN;
 function STD_MATCH (L, R: UNSIGNED) return BOOLEAN;
 function STD_MATCH (L, R: SIGNED) return BOOLEAN;
 function STD_MATCH (L, R: STD_LOGIC_VECTOR)

return BOOLEAN;
 function STD_MATCH (L, R: STD_ULOGIC_VECTOR)

return BOOLEAN;

78

Numeric_Std

Functions which convert '0' and 'L' to '0', '1' and 'H' to '1', and everything else
to XMAP

 function TO_01 (S: UNSIGNED; XMAP: STD_LOGIC := '0')
return UNSIGNED;

 function TO_01 (S: SIGNED; XMAP: STD_LOGIC := '0')
return SIGNED;

See Also

Standard, Std_logic_1164

79

An operator is a logical or mathematical function which takes one or two
values and produces a single result. Operators are built into the syntax of the
language, i.e. you cannot define new operators. Operators can be redefined
(overloaded in VHDL jargon) for any types by writing new functions.

Syntax
{ 2 operands: Expression Operator Expression}

+ - * / mod rem **
= /= < <= > >=
and or xor nand nor xnor
sll srl sla sra rol ror
&

{ 1 operand: Operator Expression}

+ - abs not

Where
function "<HERE>"

See Expression

Rules

/ on integers truncates toward 0.

mod and rem give the remainder on division. A rem B has the sign of A, A
mod B has the sign of B.

A sla B replicates the rightmost bit of A, A sra B replicates the leftmost bit of
A.

A & B yields a vector whose length is the length of A + the length of B, with
the content of A on the left and B on the right.

Gotchas!

The default definitions of > >= < <= give unexpected results for vectors of
different lengths, e.g. "000" > "00" !

When the "+" operator is overloaded on type Std_logic_vector, it is usual to
make the width of the result equal to that of the widest operand, with the effect
that the result is truncated, e.g. "1" + "1" = "0" and "111" + "1" = "000".

Synthesis

The operators + - = /= < <= > >= are synthesizable as adders,
subtractors and comparators.

The operators / mod rem ** are not synthesizable in general, but may be
synthesized when used to do masks and shifts or in static expressions (e.g. A
/ 2 means shift right).

80

Operator

See Also
Expression, Function

81

A package contains common definitions that can be shared across a VHDL
design or even several designs. A package is split into a declaration and a
body. The package declaration defines the external interface to the package,
the package body typically contains the bodies of any functions or procedures
defined in the package declaration.

Syntax
{ declaration}
package PackageName is
 Declarations ...
end [package] [PackageName];

{ body}
package body PackageName is
 Declarations ...
end [package body] [PackageName];

Where
See (VHDL) File

Tips
Common, shared declarations of types, subtypes, constants, procedures,
functions and components are best put in a package.

Gotchas!

Where a function or procedure is placed in a package, the declaration and
body must conform, i.e. the parameters must be identical between the two.

Only definitions placed in the package declaration are visible outside the
package.

Example

(See Function)

library IEEE;
use IEEE.Std_logic_1164.all;

package UTILITIES is

 -- Declarations...
 subtype Byte is Std_logic_vector(7 downto 0);
 function PARITY (V: Byte) return Std_logic;
end UTILITIES;

82

Package

package body UTILITIES is

 -- Bodies...
 function PARITY (V: Byte) return Std_logic is
 variable B: Std_logic := '0';
 begin
 for I in V'RANGE loop
 B := B xor V(I);
 end loop;
 return B;
 end PARITY;
end UTILITIES;

See Also
(VHDL) File, Use, Function, Procedure, Declaration, Type, Component

83

A physical type represents an integer value together with a physical unit.

Syntax
type NewName is range Range { static integer range}
 units
 PrimaryUnitName;
 SecondaryUnitName = PhysicalLiteral ;
 SecondaryUnitName = PhysicalLiteral ;
 ... ;
 end units [NewName];

PhysicalLiteral = Number UnitName

Where
See Declaration

Synthesis
Not synthesizable.

Tips
The only commonly used physical type is TIME. You are unlikely to need to
define new physical types.

Example
type Distance is range 0 to INTEGER'HIGH
 units
 micron;
 millimetre = 1000 micron;
 centimetre = 10 millimetre;
 metre = 100 centimetre;
 end units;

See Also
Type, Integer, Range

84

Physical

A port represents a pin or a related group of pins on a hardware component,
and is defined in an entity. Technically, a port is a signal.

Syntax
port (PortName, ... : [Mode] DataType [:= Expression];
 ...);

Mode = { either} in out inout buffer linkage

Where
entity-is-generic(-);-<HERE>-begin-end
component-generic(-);-<HERE>-end
block-generic map(-);-<HERE>-port map-begin-end

Rules

In ports can only be read, out ports can only be assigned. Inout ports are
bidirectional. Buffer ports are outputs.

The Expression gives the default value for the port, and must be static. An
input port with no default value must appear in the corresponding port map.

Gotchas!

You cannot read the value of an out port within an architecture.

A buffer port cannot be connected to an in or out port of the design entity
containing the instantiation; it can be connected to a buffer of that design
entity.

Tips

Do not put ports in test bench entities.

Outputs can be out ports or buffer ports. Buffer must be used when the
value of the port is to be read inside the architecture, and out must be used
when there is more than one driver for the signal.

Linkage ports cannot be read or assigned, so are not typically used.

Example
port (Clock, Reset: in Std_logic;
 Q: buffer Std_logic_vector(7 downto 0);
 Status: out Std_logic_vector);

See Also
Entity, Component, Port Map, Block, Generic

85

Port

A port map is typically used to define the interconnection between instances
in a structural description (or netlist). A port map maps signals in an
architecture to ports on an instance within that architecture. Port maps can
also appear in a configuration or a block.

Syntax
port map ([Formal =>] Actual , ...)

Formal = { either} Name FunctionCall
Actual = { either} Name FunctionCall open

Where
Label:ComponentName generic map(-)<HERE>;
for-use-generic map(-)<HERE>;
block-port(-);<HERE>;-begin-end

Rules

The two forms of syntax (ordered list or explicitly named ports) can be mixed,
but the ordered list must come before the named ports.

Within an instance, the formals are ports on the component or entity being
instanced, the actuals are signals visible in the architecture containing the
instance.

Within a configuration, the formals are ports on the entity, the actuals are
ports on the component.

If the actual is a conversion function, this is called implicitly as values are
passed in.

If the formal is a conversion function, this is called implicitly as values are
passed out.

Tips
Use the port names rather than order to improve readability and reduce the
risk of making connection errors.

86

Port Map

Example
component COUNTER
 port (CLK, RESET: in Std_logic;

 UpDown: in Std_logic := '0'; -- default value
 Q: out Std_logic_vector(3 downto 0));
end component;
...

-- Positional association...
G1: COUNTER port map (Clk32MHz, RST, open, Count);

-- Named association (order doesn't matter)...
G2: COUNTER port map (RESET => RST,
 CLK => Clk32MHz,
 Q(3) => Q2MHz,

 Q(2) => open, -- unconnected
 Q(1 downto 0) => Cnt2,
 UpDown => open);

See Also
Port, Instantiation, Component, Block, Generic Map

87

Used to group together executable, sequential statements. A procedure has a
name and a set of parameters. The values of the parameters are passed in or
out when the procedure is called. When defined in a package, the procedure
must be split into a declaration and a body.

Syntax
{ declaration}
procedure ProcedureName [(ParameterDeclaration ; ...)];

{ body}
procedure ProcedureName [(ParameterDeclaration ; ...)] is
 Declarations ...
begin
 SequentialStatements ...
end [procedure] [ProcedureName];

ParameterDeclaration = { either}
constant ConstantName,...: [in] DataType [:= Expression]
signal SignalName, ...: [Mode] DataType [:= Expression]
variable VariableName,...: [Mode] DataType [:= Expression]
file FileName , ... : DataType

Mode = { either} in out inout

Where
See Declaration

A Procedure Body is not allowed in a Package Declaration.

Rules

Mode defaults to in . Parameters of mode in default to constant. Parameters
of mode out or inout default to variable.

The Expression gives the default value of the parameter. A parameter with no
default value must be given a value in the procedure call.

A procedure containing a signal assignment (other than to a parameter of the
procedure) must be declared inside a process.

Gotchas!

Variables defined inside a procedure are initialized each time the procedure is
called.

A procedure containing assignments to signals (other than parameters) must
be defined in a process.

The procedure declaration and body must conform, i.e. the parameters must
be identical between the two.

The procedure declaration ends with a ";", whereas the procedure body has
is at the corresponding point.

88

Procedure

Synthesis
Procedures are synthesizable, provided that they do not detect clock edges
or contain wait statements, i.e. they must not infer registers or states.

Tips
Parameters may be unconstrained arrays; you can use array attributes (e.g.
'RANGE) to find their bounds.

Example
procedure ASSIGN (signal Clock: in Std_logic;
 Values: Std_logic_vector;
 signal X, Y: out Std_logic;
 variable V, W: out Std_logic;
 PAUSE: TIME := 10 NS) is
begin
 if Clock'EVENT and Clock = '1' then
 X <= Values(0);
 Y <= Values(1);
 V := Values(2);
 W := Values(3);
 wait for PAUSE;
 end if;
end ASSIGN;
...

-- Procedure call...
ASSIGN (Clock, "0101", S1, S2, V1, V2);

See Also
Procedure Call, Function, Package, Return

89

A sequential or concurrent statement which causes a procedure to be
executed. The values of any parameters are passed in or out of the
procedure, depending on their Mode.

Syntax
[Label:] ProcedureName [([Formal =>] Actual , ...)]

Formal = { either} Name FunctionCall
Actual = Expression

Where
entity-begin-<HERE>-end { passive procedure call}
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

See Sequential Statement

Rules

Sequential statements can be labelled in VHDL'93, but not in VHDL'87.

The two forms of syntax (ordered list or explicitly named parameters) can be
mixed, but the ordered list must come before the named parameters.

Synthesis

A procedure call is synthesized by substituting the logic represented by the
procedure in place of the call. Synthesis does not treat procedures as
shareable resources.

A procedure call in a clocked process may result in registers being inferred
from signal assignments within the procedure.

Tips
Use the parameter names rather than order to improve readability and reduce
the risk of making errors.

Example
procedure Write (L: inout Line;
 Value: in Std_logic_vector;
 Justified: in Side := Right;
 Field: in Width := 0);
...
Write (Buff, A, Left, 8);
Write (Buff, C);
Write (Justified => Left, Field => 12,
 L => Buff, Value => D);

90

Procedure Call

See Also
Procedure, Function Call

91

A concurrent statement which describes behaviour. A process is itself a
concurrent statement, but it contains sequential statements that execute in
series from top to bottom. A process executes at times controlled by the
sensitivity list or by wait statements.

Syntax
[Label:] [postponed] process [(SensitivityList)] [is]
 Declarations ...
begin
 SequentialStatements ...
end [postponed] process [Label];

SensitivityList = SignalName, ...

Where
entity-begin-<HERE>-end { passive process}
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

Rules

A process must contain either a sensitivity list or wait statements, but not
both.

Every process executes once during initialization, before simulation starts.

A postponed process is not executed until the final simulation cycle of a
particular simulation time, and thus sees the stable values of signals and
variables.

Gotchas!
A process with neither a sensitivity list nor a wait will loop forever.

Synthesis
Processes are one of the most useful VHDL statements for synthesis, yet
many processes are unsynthesizable. For best results, code should be
restricted to the following process templates:

process (Inputs) -- All inputs in sensitivity list
begin

 ... -- Outputs assigned for all input conditions
 ... -- No feedback
end process; -- Gives pure combinational logic

92

Process

process (Inputs) -- All inputs in sensitivity list
begin
 if Enable = '1' then

 ... -- Latched actions
 end if;

end process; -- Gives transparent latches + logic

process (Clock) -- Clock only in sensitivity list
begin

 if Rising_edge(Clock) then -- Test clock edge only
 ... -- Synchronous actions
 end if;

end process; -- Gives flipflops + logic

process (Clock, Reset) -- Clock and reset only in sensitivity list
begin

 if Reset = '0' then -- Test active level of asynchronous reset
 ... -- Asynchronous actions
 elsif Rising_edge(Clock) then -- Test clock edge only
 ... -- Synchronous actions
 end if;

end process; -- Gives flipflops + logic

process -- No sensitivity list
begin
 wait until Rising_edge(Clock);

 ... -- Synchronous actions
end process; -- Gives flipflops + logic

Example

The following example shows a Register Transfer Level process:

Counter: process (Reset, Clock)
begin

 if Reset = '0' then -- Asynchronous reset
 Count <= (others => '0');
 elsif Rising_edge(Clock) then

 if Load = '0' then -- Synchronous load
 Count <= Data;
 else
 Count <= Count + '1';
 end if;
 end if;
end process Counter;

93

The following example shows processes used to generate vectors in a test
bench:

signal StopClock: Boolean;
signal Clk: Std_logic;
constant Period: Time := 10 NS;
subtype Int8 is Std_logic_vector(7 downto 0);
signal A, B: Int8;
type Operation is (Load, Store, Move, Halt);
signal Op: Operation;
...
ClockGenerator: process
begin
 while not StopClock loop
 Clk <= '0';
 wait for Period/2;
 Clk <= '1';
 wait for Period/2;
 end loop;
 wait;
end process ClockGenerator;

Stimulus: process
 type Table is array (Natural range <>) of Int8;
 constant Lookup: Table :=
 ("00000000", "00000001", "00000011", "00001000",
 "00001111", "10000000", "11111000", "11111111");
begin
 for L in 1 to 2 loop
 for I in Lookup'Range loop
 B <= Lookup(I);
 for J in Lookup'Range loop
 A <= Lookup(J);
 for K in Operation loop
 Op <= K;
 wait for Period;
 end loop;
 end loop;
 end loop;

 StopClock <= True; -- Flag to stop clock generator process
 end loop;
 wait;
end process Stimulus;

See Also
Concurrent Statement, Sequential Statement, Wait

94

Used to define the type of an expression where otherwise the type would be
ambiguous.

Syntax
{ either}
TypeName'(Expression)
TypeName' Aggregate

Where
See Expression

Rules
The Expression or Aggregate must be compatible with the TypeName; a
qualified expression is not a type conversion!

Tips
Use a qualified expression when the compiler gives an error indicating that
the type of an expression is ambiguous. This can occur when calling
overloaded functions and procedures (e.g. (1) and (2) below), and when
constructing aggregates (e.g. (3) and (4) below).

Example
subtype T is STD_LOGIC_VECTOR(1 to 2);
...

if U > UNSIGNED'("10000000") then -- (1)

 WRITE (L, STRING'("Hello")); -- (2)

 V := (others => T'(others => '1')); -- (3)

 case T'(A, B) is -- (4)

See Also
Aggregate, Expression, Type Conversion, TEXTIO

95

Qualified Expression

A range specifies a range of values belonging to an integer, floating, physical
or enumeration type. A static range is one whose bounds can be calculated
during compilation or elaboration.

Syntax
{ either}
Expression to Expression
Expression downto Expression

Name'RANGE {name of an array or array type}
Name'REVERSE_RANGE

DataType { enumeration or integer type}

Where
See Array, For Loop, Name, Aggregate, Case

Rules
The values of the Expressions must be consistent with the direction of the
range. E.g. 0 downto 7 is a null range, of length 0.

Tips

Any form of range can be used in a for loop or an index constraint.

Use the 'RANGE form of range in preference to Expression to Expression
where possible, as this often makes the code easier to maintain.

Example
subtype INT is INTEGER range 0 to 7;
subtype V1 is STD_LOGIC_VECTOR(INT);
subtype V2 is INTEGER range V1'REVERSE_RANGE;
...
for I in V2 range 3 downto 0 loop
 ...

See Also
Data Type, Subtype, Integer, Floating, Attribute Name

96

Range

A data type that represents a set of values of different types. Used to define
data structures. Not typically used to describe hardware, but useful for high
level modelling.

Syntax
type NewName is
 record
 ElementName, ... : DataType ;
 ... ;
 end record [NewName];

Where
See Declaration

Gotchas!
Not all synthesis tools support record types.

Synthesis

Values of a record types are synthesized as a bundle of wires, structured
according to the elements of the record.

Not all synthesis tools support records.

Tips

The values within a record can be read or written using a selected name.

Use record types together with access types to create dynamic data
structures for high level modelling.

Example
type Floating is
 record
 Sign: Bit;
 Mantissa, Exponent: Integer;
 end record;
variable A, B: Floating;
...
A.Mantissa := A.Mantissa + B.Mantissa;
B := A;

See Also
Name, Type, Access, Array

97

Record

A sequential statement which writes out a text message to the simulator log.

Syntax
[Label :] report StringExpression [severity Expression];

Where
See Sequential Statement

Rules
The severity expression must be of type Severity_level, which has the values
Note, Warning, Error, Failure. The default severity is Error.

Synthesis
Reports do not represent hardware. Synthesis tools ignore them or give a
warning.

Example
report "Simulation finished" severity Note;

See Also
Assert, TEXTIO

98

Report

This is a complete list of reserved identifiers in VHDL'87 and VHDL'93. These
reserved identifers must not be used as user defined identifiers.

abs
access
after
alias
all
and
architecture
array
assert
attribute
begin
block
body
buffer
bus
case
component
configuration
constant
disconnect
downto
else
elsif
end
entity
exit

file
for
function
generate
generic
group
guarded
if
impure
in
inertial
inout
is
label
library
linkage
literal
loop
map
mod
nand
new
next
nor
not
null

of
on
open
or
others
out
package
port
postponed
procedure
process
pure
range
record
register
reject
rem
report
return
rol
ror
select
severity
signal
shared
sla

sll
sra
srl
subtype
then
to
transport
type
unaffected
units
until
use
variable
wait
when
while
with
xnor
xor

99

Reserved Words

A sequential statement which causes execution to be returned from a
procedure or function.

Syntax
[Label :] return; { in procedure}
[Label :] return Expression ; { in function}

Where
function-begin-<HERE>-end
procedure-begin-<HERE>-end

See Sequential Statement

Rules
A function must execute a return statement that returns a value consistent
with the return type of the function.

Example
return A + B;

See Also
Function, Procedure, Expression

100

Return

A concurrent statement which assigns one of several expressions to a signal,
depending on the value of the expression at the top. Equivalent to a process
containing a case statement.

Syntax
[Label:] with Expression select
 Target <= [Options]
 Expression [after TimeExpression] when Choices ,
 Expression [after TimeExpression] when Choices ,
 ... ;

Target = { either} SignalName Aggregate

Options = { either}
guarded
transport
reject Time Expression inertial

Choices = Choice | ...

Choice = { either}
ConstantExpression
Range

others { the last choice}

Where
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

Rules

The reserved word guarded may only appear in a signal assignment within a
guarded block. A guarded assignment only executes when the guard
expression on the surrounding block is true.

Every case of the Expression at the top must be covered once and only once
by the choices.

An Expression on the right hand side may be replaced by the reserved word
unaffected .

Synthesis
Selected signal assignments are synthesized to combinational logic. The
Expressions on the right hand side are multiplexed onto the Target signal.

Tips

Conditional and selected signal assignments are a good way to describe
combinational logic in Register Transfer Level descriptions.

101

Select

Example
Mux: with S select
 F <= A when "000",
 B when "001",
 C when "010" | "011" | "100",
 D when others;

See Also
Signal Assignment, Conditional Assignment, Case, Block

102

Sequential statements execute in series, one after the other from top to
bottom, so the order in which they are written is usually critical. The following
are sequential statements:

Wait

Assert

Report

Signal Assignment

Variable Assignment

Procedure Call

If

Case

For Loop

While Loop

Loop

Next

Exit

Return

Null

Where
process-begin-<HERE>-end
function-begin-<HERE>-end
procedure-begin-<HERE>-end
if-then-<HERE>-elsif-then-<HERE>-else-<HERE>-end
case-=>-<HERE>-when-=>-<HERE>-end
loop-<HERE>-end

See Also
Concurrent Statement

103

Sequential Statement

Used to share information between processes. Intended for high level system
modelling and for instrumenting code. The rules governing their use have not
yet been standardised, so don't use them!

Syntax
shared variable VariableName , ... : DataType

[:= Expression];

Where
See Declaration

Not allowed in Process, Function or Procedure

Gotchas!
Any non-trivial use of shared variables causes non-deterministic behaviour!

Synthesis
Shared variables cannot be synthesized.

See Also
Variable, Signal

104

Shared Variable

A signal represents an electrical connection, wire or bus. Signals are used for
communication between processes.

Syntax
signal SignalName, ... : DataType [Kind] [:= Expression];

Kind = { guarded signal, either} register bus

Where
package-<HERE>-end
entity-is-<HERE>-begin-end
architecture-is-<HERE>-begin-end
block-<HERE>-begin-end
generate-<HERE>-begin-end

See Declaration

Rules

A signal can be assigned in more than one process only if it has a resolution
function.

A guarded signal can have individual drivers disconnected from the resolution
function. A register with no drivers connected retains its previous value.

The Expression gives the initial value of the signal at time zero.

Gotchas!
The initial value only initializes drivers within the scope of the signal
declaration, so drivers for the same signal in other architectures are not
initialized!

Synthesis

The initial value is ignored for synthesis, so be careful! Resolution functions
are generally ignored too.

Guarded signals are not synthesizable in general.

Tips
Guarded signals (register and bus) are obscure and are generally to be
avoided.

Example
signal A, B: Std_logic_vector(3 downto 0) := "ZZZZ";

See Also
Signal Assignment, Data Type, Disconnect, Block, Shared Variable

105

Signal

A sequential or concurrent statement which creates events on a signal.

Syntax
[Label:] { see Rules}
Target <= [Options] Expression [after TimeExpression],
 Expression [after TimeExpression],
 ... ;

Target = { either} SignalName Aggregate

Options = { either}
guarded { must be in a guarded block}
transport
reject Time Expression inertial

Where
architecture-begin-<HERE>-end
block-begin-<HERE>-end
generate-begin-<HERE>-end

See Sequential Statement

Rules

Sequential statements can be labelled in VHDL'93, but not in VHDL'87.

The default delay mode (inertial) means that pulses shorter than the delay (or
the reject period if specified) are ignored. Transport means that the
assignment acts as a pure delay line.

All delays are relative to the time when the assignment executes.

A signal assignment with no delay or zero delay will cause an event after a
delta delay, which means that the event happens only when all of the
currently active processes have finished executing (i.e. after one simulation
cycle).

A process containing one or more assignments to a signal has a driver for
that signal.

For a signal with multiple drivers, the values of all the drivers are passed to
the resolution function which calculates the value of the signal.

Assigning the value null to a guarded signal disconnects the driver from the
resolution function.

A guarded assignment only executes when the guard expression at the top of
the surrounding block is true.

Gotchas!
A signal assignment does not immediately change the value of the signal;
there is always a delay of at least one delta.

106

Signal Assignment

Synthesis

Delays are ignored for synthesis; use tool specific timing constraints instead.

The Expression on the right hand side is synthesized as combinational logic.

The Target is synthesized as a connection in a combinational processes, as a
transparent latch when incompletely assigned in a combinational process, or
as a register in a clocked process.

Tips

Multiple events can be created by one signal assignment to define test
vectors (see last example below), but it is better to use several simple signal
assignments separated by wait for statements (see Wait).

Simulation speed is dependent on the number of signal assignments
executed. To speed up simulation, use fewer signals (which often means
fewer processes and more variables), and use integer or enumeration types
instead of arrays.

Example
A <= B;
A <= B nand C;
A <= B nand C after 0.2 NS;
(Cout, Sum) <= T'(A + B + Cin);
H <= "00", "01" after 10 NS, "10" after 20 NS;

See Also
Signal, Aggregate, Expression, Block, Conditional Assignment, Select,
Disconnect, Variable Assignment

107

The package STANDARD in library STD is part of the VHDL standard.

VHDL Source Of Package
package STANDARD is
 type BOOLEAN is (FALSE, TRUE);
 type BIT is ('0', '1');
 type CHARACTER is (
 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
 BS, HT, LF, VT, FF, CR, SO, SI,
 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
 CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,
 ' ', '!', '"', '#', '$', '%', '&', ''',
 '(', ')', '*', '+', ',', '-', '.', '/',
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', ':', ';', '<', '=', '>', '?',
 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
 'X', 'Y', 'Z', '[', '\', ']', '^', '_',
 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
 'x', 'y', 'z', '{', '|', '}', '~', DEL);
 -- VHDL'93 includes all 256 ASCII characters

 type SEVERITY_LEVEL is
 (NOTE, WARNING, ERROR, FAILURE);
 type INTEGER is range implementation_defined;
 type REAL is range implementation_defined;
 type TIME is range implementation_defined
 units
 fs;
 ps = 1000 fs;
 ns = 1000 ps;
 us = 1000 ns;
 ms = 1000 us;
 sec = 1000 ms;
 min = 60 sec;
 hr = 60 min;
 end units;

 -- function that returns the current simulation time:
 function NOW return TIME; -- (VHDL'87)
 subtype DELAY_LENGTH is TIME range 0 FS to TIME'HIGH ;
 impure function NOWreturn DELAY_LENGTH;

 subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;
 subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;
 type STRING is array (POSITIVE range <>) of CHARACTER;

108

Standard

 type BIT_VECTOR is array (NATURAL range <>) of BIT;

 type FILE_OPEN_KIND is
 (READ_MODE, WRITE_MODE, MODE);
 type FILE_OPEN_STATUS is
 (OPEN_OK, STATUS_ERROR, NAME_ERROR, MODE_ERROR);

 attribute FOREIGN: STRING;
end STANDARD;

Tips

The attribute FOREIGN can be attached to a procedure, function or
architecture to indicate that it is defined in a language other than VHDL
(usually C).

Generally it is better to use the types Std_logic and Std_logic_vector rather
than Bit and Bit_vector.

See Also

TEXTIO, Std_logic_1164, Package

109

Std_logic_1164 is a VHDL package in the library IEEE. It is the IEEE
standard for describing digital logic values in VHDL. It defines type Std_logic
to represent a single bit of digital information, and Std_logic_vector to
represent a bus. It also contains VHDL functions for these types to resolve
tristate bus conflicts, functions to define logical operators, and conversions
functions to and from other standard data types. Significantly, it does not
contain any arithmetic or comparison operators, or any conversion functions
to and from integer types. These are usually found in packages from
synthesis tool vendors, or in the new IEEE 1076.3 standard package
NUMERIC_STD.

VHDL Source Of Package
package Std_logic_1164 is

 type Std_ulogic is ('U', -- Uninitialized
'X', -- Forcing Unknown
'0', -- Forcing 0
'1', -- Forcing 1
'Z', -- High Impedance
'W', -- Weak Unknown
'L', -- Weak 0
'H', -- Weak 1
'-'); -- Don't care

 type Std_ulogic_vector is
 array (NATURAL range <>) of Std_ulogic;

 function Resolved (S: Std_ulogic_vector)
 return Std_ulogic;

 subtype Std_logic is Resolved Std_ulogic;

 type Std_logic_vector is
 array (NATURAL range <>) of Std_logic;

 subtype X01 is Resolved Std_ulogic range 'X' to '1';
 subtype X01Z is Resolved Std_ulogic range 'X' to 'Z';
 subtype UX01 is Resolved Std_ulogic range 'U' to '1';
 subtype UX01Z is Resolved Std_ulogic range 'U' to 'Z';

 function "and" (L, R: Std_ulogic) return UX01;
 function "nand" (L, R: Std_ulogic) return UX01;
 function "or" (L, R: Std_ulogic) return UX01;
 function "nor" (L, R: Std_ulogic) return UX01;
 function "xor" (L, R: Std_ulogic) return UX01;
 function "xnor" (L, R: Std_ulogic) return UX01;
 function "not" (L: Std_ulogic) return UX01;
 function "and" (L, R: Std_logic_vector)
 return Std_logic_vector;
 function "and" (L, R: Std_ulogic_vector)

110

Std_Logic_1164

 return Std_ulogic_vector;
 function "nand" (L, R: Std_logic_vector)
 return Std_logic_vector;
 function "nand" (L, R: Std_ulogic_vector)
 return Std_ulogic_vector;
 function "or" (L, R: Std_logic_vector)
 return Std_logic_vector;
 function "or" (L, R: Std_ulogic_vector)
 return Std_ulogic_vector;
 function "nor" (L, R: Std_logic_vector)
 return Std_logic_vector;
 function "nor" (L, R: Std_ulogic_vector)
 return Std_ulogic_vector;
 function "xor" (L, R: Std_logic_vector)
 return Std_logic_vector;
 function "xor" (L, R: Std_ulogic_vector)
 return Std_ulogic_vector;
 function "xnor" (L, R: Std_logic_vector)

return Std_logic_vector ;
 function "xnor" (L, R: Std_ulogic_vector)

return Std_ulogic_vector ;
 function "not" (L: Std_logic_vector)
 return Std_logic_vector;
 function "not" (L: Std_ulogic_vector)
 return Std_ulogic_vector;

 function To_Bit (S: Std_ulogic; Xmap: BIT := '0')
 return BIT;
 function To_Bitvector (S: Std_logic_vector;
 Xmap: BIT:='0')
 return BIT_VECTOR;
 function To_Bitvector (S: Std_ulogic_vector;
 Xmap: BIT:='0')
 return BIT_VECTOR;
 function To_StdULogic (B: BIT)
 return Std_ulogic;
 function To_StdLogicVector (B: BIT_VECTOR)
 return Std_logic_vector;
 function To_StdLogicVector (S: Std_ulogic_vector)
 return Std_logic_vector;
 function To_StdULogicVector(B: BIT_VECTOR)
 return Std_ulogic_vector;
 function To_StdULogicVector(S: Std_logic_vector)
 return Std_ulogic_vector;
 function To_X01 (S: Std_logic_vector)
 return Std_logic_vector;
 function To_X01 (S: Std_ulogic_vector)
 return Std_ulogic_vector;
 function To_X01 (S: Std_ulogic)

111

 return X01;
 function To_X01 (B: BIT_VECTOR)
 return Std_logic_vector;
 function To_X01 (B: BIT_VECTOR)
 return Std_ulogic_vector;
 function To_X01 (B: BIT)
 return X01;
 function To_X01Z (S: Std_logic_vector)
 return Std_logic_vector;
 function To_X01Z (S: Std_ulogic_vector)
 return Std_ulogic_vector;
 function To_X01Z (S: Std_ulogic)
 return X01Z;
 function To_X01Z (B: BIT_VECTOR)
 return Std_logic_vector;
 function To_X01Z (B: BIT_VECTOR)
 return Std_ulogic_vector;
 function To_X01Z (B: BIT)
 return X01Z;
 function To_UX01 (S: Std_logic_vector)
 return Std_logic_vector;
 function To_UX01 (S: Std_ulogic_vector)
 return Std_ulogic_vector;
 function To_UX01 (S: Std_ulogic)
 return UX01;
 function To_UX01 (B: BIT_VECTOR)
 return Std_logic_vector;
 function To_UX01 (B: BIT_VECTOR)
 return Std_ulogic_vector;
 function To_UX01 (B: BIT)
 return UX01;

 function Rising_edge (signal S: Std_ulogic)
 return BOOLEAN;
 function Falling_edge (signal S: Std_ulogic)
 return BOOLEAN;

 function Is_X (S: Std_ulogic_vector) return BOOLEAN;
 function Is_X (S: Std_logic_vector) return BOOLEAN;
 function Is_X (S: Std_ulogic) return BOOLEAN;
end Std_logic_1164;

Gotchas!

Rising_edge and Falling_edge are the best way to detect clock edges, but not
all synthesis tools support these functions! The alternative to
Rising_edge(Clock) is to use the expression:
Clock'EVENT and Clock = '1'

112

The don't care value '-' is intended to be used as an output don't care, not an
input don't care. A comparison like A = '-' will be false unless A is literally '-' !

Tips

The IEEE standard data types are Std_logic and Std_logic_vector, which are
resolved subtypes, so can be used for signals with more than one driver (i.e.
tristate busses). The types Std_ulogic and Std_ulogic_vector are unresolved
types, so signals with these types can have only one driver. It is a good idea
to use types Std_ulogic and Std_ulogic_vector for signals that are intended to
have just one driver (i.e. most signals in a design!), since if two outputs are
inadvertently wired together, this will be immediately reported as an error by
the simulator. However, Std_ulogic and Std_ulogic_vector are not the
standard types, so their use might not be supported by some tools.

See Also
Standard, Numeric_std, Package

113

A string is a value for a one-dimensional array of characters. A string of '0's
and '1's may be written in octal or hexadecimal instead of binary. String is
also the name of a type defined in package Standard.

Syntax
"{ any string of printable characters}"
B" BitValue " { binary}
O"BitValue " { octal}
X" BitValue " { hexadecimal}

BitValue = { hex digits 0-9, A-F and underscores}

Where
See Expression

Gotchas!

A value of type Std_logic_vector may be written as a string with an explicit
number base in VHDL'93, but must be written without a number base in
VHDL'87.

Underscores are only ignored if the string has an explicit number base.

Other values such as 'X' or 'Z' are not allowed if the string has an explicit
number base.

Strings are case sensitive, e.g. "xxxx" is not the same as "XXXX".

Example
"Hello"
"0000XXXX"
B"0000_0101"
X"FFFF"

See Also
Number, Enumeration, Standard

114

String

A subtype declaration is used to give an explicit name to a subtype, which is
itself a type plus a constraint. The constraint is used to restrict the values that
a data object can take during simulation or synthesis. An anonymous subtype
occurs when a DataType with a constraint is used directly without declaring a
named subtype.

Syntax
subtype NewName is DataType ;

Where
See Declaration

Rules

A subtype is compatible with its base type, and shares the same operations
as its base type.

An array type can only be constrained once, whereas with an integer or
enumeration type you can create subtypes of subtypes ad infinitum.

Example
subtype Std_logic is Resolved Std_ulogic;
subtype MyBit is Std_logic range '0' to '1';
subtype ShortVector is Std_logic_vector(1 downto 0);

See Also
Type, Data Type, Range

115

Subtype

TEXTIO is a VHDL package which allows the reading and writing of ASCII
text files from VHDL. TEXTIO is part of the IEEE 1076 standard, and is in the
library STD.

VHDL Source Of Package
package TEXTIO is

 -- Type definitions for Text I/O
 type LINE is access STRING;

 -- a LINE is a pointer to a STRING value
 type TEXT is file of STRING;

 -- a file of variable-length ASCII records
 type SIDE is (RIGHT, LEFT);

 -- for justifying output data within fields
 subtype WIDTH is NATURAL;

 -- for specifying widths of output fields

 -- Standard Text Files (VHDL'87 version is similar)
 file INPUT: TEXT open READ_MODE is "STD_INPUT";
 file OUTPUT: TEXT open WRITE_MODE is "STD_OUTPUT";

 -- Input Routines for Standard Types
 procedure READLINE (variable f: in TEXT;
 L: inout LINE);
 procedure READ (L: inout LINE; VALUE: out BIT;
 GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BIT);
 procedure READ (L: inout LINE; VALUE: out BIT_VECTOR;
 GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BIT_VECTOR);
 procedure READ (L: inout LINE; VALUE: out BOOLEAN;
 GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out CHARACTER;
 GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out CHARACTER);
 procedure READ (L: inout LINE; VALUE: out INTEGER;
 GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out INTEGER);
 procedure READ (L: inout LINE; VALUE: out REAL;
 GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out REAL);
 procedure READ (L: inout LINE; VALUE: out STRING;
 GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out STRING);
 procedure READ (L: inout LINE; VALUE: out TIME;
 GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out TIME);

116

Textio

 -- Output Routines for Standard Types
 procedure WRITELINE (F: out TEXT; L: inout LINE);
 procedure WRITE (L: inout LINE;
 VALUE : in BIT;
 JUSTIFIED: in SIDE := RIGHT;
 FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in BIT_VECTOR;
 JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;
 JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in CHARACTER;
 JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in INTEGER;
 JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in REAL;
 JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0;
 DIGITS: in NATURAL := 0);
 procedure WRITE (L: inout LINE; VALUE: in STRING;
 JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in TIME;
 JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0;
 UNIT: in TIME := ns);

-- function ENDFILE(F: in TEXT) return BOOLEAN;

-- ENDFILE is implicitly declared for all file types
end TEXTIO;

Rules

READ skips leading white space except when reading types CHARACTER
and STRING.

The FIELD parameter to WRITE gives the minimum field width.

Gotchas!

The READ and WRITE procedures are only defined for types in package
STANDARD, not for user defined types.

The function ENDLINE (as defined in the VHDL'87 standard) is not legal
VHDL, so cannot be used!

To WRITE a text string, a qualified expression must be used,
e.g. WRITE (L, STRING'("Hello World!"));

Tips

For a line that is being read, L'LENGTH = 0 when the end of the line has been
reached.

In VHDL'95, the attributes 'IMAGE and 'VALUE are useful for writing and
reading non-standard data types.

117

Example
-- Writing a text file
signal A, B, G: Bit_vector(3 downto 0);
...
Monitor: process
 use STD.TEXTIO.all;

 file F: TEXT is out "test.txt"; -- VHDL'87
 file F: TEXT open WRITE_MODEis "test.txt" ;
 variable L: LINE;
begin

 -- Strobe the signals...
 wait until Rising_edge(Clock);
 wait for Settling_time;

 WRITE (L, NOW, Left, 10); -- NOW = current simulation time
 WRITE (L, A, Right, 5);
 WRITE (L, B, Right, 5);
 WRITE (L, G, Right, 5);

 WRITELINE (F, L);
end process;

-- Reading a text file
signal A, B: BIT_VECTOR(3 downto 0);
...
Stimulus: process
 use STD.TEXTIO.all;

 file F: TEXT is in "vectors.txt"; -- VHDL'87
 file F: TEXT open READ_MODEis "vectors.txt" ;
 variable L: LINE;
 variable TimeWhen: TIME;
 variable Avalue, Bvalue: BIT_VECTOR(3 downto 0);
begin
 while not ENDFILE(F) loop
 READLINE (F, L);
 READ (L, TimeWhen);
 READ (L, Avalue);
 READ (L, Bvalue);

 wait for TimeWhen-NOW; -- Wait until an absolute time
 A <= Avalue;
 B <= Bvalue;
 end loop;
 wait;
end process;

See Also
File, Report, Standard, Attribute Name

118

All signals, variables, constants (i.e. objects) and expressions have a type.
The type defines the set of values that the object or expression can have. A
type also determines the set of operations (operators, functions and
procedures) which can be performed on that object or expression.

There are eight kinds of type:

Access

Array

Enumeration

File

Floating

Integer

Physical

Record

Rules

A value of one type cannot be assigned to an object of a different type.

The initial value of an object is the leftmost value of the type, i.e. the value on
the left of the base enumeration, floating, integer or physical type.

Tips
Types are often best defined in packages, which contain common, shared
definitions.

See Also
Subtype, Data Type, Package

119

Type

Used to convert between two closely related types. Such type conversions
are implicitly defined by the language. Closely related types are either
numbers (i.e. integer or floating point types), or two array types with similar
definitions.

Syntax
TypeName (Expression)

Where
See Expression

Rules
TypeName must be the name of an integer, floating or array type.

Gotchas!
Type conversions are only defined implicitly for closely related types. For
other types, you must write explicit conversion functions.

Example
signal I: Integer;
signal R: Real;
...
R <= Real(I) * 2.0;
...
type Std_logic_vector is
 array (Natural range <>) of Std_logic;
type Unsigned is
 array (Natural range <>) of Std_logic;
-- Std_logic_vector and Unsigned are closely related

signal S: Std_logic_vector(7 downto 0);
signal U: Unsigned(7 downto 0);
...
S <= Std_logic_vector(U);
U <= Unsigned(S);

See Also
Function, Type, Integer, Floating, Array, Qualified Expression

120

Type Conversion

Makes names defined in a library or package directly visible within another
region of VHDL code. Typically written either at the top of an entity, giving
access to common definitions from a package, or at the top of a configuration,
giving access to the entities and architectures from a library.

Syntax
use SelectedName , ... ;

SelectedName = { typically one of}
LibraryName.PackageName.ItemName
LibraryName.PackageName.all
LibraryName.ItemName
LibraryName.all

Where
See Declaration, (VHDL) File, Configuration

Rules
If two uses attempt to make the same name visible from different places, then
neither is visible. Similarly, a name made visible by a use will be hidden by a
local definition of the same name.

Gotchas!
use Lib.Pack.TypeName; does not make enumeration literals, operators or
implicit declarations visible!

Tips
If two uses cancel each other out, the hidden item can be referenced using its
selected name (e.g. Lib.Pack.Item).

Example
use IEEE.Std_logic_1164.all; -- The contents of the package
use WORK.Arith_Ops; -- The package name only
use CMOS_TECH.all; -- All the entities in the library

See Also
Library, (VHDL) File, Package, Name

121

Use

A variable stores a value within a process.

Syntax
variable VariableName, ... : DataType [:= Expression];

Where
process-<HERE>-begin-end
function-is-<HERE>-begin-end
procedure-is-<HERE>-begin-end

See Declaration

Rules
The expression gives the initial value of the variable. A variable declared in a
process is initialized once during elaboration. A variable declared in a function
or procedure is re-initialized on each call.

Gotchas!
A variable cannot be declared in an architecture; you must use a shared
variable or signal to communicate between processes.

Synthesis

A variable represents either a wire or a register, depending on whether the
value is stored between clock cycles.

Do not use a variable to store a value between executions of an unclocked
process, because simulation and synthesis will inevitably give different
results!

The initial value is ignored for synthesis, so be careful!

Example
variable V, W: INTEGER range 0 to 7 := 7;

See Also
Variable Assignment, Shared Variable, Signal

122

Variable

A sequential statement which changes the value stored in a variable. A
variable assignment has no delay.

Syntax
[Label :] Target := Expression ;

Target = { either} VariableName Aggregate

Where
See Sequential Statement

Synthesis

The Expression on the right hand side is synthesized as combinational logic.

The Target is synthesized to a wire, a latch or a flipflop depending on whether
the value is stored between clock cycles:
process
 variable V, W: Std_logic;
begin
 wait until Clock = '1';

 V := A nand W; -- a nand gate

 V := V nor B; -- a nor gate

 W := D; -- a flipflop

 S <= V; -- a flipflop

end process;

Example
V := V + 1;
(V, W) := X;

See Also
Variable, Shared Variable, Signal Assignment, Expression

123

Variable Assignment

The new features of VHDL'93 are listed below; topic references are given in
brackets:

Consistent statement bracketing (Entity, Architecture, Configuration,
Package, Component, Procedure, Function, Process, Generate, If, Case,
Loop, Record)

Direct instantiation of entities and configurations, avoiding components
(Instantiation)

Opening, closing and appending to files (File)

Shared variables (Shared variable)

New attributes, including 'IMAGE and 'PATH_NAME (Attribute name)

Report statement for writing messages (Report)

New shift, rotate and xnor operators (Operator)

Generalized hex and octal bit string literals (String)

Unaffected value in conditional signal assignments (Conditional Assignment,
Select)

Variable pulse rejection for inertial delay (Signal assignment)

Postponed processes which execute in the last delta of a simulation time
(Process)

Pure and impure functions (Function)

Declarations within generate statements (Generate)

Generalized aliasing, such that anything can be aliased (Alias)

Groups, typically used to pass information to synthesis tools (Group)

Labels on sequential statements (Sequential Statement)

Extended identifiers, allowing any printable character in a name (Name)

124

Vhdl 93

A sequential statement which waits for an event on a signal in the sensitivity
list, for a Condition to become true, or for a timeout.

Syntax
[Label :] wait [on SensitivityList] [until Condition]
 [for TimeExpression];

SensitivityList = SignalName, ...

Where
See Sequential Statement

Rules

When an event occurs on a signal in the sensitivity list, the Condition is
checked. If True, the process resumes. In any case, the process resumes
after the TimeExpression has elapsed.

If the on part is omitted, a sensitivity list is built from the signals within the
Condition.

Gotchas!
Wait until is edge triggered; the Condition is only tested when an event
occurs on a signal in the wait statement. Thus, wait until Now = 1 US;
would wait forever!

Synthesis

Wait for , wait on and wait; are not synthesizable.

Wait until is synthesizable only when used to synchronize a process to a
clock edge, e.g. wait until Clock = '1'; (see Process).

Tips
The wait for and wait; statements are particularly useful for defining test
vectors, as shown in the example below. The wait; at the end of the process
is necessary to stop the process looping.

Example

(See Process)

-- Generating Test Vectors:

125

Wait

constant Period: TIME := 25 NS;
...
Stimulus: process
begin
 A <= "0000";
 B <= "0000";
 wait for Period;
 A <= "1111";
 wait for Period;
 B <= "1111";
 wait for Period;
 wait;
end process;

See Also
Process

126

A sequential statement. The statements inside the while loop are executed
repeatedly while the condition is True.

Syntax
[LoopLabel:] while Condition loop
 SequentialStatements ...
end loop [LoopLabel];

Where
See Sequential Statement

Rules
The Condition is tested at the start of the loop and once after each iteration,
but not during the execution of the Statements.

Synthesis
Not generally synthesizable. Some tools do allow while loops containing
wait statements to describe implicit finite state machines, but this is not
recommended practice.

Example
while Going loop
 Count := Count + 1;
 wait until Clock = '1';
end loop;

(See Access, Process, TEXTIO)

See Also
For Loop, Loop, Exit, Next

127

While Loop

128

129

Access 12

Active
Attribute Name 21

Actual
Generic Map 64
Port Map 86
Function Call 60
Procedure Call 90

Aggregate 14

After
Signal Assignment 106

Alias 15

All
Use 121
Attribute 20
Configuration 35
Disconnect 46

And
Operator 80

Anonymous Subtype
Subtype 115

Architecture 16

Array 18
Ascending

Attribute Name 21

Assert 19

Attribute 20

Attribute Name 21
Base

Attribute Name 21
Number 77

Based Literal
Number 77

Binary
Number 77
String 114

Bit
Standard 108

Bit String Literal
String 114

Bit_Vector
Standard 108

Block 25

Body
Package 82
Architecture 16

Boolean
Standard 108

Buffer
Port 85

Bus
Signal 105

Call
Function Call 60
Procedure Call 90

Case 27
Character

Enumeration 48
Standard 108
String 114

Choice
Aggregate 14
Case 27

Clock
Process 92
Coding Standards 29
Variable 122

Close
File 52

Coding Standards 29

Combinational Logic
Process 92
Coding Standards 29

Component 31

Composite
Array 18
Record 97

Concatenation
Operator 80

Concurrent Signal Assignment
Signal Assignment 106

Concurrent Statement 32

Condition
If 66
Assert 19
Wait 125
While Loop 127

Conditional Assignment 33
Configuration 35

Index

Configuration Specification 39

Constant 41
Constrained Array

Array 18

Constraint
Data Type 42
Subtype 115

Constraint Violation
Data Type 42

Context Clause
(Vhdl) File 54
Library 70
Use 121

Conversion Function
Std_Logic_1164 110
Numeric_Std 78

Type Conversion 120
Function 57

Data Type 42

Declaration 43

Declarative Region
Declaration 43

Decimal
Number 77

Delay
Signal Assignment 106
Wait 125

Delayed
Attribute Name 21

Delta
Signal Assignment 106
Attribute Name 21

Design Entity
Entity 47

Design Flow 45

Design Unit
(Vhdl) File 54

Disconnect 46

Don't Care
Std_Logic_1164 110
Numeric_Std 78

Driver
Signal 105
Signal Assignment 106
Disconnect 46

Data Type 42
Std_Logic_1164 110
Attribute Name 21

Driving
Attribute Name 21

Elaboration
Component 31
Configuration 35
Expression 51
Generate 61

Else
If 66

Elsif
If 66

Endfile
File 52
Textio 116

Entity 47
Enumeration 48

Errors 49

Event
Signal Assignment 106
Wait 125
Attribute Name 21
Floating 55

Examples
Architecture 16
Configuration 35
Function 57
Package 82
Process 92
Textio 116

Exit 50

Exponent
Number 77

Expression 51

Extended Identifier
Name 72

Falling_Edge
Std_Logic_1164 110

File 52

(Vhdl) File 54

Finite State Machine
Enumeration 48
Loop 71
While Loop 127

Index

Coding Standards 29

Flipflop
Signal 105
Variable 122
Signal Assignment 106
Variable Assignment 123
Procedure Call 90
Process 92

Coding Standards 29

Floating 55

For
Configuration 35
For Loop 56
Wait 125

For Loop 56

Foreign
Standard 108

Formal
Generic Map 64
Port Map 86
Function Call 60
Procedure Call 90

Function 57

Function Call 60

Generate 61

Generic 63

Generic Map 64
Group 65

Guarded
Block 25
Signal 105
Signal Assignment 106

Hexadecimal
Number 77
String 114

High
Attribute Name 21

Identifer
Name 72

If 66

Image
Attribute Name 21
Textio 116

Impure
Function 57

In
Port 85

Incomplete Assignment
If 66
Case 27
Signal Assignment 106
Coding Standards 29

Incomplete Type
Access 12

Indexed Name
Name 72
Array 18

Index Constraint
Data Type 42

Inertial
Signal Assignment 106

Initialization
Process 92
Type 119
Signal 105
Variable 122
Procedure 88
Function 57
Coding Standards 29

Inout
Port 85

Input
Textio 116

Instantiation 68

Instance_Name
Attribute Name 21

Integer 69

Integer Literal
Number 77

Last_Active
Attribute Name 21

Last_Event
Attribute Name 21

Last_Value
Attribute Name 21

Latch
Process 92
Coding Standards 29

Index

Left
Attribute Name 21

Length
Attribute Name 21

Library 70

Library Unit
(Vhdl) File 54

Line
Textio 116

Linkage
Port 85

Literal
Number 77
Enumeration 48
String 114
Physical 84
Expression 51

Loop 71
Low

Attribute Name 21

Mod
Operator 80

Mode
Port 85
Procedure 88
File 52

Name 72

Nand
Operator 80

Natural
Standard 108

New 74

Next 75

Nor
Operator 80

Now
Standard 108
Textio 116

Null 76
Number 77

Numeric_Std 78

Object
Type 119
Constant 41
Signal 105

Variable 122
File 52

Octal
Number 77
String 114

Open
Port Map 86
File 52
Standard 108

Operator 80

Or
Operator 80

Others
Case 27
Aggregate 14
Attribute 20
Configuration 35
Disconnect 46
Array 18

Out
Port 85

Output
Textio 116

Overloading
Name 72
Operator 80
Enumeration 48

Package 82

Package Body
Package 82

Parameter
Function 57
Procedure 88
Loop 71
Generate 61

Passive Process
Entity 47
Process 92
Procedure Call 90

Path_Name
Attribute Name 21

Physical 84

Physical Literal
Physical 84

Pitfalls
Coding Standards 29

Index

Port 85

Port Map 86
Port Type Conversion

Port Map 86

Pos
Attribute Name 21

Positive
Standard 108

Postponed
Process 92

Precedence
Expression 51

Pred
Attribute Name 21

Procedure 88

Procedure Call 90

Process 92
Pure

Function 57

Qualified Expression 95

Quiet
Attribute Name 21

Range 96
Range Constraint

Data Type 42

Read
Textio 116
File 52

Real
Floating 55
Standard 108

Record 97

Register
Signal 105
Variable 122
Signal Assignment 106
Variable Assignment 123
Procedure Call 90
Process 92

Coding Standards 29

Register Transfer Level
Conditional Assignment 33
Process 92
Block 25

Coding Standards 29
Design Flow 45

Reject
Signal Assignment 106

Rem
Operator 80

Report 98
Reserved Words 99

Reset
Process 92
Coding Standards 29

Resolution Function
Data Type 42
Signal 105
Disconnect 46
Function 57
Std_Logic_1164 110

Return 100
Reverse_Range

Attribute Name 21

Right
Attribute Name 21

Rising_Edge
Std_Logic_1164 110
Process 92

Rol
Operator 80

Ror
Operator 80

Select 101

Selected Name
Name 72
Record 97
Use 121

Sensitivity List
Process 92
Wait 125
Coding Standards 29

Sequential Statement 103

Severity
Assert 19
Standard 108

Shared Variable 104

Signal 105

Signal Assignment 106

Index

Signature
Alias 15
Attribute 20
Name 72

Signed
Numeric_Std 78

Simple_Name
Attribute Name 21

Simulation Cycle
Signal Assignment 106
Process 92

Slice Name
Name 72
Array 18

Sla
Operator 80

Sll
Operator 80

Speed Of Simulation
Signal Assignment 106

Sra
Operator 80

Srl
Operator 80

Stable
Attribute Name 21

Standard 108

Static
Expression 51
Range 96

Std
Standard 108

Std_Logic
Std_Logic_1164 110

Std_Logic_1164 110

Std_Match
Numeric_Std 78

String 114

Subprogram
Procedure 88
Function 57

Subtype 115

Subtype Indication
Data Type 42

Succ
Attribute Name 21

Target
Signal Assignment 106
Variable Assignment 123
Conditional Assignment 33
Select 101

Test Bench
Process 92
Textio 116
Port 85
Configuration 35
Design Flow 45

Textio 116

Time
Physical 84
Standard 108
Attribute Name 21
Wait 125
Signal Assignment 106

To_Integer
Numeric_Std 78

Transaction
Attribute Name 21

Transport
Signal Assignment 106

Type 119

Type Conversion 120

Unaffected
Conditional Assignment 33
Select 101

Unconstrained Array
Array 18

Units
Physical 84

Unsigned
Numeric_Std 78

Until
Wait 125

Use 121
Val

Attribute Name 21

Value
Attribute Name 21
Textio 116

Variable 122

Index

Variable Assignment 123

Vhdl 93 124
Visibility

Name 72
Use 121
Package 82
Port Map 86

Wait 125

When
Case 27
Conditional Assignment 33
Select 101

While Loop 127
With

Select 101

Work
Library 70

Write
Textio 116
File 52

Xor
Operator 80

Xnor
Operator 80

Index

