
APPLICATION NOTE

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 1 of 52

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

1. Summary
This document describes the procedure to be followed when performing CAN communication using
the M16C/6N, M16C/1N, M16C/29, or R8C/22,23 group of microcomputers.

2. Application
This document applies to the M16C/6N, M16C/1N, M16C/29, or R8C/22,23 group of microcomputers
(hereafter referred to respectively as 6N, 1N, 29, or R8C/22,23).
The 6N group is further divided into six subgroups: 6N4, 6N5, 6NK, 6NL, 6NM, and 6NN. The 6N5,
6NL, 6NN, 1N, 29, and R8C/22,23 have only CAN0, so that the descriptions relating to CAN1 do not
apply to these groups.

1. Summary.. 1
2. Application... 1
3. Initial Settings.. 2

3.1 CAN Bit Timing ... 3
3.1.1 Bit Timing Conditions ... 4

3.2 How to Synchronize Bits .. 5
3.3 Baud Rate .. 7
3.4 Setting CAN Bit Timing and Baud rate ... 9

4. Transmitting/Receiving CAN Messages ... 10
4.1 CAN Configuration ..11
4.2 Message Transmission... 12

4.2.1 Data Frame Transmit Mode ... 13
4.2.2 Remote Frame Receive/Data Frame Transmit Mode.. 17
4.2.3 Abort Transmission .. 20

4.3 Receiving Messages .. 25
4.3.1 Data Frame Receive Mode .. 26
4.3.2 Remote Frame Transmit/Data Frame Receive Mode.. 32

4.4 CAN Overrun Error... 33
4.5 Basic CAN Mode.. 34

5. CAN Errors... 36
5.1 CAN Error Confirmation Procedure.. 37
5.2 Return from Bus-off Function ... 39

6. Using the Acceptance Filter... 40
6.1 Acceptance Filter (ACP)... 40
6.2 Acceptance Filter Support Unit (ASU).. 43

6.2.1 Using the Acceptance Filter Support Unit .. 43
7. CAN Sleep and CAN Wakeup Operations... 47

7.1 CAN Sleep Operation... 47
7.2 CAN Wakeup Operation... 48

8. Precautions Regarding the Sample Program .. 49
8.1 Symbol Notation of Each Register ... 49
8.2 while Infinite Loop... 49

9. Web Site and Support Center .. 50

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 2 of 52

3. Initial Settings
Before CAN communication can be performed, following settings must be made:
• CAN operation mode setting
• Baud rate setting
• Sampling count setting (Sampling counts are set to 1)
• Bit timing setting
• Acceptance filter setting

Furthermore, following programs must be created according to the system used:
• Program for finishing transmission by a CAN transmit-completed interrupt
• Program for finishing transmission by polling
• Program for finishing reception by a CAN receive-completed interrupt
• Program for finishing reception by polling
• Program for handling a CAN error interrupt
• Program for handling a CAN wakeup interrupt

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 3 of 52

3.1 CAN Bit Timing
In the CAN protocol, each bit in a communication frame is composed with four segments.
Figure 1 shows the segment composition of a bit and the sampling point in it.
Of these segments, the Propagation Time Segment (hereafter PTS), Phase Buffer Segment 1 (here-
after PBS1), and Phase Buffer Segment 2 (hereafter PBS2) are used to specify a sampling point, so
that the timing with which each bit is sampled can be altered by changing the values of these seg-
ments.
The minimum unit in which this timing is set is referred to as Time Quantum (hereafter Tq), which
is determined by the clock frequency supplied to the CAN module and the divide-by-N value of the
baud rate prescaler.

Figure 1 Segment composition of a bit and the sampling point

(1) SS: Synchronization Segment

This segment is used to synchronize bits by monitoring a recessive-to-dominant edge during the
Interframe Space*1.

(2) PTS: Propagation Time Segment
This segment absorbs physical delays on the CAN network. A physical delay on the network is
two times the sum total of a bus delay, input comparator delay, and output driver delay.

(3) PBS1, PBS2: Phase Buffer Segment 1, Phase Buffer Segment 2
These segments are used to correct a phase error*2 that occurs when bits are resynchronized.

(4) SJW: Resynchronization Jump Width
This is the maximum width by which bits gotten out of sync due to a phase error are corrected.

*1: Interframe Space

Comprised of Intermission, Suspend Transmission, and Bus Idle. During bus idle, all nodes can start transmission.
*2: Phase Error

Refers to out-of-sync caused by a drift in the oscillator frequency, etc. For details, refer to paragraph (2) in Section 3.2.

SS PTS PBS1 PBS2

SS PTS PBS1 PBS2

SS PTS PBS1 PBS2

1 bit
Sampling point

The sampling point can be advanced by reducing PTS + PBS1 and increasing PBS2.

The sampling point can be delayed by increasing PTS + PBS1 and reducing PBS2.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 4 of 52

3.1.1 Bit Timing Conditions
The following describes how each segment is set and the limitations that apply to the segment set-
ting.

(1) Each segment setting
• SS = Fixed to 1 Tq
• PTS = Set in the range 1 to 8 Tq's.
• PBS1 = Set in the range 2 to 8 Tq's.
• PBS2 = Set in the range 2 to 8 Tq's.
• SJW = Set in the range 1 to 4 Tq's.
• SS + PTS + PBS1 + PBS2 = 8 to 25 Tq's

(2) Limitations on PBS1 and PBS2
• PBS1 ≥ PBS2
• PBS1 ≥ SJW
• PBS2 ≥ 2 when SJW = 1
• PBS2 ≥ SJW when 2 ≤ SJW ≤ 4

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 5 of 52

3.2 How to Synchronize Bits
The communication method of CAN protocol is Non-Return to Zero (NRZ). No synchronizing signals
are added to the beginning or end of each bit.

(1) Hardware synchronization (synchronization achieved when not sending or receiving messages)

When a recessive-to-dominant edge is detected in the interframe space, that point of time is rec-
ognized as the beginning of a bit (SS), based on which bits are synchronized. This is referred to
as hardware synchronization.
Figure 2 shows the mechanism of hardware synchronization.

Figure 2 Mechanism of hardware synchronization

When a recessive-to-dominant edge occurs here

“R”

“D”

“R”

“D”

SS PTS PBS1 PBS2

PTS PBS1 PBS2

“R” : Recessive
“D” : Dominant

SS

This point in time is assumed to be the beginning of a bit (SS)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 6 of 52

(2) Resynchronization (synchronization achieved when sending or receiving messages)

While sending or receiving a message, communication frames between some nodes may get out of
sync due to a drift in the oscillator frequency or a delay in the transmission path. This is referred
to as a phase error. If a bit gets out of sync, the length of the bit is dynamically corrected by add-
ing the SJW value (or the SJW value if gotten out of sync more than the SJW value) to PBS1 or
subtracting from PBS2. This is referred to as resynchronization.
Resynchronization is achieved by synchronizing bits with respect to only recessive-to-dominant
edges as in the case of hardware synchronization.
Figure 3 and Figure 4 show the mechanism of resynchronization.

Figure 3 Resynchronization mechanism: when the R → D edge occurs in either the PTS or the PBS1 period
(example for SJW = 2)

Figure 4 Resynchronization mechanism: when the R → D edge occurs in the PBS2 period
(example for SJW = 2)

SS

When a recessive-to-dominant edge occurs here

“R”

“D”

SS PBS1 PBS2

“R” : Recessive
“D” : Dominant

“R”

SS PBS1 PBS2

Synchronized by adding a length equal to SJW to PBS1

Out of sync by 2 Tq's
Extended by a maximum of 2 Tq's

“D”

SS

PTS

PTS

SS

When a recessive-to-dominant edge occurs here

“R”

“D”

SS PTS PBS1 PBS2

“R” : Recessive
“D” : Dominant

“R”

SS PTS PBS1 PBS2

Synchronized by subtracting a length equal to SJW from PBS2

SS

Out of sync by 2 Tq's, reduced by a maximum of 2 Tq's

“D”

PBS2

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 7 of 52

3.3 Baud Rate
The transfer speed is determined by f1, the divide-by-N value of the CAN module system clock, the
divide-by-N value of the baud rate prescaler, and the number of Tq's in one bit.
Figure 5 shows a block diagram of the circuit that generates the CAN module system clock.
Table 1 shows a baud rate calculation formula and an example implementation. Table 2 shows an
example of how to set the bit timing.

Figure 5 Block diagram of the circuit that generates the CAN module system clock

Table 1 Baud rate calculation formula and example implementation

Baud rate
calculation formula

f1

2 × fCAN divide-by-N value*1 × baud rate prescaler divide-by-N value*2 × number of Tq's in one bit

Baud rate 24MHz*3 20MHz*4 16MHz 10MHz 8MHz

1Mbps 12Tq (1) 10Tq (1) 8Tq (1) - -

500kbps 12Tq (2)
 24Tq (1)

 10Tq (2)
 20Tq (1)

 8Tq (2)
 16Tq (1)

 10Tq (1)
 -

 8Tq (1)
 -

125kbps
 12Tq (8)
 16Tq (6)
 24Tq (4)

 10Tq (8)
 20Tq (4)
 -

 8Tq (8)
 16Tq (4)
 -

 10Tq (4)
 20Tq (2)
 -

 8Tq (4)
 16Tq (2)
 -

83.3kbps
 12Tq (12)
 16Tq (9)
 24Tq (6)

 10Tq (12)
 20Tq (6)
 -

 8Tq (12)
 16Tq (6)
 -

 10Tq (6)
 20Tq (3)
 -

 8Tq (6)
 16Tq (3)
 -

33.3kbps 10Tq (30)
 20Tq (15)

 10Tq (30)
 20Tq (15)

 8Tq (30)
 16Tq (15)

 10Tq (15)
 -

 8Tq (15)
 -

*1: fCAN divide-by-N value = 1, 2, 4, 8, 16
fCAN divide-by-N value: one that is selected by the CCLKR register.

*2: Baud rate prescaler divide-by-N value = P + 1 (P = 0-15)
P: value selected by the BRP bits in the CiCONR register (i = 0 or 1).

*3: The 6NK, 6NL, 6NM, and 6NN groups apply
*4: The 1N group does not apply.
*5: Shown in () are the fCAN divide-by-N value X baud rate prescaler divide-by-N value

fCANCLK
1/2

fCAN : CAN module system clock
P : Value selected by the BRP bits in the CiCONR register, P = 0 to 15, i = 0 or 1
fCANCLK : CAN communication clock, fCANCLK = fCAN / 2 (P + 1)

f1
Baud rate pre-

scaler
Divide-by-N value: P + 1

CAN module sys-
tem clock divider
Divide-by-N value:

1, 2, 4, 8, 16

Not divided

Divided by 16

fCAN

CCLKR register CAN module

Prescaler

Divided by 8
Divided by 4
Divided by 2

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 8 of 52

Table 2 Example settings of bit timing

Set value (Tq)
1 bit

SS PTS PBS1 PBS2 SJW
Sample point*1(%)

1 1 3 3 1 62.50 8Tq
1 3 2 2 1 75.00

10Tq 1 3 3 3 1 70.00
 1 5 2 2 1 80.00

16Tq 1 5 5 5 1 68.75
 1 7 4 4 1 75.00

20Tq 1 7 6 6 1 70.00
 1 5 7 7 1 65.00

*1: Sampling point (for the case where sampling point=75%)

SS PTS PBS1 PBS2

Sampling point

75%

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 9 of 52

3.4 Setting CAN Bit Timing and Baud rate
Figure 6 shows the procedure for setting the CAN bit timing and the baud rate.
These settings must always be performed during CAN configuration.
For details about the CAN configuration procedure, refer to Section 4.1.

Figure 6 Procedure for setting the CAN bit timing and the baud rate

Clear protect register

Set CAN clock divide-by-N value

Set protect register

Prescaler divide-by-N value
Sampling count
Set PTS, PBS1, PBS2 and SJW

START

END

void set_bitrate_can0(void);
void set_bitrate_can0(){

prc0 = 1; /* Enable write to CAN clock select register */

cclkr & = ~0x0F; /* Clear CAN clock select register */
cclkr | = 0x01; /* CAN0 clock = f1/2 */

prc0 = 0; /* Disable write to CAN clock select register */

c0conr_addr.b.brp = 0; /* Prescaler divide-by-N value = 1; */
c0conr_addr.b.sam = 0; /* Sampled once */
c0conr_addr.b.pts = 0; /* Propagation time segment = 1 Tq */
c0conr_addr.b.pbs1 = 3;/* Phase buffer segment 1 = 4 Tq */
c0conr_addr.b.pbs2 = 3;/* Phase buffer segment 2 = 4 Tq */
c0conr_addr.b.sjw = 0; /* Resyncronization jump width = 1 Tq */

}

Setting of

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 10 of 52

4. Transmitting/Receiving CAN Messages
CAN messages are transmitted / received following the three procedures described below.

(1) CAN configuration procedure

Set each relevant register during reset/initialization mode*1. These include the CAN control reg-
ister, CAN bus timing control register, CAN clock select register, and mask register.

*1: The CAN message control register, CAN interrupt control register, and CAN extended ID register are automatically cleared

when the CAN module goes from operating mode to reset/initialization mode. Note that these registers cannot be set during
reset/initialization mode. Restore the CAN module to operating mode before setting these registers.

(2) Slot configuration procedure

To place any slot in transmit or receive mode, use the CAN message control register that is pro-
vided for each slot.
Table 3 shows the relationship between settings of the CAN message control register and the slot
operation in transmit/receive modes.

(3) Data processing procedure

Perform message processing when the CAN module has finished sending or receiving a message
normally.

Table 3 Relationship between CAN message control register settings and transmit/receive modes

C0MCTL/C1MCTL
bit7

TrmReq
bit6

RecReq
bit5

Remote
bit4

RspLock

Slot operation in transmit/receive modes

0 0 - - Do not send or receive frames.
0 1 0 0 Receive a data frame (data frame receive mode)
1 0 1 0 Send a remote frame and when finished sending, receive a data

frame. (Remote frame transmit/data frame receive mode)
1 0 0 0 Send a data frame (data frame transmit mode)
0 1 1 1/0*1 Receive a remote frame and when finished receiving, send a data

frame. (Remote frame receive/data frame transmit mode)
*1RspLock:
0: Send a data frame after receiving a remote frame as an automatic re-

sponse.
1: Stand by without sending a data frame after receiving a remote frame.

Clearing this bit causes the slot to send a data frame.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 11 of 52

4.1 CAN Configuration
Figure 7 shows the CAN configuration procedure.

Figure 7 CAN configuration procedure

Enter CAN reset/initialization mode*1

Exit CAN sleep mode

Enable CAN ports*2

Loopback mode select bit
Message order select bit
Basic CAN mode select bit
Bus error interrupt enable bit
Timestamp prescaler

START

END

void config_can0(void);

void config_can0(){

c0ctlr_addr.b.reset = 1; /* Enter CAN configuration mode */

c0ctlr_addr.b.sleep = 0; /* Exit CAN sleep mode */

while(! c0str_addr.b.state_reset){} /* Confirm reset state */

c0ctlr_addr.b.porten = 1; /* Enable CAN ports */

c0ctlr_addr.b.loopback = 0;

c0ctlr_addr.b.msgorder = 1;

c0ctlr_addr.b.basiccan = 1;

c0ctlr_addr.b.buserren = 0;

c0ctlr_addr.b.tsprescale = 0;

set_bitrate_can0(); /* Set baud rate */

set_mask_can0(); /* Set mask register */

c0ctlr_addr.b.reset = 0; /* Enter operation mode */

while(c0str_addr.b.state_reset){} /* Confirm operation mode */

}

Set CAN control register

CAN reset mode?*1

Set CAN bus timing and
baud rate

Set mask register

Go to CAN operation mode*1

CAN operation mode?*1

NO

YES

NO

YES

*1: If the CAN module is placed in reset/initialization mode while it is sending a frame, the CAN module is not reset until
after it finishes sending the frame. Always be sure to check the reset state flag. Similarly, be sure to check the reset
state flag when placing the CAN module into operating mode. When checking the reset state flag, make sure there is 3
fcan or more of waiting time before the flag is checked, to ensure that the CPU access will not overlap the CAN status
updating cycle.

*2: Make sure the direction registers of the CRx ports are set for input.

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 12 of 52

4.2 Message Transmission
There are following two modes of message transmission:
• Data frame transmit mode
• Remote frame receive/data frame transmit mode

(1) Data frame transmit mode

If any slot is placed in data frame transmit mode, the data frame set in that slot can be trans-
mitted.

(2) Remote frame receive/data frame transmit mode

If any slot is placed in remote frame receive/data frame transmit mode, the data set in that slot
can be automatically transmitted after receiving a remote frame that has the same ID as set in
the slot. In this case, the number of data bytes to be transmitted is determined by the DLC value
in the received remote frame.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 13 of 52

4.2.1 Data Frame Transmit Mode
(1) Transmit procedure

When any slot is placed in data frame transmit mode, the data frame set in that slot can be
transmitted.
If two or more slots are placed in data frame transmit mode at the same time, the data frames in
those slots are transmitted in order of slot numbers, beginning with the smallest.
Figure 8 shows the data frame transmit procedure.

Figure 8 Data frame transmit procedure

Clear CAN0 message control
register*1

START

END

typedef struct{
unsigned short id; /* Standard ID */
unsigned char dlc; /* Data length code */
unsigned char data[8]; /* Data */

}can_std_data_def;
void set_trm_std_dataframe_can0(unsigned short, can_std_data_def*);
void set_trm_std_dataframe_can0(

unsigned short in_slot,
can_std_data_def *in_trm_data)

{
unsigned char lp_dlc; /* Loop variable when storing data */
while(c0mctl[in_slot].transmit.trmactive){}

/* Check transmit ready state */

while(c0mctl[in_slot].byte ! = 0x00){
/* Check CAN0 message control register */

c0mctl[in_slot].byte = 0x00;
/* Clear CAN0 message control register */

}

c0icr_addr.word &= ~(0x0001<<in_slot);
/* Set CAN0 interrupt control register */

c0idr_addr.word &= ~(0x0001<<in_slot);
/* Set CAN0 extended ID register */

c0slot[in_slot].ba.sidh = ((in_trm_data->id)>>6) & 0x1F;
/* Set SID10-6 */

c0slot[in_slot].ba.sidl = (in_trm_data->id) & 0x3F; /* Set SID5-0 */
c0slot[in_slot].ba.dlc = in_trm_data->dlc; /* Set DLC */
for(lp_dlc=0; lp_dlc<(in_trm_data->dlc); ++lp_dlc){ /* Set data */

c0slot[in_slot].ba.data[lp_dlc] = in_trm_data->data[lp_dlc];
}
c0mctl[in_slot].byte = 0x80; /* Place slot in data frame transmit mode */

}

Ready to send?
NO

YES

CAN0 message control
register cleared?*1

NO

YES

Set CAN0 interrupt control register

Set CAN0 extended ID register

Store transmit message in slot

Place slot into data frame transmit
mode

*1: The CAN0 Message Control Register must be cleared temporarily before any slot can be newly set for message
transmission after it finished sending a data frame normally. Always be sure to follow the procedure shown here.

The slot starts sending data frame

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 14 of 52

(2) Procedure for confirming that transmission has terminated successfully

There are two methods to confirm that any slot has finished sending a message successfully. One
method does this by polling, and the other by means of an interrupt.

• When confirming by polling
Whether a slot has finished sending a message successfully, can be confirmed by polling the CAN
message control register.
Figure 9 shows the procedure for confirming by polling that a slot has finished sending a mes-
sage successfully.

Figure 9 Procedure for confirming that transmission terminated successfully (by polling)

START

END

void check_trm_std_dataframe_can0(unsigned short);
void check_trm_std_dataframe_can0(unsigned short in_slot){

while(c0mctl [in_slot].transmit.sentdata ! =1) {}

}

Finished sending
successfully?

NO

YES

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 15 of 52

• When confirming by a CAN successful transmission interrupt

To use a CAN successful transmission interrupt for confirmation, enable the CAN successful
transmission interrupt control register and then set the corresponding bit for each slot in the
CAN interrupt control register to 1. This CAN interrupt control register is used in common for
both CAN successful transmission and CAN successful reception interrupts. The CAN interrupt
control register is automatically cleared when the CAN module goes to reset/initialization mode.
Note that this register cannot be set during reset/initialization mode, and can only be set while
the CAN module is in operating mode.
Figure 10 and Figure 11 show the procedure for setting the CAN successful transmission inter-
rupt control register. Figure 12 shows the procedure for using a CAN successful transmission in-
terrupt to confirm whether a slot has finished sending a message successfully.

Figure 10 Procedure for setting the CAN0 successful transmission interrupt control register

Figure 11 Procedure for setting the CAN1 successful transmission interrupt control register

Clear interrupt enable flag

Set interrupt priority level

Set interrupt enable flag

START

END

void enable_c0trmint(unsigned char);
void enable_c0trmint(unsigned char in_lvl){

asm("FCLR I"); /* Disable interrupts */ *1

c0trmic_addr.byte = in_lvl;
asm("NOP"); *1/*2

asm("NOP"); *1/*2

asm("FSET I"); /* Enable interrupts */ *1

}

*1: asm() is an inline assemble description of the C compiler for the M16C family, NC30.
*2: The objective of two NOP instructions preceding one FSET instruction is to prevent the interrupt enable flag (I flag)

from being set before a write to the interrupt control register for reasons of the instruction queue.

(When setting the CAN0 successful transmission interrupt control register)

Clear interrupt enable flag

Set interrupt source select register

Set interrupt priority level

START

END

void enable_c1trmint(unsigned char);
void enable c1trmint(unsigned char in_lvl){

asm("FCLR I"); /* Disable interrupts */ *1

c1trmic_addr.byte = 0x00;
ifsr16 = 0; /* Select the source of interrupt */
ifsr00 = 0;

c1trmic_addr.byte = in_lvl;
asm("NOP"); *1/*2

asm("NOP"); *1/*2

asm("FSET I"); /* Enable interrupts */ *1

}

*1: asm() is an inline assemble description of the C compiler for the M16C family, NC30.
*2: The objective of two NOP instructions preceding one FSET instruction is to prevent the interrupt enable flag (I flag)

from being set before a write to the interrupt control register for reasons of the instruction queue.

Set interrupt enable flag

(When setting the CAN1 successful transmission interrupt control register)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 16 of 52

Figure 12 Procedure for confirming that a successful transmission
(by a CAN successful transmission interrupt)

Check the slot that finished sending
successfully

CAN successful transmission
interrupt routine START

#pragma INTERRUPT fnc_c0trmic
void fnc_c0trmic(void);
void fnc_c0trmic(){

 if(c0mctl [0].transmit.sentdata = = 1){
/* Confirm that slot 0 finished sending successfully */

/* Place here a user program after a successful transmission */
 }
 if(c0mctl [1].transmit.sentdata = = 1){

/* Confirm that slot 1 finished sending successfully */
/* Place here a user program after a successful transmission */

 }
}CAN successful transmission

interrupt routine END

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 17 of 52

4.2.2 Remote Frame Receive/Data Frame Transmit Mode
When any slot is placed in remote frame receive/data frame transmit mode, the data set in that slot
can be automatically transmitted after receiving a remote frame that has the same ID as set in the
slot*1. In this case, the number of data bytes to be transmitted is determined by the DLC value in
the received remote frame.
In remote frame receive/data frame transmit mode, it is possible to select whether or not to auto-
matically respond to a received remote frame by setting the transmission/reception auto response
lock mode select bit in the CAN message control register. (0: automatically respond; 1: not auto-
matically respond.)
When selected to automatically respond, the slot automatically starts sending a data frame after
receiving a remote frame. When selected not to automatically respond, set this bit to 0, and the slot
will start sending a data frame after receiving a remote frame.
Figure 13 and Figure 14 show the remote frame receive/data frame transmit procedure.

*1: When operating in Basic CAN mode, slots 14 and 15 cannot be placed in remote frame receive/data frame transmit mode. For

details, refer to Section 4.5.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 18 of 52

Figure 13 Remote frame receive/data frame transmit procedure
(for automatically responding to a received remote frame)

Clear CAN0 message control
register*2

START*1

END

typedef struct{
unsigned short id; /* Standard ID */
unsigned char data[8]; /* Data */

}can_rec_std_remote_def;

void set_rec_std_remoteframe_can0(unsigned short, can_rec_std_remote_def*);
void set_rec_std_remoteframe_can0

 (unsigned short in_slot, can_rec_std_remote_def *in_rec_remote)
{

unsigned char lp_data;
while(c0mctl[in_slot].byte ! = 0x00){

/* Check CAN0 message control register */
c0mctl[in_slot].byte = 0x00;

/* Clear CAN0 message control register */
}

c0icr_addr.word &= ~(0x0001<<in_slot);
 /* Set CAN0 interrupt control register */

c0idr_addr.word &= ~(0x0001<<in_slot);
 /* Set CAN0 extended ID register */

c0slot[in_slot].ba.sidh = ((in_rec_remote->id)>>6) & 0x1F;
/* Set SID10-6 */

c0slot[in_slot].ba.sidl = (in_rec_remote->id) & 0x3F;
/* Set SID5-0 */

for(lp_data=0; lp_data<8; ++lp_data){ /* Set data */
c0slot[in_slot].ba.data[lp_data] =

 in_rec_remote->data[lp_data];
}
asm("FCLR I"); *3/*4

c0mctl [in_slot].byte = 0x70; *5

c0mctl [in_slot].byte = 0x60
/* Set CAN0 message control register */

asm("FSET I"); *3/*4

}

CAN0 message control
register cleared?*2

NO

YES

Place slot in remote frame receive/
data frame transmit mode*2

Set CAN0 extended ID register

After receiving a remote frame, the slot
automatically starts sending a data frame

*1: Before making these transmission settings, confirm that there are no transmit or receive requests flagged for the slot.
*2: The CAN0 message control register must be cleared temporarily before any slot can be newly set for message

transmission after it finished sending a data frame successfully. Always be sure to follow the procedure shown here.
*3: Make sure that no interrupts will be generated here.
*4: asm() is an inline assemble description of the C compiler for the M16C family, NC30.
*5: Due to optimization by the compiler, processing for the assignment of 70 16 may be eliminated. After compiling,

confirm that 7016 assignment processing has been executed.

Set CAN0 interrupt control register
Interrupts unused

Store ID to receive and transmit data
in slot

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 19 of 52

Figure 14 Remote frame receive/data frame transmit procedure
(when not automatically responding to a received remote frame)

Place slot in remote frame receive/
data frame transmit mode

START*1

END

typedef struct{
unsigned short id; /* Standard ID */
unsigned cha data[8]; /* Data */

}can_rec_std_remote_def;
void set_rec_std_remoteframe_can0(unsigned short, can_rec_std_remote_def*);
void set_rec_std_remoteframe_can0(

unsigned short in_slot,
can_rec_std_remote_def *in_rec_remote)

{

unsigned char lp_data;
while(c0mctl[in_slot].byte ! = 0x00){

/* Check CAN0 message control register */
 c0mctl[in_slot].byte = 0x00;

/* Clear CAN0 message control register */
}

c0icr_addr.word &= ~(0x0001<<in_slot);
/* Set CAN0 interrupt control register */

0idr_addr.word &= ~(0x0001<<in_slot);
/* Set CAN0 extended ID register */

c0slot[in_slot].ba.sidh = ((in_rec_remote->id)>>6) & 0x1F;
/* Set SID10-6 */

c0slot[in_slot].ba.sidl = (in_rec_remote->id) & 0x3F;
/* Set SID5-0 */

cc0mctl [in_slot].byte = 0x70;/* Set CAN0 message control register */

while(c0mctl[in_slot].receive.remactive){}
/* Confirm that the slot finished receiving remote frame successfully */

/* Set data */
for(lp_data=0; lp_data<c0slot[in_slot].ba.dlc; ++lp_data){
 c0slot[in_slot].ba.data[lp_data] = in_rec_remote->data[lp_data];
}

c0mctl[in_slot].receive.rsplock = 0;

}

CAN0 message control
register cleared?*2

NO

YES

Finished receiving remote
frame successfully?*3

NO

YES

Clear auto response lock mode
select bit

Store transmit data in slot

The slot starts sending a data frame

*1: Before making these transmission settings, confirm that there are no transmit or receive requests flagged for the slot.
*2: The CAN0 message control register must be cleared temporarily before any slot can be newly set for message

transmission after it finished sending a data frame successfully. Always be sure to follow the procedure shown here.
*3: A CAN successful reception interrupt may be used to confirm that the slot has finished receiving a remote frame.

Set CAN0 interrupt control register
Interrupts unused

Set CAN0 extended ID register

Store ID to receive and transmit data
in slot

Clear CAN0 message control
register*2

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 20 of 52

4.2.3 Abort Transmission
If two or more nodes started sending messages at the same time, the nodes whose messages have
lower priority than the other may be lost in arbitration and abort the transmission. (They will re-
send messages after the node whose message won the arbitration has finished sending.) Any nodes
will not be able to finish sending a message successfully unless they win the arbitration, so that
they will perpetually repeat a retransmission and cannot send a new message. To solve this problem,
the CAN module has a function to cancel the message being retransmitted, which is referred to as
the transmission abort function. This function may prove effective when it is desired to set a limit
time for one message transmitted or there is an urgent high priority message to be transmitted.
Figure 15 shows an example application of the transmission abort function.
Abort transmission is executed by clearing the CAN message control register.

(1) Conditions under which a transmission abort request is effective
• When the node has been sending a data frame or a remote frame

Abort transmission is effective only when the transmit slot setting bit in the CAN message con-
trol register = 1.

• When the node has been sending a data frame after receiving a remote frame
Abort transmission is effective only when the receive slot setting bit in the CAN message control
register = 1.

(2) Conditions under which abort transmission is executed
• When the message lost in arbitration (see Figure 16 and Figure 17).
• When an error occurred during message transmission (see Figure 16 and Figure 17).

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 21 of 52

Figure 15 Example application of the transmission abort function

(1) When it is desired to set a limit time for message transmission
It is possible to set a limit time for message transmission by requesting abort transmission a specified time after
the node has started sending a message.

While
receiving

Message
transmission Error frame Retransmission of

message Reception

ReceptionTransmission of
message 1

Transmission of
message 2

Error Lost in arbitration

Abort transmission
requestTransmit request

Limit time

(2) When it is desired to send a high priority message
If abort transmission is executed while the node is sending a message, the message being transmitted is
discarded when it loses in arbitration or an error in it is detected, allowing the node to send a high priority
message.

Lost in arbitration

Abort transmission request + transmit request for high priority message 2

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 22 of 52

Figure 16 Abort transmission while sending a remote frame or data frame

When lost in arbitration

Message on the bus

Transmit message of its own node

CiMCTLj register TrmReq bit

CiMCTLj register TrmActive bit

When an error occurs

Message on the bus

Transmit message of its own node

CiMCTLj register TrmReq bit

When abortion of transmission has no effect (In case of a successful transmit)

Message on the bus

Transmit message of its own node

CiMCTLj register TrmReq bit

CiMCTLj register TrmActive bit

CiMCTLj register TrmActive bit

R or D

R or D

Another node started sending at the same time

Lost in arbitration

Transmit request Abort transmission request

Abort transmission completed

R or D E

Error occurred

R or D E

“1”

“0”

“1”

“0”

Transmit request Abort transmission request

Abort transmission completed

“1”

“0”

“1”

“0”

R or D

R or D

Transmit request Abort transmission request

Abort transmission has no effect (a successful transmission)

“1”

“0”

“1”

“0”

R: Remote frame
D: Data frame
E: Error frame

i = 0, 1
j = 0 to 15

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 23 of 52

Figure 17 Abort transmission while sending a data frame after receiving a remote frame

When lost in arbitration

Message on the bus

Transmit message of its own

CiMCTLj register RecReq bit

CiMCTLj register TrmActive bit

When an error occurs

Message on the bus

Transmit message its own node

CiMCTLj register RecReq bit

When abort transmission has no effect (In case of a successful transmission)

Message on the bus

Transmit message of its own node

CiMCTLj register RecReq bit

CiMCTLj register TrmActive bit

CiMCTLj register TrmActive bit

D

Another node started sending at the same time

Lost in arbitration

Receive request Abort transmission request

Abort transmission completed

Error occurred

“1”

“0”

“1”

“0”

Receive request Abort transmission request

Abort transmission completed

“1”

“0”

“1”

“0”

R

Receive request Abort transmission request

Abort transmission has no effect (a successful transmission)

“1”

“0”

“1”

“0”

R: Remote frame
D: Data frame
E: Error frame

R D E

R D E

D

R D

R D

i = 0, 1
j = 0 to 15

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 24 of 52

(3) Abort transmission procedure

Figure 18 shows the procedure for abort transmission.

Figure 18 Abort transmission procedure

Request abort transmission

START

END

typedef struct{
unsigned short id; /* Standard ID */
unsigned char dlc; /* Data length code */
unsigned char data[8]; /* Data */

}can_std_data_def;
void abort_trm_can0(unsigned short, can_std_data_def*);
void abort_trm_can0(

unsigned short in_slot, /* Slot from which to send */
can_std_data_def *in_trm_data)

/* Message to be sent after abortion */
{

if(c0mctl[in_slot].transmit.trmreq
|| c0mctl[in_slot].receive.recreq){

c0mctl[in_slot].byte = 0; /* Transmission abort request */

while(c0mctl[in_slot].transmit.trmactive){}
/* Confirm completion of transmission */

}

set_trm_std_dataframe_can0(in_slot, in_trm_data);
/* Send a message */

}

Transmit requested?

Send high priority message

YES

Being transmitted?

NO

YES

NO

A
bo

rt
tra

ns
m

is
si

on
 re

qu
es

ts
 u

nn
ec

es
sa

ry

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 25 of 52

4.3 Receiving Messages
The CAN module has 16 slots per channel, of which unless the acceptance filter is used, the received
message is stored in the slot with the smallest slot number of those that have been set for reception.
If the acceptance filter is used, it is possible to select the message to receive. For details about the
acceptance filter, refer to Section 6.
There are following two modes of message reception.
• Data frame receive mode
• Remote frame transmit/data frame receive mode

(1) Data frame receive mode

If any slot is placed in data frame receive mode, the data frame that has the same ID as set in
that slot can be received.

(2) Remote frame transmit/data frame receive mode

If any slot is placed in remote frame transmit/data frame receive mode, after a remote frame
with its ID and DLC set in that slot is sent, the data frame that has the same ID as transmitted
can be automatically received.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 26 of 52

4.3.1 Data Frame Receive Mode
(1) Reception setup procedure

If the CAN module has been set to receive data frames with the same ID in two or more slots, the
received message is always stored in the slot with the smallest slot number.
Figure 19 shows the procedure for setting up the CAN module to receive data frames.

Figure 19 Procedure for setting up to receive data frames

Clear CAN0 message control register*2

START*1

END

void set_rec_std_dataframe_can0(unsigned short,
unsigned short);
void set_rec_std_dataframe_can0(

unsigned short in_slot,
unsigned short in_sid)

{

while(c0mctl[in_slot].byte ! = 0x00){
/* Check CAN0 message control register */

c0mctl[in_slot].byte = 0x00;
/* Clear CAN0 message control register */

}

c0icr_addr.word &= ~(0x0001<<in_slot);
/* Set CAN0 interrupt control register */

c0idr_addr.word &= ~(0x0001<<in_slot);
/* Set CAN0 extended ID register */

c0slot[in_slot].ba.sidh = (in_sid>>6) & 0x1F;/* Set SID10-6 */
c0slot[in_slot].ba.sidl = in_sid & 0x3F; /* Set SID5-0 */

c0mctl[in_slot].byte = 0x40;
/* Place slot in data frame receive mode */

}

CAN0 message control
register cleared?*2

NO

YES

Set CAN0 extended ID register

*1: Before making these receive settings, confirm that there are no transmit or receive requests flagged for the slot.
*2: The CAN0 message control register must be cleared temporarily before any slot can be newly set for message reception

after it finished sending a data frame successfully. Always be sure to follow the procedure shown here.

Set CAN0 interrupt control register
Interrupts unused

Store ID to receive in slot

Place slot in data frame receive mode*2

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 27 of 52

(2) Procedure for processing the received message

Figure 20 shows the procedure for processing the received message.
If any slot has finished receiving another message after it finished receiving successfully nor-
mally, the slot will be overwritten with the new message received. For details, refer to Section 4.4.
Therefore, after the software has finished reading the received message out of the slot, it is nec-
essary to confirm that the slot has not been overwritten during readout.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 28 of 52

Figure 20 Procedure for processing the received message

Clear overwrite flag

START

END

typedef struct{
unsigned short id; /* Standard ID */
unsigned char dlc; /* Data length code */
unsigned char data[8]; /* Data */

}can_std_data_def;
void get_message_can0(unsigned short, can_std_data_def *);
void get_message_can0(

unsigned short in_slot,
can_std_data_def *in_rec_data)

{
unsigned char lp_dlc;

while(1){
/* Confirm completion of reception */
while(c0mctl[in_slot].receive.invaldata){}

c0mctl[in_slot].receive.newdata = 0;

/* Check for overrun error */
if(c0mctl[in_slot].receive.msglost){

 c0mctl[in_slot].receive.msglost = 0;

 lost_message_can0(in_slot);
/* Place a user program for overrun generation */

}

/* Read out message */
in_rec_data->id = ((unsigned short)c0slot[in_slot].ba.sidh

<< 6) + c0slot[in_slot].ba.sidl;
in_rec_data->dlc = c0slot[in_slot].ba.dlc;
for(lp_dlc=0; lp_dlc<c0slot[in_slot].ba.dlc; ++lp_dlc){

in_rec_data->data[lp_dlc] =
c0slot[in_slot].ba.data[lp_dlc];

}
/* Confirm that new messages have not been received */
if(! c0mctl[in_slot].receive.newdata){

break;
}

}
}

Finished receiving?

Processing performed when
overrun error occurs

NO

YES

Overrun error occurred?

Read out received message

YES

YES

New message received
while reading out received

message?

NO

Clear receive-completed flag

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 29 of 52

(3) Procedure for confirming that reception has terminated successfully

There are two methods to confirm that any slot has finished receiving a message successfully.
One method does this by polling, and the other by means of an interrupt.

• When confirming by polling
Whether a slot has finished receiving a message successfully can be confirmed by polling the
CAN message control register.
Figure 21 shows the procedure for confirming by polling that a slot has finished receiving a mes-
sage successfully.

Figure 21 Procedure for confirming that reception successfully (by polling)

START

END

typedef struct{
unsigned short id; /* Standard ID */
unsigned char dlc; /* Data length code */
unsigned char data[8]; /* Data */

}can_std_data_def;
int check_rec_success_can0(unsigned short, can_std_data_def *);
int check_rec_success_can0(unsigned short in_slot, can_std_data_def
*in_rec_data)
{

int result=0;

/* Confirm that reception terminated normally */
if(c0mctl [in_slot].receive.newdata = =1){

/* Read out the received message */
get_message_can0(in_slot, in_rec_data);
result = 1;
}

return result;
}

Finished receiving
successfully?

YES

Processing for received message

NO

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 30 of 52

• When confirming by a CAN successful interrupt

To use a CAN successful interrupt for confirmation, enable the CAN successful interrupt control
register and then set the corresponding bit for each slot in the CAN interrupt control register to
1. This CAN interrupt control register is shared by CAN successful transmission interrupt and
CAN successful reception interrupt. The CAN interrupt control register is automatically cleared
when the CAN module goes to reset/initialization mode. Note that this register cannot be set
during reset/initialization mode, and can only be set while the CAN module is in operating mode.
Figure 22 and Figure 23 show the procedure for setting the CAN successful reception interrupt
control register. Figure 24 shows the procedure for using a CAN successful reception interrupt to
confirm whether a slot has finished receiving a message successfully.

Figure 22 Procedure for setting the CAN0 successful reception interrupt control register

Figure 23 Procedure for setting the CAN1 successful reception interrupt control register

Clear interrupt enable flag

Set interrupt priority level

Set interrupt enable flag

START

END

void enable_c0recint(unsigned char);
void enable_c0recint(unsigned char in_lvl){

asm("FCLR I"); /* Disable interrupts */ *1

c0recic_addr.byte = in_lvl;
asm("NOP"); *1/*2

asm("NOP"); *1/*2

asm("FSET I"); /* Enable interrupts */ *1

}

*1: asm() is an inline assemble description of the C compiler for the M16C family, NC30.
*2: The objective of two NOP instructions preceding one FSET instruction is to prevent the interrupt enable flag (I flag)

from being set before a write to the interrupt control register for reasons of the instruction queue.

(When setting the CAN0 successful reception interrupt control register)

Clear interrupt enable flag

Set interrupt source select register

Set interrupt enable flag

START

END

void enable_c1recint(unsigned char);
void enable_c1recint(unsigned char in_lvl){

asm("FCLR I"); /* Disable interrupts */ *1

ifsr17 = 0; /* Select interrupt source */

c1recic_addr.byte = in_lvl;
asm("NOP"); *1/*2

asm("NOP"); *1/*2

asm("FSET I"); /* Enable interrupts */ *1

}

*1: asm() is an inline assemble description of the C compiler for the M16C family, NC30.
*2: The objective of two NOP instructions preceding one FSET instruction is to prevent the interrupt enable flag (I flag)

from being set before a write to the interrupt control register for reasons of the instruction queue.

Set interrupt priority level

(When setting the CAN1 successful reception interrupt control register)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 31 of 52

Figure 24 Procedure for confirming a successful transmission (by a CAN successful reception interrupt)

Check the slot that finished receiving
successfully

CAN successful reception interrupt
routine START

CAN successful reception interrupt
routine END

typedef struct{
unsigned short id; /* Standard ID */
unsigned char dlc; /* Data length code */
unsigned char data[8]; /* Data */

}can_std_data_def;
can_std_data_def rec_data;
#pragma INTERRUPT fnc_c0recic
void fnc_c0recic(void);
void fnc_c0recic(){

if(c0mctl [14].receive.newdata ==1){
get_message_can0(14, & rec_data);

/* Read received message out of slot 14 */
}
if(c0mctl [15].receive.newdata ==1){

get_message_can0(15, & rec_data);
/* Read received message out of slot 15 */

}

}

Processing for received message

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 32 of 52

4.3.2 Remote Frame Transmit/Data Frame Receive Mode
If any slot is placed in remote frame transmit/data frame receive mode, after a remote frame with
its ID and DLC set in that slot is sent, the data frame that has the same ID as transmitted can be
automatically received. However, if a data frame that has the same ID as set in the slot is received,
the remote frame is not transmitted.
Figure 25 shows the procedure for receiving a data frame after sending a remote frame, in which
confirmation of reception is made by polling.

Figure 25 Procedure for receiving a data frame after sending a remote frame

Clear CAN0 message control register*1

START

END

typedef struct{
unsigned short id; /* Standard ID */
unsigned char dlc; /* Data length code */

}can_trm_std_remote_def;
typedef struct{

unsigned short id; /* Standard ID */
unsigned char dlc; /* Data length code */
unsigned char data[8]; /* Data */

}can_std_data_def;
void set_trm_std_remoteframe_can0

(unsigned short, can_trm_std_remote_def*, can_std_data_def*);
void set_trm_std_remoteframe_can0

(unsigned short in_slot, can_trm_std_remote_def *in trm_remote,
can_std_data_def *in_rec_data);

{

while(c0mctl[in_slot].transmit.trmactive){}
/* Check status to see if ready to send */

while(c0mctl[in_slot].byte ! = 0x00){
/* Check CAN0 message control register */

c0mctl[in_slot].byte = 0x00;
/* Clear CAN0 message control register */

}

c0icr_addr.word &= ~(0x0001<<in_slot);
/* Set CAN0 interrupt control register */

c0idr_addr.word &= ~(0x0001<<in_slot);
/* Set CAN0 extended ID register */

c0slot[in_slot].ba.sidh = ((in_trm_remote->id)>>6) & 0x1F;
/* Set SID 10-6*/

c0slot[in_slot].ba.sidl = (in trm_remote->id) & 0x3F; /* Set SID5-0*/
c0slot[in_slot].ba.dlc = in trm_remote->dlc; /* Set DLC */

c0mctl[in_slot].byte = 0xa0;/* Set CAN0 message control register */

while(check_rec_success_can0(in_slot)){}
/* Confirm that reception terminated successfully */

get_message_can0(in_slot,& in_rec_data);
/* Read out received message */

/* Place a user program for after a successful reception here */

}

Ready to send?

Processing for received message

Finished receiving
successfully?

NO

YES

NO

YES

*1: The CAN0 message control register must be cleared temporarily before any slot can be newly set for message reception
after it finished sending a data frame successfully. Always be sure to follow the procedure shown here.

CAN0 message control
register cleared?*1

NO

YES

Set CAN0 interrupt control register
(Interrupts unused)

Set CAN0 extended ID register
(Standard ID used)

Store ID and DLC in slot

Place slot in remote frame transmit/
data frame receive mode

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 33 of 52

4.4 CAN Overrun Error
If messages are received successively, the content of the slot is overwritten with the next message
received.
If the successful reception flag is set to 0 by a program or the next CAN message is received suc-
cessfully before the reception request for the slot is canceled, the overwrite flag is set to 1. In such a
case, processing for the previous message to be retransmitted should be executed in programs on
transmit and receive sides.
For details on how to process the received message, refer to Figure 20.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 34 of 52

4.5 Basic CAN Mode
The CAN module has 16 slots per channel, each of which can be set for transmission or reception.
This is referred to as normal operation mode.
In Basic CAN mode, slots 14 and 15 operate as receive slots, and slots 0 to 13 operate in normal op-
eration mode. During this mode, the received messages are stored alternately in slots 14 and 15.
In normal operation mode, depending on how the CAN message control register is set, each slot can
handle only one type of message at a time, either a data frame or a remote frame. In Basic CAN
mode, however, slots 14 and 15 can receive both types of messages at the same time. Which type of
message has been received can be determined by checking the remote frame transmission/reception
status flag in the CAN message control register. The remote frame transmission/reception status
flag is 0 when a data frame has been received and 1 when a remote frame has been received.
Basic CAN mode can be selected by setting the Basic CAN mode select bit in the CAN control regis-
ter to 1 (= Basic CAN mode).

When using Basic CAN mode, observe the following precautions:
• Basic CAN mode can only be set during reset/initialization mode.
• Slots 14 and 15 must be set for reception.
• Slots 14 and 15 must have the same ID set in each. Also, the local mask register A and local

mask register B for slots 14 and 15 must be set in the same way.
• Even during Basic CAN mode, if any slot receives a new message while it is receiving another

message, the slot may be overwritten by the new message received.

Figure 26 shows the procedure for confirming that reception has terminated normally during Basic
CAN mode.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 35 of 52

Figure 26 Procedure for confirming a successful receive in Basic CAN mode

START

END

typedef struct{

unsigned short id; /* Standard ID */

unsigned char dlc; /* Data length code */

unsigned char data[8]; /* Data */

}can_std_data_def;

can_std_data_def rec_data[2]; /* Data frame reception */

typedef struct{

unsigned short id; /* Standard ID */

unsigned char dlc; /* Data length code */

}can_std_remote_def;

can_std_remote_def rec_remote[2];

/* [0x0001]: received one dataframe */

/* [0x0002]: received two data frames */

/* [0x0010]: received one remoteframe */

/* [0x0020]: received two remoteframes */

int check_rec_success_basiccan_can0();

int check_rec_success_basiccan_can0(){

char cnt_data = 0; /* Counter for data frame reception */

char cnt_remote = 0;/* Counter for remote frame reception */

int result;

/* Confirmation of mailbox 14 */

if(c0mctl [14] receive.newdata = = 1){

/* When data frame was received */

if(! c0mctl[14].receive.remactive){

 get_dateframe_can0(14, &rec_data[cnt_data++]);

}

/* When remote frame was received */

else{

 get_remoteframe_can0(14, &rec_remote[cnt_remote++]);

}

}

/* Check slot 15 */

if(c0mctl [15].receive.newdata = =1){

/* When data frame was received */

if(! c0mctl[15].receive.remactive){

 get_dataframe_can0(15, &rec_data[cnt_data++]);

}

/* When remote frame was received */

else{

 get_remoteframe_can0(15,&rec_remote[cnt_remote++]);

}

}

result = (cnt_remote<<4) + cnt_data;

return result;

}

Slot 14 finished receiving
successfully?

Received message
processing for data

frame

YES

Data frame received?

YES

Data frame received?

YES

Slot 15 finished receiving
successfully?

YES

Received message
processing for data

frame

Received message
processing for remote

frame

Received message
processing for remote

frame

NO

NO

NO

NO

(When CAN0 is set to Basic CAN mode)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 36 of 52

5. CAN Errors
The CAN module has an interrupt facility for CAN errors, making it possible to confirm in this CAN
error interrupt that a communication error has occurred.
If while a slot is sending or receiving the communication frame becomes erratic and an error is de-
tected, the transmit error counter or receive error counter may increase depending on the trans-
mit/receive status. When the transmit error counter or receive error counter exceeds 128, the CAN
status changes from an error-active state to an error-passive state. When the transmit error counter
exceeds 256, a bus-off state is entered.
If the bus error interrupt enable bit in the CAN control register is 1 (= bus error interrupt enabled),
a CAN error interrupt is generated each time an error is detected.
If the bus error interrupt enable bit in the CAN control register is 0 (= bus error interrupt disabled),
a CAN error interrupt is generated when an error-passive state or a bus-off state is entered.
Note that the bus error interrupt enable bit can only be set during CAN configuration. Before the
CAN error interrupt can be used, the CAN error interrupt control register must be set.
Figure 27 shows the procedure for setting up the CAN error interrupt control register.

Figure 27 Procedure for setting up the CAN error interrupt control register

Clear interrupt enable flag

Set interrupt priority level

Set interrupt enable flag

START

END

void enable_c01erric(unsigned char);
void enable_c01erric(unsigned char in_lvl){

asm("FCLR I"); /* Disable interrupts */ *1

c01erric_addr.byte = in_lvl;
asm("NOP"); *1/*2

asm("NOP"); *1/*2

asm("FSET I"); /* Enable interrupts */ *1

}

*1: asm() is an inline assemble description of the C compiler for the M16C family, NC30.
*2: The objective of two NOP instructions preceding one FSET instruction is to prevent the interrupt enable flag (I flag)

from being set before a write to the interrupt control register for reasons of the instruction queue.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 37 of 52

5.1 CAN Error Confirmation Procedure
There are two methods to confirm the CAN error state. One method does this by polling, and the
other by means of an interrupt.

• Confirmation by polling

The CAN error state can be confirmed by polling the bus-error state, error-passive state, and
bus-off state flags in the CAN status register.
Figure 28 shows the procedure for confirming the CAN error state by polling.

Figure 28 Procedure for checking the CAN error state (by polling)

CAN0 bus error processing

START

END

int check_err_can01(void);
/* [0x0000]:no error occur */
/* [0x0001]:can0 bus error */
/* [0x0002]:can0 is in error passive state */
/* [0x0004]:can0 is in bus-off state */
/* [0x0010]:can1 bus error */
/* [0x0020]:can1 is in error passive state */
/* [0x0040]:can1 is in bus-off state */
int check_err_can01(){

int result = 0; /* Store return value */

/* Check CAN0 error state */
if(c0str_addr.b.state_buserror){

result |= 0x0001;

/* Check error-passive state */
if(c0str_addr.b.state_errpas){

result |= 0x0002;
}

/* Check bus-off state */
else if(c0str_addr.b.state_busoff){

result |= 0x0004;
}

}

/* Check CAN1 error state */
if(c1str_addr.b.state_buserror){

result |= 0x0010;

/* Check error-passive state */
if(c1str_addr.b.state_errpas){

result |= 0x0020;
}

/* Check bus-off state */
else if(c1str_addr.b.state_busoff){

result |= 0x0040;
}

}

return result;
}

CAN0 error occurred?

YES

CAN0 error-passive state?

NO

CAN0 error bus-off state?

NO

CAN1 error occurred?

CAN1 bus error processing

CAN1 error-passive state?

CAN1 error bus-off state?

Error-passive processing

Bus-off processing

NO

YES

YES

YES

NO

NO

Error-passive processing

Bus-off processing

NO

YES

YES

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 38 of 52

• Confirmation by means of a CAN error interrupt

The CAN error interrupt becomes usable by setting up the CAN error interrupt control register
to enable the interrupt. In this CAN error interrupt routine it is possible to check the CAN error
state. This CAN error interrupt is shared by CAN0 and CAN1.
Figure 29 shows the procedure for confirming the CAN error state by means of a CAN error in-
terrupt.
Here, the error state is checked in the CAN error interrupt routine and if the error state is con-
firmed to be a bus-off state, return from bus-off is executed.
For details about return from bus-off, refer to Section 5.2.

Figure 29 Procedure for confirming the CAN error state (by means of a CAN error interrupt)

CAN error interrupt routine

CAN error interrupt routine

#pragma INTERRUPT fnc_c01erric
void fnc_c01erric(void);
void fnc_c01erric(){

/* Check bus-off state */
if(c0str_addr.b.state_busoff){

return_from_busoff_can0();
}

/* Check bus-off state */
if(c1str_addr.b.state_busoff){

return_from_busoff_can1();
}

}

CAN0 bus-off state?

NO CAN0 return from bus-off

YES

CAN1 bus-off state?

NO CAN1 return from bus-off

YES

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 39 of 52

5.2 Return from Bus-off Function
If the CAN status goes to a bus-off state, the CAN module becomes unable to transmit or receive.
Before the CAN module can enter an error-active state where it can transmit and receive, it must
wait until 11 consecutive recessive bits are detected on the bus as many as 128 times. However, if
there is an urgent message to be sent, for example, the CAN module may need to be placed in an
error-active state immediately. Therefore a function known as "Return from Bus-off" is provided
that allows the CAN module to enter an error-active state without waiting for the above period.
The return from bus-off function is executed by setting the return from bus-off command bit in the
CAN control register to 1 (= forcible return from bus-off). The return from bus-off command bit is
automatically cleared after return from bus-off is executed. When return from bus-off is executed,
note that CAN configuration does not need to be performed after an error-active state is entered.
The return from bus-off function is effective only when the CAN module is in a bus-off state. If an
attempt is made to execute return from bus-off while the CAN module is in an error-active or an er-
ror-passive state, the attempt is ignored and the forcible return from bus-off Instruction bit is
cleared immediately.
Figure 30 shows an example execution of the return from bus-off function.
Here, the CAN0 and CAN1 error states are checked in the CAN error interrupt routine and if the
error state is confirmed to be a bus-off state, return from bus-off is executed.

Figure 30 Example execution of the return from bus-off function

CAN error interrupt routine
START

CAN error interrupt routine
END

#pragma INTERRUPT fnc_c01erric
void fnc_c01erric(void);
void fnc_c01erric(){

/* Check CAN0 bus-off state */
if(c0str_addr.b.state_busoff){

c0ctr_addr.b.retbusoff=1;
}

/* Check CAN1 bus-off state */
if(c1str_addr.b.state_busoff){

c1ctlr_addr.b.retbusoff=1;
}

}

CAN0 bus-off state?

NO

YES

CAN1 bus-off state?

NO

YES

Return from bus-off

Return from bus-off

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 40 of 52

6. Using the Acceptance Filter
A function known as the acceptance filter is available that allows messages to be received or dis-
carded in hardware.

6.1 Acceptance Filter (ACP)
The acceptance filter uses the global mask register (for slots 0 to 13), local mask register A (for slot
14), and local mask register B (for slot 15) for filtering of messages.

(1) Register structure of the acceptance filter

Figure 31 shows the structure of ID and the mask register. Figure 32 and Figure 33 show mem-
ory maps and bit assignments.

Slot ID Set the value of the message ID to receive.
Mask register

0: Ignores the corresponding bit of the received message ID.
1: Compares the corresponding bit of the received message ID and the corre-

sponding bit of the slot ID.

Acceptance value

0: Discards the message.
1: Receives the message.

Figure 31 Structure of ID and the mask register

Received
message ID Slot ID Mask register

Acceptance
signal value

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 41 of 52

Figure 32 Memory map and bit assignment at byte access*2

Figure 33 Memory map and bit assignment at word access*3

*1: The global mask register, local mask register A, and local mask register B in the 1N group microcomputers are located at the

CAN1 addresses.
*2: The registers are accessed byte wise when the message order select bit in the CAN control register = 1.
*3: The registers are accessed word wise when the message order select bit in the CAN control register = 0.

EID13 EID12

SID5

EID11

EID5

SID10

SID4

EID10

EID4

SID9

SID3

EID17

EID9

EID3

SID8

SID2

EID16

EID8

EID2

SID7

SID1

EID15

EID7

EID1

SID6

SID0

EID14

EID6

EID0

b7 b6 b5 b4 b3 b2 b1 b0

EID13 EID12

SID5

EID11

EID5

SID10

SID4

EID10

EID4

SID9

SID3

EID17

EID9

EID3

SID8

SID2

EID16

EID8

EID2

SID7

SID1

EID15

EID7

EID1

SID6

SID0

EID14

EID6

EID0

EID13 EID12

SID5

EID11

EID5

SID10

SID4

EID10

EID4

SID9

SID3

EID17

EID9

EID3

SID8

SID2

EID16

EID8

EID2

SID7

SID1

EID15

EID7

EID1

SID6

SID0

EID14

EID6

EID0

016016

016116

016216

016316

016416

CAN0

016616

016716

016816

016916

016A16

016C16

016D16

016E16

016F16

017016

036016

036116

036216

036316

036416

CAN1

036616

036716

036816

036916

036A16

036C16

036D16

036E16

036F16

037016

C0GMR

C1GMR

C0LMAR

C1LMAR

C0LMBR

C1LMBR

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
016016

016216

016416

CAN0

016616

016816

016A16

016C16

016E16

017016

036016

036216

036416

CAN1

036616

036816

036A16

036C16

036E16

037016

C0GMR

C1GMR

C0LMAR

C1LMAR

C0LMBR

C1LMBR

EID5

SID10

EID4

SID9

EID17

EID3

SID8

EID16

EID2

SID7

EID15

EID1

SID6

EID14

EID0

EID13 EID12

SID5

EID11

SID4

EID10

SID3

EID9

SID2

EID8

SID1

EID7

SID0

EID6

EID5

SID10

EID4

SID9

EID17

EID3

SID8

EID16

EID2

SID7

EID15

EID1

SID6

EID14

EID0

EID13 EID12

SID5

EID11

SID4

EID10

SID3

EID9

SID2

EID8

SID1

EID7

SID0

EID6

EID5

SID10

EID4

SID9

EID17

EID3

SID8

EID16

EID2

SID7

EID15

EID1

SID6

EID14

EID0

EID13 EID12

SID5

EID11

SID4

EID10

SID3

EID9

SID2

EID8

SID1

EID7

SID0

EID6

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 42 of 52

(2) Examples for using the acceptance filter
• Usage example 1

Table 4 shows how each register should be set when slot 0 is to receive a standard data frame or
standard remote frame with ID12316.

Table 4 Acceptance filter usage example 1
 SID10-6 SID5-0 EID17-14 EID13-6 EID5-0

Slot 0 00100 100011 XXXX XXXXXXXX XXXXXX

Mask register C0GMR 11111 111111 XXXX XXXXXXXX XXXXXX

Receive message ID12316 00100 100011

• Usage example 2

Table 5 shows how each register should be set when slot 0 is to receive two standard data frames
or standard remote frames with ID12216 and ID12316.

Table 5 Acceptance filter usage example 2
 SID10-6 SID5-0 EID17-14 EID13-6 EID5-0

Slot 0 00100 10001X XXXX XXXXXXXX XXXXXX

Mask register C0GMR 11111 111110 XXXX XXXXXXXX XXXXXX

ID12216 00100 100010
Receive message

ID12316 00100 100011

• Usage example 3

Table 6 shows how each register should be set when slot 0 is to receive an extended data frame or
extended remote frame with ID1234567816.

Table 6 Acceptance filter usage example 3
 SID10-6 SID5-0 EID17-14 EID13-6 EID5-0

Slot 0 10010 001101 0001 01011001 111000

Mask register C0GMR 11111 111111 1111 11111111 111111

Receive message ID1234567816 10010 001101 0001 01011001 111000

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 43 of 52

6.2 Acceptance Filter Support Unit (ASU)
The acceptance filter support unit is a function to determine whether the receive ID is valid or not
by means of a table search. To use this function, first register the ID to receive in the data table.
Next, store the received ID in the CAN acceptance filter support register, read out the decoded re-
ceived ID from the CAN acceptance filter support register, and check it by searching the table. The
acceptance filter support unit can only be used for the IDs of standard frames.
The acceptance filter support unit will prove effective in the following cases:
• When the IDs to receive cannot be masked by the acceptance filter (Example: IDs to receive =

07816, 08716, 11116)
• When there are too many IDs to receive and filtering in software requires an excessive amount

of time

6.2.1 Using the Acceptance Filter Support Unit
The following shows how to use the acceptance filter support unit when the IDs to receive are 00016,
00D16, 6F316, 6F416, and 6FF16.

(1) Setting up the data table

In ROM or RAM, prepare a data table in which the IDs to receive are registered. The data table
can be located at any desired address.
The data table should be comprised of the bits representing each ID to receive by arranging the
value representing the 8 high-order bits (SID10-3) in the vertical axis and the value representing
the 3 low-order bits (SID2-0) that has been decoded into 8-bit quantity in the horizontal axis, with
the corresponding bits set to 1 and all other bits set to 0.

(2) Writing to the CAN acceptance filter support register
If a message is received by CAN0, write the received ID to the CAN0 acceptance filter support
register; if received by CAN1, write the received ID to the CAN1 acceptance filter support regis-
ter.

(3) Reading out of the CAN acceptance filter support register
Read the value representing the 8 high-order bits (SID10-3) of the received ID and the value rep-
resenting the 3 low-order bits that has been decoded into 8-bit quantity out of the CAN accep-
tance filter support register.

(4) Determining the validity of the received ID
Search the data table set in (1) for the value that compares equal to the value read out of the
CAN acceptance filter support register in (3) to determine whether the received ID is valid.
Figure 34 shows the structure of the CAN acceptance filter support register. Figure 35 shows the
structure of the data table. Figure 36 shows the content of the CAN acceptance filter support
register when written to and read out.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 44 of 52

Figure 34 Structure of the CAN acceptance filter support register

Figure 35 Structure of the data table

b15 b8 b7 b0

Function

This register is used to write the standard ID of the received
message. When accessed for read, the converted value of the
standard ID is read from the register.

Set value

Standard ID

R W

Symbol

C0AFS
C1AFS

Address

024316,024216
024516,024416

When reset

Indeterminate

*1: The C0AFS register in the 1N group is located at the addresses 0245 16 and 024416.

RW

1

High-order 8 bits Low-order 3 bits

b0
00016

1

1 0 1 1 1 1 0 1 0 0

D 3-8 conversion

Vertical axis of the data table Horizontal axis

E

Low-order 3 bits

0 0 0

b7

8 bits

b6 b5 b4 b3 b2 b1 b0

0 0 1

0 0 0 0 0 0 0 1

0 1 0

0 0 0 0 0 0 1 0

0 1 1

0 0 0 0 0 1 0 0

1 0 0

0 0 0 0 1 0 0 0

1 0 1

0 0 0 1 0 0 0 0

1 1 0

0 0 1 0 0 0 0 0

1 1 1

0 1 0 0 0 0 0 0

b2 b1 b0

1 0 0 0 0 0 0 0

b1
00116

0

b2
00216

0

b3
00316

0

b4
00416

0

b5
00516

0

b6
00616

0

b7
00716

0

Example: For 6F416

(6F416)

Set bit 4 (horizontal axis) for XXDE (vertical axis) to 1.DE16

00816
0

00916
0

00A16
0

00B16
0

00C16
0

00D16
1

00E16
0

00F16
0

6F016
0

6F116
0

6F216
0

6F316
1

6F416
1

6F516
0

6F616
0

6F716
0

6F816
0

6F916
0

6FA16
0

6FB16
0

6FC16
0

6FD16
0

6FE16
0

6FF16
1

7F816
0

7F916
0

7FA16
0

7FB16
0

7FC16
0

7FD16
0

7FE16
0

7FF16
0

In the same way, convert 00016, 00D16, 6F316, and 6FF16 before registering in the data table.

1: Valid, 0: Invalid

Address
Top

Top+0116

Top+DE16

Top+DF16

Top+FF16

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 45 of 52

Figure 36 Content of the CAN acceptance filter support register when written to and read out

SID5 SID4 SID3 SID2 SID1 SID0 SID10 SID9 SID8 SID7 SID6

024316, 024216
024516, 024416

SID5 SID4 SID3 SID2 SID1 SID0 SID10 SID9 SID8 SID7 SID6

3-8 decoder

b15 b8 b7 b0

CSID7 CSID6 CSID5 CSID4 CSID3 CSID2 CSID1 CSID0 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

(For byte access)
Received ID

When written
to the CiAFS

When read
from the CiAFS

Address*1

SID5 SID4 SID3 SID2 SID1 SID0SID10 SID9 SID8 SID7 SID6

SID5 SID4 SID3 SID2 SID1 SID0SID10 SID9 SID8 SID7 SID6

3-8 decoder

b15 b8 b7 b0

CSID7 CSID6 CSID5 CSID4 CSID3 CSID2 CSID1 CSID0 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

(For word access)
Received ID

When written
to the CiAFS

When read
from the CiAFS

Symbol
C0AFS
C1AFS

024316, 024216
024516, 024416

Address*1Symbol
C0AFS
C1AFS

024316, 024216
024516, 024416

Address*1Symbol
C0AFS
C1AFS

024316, 024216
024516, 024416

Address*1Symbol
C0AFS
C1AFS

*1: The C0AFS register in the 1N group microcomputers is located at the addresses 0245 16 and 024416.
i=0, 1

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 46 of 52

Figure 37 shows the procedure for using the acceptance filter support unit.
Here, the received ID is checked in a CAN successful reception interrupt routine to see if it is valid
or not.

Figure 37 Procedure for using the acceptance filter support unit

CAN0 successful reception interrupt
routine START

CAN0 successful reception interrupt
routine END

char tbl_valid_id[256]; /* Data table */
#pragma INTERRUPT fnc_c0recint
void fnc_c0recint(void);
void fnc_c0recint()
{

unsigned short in_slot;

/* Check whether reception is completed */

for (in_slot=0; in_slot<16; in_slot ++){*1

 if (c0mctl [in_slot]. receive. newdata==1){
 c0afs_addr.word=c0slot0[in_slot].word[0];

 if ((tbl_valid_id[c0afs_addr.byte[0]]&
 c0afs_addr.byte[1]) !=0){

 get_message_can0(in_slot,&rec_data);
 /* User program to be executed when

valid is located here */
 }

 else{
 c0mctl[m_slot].receive.newdata=0 ;
 }

 }

}

}

Reception completed?

YES

Determine validity of received ID
Received ID valid?

YES

NO

Store received ID in ASU register

Clear receive slot status flag

Processing for received message

NO

*1: Here, slots are checked in order of 0 to 16. When actually creating a program, however, only the reception-
completed slots need to be checked.

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 47 of 52

7. CAN Sleep and CAN Wakeup Operations

7.1 CAN Sleep Operation
When the CAN module is in sleep mode, the clock supplied to it is turned off. Therefore, the CAN
module does not operate at all. When not using the CAN module, it is recommended that the CAN
module be placed into sleep mode to reduce the amount of current consumed in the chip.
Before placing the CAN module into sleep mode, always be sure to reset it.
Figure 38 shows the procedure for placing the CAN module into sleep mode.
If while in this state the microcomputer is placed into wait or stop mode, the amount of current
consumed in the chip can further be reduced.

Figure 38 Procedure for placing the CAN module into sleep mode

Place CAN0 in reset/initialization mode

Place CAN0 in sleep mode

START

END

void enter_sleep_can0(void);
void enter_sleep_can0(){

/* Reset CAN0 */
c0ctlr_addr.b.reset = 1;

while(! c0str_addr.b.state_reset){}

/* Place CAN0 in sleep mode */
c0ctlr_addr.b.sleep = 1;
c0ctlr_addr.b.reset = 0;

}

*1: When checking the reset state flag, make sure there is 3 fcan or more of waiting time before the flag is checked, to
ensure that the CPU access will not overlap the CAN status updating cycle.

CAN0 in reset/initialization
mode?*1

YES

NO

(For CAN0)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 48 of 52

7.2 CAN Wakeup Operation
While the CAN module is in sleep mode, it can be awaken from sleep mode by a CAN wakeup in-
terrupt that is generated at the falling edge of the CAN receive line. CAN wakeup becomes usable
by setting up the CAN wakeup interrupt control register to enable the interrupt.
The CAN wakeup interrupt is used for CAN0 and CAN1 in common. In the 6N4, 6NK, and 6NM
groups, the CAN wakeup interrupt can be used for CAN0 and CAN1 individually by setting the
IFSR02 bit in the interrupt request cause select register0 to 1. To use the CAN wakeup interrupt to
reawaken the CAN module, perform CAN configuration in this interrupt routine.
Figure 39 shows the CAN wakeup procedure.
Here, the CAN modules of both CAN0 and CAN1 are reawaked from sleep mode in a CAN wakeup
interrupt routine.

Figure 39 CAN wakeup procedure

CAN wakeup interrupt routine
START

CAN wakeup interrupt routine
END

#pragma INTERRUPT fnc_c01wkic
void fnc_c01wkic(void);
void fnc_c01wkic(){

/* CAN0 configuration */
config_can0();

/* CAN1 configuration */
config_can1();

}

CAN0 configuration

CAN1 configuration

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 49 of 52

8. Precautions Regarding the Sample Program

8.1 Symbol Notation of Each Register
The symbols representing each register in the sample program of this application note are based on
the notation of Renesas standard C language SFR header files.

8.2 while Infinite Loop
To simplify the notation, some parts in the sample program are looped by a while statement. When
actually creating a program, put a limit time on each while loop in order to enable the program to
exit the loop when the time is over.
Figure 40 shows an example processing where a limit time is placed on a while loop.

Figure 40 Example processing where a limit time is placed on a while loop

Place CAN into reset/
initialization mode*1

START

END

*1: If the CAN module is reset while sending a CAN
message, i t waits unt i l the f rame being
transmitted finishes before entering reset/
initialization mode. Therefore, a limit time to be
imposed on CAN state transition to reset/
initialization mode is the time needed to
transmit one frame consisting of up to about
160 bits (maximum 130 bits of extended data
frame + maximum of 30 stuff bits).

Example:
The time needed to transmit one frame (160
bits) at 500 kbps is 320 µs. Set 320 µs as a limit
time on the while loop so that the program exits
the loop when 320 µs is exceeded.

CAN in reset/
initialization mode?*1

YES

NO

Reawaken CAN from
sleep mode

Place CAN into
operating mode

CAN in operating
mode?

Timeout?

YES

Timeout

NO

YES

NO

Timeout?

YES

Timeout

NO

(During CAN configuration)

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 50 of 52

9. Web Site and Support Center
Renesas Technology Web Site
http://www.renesas.com

Where to contact for technical inquiries about CAN microcomputers
Customer Support Center: csc@renesas.com

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 51 of 52

DEVISION HISTORY M16C/6N, M16C/1N, M16C/29, and R8C/22,23 Groups
CAN Application Note

Description Rev. Date
Page Summary

1.00 Nov 05, 2003 − Unused version

2.00 Jul 05, 2004 − First edition issued

2.01 Jul 28, 2004 1

7

28

44

45

47

The M16C/6NK, 6NL, 6NM, and 6NN groups were added to the application

Tabled 1 was revised

Figure 20 was revised

Figure 34 *1 and 35 were revised

Figure 36 was revised

7.2 CAN Wakeup Operation was revised

2.02 Jun 08.2005 18

19

26

Figure 13 was revised

Figure 14 was revised

Figure 19 was revised

3.00 Oct.26.2005 1 The R8C/22,23 groups were added to the application

M16C/6N, M16C/1N, M16C/29, R8C/22,23 Groups
CAN Application Note

REJ05B0276-0300/Rev.3.00 Oct. 2005 Page 52 of 52

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

