
Micriµm
Empowering Embedded Systems

µC/OS-II and µC/OS-View
for

The Atmel AVR
ATmega128

Application Note
AN-1128 Rev. C

www.Micrium.com

http://www.micrium.com/

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Table Of Contents

1.00 Introduction 4
1.01 Atmel AT90 (AVR) 6
1.02 Test Setup 8
1.03 Development Tools 9

2.00 Directories and Files 12

3.00 µC/OS-II Port Files 14
3.01 OS_CPU.H 14
3.01.01 OS_CPU.H, macros for ‘externals’ 14
3.02.02 OS_CPU.H, Data Types 15
3.01.03 OS_CPU.H, Critical Sections 15
3.01.04 OS_CPU.H, Stack growth 16
3.01.05 OS_CPU.H, Task Level Context Switch 16
3.01.06 OS_CPU.H, Global Variables 16
3.02.07 OS_CPU.H, Function Prototypes 17
3.02 OS_CPU_C.C 18
3.02.01 OS_CPU_C.C, OSTaskCreateHook() 19
3.02.02 OS_CPU_C.C, OSTaskStkInit() 19
3.02.03 OS_CPU_C.C, OSTaskSwHook() 24
3.02.04 OS_CPU_C.C, OSTimeTickHook() 24
3.03 OS_CPU_A.S90 (IAR), OS_CPU_A.S (ICC) 25
3.03.01 OS_CPU_SR_Save() 25
3.03.02 OS_CPU_SR_Restore() 25
3.03.03 OSStartHighRdy() 26
3.03.04 OSCtxSw() 29
3.03.05 OSIntCtxSw() 32
3.04 OS_CPU_I.S90 (IAR), OS_CPU_I.H (ICC) 33
3.05 OS_DBG.C 33

4.00 µC/OS-View Port 34
4.01 µC/OS-View Port Files 35
4.02 OS_VIEWc.h 36
4.03 OS_VIEWc.c 36
4.04 OS_VIEWa.s90 (IAR) or OS_VIEW_a.s (ICC) 37

5.00 Application code 38
5.01 app.c 38
5.01.01 Creating a task with OSTaskCreate() 41
5.01.02 Creating a task with OSTaskCreateExt() 41
5.02 app_cfg.h 42
5.03 app_isr.s90 (IAR), app_isr.s (ICC) 43
5.04 app_vect.s90 (IAR), app_vect.s (ICC) 45
5.05 includes.h 46
5.06 os_cfg.h 46

 2

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

6.00 Board Support Package 47
6.01 LED Controls 47
6.02 Tick ISR (Using the ATmega128 Timer #0) 47
6.03 CPU Clock Frequency 48

 References 49

 Contacts 49

 3

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

1.00 Introduction 1.00 Introduction

This application note describes the µC/OS-II port for the ATmega128. However, the information
provided in this application note should be portable to other processors in the AVR line.

We tested the port on an Atmel STK500/501 development board (see Figure 1-1) using an Atmel
JTAGICE mkII (see Figure 1-2). The processor is assumed to run at 8 MHz using the on-chip
oscillator. The example code changes the prescaler to divide by 1 from the factory default of
divide by 8.

We assume that you have µC/OS-II V2.80 (or higher) and optionally, µC/OS-View V1.30 (or
higher). If you didn’t purchase µC/OS-View from Micriµm you can still run the example code by
disabling invocations to that code.

We tested the code using two different sets of tools:

 IAR’s EWAVR (www.IAR.com)
 ImageCraft’s ICCAVR (www.ImageCraft.com)

UART0
to RS232 SPARE

(PortE: B0 = RxD0, B1 = TxD0)

J-Tag

STK500

STK501

PortD connected to LEDs RS-232C for µC/OS-View

Figure 1-1, Atmel STK500/501 Setup for testing µC/OS-II and µC/OS-View

 4

http://www.iar.com/
http://www.imagecraft.com/

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Atmel’s JTAGICE mkII

RS-232C connected to Desktop (COM1)
&

 µC/OS-View

USB connected to Desktop
&

AVR Studio 4

Figure 1-2, Atmel’s JTAGICE mkII

 5

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

1.01 Atmel AT90 (AVR)

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than
conventional CISC microcontrollers.

The ATmega128 provides the following features: 128K bytes of In-System Programmable Flash
with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM, 53 general purpose I/O
lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible
Timer/Counters with compare modes and PWM, 2 USARTs, a byte oriented Two-wire Serial
Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain,
programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1
compliant JTAG test interface, also used for accessing the On-chip Debug system and
programming and six software selectable power saving modes. The Idle mode stops the CPU
while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning.
A block diagram of the ATmega128 is shown in figure 1-3.

The Powerdown mode saves the register contents but freezes the OscillatorOscillator, disabling
all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the
asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of
the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules
except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In
Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is
sleeping. This allows very fast start-up combined with low power consumption. In Extended
Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the
Atmel ATmega128 is a powerful microcontroller that provides a highly flexible and cost effective
solution to many embedded control applications.

The ATmega128 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators,
and evaluation kits.

 6

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Figure 1-3, Atmel ATmega128

 7

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

1.02 Test Setup

To test the µC/OS-II port for the AVR, we used an ATmega128 on an STK500/501 evaluation
boards. Figure 1-4 and 1-5 show pictures of the boards and the connections from Port D to the
LEDs on board.

Figure 1-4, Atmel STK500/501 Setup for µC/OS-II port Example #1
(LED connections)

Figure 1-5, Atmel STK500/501 Setup for µC/OS-II port Example #1
(Top View)

 8

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

1.03 Development Tools

We tested the µC/OS-II port on the IAR (www.IAR.com) compiler and the ImageCraft
(www.ImageCraft.com) compiler.

IAR Compiler / Debugger
The IAR Embedded Workbench is a powerful Integrated Development Environment that allows
you to develop and manage a complete embedded application project for a variety of target
processors in a convenient Windows interface. This IDE is the framework where all necessary
tools are integrated: a C/EC++ compiler, an assembler, a linker, an editor, a project manager,
and the C-SPYTM Debugger.

The IAR C-SPY Debugger is a high-level language debugger for embedded applications. It is
designed for use with the IAR compilers and assemblers, and is completely integrated in the IAR
Embedded Workbench IDE, providing seamless switching between development and debugging.
Some C-SPY Debuggers are available in a simulator, emulator, and ROM-monitor versions. The
simulator version simulates the functions of the target processor entirely in software. The
Emulator version provides control over an in-circuit emulator, which is connected to the host
computer. The ROM-monitor version provides a low-cost solution to real-time debugging.

C-SPY can be extended with Plug-ins to provide Kernel Awareness capabilities during
debugging. Micriµm offers such a plug-in for C-SPY called the:

 µC/OS-II Kernel Awareness Plug-in for C-SPY.

C-SPY can actually interface with Atmel’s J-Tag emulator and thus, you can do all your code
development and debugging from within the IAR environment.

ImageCraft Compiler
ImageCraft provides offer quality ANSI C tools wrapped in an easy-to-use modern GUI
Development Environment. They also provide excellent customer support that other companies
cannot match. Add in the low cost factor, and you have the best deal in C tools for modern 8/16
bit microcontrollers such as the AVR.

Atmel AVR Studio 4
AVR Studio® 4 is the new professional Integrated Development Environment (IDE) for writing
and debugging AVR® applications in Windows 9x/NT/2000 environments. AVR Studio 4 includes
an assembler and a simulator. The following AVR development tools are also supported: ICE50,
ICE40, JTAGICE, ICE200, STK500/501/502 and AVRISP.

AVR Studio® is an Integrated Development Environment for writing and debugging AVR
applications in Windows® 98/XP/ME/2000 and Windows NT® environments. AVR Studio
provides a project management tool, source file editor and chip simulator. It also interfaces with
In-Circuit Emulators and development boards available for the AVR 8-bit RISC family of
microcontrollers.

 9

http://www.iar.com/
http://www.imagecraft.com/

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

• Integrated Development Environment for Writing, Compiling and Debugging Software

• Fully Symbolic Source-level

• Debugger Configurable Memory Views, Including SRAM, EEPROM, Flash, Registers,

and I/Os

• Unlimited Number of Break Points

• Trace Buffer and Trigger Control

• Online HTML Help

• Variable Watch/Edit Window with Drag-and-drop Function

• Extensive Program Flow Control Options

• Simulator Port Activity Logging and Pin Input Stimuli

• File Parser Support for COFF, UBROF6, UBROF8, and Hex Files

• Support for C, Pascal, BASIC and Assembly Languages

Atmel JTAGICE mkII
The JTAGICE mkII from Atmel Corporation is together with AVR Studio a complete tool for doing
On-Chip Debugging on all AVR 8-bit RISC microcontrollers with the JTAG interface.

Figure 1-6, Atmel JTAG ICE

The JTAG interface is a 4 wire Test Access Port (TAP) controller that is compliant with the IEEE
1149.1 standard. The IEEE standard was developed to enable a standard way to efficiently test
circuit board connectivity (Boundary Scan). Atmel AVR devices have extended this functionality
to include full Programming and On-Chip Debugging support.

 10

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

The JTAGICE mkII uses the standard JTAG interface to enable the user to do real time emulation
of the microcontroller while it is running in the target system.

The AVROCD (AVR On-Chip Debug) protocol gives the user complete control of the internal
resources of the AVR microcontroller. The JTAG ICE gives perfect emulation at a fraction of the
cost of traditional emulators.

• AVR Studio Compatible

• Supports all AVR Devices with JTAG Interface

• Exact Electrical Characteristics

• Emulates all Digital and Analog On-Chip Functions

• Complex Breakpoints Like Break on Change of Program Flow

• Data and Program Memory Breakpoints

• Supports Assembler and HLL Source Level Debugging

• Programming interface to flash, eeprom, fuses and lockbits.

• RS232 Interface to PC for Programming and Control

• Regulated Power Supply for 9-15V DC Power

You should note that the IAR C-SPY debugger currently directly supports the JTAGICE mkII and
thus, you can do all you development from within the EWAVR environment whereas debugging
with the ImageCraft tools requires the use of AVRstudio4 (which is a free package).

 11

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

2.00 Directories and Files

µC/OS-II
The AVR port files (described in section 3) are placed in the following directory:

 Using IAR’s EWAVR:
 \Micrium\Software\uCOS-II\Ports\AVR\ATmega128\IAR

 The port files are:

 os_cpu.h
 os_cpu_a.s90
 os_cpu_c.c
 os_cpu_i.s90
 os_dbg.c

 Using ImageCraft’s ICCAVR:
 \Micrium\Software\uCOS-II\Ports\AVR\ATmega128\ICC

 The port files are:

 os_cpu.h
 os_cpu_a.s
 os_cpu_c.c
 os_cpu_i.h
 os_dbg.c

µC/OS-View
The AVR port files (described in section 4) are placed in the following directory:

 Using IAR’s EWAVR:
 \Micrium\Software\uCOSView\Ports\AVR\ATmega128\IAR

 The port files are:

 OS_VIEWc.c
 OS_VIEWa.s90
 OS_VIEW.h

 Using ImageCraft’s ICCAVR:
 \Micrium\Software\uCOSView\Ports\AVR\ATmega128\ICC

 The port files are:

 OS_VIEWc.c
 OS_VIEWa.s
 OS_VIEW.h

 12

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Sample Code
Sample code is found in the following directories:

 \Micrium\Software\EvalBoards\Atmel\STK500\ATmega128\IAR\Ex1-OS
 \Micrium\Software\EvalBoards\Atmel\STK500\ATmega128\IAR\Ex1-OS-View

and,

 \Micrium\Software\EvalBoards\Atmel\STK500\ATmega256\ICC\Ex1-OS

 13

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.00 µC/OS-II Port Files

Like all µC/OS-II ports, the port code is found in the following three to five files:

 os_cpu.h
 os_cpu_c.c
 os_cpu_a.s90 (os_cpu_a.s for the ICC tools)
 os_cpu_i.s90 (os_cpu_i.h for the ICC tools)
 os_dbg.c

OS_DBG.C is only needed for the IAR port because it’s used by the kernel awareness plug-in in
IAR’s C-SPY and AVRstudio 4.

In the following sections we will assume IAR’s EWAVR but we’ll discuss differences between
ImageCraft’s ICCAVR as needed.

3.01 OS_CPU.H

3.01.01 OS_CPU.H, macros for ‘externals’

OS_CPU_GLOBALS and OS_CPU_EXT allows us to declare global variables that are specific to this
port (described later).

Listing 3-1, OS_CPU.H, Globals and Externs

#ifdef OS_CPU_GLOBALS
#define OS_CPU_EXT
#else
#define OS_CPU_EXT extern
#endif

 14

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.02.02 OS_CPU.H, Data Types

Listing 3-2, OS_CPU.H, Data Types

typedef unsigned char BOOLEAN;
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned int INT16U; // (1)
typedef signed int INT16S;
typedef unsigned long INT32U;
typedef signed long INT32S;
typedef float FP32; // (2)
typedef double FP64;

typedef unsigned char OS_STK; // (3)
typedef unsigned char OS_CPU_SR; // (4)

L3-2(1) If you were to consult the IAR compiler documentation, you would find that an

int is 16 bits and an long is 32 bits for the AVR. Most AVR compilers should
have the same definitions.

L3-2(2) Floating-point data types are included even though µC/OS-II doesn’t make use

of floating-point numbers.

L3-2(3) A stack entry for the AVR processor is always 8 bits wide; thus, OS_STK is

declared accordingly. All task stacks must be declared using OS_STK as its data
type.

L3-2(4) The status register (the SREG) on the AVR processor is 8 bits wide. The

OS_CPU_SR data type is used when OS_CRITICAL_METHOD #3 is used
(described below). In fact, this port only supports OS_CRITICAL_METHOD #3
because it’s the preferred method for µC/OS-II ports.

3.01.03 OS_CPU.H, Critical Sections

µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access critical
sections of code and re-enable interrupts when done. µC/OS-II defines two macros to disable
and enable interrupts: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively.
µC/OS-II defines three ways to disable interrupts but, you only need to use one of the three
methods for disabling and enabling interrupts. The book (MicroC/OS-II, The Real-Time Kernel)
describes the three different methods. The one to choose depends on the processor and
compiler. In most cases, the prefered method is OS_CRITICAL_METHOD #3.

OS_CRITICAL_METHOD #3 implements OS_ENTER_CRITICAL() by writing a function that will
save the status register of the CPU in a variable. OS_EXIT_CRITICAL() invokes another
function to restore the status register from the variable. In the book, Mr. Labrosse recommends
that you call the functions expected in OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL():
OS_CPU_SR_Save() and OS_CPU_SR_Restore(), respectively. The code for these two
functions is declared in OS_CPU_A.S (described later).

 15

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Listing 3-3, OS_CPU.H, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

#define OS_CRITICAL_METHOD 3

#if OS_CRITICAL_METHOD == 3
#define OS_ENTER_CRITICAL() (cpu_sr = OS_CPU_SR_Save();)
#define OS_EXIT_CRITICAL() (OS_CPU_SR_Restore(cpu_sr);)
#endif

3.01.04 OS_CPU.H, Stack growth

The stacks on the AVR grows from high memory to low memory and thus, OS_STK_GROWTH is
set to 1 to indicate this to µC/OS-II.

Listing 3-4, OS_CPU.H, Stack Growth

#define OS_STK_GROWTH 1

3.01.05 OS_CPU.H, Task Level Context Switch

Task level context switches are performed when µC/OS-II invokes the macro OS_TASK_SW().
Because context switching is processor specific, OS_TASK_SW() needs to execute an assembly
language function. In this case, OSCtxSw() which is declared in OS_CPU_A.S (described later).

Listing 3-5, OS_CPU.H, Task Level Context Switch

#define OS_TASK_SW() OSCtxSw()

3.01.06 OS_CPU.H, Global Variables

The AVR contains a hardware stack which is used to save the return address of functions during
function calls as well as the return address of an interrupted function. Most AVR compilers also
implement a ‘software stack’ which is used to pass arguments to functions. The software stack is
maintained by the compiler. More on this will be explained later but, in order to create tasks, we
need a way to tell µC/OS-II about the size of each of these two stacks. This is done by the
global variables shown in listing 3-6.

Listing 3-6, OS_CPU.H, Global Variables used when creating a task

#if OS_CRITICAL_METHOD == 3
OS_CPU_EXT INT16U OSTaskStkSize;
OS_CPU_EXT INT16U OSTaskStkSizeHard;
#endif

 16

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.02.07 OS_CPU.H, Function Prototypes

The prototypes in Listing 3-7 are for the functions used to disable and re-enable interrupts using
OS_CRITICAL_METHOD #3 and are described later.

Listing 3-7, OS_CPU.H, Function Prototypes

#if OS_CRITICAL_METHOD == 3
OS_CPU_SR OS_CPU_SR_Save(void);
void OS_CPU_SR_Restore(OS_CPU_SR cpu_sr);
#endif

void OSStartHighRdy(void);
void OSCtxSw(void);
void OSIntCtxSw(void);

Also, as of V2.77, the prototypes for OSCtxSw(), OSIntCtxSw() and OSStartHighRdy()
need to be placed in OS_CPU.H. In fact, it makes sense to do this since these are all port
specific functions.

 17

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.02 OS_CPU_C.C

A µC/OS-II port requires that you write ten fairly simple C functions:

OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTaskStkInit()

OSTaskSwHook()
OSTCBInitHook()
OSTimeTickHook()

Typically, µC/OS-II only requires OSTaskStkInit(). The other functions allow you to extend
the functionality of the OS with your own functions. The functions that are highlighted will be
discussed in this section.

Note that you will also need to set the #define constant OS_CPU_HOOKS_EN to 1 in OS_CFG.H
in order for the compiler to use the functions declared in this file.

 18

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.02.01 OS_CPU_C.C, OSTaskCreateHook()

This function is called by µC/OS-II’s OSTaskCreate() or OSTaskCreateExt() when a task
is created. OSTaskCreateHook() gives the opportunity to add code specific to the port when a
task is created. In our case, we call the initialization function of µC/OS-View (an optional
module available for µC/OS-II which performs task profiling at run-time, See www.micrium.com
for details).

Note that for OSView_TaskCreateHook() to be called, the target resident code for
µC/OS-View must be included as part of your build. In this case, you need to add a #define
OS_VIEW_MODULE 1 in OS_CFG.H of your application.

Note that if OS_VIEW_MODULE is 0, we simply tell the compiler that ptcb is not actually used (i.e.
(void)ptcb)) and thus avoid a compiler warning.

Listing 3-8, OS_CPU_C.C, OSTaskCreateHook()

void OSTaskCreateHook (OS_TCB *ptcb)
{
#if OS_VIEW_MODULE > 0
 OSView_TaskCreateHook(ptcb);
#else
 (void)ptcb;
#endif
}

3.02.02 OS_CPU_C.C, OSTaskStkInit()

Recall that a task is declared as shown in listing 3-9. For the IAR and ICC compilers, a pointer
argument passed to a function is placed in the R17:R16 registers.

Listing 3-9, µC/OS-II Task

void MyTask (void *p_arg)
{
 /* Do something with ‘p_arg’, optional */
 while (1) {
 /* Task body */
 }
}

The code in Listing 3-10 initializes the stack frame for the task being created. The task received
an optional argument ‘p_arg’. That’s why ‘p_arg’ is passed in R17:R16 when the task is
created. The initial value of most of the CPU registers is not important so, we decided to initialize
them to values corresponding to their register number. This makes it convenient when
debugging and examining stacks in RAM. The initial values are thus useful when the task is first
created but, of course, the register values will most likely change as the task code is executed.

Figure 3-1 shows how the stack frame is initialized for each task when it’s created. The AVR only
provides a hardware stack to save/restore subroutine and interrupt return addresses. Most C
compiler pass function arguments onto a stack so, the compiler manufacturer decided to simulate
a stack for passing arguments. This is called a software stack.

 19

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

When a task is created, you need to initialize the two global variables OSTaskStkSize and
OSTaskStkSizeHard as shown below:

OSTaskStkSize = 256;
OSTaskStkSizeHard = 64;
OSTaskCreateExt(. . . .);

IMPORTANT

1) You MUST initialize OSTaskStkSize and OSTaskStkSizeHard BEFORE calling

OSInit() to the size of the Idle Task and the Statistic Task (if you set OS_TASK_STAT_EN
to 1 in OS_CFG.H), which ever is the LARGEST.

2) You can set the task stacks to be different for each task by reloading OSTaskStkSize and

OSTaskStkSizeHard before calling OSTaskCreate() or OSTaskCreateExt().

3) You MUST make sure that you will not be interrupted when you create your tasks in case

these variables are changed by other tasks or ISRs.

 20

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Listing 3-10, OS_CPU_C.C, OSTaskStkInit()

OS_STK *OSTaskStkInit (void (*task)(void *pd),
 void *p_arg,
 OS_STK *ptos,
 INT16U opt)
{
 INT8U *psoft_stk;
 INT8U *phard_stk; /* Used for AVR hardware stack */
 INT16U tmp;

 (void)opt; /* 'opt' is not used, prevent warning */
 psoft_stk = (INT8U *)ptos;
 phard_stk = (INT8U *)ptos /* (1)
 - OSTaskStkSize /* Task stack size */
 + OSTaskStkSizeHard; /* AVR return stack ("hardware stack") */

#if IAR
 tmp = (INT16U)task; /* (2) Get Task address */
#endif

#if ICC
 tmp = *(INT16U const *)task);
#endif

 phard_stk-- = (INT8U)(tmp & 0xFF); / (3) Put task address on "hardware stack" */
 tmp >>= 8;
 *phard_stk-- = (INT8U)(tmp & 0xFF);

 psoft_stk-- = (INT8U)0x00; / (4) R0 = 0x00 */
 psoft_stk-- = (INT8U)0x01; / R1 = 0x01 */
 psoft_stk-- = (INT8U)0x02; / R2 = 0x02 */
 psoft_stk-- = (INT8U)0x03; / R3 = 0x03 */
 psoft_stk-- = (INT8U)0x04; / R4 = 0x04 */
 psoft_stk-- = (INT8U)0x05; / R5 = 0x05 */
 psoft_stk-- = (INT8U)0x06; / R6 = 0x06 */
 psoft_stk-- = (INT8U)0x07; / R7 = 0x07 */
 psoft_stk-- = (INT8U)0x08; / R8 = 0x08 */
 psoft_stk-- = (INT8U)0x09; / R9 = 0x09 */
 psoft_stk-- = (INT8U)0x10; / R10 = 0x10 */
 psoft_stk-- = (INT8U)0x11; / R11 = 0x11 */
 psoft_stk-- = (INT8U)0x12; / R12 = 0x12 */
 psoft_stk-- = (INT8U)0x13; / R13 = 0x13 */
 psoft_stk-- = (INT8U)0x14; / R14 = 0x14 */
 psoft_stk-- = (INT8U)0x15; / R15 = 0x15 */
 tmp = (INT16U)p_arg;
 psoft_stk-- = (INT8U)(tmp & 0xFF); / (5) 'p_arg' passed in R17:R16 */
 tmp >>= 8;
 *psoft_stk-- = (INT8U)(tmp & 0xFF);
 psoft_stk-- = (INT8U)0x18; / R18 = 0x18 */
 psoft_stk-- = (INT8U)0x19; / R19 = 0x19 */
 psoft_stk-- = (INT8U)0x20; / R20 = 0x20 */
 psoft_stk-- = (INT8U)0x21; / R21 = 0x21 */
 psoft_stk-- = (INT8U)0x22; / R22 = 0x22 */
 psoft_stk-- = (INT8U)0x23; / R23 = 0x23 */
 psoft_stk-- = (INT8U)0x24; / R24 = 0x24 */
 psoft_stk-- = (INT8U)0x25; / R25 = 0x25 */
 psoft_stk-- = (INT8U)0x26; / R26 = 0x26 */
 psoft_stk-- = (INT8U)0x27; / R27 = 0x27 */
 /* (6) R28 R29:R28 (software stack) */
 /* R29 */
 psoft_stk-- = (INT8U)0x30; / R30 = 0x30 */
 psoft_stk-- = (INT8U)0x31; / R31 = 0x31 */
 psoft_stk-- = (INT8U)0xAA; / (7) RAMPZ = 0xAA */
 psoft_stk-- = (INT8U)0x80; / (8) SREG = Interrupts enabled */
 tmp = (INT16U)phard_stk;
 psoft_stk-- = (INT8U)(tmp >> 8); / (9) SPH */
 psoft_stk = (INT8U) tmp; / SPL */
 return ((OS_STK *)psoft_stk); /* (10) */
}

 21

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Figure 3-1, Atmel AVR’s dual stack Figure 3-1, Atmel AVR’s dual stack

 22

Hard SP (L)
Hard SP (H)

SREG
RAMPZ

R31 (Z (H))
R30 (Z (L))
R27 (X (H))
R26 (X (L))

R25
R24
R23
R22
R21
R20
R19
R18
R17
R16
R15
R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

R29:R28
(YH:YL)

.OSTCBStkPtr

OS_TCB

PC (H)
PC (L)

Total Stack
OSTaskStkSize

Low Memory Address

Hardware Stack (2)
OSTaskStkSizeHard

pbos
For OSTaskCreateExt()

(1)

ptos
High Memory Address

Task’s Stack

 22

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

L3-10(1) We calculate the starting address of the hardware stack from the total stack size

and the desired size of the hardware stack.

L3-10(2) We obtain the address of ‘task’ and we save it as a 16-bit value since function

pointers on an ATmega128 are only 16 bit wide. You should note that for the
ICC compiler, we need to do an extra level of indirection. This is a requirement
of the ICC compiler.

L3-10(3) We store the address of the task onto the hardware stack. Note that we assume

a 16 bit address (64K words, 128K bytes). It’s also important to note two things:
first, the address of the task is pushed low byte first and second, that the
hardware stack pointer points to the NEXT empty location on the stack.

 On the IAR tools, we selected the following configuration (LEFT screen shot):
 “—cpu=m128, ATmega128”

 On the ICC tools, we selected the following configuration (RIGHT screen shot):
 “ATmega128”

Figure 3-2, Atmel AVR Compiler Options
(IAR on Left, ICC on Right)

L3-10(4) We initialize the register values on the task’s stack. Note that we set the values

corresponding to the register number. This is useful during debug since it allows
us to locate the stack frame in memory.

L3-10(5) As mentioned previously, p_arg is passed in R17:R16 so we initialize those

registers accordingly – R17 with the high byte and R16 with the low byte. Note
that with the memory model selected, data pointers are 16 bit wide.

L3-10(6) R29:R28 contains the address of the software stack. Because of this, R29:R28

are not actually initialized here.

L3-10(7) We initialize the RAMPZ. If the software actually uses RAMPZ then the compiler

will load the proper value in this register at run-time.

L3-10(8) We initialize the SREG with 0x80 to enable interrupts when the task is started.

 23

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

L3-10(9) We save the contents of the hardware stack pointer onto the software stack.
Note that we place the high byte of the stack pointer onto the stack first.

L3-10(10) We return the address of the new top of stack to the caller. This address will

actually be saved in the task control block of the task being created. It’s
important to note that the pointer points to the LAST byte placed onto the stack.

3.02.03 OS_CPU_C.C, OSTaskSwHook()

OSTaskSwHook() is called when a context switch occurs. This function allows the port code to
be extended and do things such as measuring the execution time of a task, output a pulse on a
port pin when a contact switch occurs, etc. In this case, we call the µC/OS-View task switch
hook called OSView_TaskSwHook(). This assumes that you have µC/OS-View as part of
your build and that you set OS_VIEW_MODULE to 1 in OS_CFG.H.

Listing 3-11, OS_CPU_C.C, OSIntCtxSw()

void OSCtxSwHook (void)
{
#if OS_VIEW_MODULE > 0
 OSView_TaskSwHook();
#endif
}

3.02.04 OS_CPU_C.C, OSTimeTickHook()

OSTimeTickHook() is called at the very beginning of OSTimeTick(). This function allows the
port code to be extended and, in our case, we call the µC/OS-View function
OSView_TickHook(). Again, this assumes that you have µC/OS-View as part of your build
and that you set OS_VIEW_MODULE to 1 in OS_CFG.H.

Listing 3-12, OS_CPU_C.C, OSTimeTickHook()

void OSTimeTickHook (void)
{
#if OS_VIEW_MODULE > 0
 OSView_TickHook();
#endif
}

 24

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.03 OS_CPU_A.S90 (IAR), OS_CPU_A.S (ICC)

A µC/OS-II port requires that you write five fairly simple assembly language functions. These
functions are needed because you normally cannot save/restore registers from C functions.

OS_CPU_SR_Save()
OS_CPU_SR_Restore()
OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()

3.03.01 OS_CPU_SR_Save()

The code in listing 3-13 implements the saving of the SREG register and then disabling interrupts
for OS_CRITICAL_METHOD #3.

When this function returns, R16 contains the state of the SREG register prior to disabling
interrupts. This will allow us to restore the SREG to its original state when we exit the critical
section.

Listing 3-13, OS_CPU_SR_Save()

OS_CPU_SR_Save: IN R16,SREG ; Get current state of interrupts disable flag
 CLI ; Disable interrupts
 RET ; Return original SREG value in R16

3.03.02 OS_CPU_SR_Restore()

The code in the listing below implements the function to restore the SREG register for
OS_CRITICAL_METHOD #3. When called, it’s assumed that R16 contains the desired state of the
SREG register.

Listing 3-14, OS_CPU_SR_Restore()

OS_CPU_SR_Restore: OUT SREG,R16 ; Restore SREG
 RET ; Return

 25

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.03.03 OSStartHighRdy()

OSStartHighRdy() is called by OSStart() to start running the highest priority task that was
created before calling OSStart(). OSStart() sets OSTCBHighRdy to point to the OS_TCB of
the highest priority task.

Listing 3-15, OSStartHighRdy()

OSStartHighRdy:
 CALL OSTaskSwHook ; (1) Invoke user defined context switch hook

 LDS R16,OSRunning ; (2) Indicate that we are multitasking
 INC R16
 STS OSRunning,R16

 LDS R30,OSTCBHighRdy ; (3) Let Z point to TCB of highest priority task
 LDS R31,OSTCBHighRdy+1 ; ready to run

 LD R28,Z+ ; Load Y (R29:R28) pointer – The software SP
 LD R29,Z+

 POP_SP ; (4) Restore stack pointer
 POP_SREG_INT ; (5) Restore status register (DISABLE interrupts)
 POP_ALL ; (6) Restore all registers

 RETI ; (7)

L3-15(1) Before starting the highest priority task, we call OSTaskSwHook() in case a

hook call has been declared.

L3-15(2) The µC/OS-II flag OSRunning is set to TRUE indicating that µC/OS-II will be

running once the first task is started.

L3-15(3) We then get the pointer to the task’s top-of-stack (was stored by

OSTaskCreate() or OSTaskCreateExt()). This is the software stack
pointer.

L3-15(4) We then pop the hardware stack pointer from the software stack. Note that this

is done with the POP_SP macro which is declared in OS_CPU_I.S90 for IAR,
OS_CPU_I.H for ICC:

POP_SP MACRO
 LD R16,Y+
 OUT SPL,R16
 LD R16,Y+
 OUT SPH,R16
 ENDM

L3-15(5) We now restore the contents of the SREG but, we clear bit #7 BEFORE we
restore the actual SREG because we don’t want to be interrupted while we are
restoring the context of the first task. The reason we do this will become clear
when we discuss L3-15(7). Restoring the SREG is done with the POP_SREG_INT
macro as follows (also declared in OS_CPU_I.S90 for IAR, OS_CPU_I.H for
ICC):

POP_SREG_INT MACRO
 LD R16,Y+
 CBR R16,BIT07
 OUT SREG,R16

 26

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

 ENDM

 27

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

L3-15(6) We now restore all the other registers that make up the context of the CPU. This

is done by the POP_ALL macro as shown below (declared in OS_CPU_I.S90 for
IAR, OS_CPU_I.H for ICC).

 Note that the RAMPZ registers is not an actual CPU registers since it’s are found

in the I/O space of the AVR. However, it is part of the AVR’s context.

POP_ALL MACRO
 LD R16,Y+
 OUT RAMPZ,R16
 LD R31,Y+
 LD R30,Y+
 LD R27,Y+
 LD R26,Y+
 LD R25,Y+
 LD R24,Y+
 LD R23,Y+
 LD R22,Y+
 LD R21,Y+
 LD R20,Y+
 LD R19,Y+
 LD R18,Y+
 LD R17,Y+
 LD R16,Y+
 LD R15,Y+
 LD R14,Y+
 LD R13,Y+
 LD R12,Y+
 LD R11,Y+
 LD R10,Y+
 LD R9,Y+
 LD R8,Y+
 LD R7,Y+
 LD R6,Y+
 LD R5,Y+
 LD R4,Y+
 LD R3,Y+
 LD R2,Y+
 LD R1,Y+
 LD R0,Y+
 ENDM

L3-15(7) Finally, we execute the RETI instruction that POPs the return address from the
hardware stack AND sets bit #7 of the SREG enabling interrupts for the task. At
this point, the CPU is executing the code of the most important task you created
prior to calling OSStart(). Note that if we had used the RET instruction, the
interrupt enable bit would not have been set.

 28

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.03.04 OSCtxSw()

The code to perform a ‘task level’ context switch is shown below in pseudo-code. OSCtxSw() is
called when a higher priority task is made ready to run by another task or, when the current task
can no longer execute (e.g. it calls OSTimeDly(), OSSemPend() and the semaphore is not
available, etc.).

Save the CPU registers onto the old task’s stack;
OSPrioCur = OSPrioHighRdy;
OSTCBCur->OSTCBStkPtr = SP;
OSTaskSwHook();
SP = OSTCBHighRdy->OSTCBStkPtr;
OSTCBCur = OSTCBHighRdy;
Restore the CPU registers from the new task’s stack;

The actual code for the task level context switch is shown in Listing 3-16.

Listing 3-16, OSCtxSw()

OSCtxSw:
 PUSH_ALL ; (1) Save current task's context
 PUSH_SREG
 PUSH_SP

 LDS R30,OSTCBCur ; (2) Z = OSTCBCur->OSTCBStkPtr
 LDS R31,OSTCBCur+1
 ST Z+,R28 ; Save Y (R29:R28) pointer
 ST Z+,R29

 CALL OSTaskSwHook ; (3) Call user defined task switch hook

 LDS R16,OSPrioHighRdy ; (4) OSPrioCur = OSPrioHighRdy
 STS OSPrioCur,R16

 LDS R30,OSTCBHighRdy ; (5) Let Z point to TCB of highest priority task
 LDS R31,OSTCBHighRdy+1 ; ready to run
 STS OSTCBCur,R30 ; OSTCBCur = OSTCBHighRdy
 STS OSTCBCur+1,R31

 LD R28,Z+ ; (6) Restore Y pointer
 LD R29,Z+

 POP_SP ; (7) Restore stack pointer
 LD R16,Y+ ; (8) Restore status register
 SBRC R16,7 ; Skip next instruction in interrupts DISABLED
 RJMP OSCtxSw_1

 OUT SREG,R16 ; (9) Interrupts of task to return to are DISABLED
 POP_ALL ; (10)
 RET ; (11)

OSCtxSw_1:
 CBR R16,BIT07 ; (12) Interrupts of task to return to are ENABLED
 OUT SREG,R16
 POP_ALL ; (13) Restore all registers
 RETI ; (14) Return from interrupt and enable interrupts

 29

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

L3-16(1) We save the context of the task being switched out. We use the following three

macros to accomplish this:

PUSH_ALL MACRO
 ST -Y,R0
 ST -Y,R1
 ST -Y,R2
 ST -Y,R3
 ST -Y,R4
 ST -Y,R5
 ST -Y,R6
 ST -Y,R7
 ST -Y,R8
 ST -Y,R9
 ST -Y,R10
 ST -Y,R11
 ST -Y,R12
 ST -Y,R13
 ST -Y,R14
 ST -Y,R15
 ST -Y,R16
 ST -Y,R17
 ST -Y,R18
 ST -Y,R19
 ST -Y,R20
 ST -Y,R21
 ST -Y,R22
 ST -Y,R23
 ST -Y,R24
 ST -Y,R25
 ST -Y,R26
 ST -Y,R27
 ST -Y,R30
 ST -Y,R31
 IN R16,RAMPZ
 ST -Y,R16
 ENDM

PUSH_SREG MACRO
 IN R16,SREG
 ST -Y,R16
 ENDM

PUSH_SP MACRO
 IN R16,SPH
 ST -Y,R16
 IN R16,SPL
 ST -Y,R16
 ENDM

 You should note that µC/OS-II ALWAYS calls OSCtxSw() with interrupts
disabled and thus, bit 7 of SREG is always 0.

 30

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

L3-16(2) We save the current value of the software stack pointer into the TCB of the task

being switched out.

L3-16(3) We call the user define OSTaskSwHook(). This call is not necessary if your

application doesn’t use OSTaskSwHook().

L3-16(4) We set OSPrioCur to the value of OSPrioHighRdy (an 8 bit variable).

L3-16(5) We now make the current TCB the TCB of the task being switched in.

L3-16(6) We load the software stack pointer of the new task. This was stored in the TCB

of the task.

L3-16(7) We restore the hardware stack pointer of the new task from the software stack.

L3-16(8) Here, we restore the value of the SREG from the task stack but, we don’t actually

change the SREG just yet. In fact, we examine bit #7 of the restore register to
see if interrupts need to be enable when the task returns or not. The reason we
do this is because if the context of the task was saved using OSCtxSw() then
we must return to the caller of OSCtxSw() with interrupts disabled. However, if
the context of the task was saved because the task was interrupted then, we
need to return to the task with interrupts enabled.

L3-16(9) Bit 7 of SREG was cleared and thus, we need to return to the caller of

OSCtxSw() with interrupts disabled. We thus simply copy the value retrieved
from the stack into SREG.

L3-16(10) We now retrieve the remaining context of the task to switch in using the

POP_ALL macro which we already saw.

L3-16(11) We return to the caller using the RET instruction which does not touch bit 7 of the

SREG register. At this point, we return to the function that called OSCtxSw().

L3-16(12) If bit 7 of the SREG register of the task to restore was set (the task was

interrupted and we context switched to a higher priority task) then we need to
clear it before saving it into the actual SREG because we will be using the RETI
instruction to set the bit upon returning to the interrupted task.

L3-16(13) We now retrieve the remaining context of the task to switch in using the

POP_ALL macro which we already saw.

L3-16(14) We return to the caller using the RETI instruction which sets bit 7 of the SREG

register enable interrupts. At this point, the interrupted task is resumed.

 31

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.03.05 OSIntCtxSw()

When an ISR completes, OSIntExit() is called to determine whether a more important task
than the interrupted task needs to execute. If that’s the case, OSIntExit() determines which
task to run next and calls OSIntCtxSw() to perform the actual context switch to that task. You
will notice that OSIntCtxSw() is identical to the second half of OSCtxSw(). The reason we
have these as two separate functions is to simplify debugging. Specifically, if you wanted to set a
breakpoint in OSIntCtxSw(), you would hit the breakpoint during a task level context switch (if
OSIntCtxSw() was just a label in OSCtxSw()). Of course this would make debugging a bit
difficult.

Listing 3-17, OSIntCtxSw()

OSIntCtxSw:
 CALL OSTaskSwHook ; Call user defined task switch hook

 LDS R16,OSPrioHighRdy ; OSPrioCur = OSPrioHighRdy
 STS OSPrioCur,R16

 LDS R30,OSTCBHighRdy ; Let Z point to TCB of highest priority task
 LDS R31,OSTCBHighRdy+1 ; ready to run
 STS OSTCBCur,R30 ; OSTCBCur = OSTCBHighRdy
 STS OSTCBCur+1,R31

 LD R28,Z+ ; Restore Y pointer
 LD R29,Z+

 POP_SP ; Restore stack pointer
 LD R16,Y+ ; Restore status register
 SBRC R16,7 ; Skip next instruction in interrupts DISABLED
 RJMP OSIntCtxSw_1

 OUT SREG,R16 ; Interrupts of task to return to are DISABLED
 POP_ALL
 RET

OSIntCtxSw_1:
 CBR R16,BIT07 ; Interrupts of task to return to are ENABLED
 OUT SREG,R16
 POP_ALL ; Restore all registers
 RETI

 32

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

3.04 OS_CPU_I.S90 (IAR), OS_CPU_I.H (ICC)

OS_CPU_I.S90 (OS_CPU_I.H for ICC) is a file that should be included with ALL your assembly
language file that declare interrupt service routines. The file contains macros and I/O port
definitions for the ATmega128. This file avoids having to duplicate the macros in multiple files.

With the IAR tools, you simply include OS_CPU_I.S90 as follows:

#include <os_cpu_i.s90>

With the ICC tools, you simply include OS_CPU_I.H as follows:

.include “os_cpu_i.h”

It’s IMPORTANT that you make sure that the path to the µC/OS-II port for the AVR is included in
the search path of the assembler, as shown in figure 3-3.

Figure 3-3, Assembler Search Path
(IAR on Left, ICC on Right)

3.05 OS_DBG.C

OS_DBG.C is a file that has been added in V2.62 to provide Kernel Aware debugger to extract
information about µC/OS-II and its configuration. Specifically, OS_DBG.C contains a number of
constants that are placed in ROM (code space) which the debugger can read and display.
Because you may not be using a debugger that needs that file, you may omit it in your build.

For the IAR compiler, Micriµm has introduced a Windows-based ‘Plug-In’ module that makes use
of this file and thus needs to be included if you use IAR’s C-Spy. This plug-in is available from
Micriµm at www.Micrium.com.

For the ICC compiler, Micriµm has introduced a Windows-based ‘Plug-In’ module that makes use
of this file and thus needs to be included if you use Atmel’s AVRstudio 4. This plug-in is included
with Atmel’s AVRstudio4 as part of their RTOS development kit.

 33

http://www.micrium.com/

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

4.00 µC/OS-View Port 4.00 µC/OS-View Port

 34

µC/OS-View is a combination of a Microsoft Windows application program and code that
resides in your target system (i.e. your product). The Windows application connects with your
system via an RS-232C serial port. The Windows application allows you to ‘View’ the status of
your tasks which are managed by µC/OS-II.

µC/OS-View is an optional module you can purchase from Micriµm. If you did not purchase this
module you can simply disable code compilation by defining OS_VIEW_MODULE to 0 in
OS_CFG.H and also remove the OS_VIEW*.* from the project build files.

Figure 4-1 shows a screen shot of the µC/OS-View ‘viewer’ (the Windows application). The
viewer communicates with the target to collect and display this run-time information. Especially
useful if the display of the CPU usage (in percentage) for each task as well as worst case stack
growth (for the software stack). You should note that the stack usage for the Idle and Statistics
task is not reported correctly because of the way these tasks are created in OS_CORE.C. In
other words, the idle stack should actually be using about 50 or so bytes off the software stack
while the statistics task should be using about 100 or so bytes.

Task names Stack usage of each task.

CPU Usage of µC/OS-II’s Idle Task
(Green Line)

CPU Usage of µC/OS-II’s Statistics Task
(Red Line)

Figure 4-1, µC/OS-View’s ‘Viewer’ Screen Shot

 34

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

µC/OS-View allows you to view the following information from a µC/OS-II based product:

• The address of the TCB of each task
• The name of each task
• The status (Ready, delayed, waiting on event) of each task
• The number of ticks remaining for a timeout or if a task is delayed
• The amount of stack space used and left for each task
• The percentage of CPU time each task relative to all the tasks
• The number of times each task has been ‘switched-in’
• The execution profile of each task
• More.

µC/OS-View also allows you to:

• ‘Suspend’ the tick interrupt from decrementing delays and timeouts of tasks. The F7
key cancels this mode, the F6 key enables this mode and the F8 key enables one tick
to be processed.

• Pass keystrokes to you application from the ‘Terminal’ window. In other words, you

can now send commands to your product from the Windows application. You
determine the command structure.

• Output ASCII strings from the target to the ‘Terminal’ window. These ASCII strings are

target specific and thus you can define those specific to your product.

4.01 µC/OS-View Port Files

The µC/OS-View port files are found in the following three files:

 IAR’s EWAVR:
 os_viewc.h
 os_viewc.c
 os_viewa.s90

 ImageCraft’s ICCAVR:
 os_viewc.h
 os_viewc.c
 os_viewa.s

 35

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

4.02 OS_VIEWc.h

The µC/OS-View port header file configures certain aspects of the port as described below.

OS_VIEW_TMR_32_BITS

This #define constant indicates whether the timer used for measuring execution time is
a 16-bit timer (when 0) or 32-bit timer (when 1). On the AVR, all timers are 16 bits and
thus this value is 0.

OS_VIEW_RX_BUF_SIZE
This #define constant indicates the size of the receive buffer for commands sent by the
Windows application. The default value is 20 and, you should not change the value of
this #define.

OS_VIEW_TX_BUF_SIZE
This #define constant indicates the size of the transmit buffer for responses from the
target system. If your application is tight on RAM, you can reduce this value. However,
doing this will limit the number of tasks that can be reported back from the target. The
default value is 255 and you should not change the value of this #define.

OS_VIEW_TX_STR_SIZE
This #define constant determines the largest string that can be sent to the Windows’
‘Terminal Window’. If your application is tight with RAM, you could reduce the value of
this #define. The default is 80.

4.03 OS_VIEWc.c

This file contains the code that adapts µC/OS-View to the AVR. µC/OS-View requires the
presence of one UART as well as a free-running timer.

This port was designed such that you can select any of the four UARTs (UART0 or UART1) of the
ATmega128 for use with µC/OS-View. The UART used is selected via a #define which you
need to set in your application configuration. For the example code, we created a file called
app_cfg.h for that and other purposes. In our tests, we used UART0.

#define OS_VIEW_COMM_0 0
#define OS_VIEW_COMM_1 1

#define OS_VIEW_COMM_SEL OS_VIEW_COMM_0

 36

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Similarly, you can use either Timer #1 or Timer #3 as the timer used by µC/OS-View. For the
example code, we decided to use Timer #1 and this is specified in app_cfg.h as follows. Note
that we assume that Timer #0 is used for the µC/OS-II tick rate.

#define OS_VIEW_TMR_1 1
#define OS_VIEW_TMR_3 3

#define OS_VIEW_TMR_SEL OS_VIEW_TMR_1

OS_VIEWc.c also declares a number of hardware specific functions to initialize the UART and
timer and service interrupts from those devices.

4.04 OS_VIEWa.s90 (IAR) or OS_VIEW_a.s (ICC)

This file contains the assembly language code that adapts µC/OS-View to the AVR. Assembly
language is necessary to properly handle the register saving/restoring order expected by
µC/OS-II. However, we did the minimum amount of code as possible in assembly language and
deferred most of the work to C functions.

You will notice that we use the same type of code as in os_cpu_a.s90.

 37

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

5.00 Application code

The sample code is found in the following directories:

 IAR’s EWAVR:
 \Micrium\Software\EvalBoards\Atmel\STK500\ATmega128\IAR\Ex1-OS
 \Micrium\Software\EvalBoards\Atmel\STK500\ATmega128\IAR\Ex1-OS-View

 In this directory, you will find the following files:

 app.c
 app_cfg.h
 app_isr.s90
 app_vect.s90
 includes.h
 os_cfg.h

 ImageCraft’s ICCAVR:
 \Micrium\Software\EvalBoards\Atmel\STK500\ATmega128\ICC\Ex1-OS

 In this directory, you will find the following files:

 app.c
 app_cfg.h
 app_isr.s
 app_vect.s
 includes.h
 os_cfg.h

5.01 app.c

app.c contains the application code for the example. The example code is designed to run on
the STK500/501. Basically, the application consist of blinking three of the 8 LEDs on the STK500
board. Each of the LED is controlled by its own task.

As with most C programs, execution start in main() as shown in Listing 5-1.

 38

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

Listing 5-1, main()

void main (void)
{
#if (OS_TASK_NAME_SIZE > 14) && (OS_TASK_STAT_EN > 0)
 INT8U err;
#endif

 /*---- Any initialization code prior to calling OSInit() goes HERE ----------*/

 /* (1) Setup the Idle and Statistics Task sizes */
 OSTaskStkSize = OS_TASK_IDLE_STK_SIZE; /* See app_cfg.h */
 OSTaskStkSizeHard = OS_TASK_IDLE_STK_SIZE_HARD;

 OSInit(); /* (2) Initialize "uC/OS-II, The Real-Time Kernel" */

 /*---- Any initialization code before starting multitasking -----------------*/

 OSTaskStkSize = OS_TASK_START_STK_SIZE; /* (3), see app_cfg.h */
 OSTaskStkSizeHard = OS_TASK_START_STK_SIZE_HARD;
 OSTaskCreateExt(AppTaskStart,
 (void *)0,
 (OS_STK *)&AppTaskStartStk[OSTaskStkSize - 1],
 OS_TASK_START_PRIO,
 OS_TASK_START_PRIO,
 (OS_STK *)&AppTaskStartStk[OSTaskStkSizeHard],
 OSTaskStkSize - OSTaskStkSizeHard,
 (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

 /*---- Create any other task you want before we start multitasking ----------*/

 OSStart(); /* (4) Start multitasking (i.e. give control to uC/OS-II) */
}

L5-1(1) It’s important that you initialize OSTaskStkSize and OSTaskStkSizeHard

BEFORE calling OSInit() because these variable are necessary to establish
the stack sizes for both the idle task (i.e. OS_TaskIdle()) and the statistic task
(i.e. OS_TaskStat()). Because both of these tasks are create in OSInit(),
you need to set OSTaskStkSize and OSTaskStkSizeHard to the highest
requirements of these two tasks. In other words, if the statistic task requires 256
bytes of total stack space and 64 bytes of hardware stack space and the idle
task only needs 128/32 respectively then you need to use 256 and 64.

L5-1(2) As with all µC/OS-II based applications, you need to initialize the OS by calling

OSInit().

L5-1(3) You now need to create AT LEAST one application task before you startup

µC/OS-II. In fact, you can create ALL your tasks here or, create one task that
will create the other tasks. The later is actually the preferred method. It’s
important to load OSTaskStkSize and OSTaskStkSizeHard for EACH
different task you create. In other words, each task can have different stack
requirements.

L5-1(4) You can now start µC/OS-II and thus multitasking. If you created one task then

µC/OS-II will start it.

 39

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

In our case, the one task created in main() (i.e. AppTaskStart()) is the task that will run first.
The code for AppTaskStart() is shown in listing 5-2.

Listing 5-2, AppTaskStart()

static void AppTaskStart (void *p_arg)
{
 INT8U I;

 (void)p_arg; /* Prevent compiler warnings */

 BSP_Init(); /* (1) Initialize the Board Support Package */

#if OS_TASK_STAT_EN > 0
 OSStatInit(); /* (2) Initialize uC/OS-II’s statistic task */
#endif

#if OS_VIEW_MODULE > 0 /* (3) Initialize uC/OS-View */
 OSTaskStkSize = OS_VIEW_TASK_STK_SIZE;
 OSTaskStkSizeHard = OS_VIEW_TASK_STK_SIZE_HARD;
 OSView_Init(38400);
 OSView_TerminalRxSetCallback(AppTerminalRx);
#endif

 AppTaskCreate(); /* (4) Create other application tasks */

 while (TRUE) { /* (5) Task body, always written as an infinite loop. */
 for (i = 1; i <= 8; i++) {
 LED_On(i);
 OSTimeDly(OS_TICKS_PER_SEC / 20);
 LED_Off(i);
 }
 for (i = 7; i > 1; i--) {
 LED_On(i);
 OSTimeDly(OS_TICKS_PER_SEC / 20);
 LED_Off(i);
 }
 }
}

L5-2(1) We start off by initializing the Board Support Package (BSP). The BSP in this

example simply consist of functions used to control the LEDs on the evaluation
board. The code for BSP_Init() is found in BSP.C in the ..\BSP directory
(discussed later). BSP_Init() calls BSP_TickInit() to initialize the
µC/OS-II tick ISR. The #define OS_TICKS_PER_SEC in OS_CFG.H
determines how fast we want the tick interrupt to occur. The actual value
depends on the desired granularity for clock ticks. The code is placed in this file
to keep the µC/OS-II port files generic. In other words, we didn’t want
µC/OS-II’s port files to make any assumptions about which timer would be used
to generate tick interrupts. For the example, we decided to use the AVR’s Timer
#0 and we configured it for compare mode.

L5-2(2) We call OSStatInit() to determine the performance of the CPU. What this

code does is run the Idle task for 1/10 of a second and measures how fast the
CPU is running during that time. From there on, CPU usage will be determined
every 1/10 second based on these calculations.

 40

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

L5-2(3) If you purchased the µC/OS-View package from Micriµm, you can call its
initialization functions here. Note that we assumed 38,400 baud but, you can
change this value to any other standard baud rate.

L5-2(4) You can now create other tasks.

L5-2(5) This task now starts an infinite loop which blinks the LEDs from left to right and

right to left (or up and down depending on the orientation of your board).

5.01.01 Creating a task with OSTaskCreate()

When you create a task using OSTaskCreate(), you need to have the following code:

 OSTaskStkSize = 256;
 OSTaskStkSizeHard = 64;
 OSTaskCreate(task,
 (void *)0,
 (OS_STK *)&TaskStk[OSTaskStkSize – 1],
 prio);

Note that we used 256/64 in the example above but, you would actually specify the desired size
for your task’s stack. prio is of course, the priority of the task you are creating.

5.01.02 Creating a task with OSTaskCreateExt()

When you create a task using OSTaskCreateExt(), you need to have the following code:

 OSTaskStkSize = 256;
 OSTaskStkSizeHard = 64;
 OSTaskCreateExt(task,
 (void *)0,
 (OS_STK *)&TaskStk[OSTaskStkSize – 1],
 prio,
 prio,
 (OS_STK *)&TaskStk[OSTaskStkSizeHard],
 OSTaskStkSize – OSTaskStkSizeHard,
 (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

Again, we used 256/64 in the example above but, you would actually specify the desired size for
your task’s stack. Also when you pass the ‘bottom’ of stack to OSTaskCreate(), you MUST
pass it the ‘last’ location of the hardware stack. You do this because the statistic task can
determine the amount of free space available on the software stack. For the statistics, you need
to pass the size of the software stack which is of course, the difference between the total size of
the stack minus the size allocated for the hardware stack. Unfortunately, the statistic task doesn’t
return statistics for both stacks. If you need statistics on stack usage of your hardware stacks,
you can always create a function to do this.

 41

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

5.02 app_cfg.h

app_cfg.h contains application specific configuration information. Specifically, we define the
constants shown in Listing 5-4. We decided to declare the task sizes and task priorities in this
file. You can thus change the size of each task in one convenient place and also, setup ALL your
task priorities in one file.

You should note that all the stacks have the same size but you can certainly change those as
needed.

Listing 5-4, app_cfg.h

/*
**
* STACK SIZES
**
*/

#define OS_TASK_START_STK_SIZE 240
#define OS_TASK_START_STK_SIZE_HARD 64

#define OS_TASK_START_STK_SIZE 240
#define OS_TASK_START_STK_SIZE_HARD 64

#define OS_TASK_1_STK_SIZE 240
#define OS_TASK_1_STK_SIZE_HARD 64

#define OS_TASK_2_STK_SIZE 240
#define OS_TASK_2_STK_SIZE_HARD 64

#define OS_VIEW_TASK_STK_SIZE 200
#define OS_VIEW_TASK_STK_SIZE_HARD 64

#define OS_TASK_TMR_STK_SIZE 240
#define OS_TASK_TMR_STK_SIZE_HARD 64

#define OS_TASK_STAT_STK_SIZE 240
#define OS_TASK_STAT_STK_SIZE_HARD 64

#define OS_TASK_IDLE_STK_SIZE 240
#define OS_TASK_IDLE_STK_SIZE_HARD 64

/*

* TASK PRIORITIES

*/

#define OS_TASK_START_PRIO 0

#define OS_TASK_1_PRIO 1
#define OS_TASK_2_PRIO 2

#define OS_VIEW_TASK_PRIO 3
#define OS_VIEW_TASK_ID 3

#define OS_TASK_TMR_PRIO 4

/* OS_TASK_STAT_PRIO OS_LOWEST_PRIO - 1 */
/* OS_TASK_IDLE_PRIO OS_LOWEST_PRIO */

 42

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

/*

* uC/OS-View

*/

#define OS_VIEW_PARSE_TASK 1
#define OS_VIEW_TMR_32_BITS 0

#define OS_VIEW_COMM_0 0
#define OS_VIEW_COMM_1 1

#define OS_VIEW_COMM_SEL OS_VIEW_COMM_0

#define OS_VIEW_TMR_1 1
#define OS_VIEW_TMR_3 3

#define OS_VIEW_TMR_SEL OS_VIEW_TMR_1

5.03 app_isr.s90 (IAR), app_isr.s (ICC)

We decided to place ALL the interrupt service routines for the application in one file,
app_isr.s90. However, this file currently only contains one ISR, the µC/OS-II tick ISR.
Listing 5-5 shows the code for this ISR.

The code for ALL your ISRs MUST be IDENTICAL except for the portion in RED which would
change based on the specific ISR.

When you add ISRs, you also need to add the appropriate entry in the interrupt vector table, see
app_vect.s90.

Listing 5-5, AppTickISR()

BSP_TickISR:
 PUSH_ALL ; (1) Save all registers and status register
 IN R16,SREG ; (2) Save the SREG but with interrupts enabled
 SBR R16,BIT07
 ST -Y,R16
 PUSH_SP ; (3) Save task's hardware SP onto task's stack

 LDS R16,OSIntNesting ; (4) Notify uC/OS-II of ISR
 INC R16
 STS OSIntNesting,R16

 CPI R16,1 ; (5) if (OSIntNesting == 1) {
 BRNE BSP_TickISR_1

 LDS R30,OSTCBCur ; OSTCBCur->OSTCBStkPtr = Y
 LDS R31,OSTCBCur+1
 ST Z+,R28
 ST Z+,R29 ; }

BSP_TickISR_1:
; OK to re-enable interrupts if you want to support interrupt nesting!

 CALL BSP_TickISR_Handler ; (6) Call tick ISR Handler written in C
 CALL OSIntExit ; (7) Notify uC/OS-II about end of ISR

 POP_SP ; (8) Restore the hardware SP from task's stack
 POP_SREG_INT ; (9) Interrupts of task to return to are ENABLED
 POP_ALL ; (10) Restore all registers
 RETI ; (11) Return to interrupted task

 43

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

L5-5(1) At the beginning of your ISRs, you need to save ALL the CPU registers onto the
interrupted task’s stack. This is done with the PUSH_ALL macro that we already
discussed.

L5-5(2) When the ISR starts, the CPU disables further interrupts by clearing bit 7 of the

SREG register. When we resume the interrupted task, we need to restore the
interrupt enable bit and thus, we save the value of SREG register with bit 7 set.

L5-5(3) When the push the hardware stack pointer onto the software stack. Again, we

use the PUSH_SP macro to accomplish this.

L5-5(4) You need to notify µC/OS-II about the start of an ISR. This is done by

incrementing OSIntNesting.

L5-5(5) If this is the FIRST nested ISR, we need to save the software stack pointer into

the TCB of the current task.

NOTE

At this point, you can re-enable interrupts (by setting bit 7 of the SREG register) if
you need to support interrupt nesting. If you do, be sure that you allocated
sufficient stack space for each task. However, we recommend that you do not
re-enable interrupts and that you keep your ISR code as short as possible and
simply signal a task and let it handle the majority of the interrupting device’s
code.

L5-5(6) We can now process the ISR. We call a function so that we can do this in C.

We could just as well have handled the ISR in assembly language but C is
typically easier to maintain. BSP_TickISR_Handler() is found in APP.C.

L5-5(7) When you are done servicing the ISR, you need to call OSIntExit().

OSIntExit() determines whether there is a more important task that needs to
run because of the ISR. If there is, a context switch will occur and
OSIntExit() will NOT return to this ISR code but instead, will exit through
OSIntCtxSw(), see OS_CPU_A.S90.

L5-5(8) If the interrupted task is still the most important task to run then OSIntExit()

returns and we restore the hardware stack pointer from the software stack.

L5-5(9) Since we will return using the RETI instruction, we clear bit 7 of the SREG

register to ensure that we don’t get interrupted as we restore the remaining of the
context of the task being resumed. In fact, it would be OK to not disable
interrupts except that if an interrupt occurred as we were in the process of
restoring the context we could have more than one context on the stack frame of
the task and thus risk overflowing the stack. Note that we use the
POP_SREG_INT macro for this and it’s shown below.

POP_SREG_INT MACRO
 LD R16,Y+
 CBR R16,BIT07
 OUT SREG,R16
 ENDM

L5-5(10) We then restore the remaining context of the task that was interrupted.

 44

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

L5-5(11) Finally, we execute a return from interrupt instruction which pops the return
address from the hardware stack and also re-enables interrupts.

5.04 app_vect.s90 (IAR), app_vect.s (ICC)

For your convenience, we included an interrupt vector table containing all the entries for the
ATmega128 CPU as shown in listing 5-6. You can copy this file to your own project and add the
interrupt vectors used in your application.

Listing 5-5, Interrupt Vector Table for the ATmega128 (IAR)

 COMMON INTVEC

APP_INT_VECT_TBL: ;
 ; Vector # Program Address Interrupt Definition
 ; -------- --------------- -------------------------
 DS 4 ; 1 0x0000 Reset
 DS 4 ; 2 0x0002 IRQ0 Handler
 DS 4 ; 3 0x0004 IRQ1 Handler
 DS 4 ; 4 0x0006 IRQ2 Handler
 DS 4 ; 5 0x0008 IRQ3 Handler
 DS 4 ; 6 0x000A IRQ4 Handler
 DS 4 ; 7 0x000C IRQ5 Handler
 DS 4 ; 8 0x000E IRQ6 Handler
 DS 4 ; 9 0x0010 IRQ7 Handler
 DS 4 ; 10 0x0012 Timer2 Compare Match
 DS 4 ; 11 0x0014 Timer2 Overflow
 DS 4 ; 12 0x0016 Timer1 Capture
 DS 4 ; 13 0x0018 Timer1 Compare A
 DS 4 ; 14 0x001A Timer1 Compare B
 DS 4 ; 15 0x001C Timer1 Overflow
 JMP BSP_TickISR ; 16 0x001E Timer0 Compare
 DS 4 ; 17 0x0020 Timer0 Overflow
 DS 4 ; 18 0x0022 SPI, STC Transfer Complete
#if OS_VIEW_MODULE > 0
 JMP OSView_RxISR ; 19 0x0024 USART0 RX Complete
 DS 4 ; 20 0x0026 USART0 UDR Empty
 JMP OSView_TxISR ; 21 0x0028 USART0 TX Complete
#else
 DS 4 ; 19 0x0024 USART0 RX Complete
 DS 4 ; 20 0x0026 USART0 UDR Empty
 DS 4 ; 21 0x0028 USART0 TX Complete
#endif
 DS 4 ; 22 0x002A ADC Conversion Complete
 DS 4 ; 23 0x002C EEPROM Ready
 DS 4 ; 24 0x002E Analog Compare Interrupt
 DS 4 ; 25 0x0030 Timer1 Compare C
 DS 4 ; 26 0x0032 Timer3 Capture
 DS 4 ; 27 0x0034 Timer3 Compare A
 DS 4 ; 28 0x0036 Timer3 Compare B
 DS 4 ; 29 0x0038 Timer3 Compare C
 DS 4 ; 30 0x003A Timer3 Overflow
 DS 4 ; 31 0x003C USART1 RX Complete
 DS 4 ; 32 0x003E USART1 UDR Empty
 DS 4 ; 33 0x0040 USART1 TX Complete
 DS 4 ; 34 0x0042 Two-wire Serial Interface
 DS 4 ; 35 0x0044 SPM Ready

 45

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

5.05 includes.h

This file is a master include file which is used by app.c and possibly, other application files. The
idea behind this file is to avoid having to specify each .H files in all the .C files. In other words,
all your application files need to include is includes.h.

5.06 os_cfg.h

This is the configuration file for µC/OS-II which is used to specify what µC/OS-II features you
would like in your application.

 46

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

6.00 Board Support Package

The example code includes a simple Board Support Package (BSP) that sets up the tick interrupt
as well as provides you with functions to control the LEDs on the STK500/501 evaluation board.

The BSP contains two files, BSP.C and BSP.H and these files are found in the following
directory:

 \MICRIUM\SOFTWARE\EvalBoards\Atmel\STK500\ATmega128\IAR\BSP

Or,

 \MICRIUM\SOFTWARE\EvalBoards\Atmel\STK500\ATmega128\ICC\BSP

6.01 LED Controls

The BSP contains code to turn on, turn off or toggle any or all of the LEDs. These functions are:

LED_On(INT8U led_id)
LED_Off(INT8U led_id)
LED_Toggle(INT8U led_id)

There are advantages to isolating LED control in such functions because it allows you to re-use
the same application code on different boards just by simply changing the LED control functions
for that board. As you probably know, this is called encapsulation.

‘led_id’ is an identifier associated with each of the 8 LEDs on the STK500 board. When you
specify 0, you will affect ALL the LEDs. For example, LED_On(0) means that you want to turn
ON all the LEDs. LED0 on the board has an ID of 1, LED1 on the board has an ID of 2, etc.
Thus, to toggle LED7 on the board, simply call LED_Toggle(8).

6.02 Tick ISR (Using the ATmega128 Timer #0)

The BSP also contains code to initialize and handle the tick ISR needed for µC/OS-II.
Initialization is handled by BSP_InitTickISR() and the ISR handler is
BSP_TickISR_Handler() which is actually called by BSP_TickISR() (see app_isr.s90
(IAR) or app_isr.s (ICC)).

Listing 6-1 shows the tick ISR handler. We decided to use Timer #0 or the ATmega128. Note
that we DON’T need to clear the interrupt IF we use compare mode on the timer because the
hardware does that automatically when it vectors to the ISR. This is NOT true for ALL
interrupting devices so, make sure you clear the interrupt source IF you need to re-enable
interrupts to service other interrupts. If you don’t clear the interrupt before you re-enable
interrupts, you would re-enter the ISR and your application will crash!

Listing 6-1, BSP_TickISR_Handler()

void BSP_TickISR_Handler (void)
{
 OSTimeTick();

 47

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

}

6.03 CPU Clock Frequency

BSP.H contains a declaration (see below) that tells the rest of the software the CPU clock
frequency. For the ATmega128 used on the STK500/501, we assumed 3.684 MHz.

/*
**
* CPU CLOCK FREQUENCY
**
*/

#define CPU_CLK_FREQ 3684000

 48

 Micriµm
 µC/OS-II for Atmel AVR (ATmega128)

References

µC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-57820-103-9

Embedded Systems Building Blocks
Jean J. Labrosse
R&D Technical Books, 2000
ISBN 0-87930-604-1

Contacts

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
+1 408 441 0311
WEB: www.Atmel.com

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
USA
(785) 841-1631
(785) 841-2624 (FAX)
e-mail: rdorders@rdbooks.com
WEB: http://www.rdbooks.com

IAR Systems
Century Plaza
1065 E. Hillsdale Blvd
Foster City, CA 94404
USA
+1 650 287 4250
+1 650 287 4253 (FAX)
e-mail: Info@IAR.com
WEB : www.IAR.com

ImageCraft
706 Colorado Ave., #10-88
Palo Alto, CA 94303
USA
+1 650 493 9326
+1 650 493 9329 (FAX)
e-mail: Info@imagecraft.com
WEB : www.ImageCraft.com

Micriµm
949 Crestview Circle
Weston, FL 33327
USA
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

 49

http://www.atmel.com/
mailto:rdorders@rdbooks.com
http://www.rdbooks.com/
mailto:Info@IAR.com
http://www.iar.com/
mailto:Info@imagecraft.com
http://www.imagecraft.com/
mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/

	1.00 Introduction
	1.01 Atmel AT90 (AVR)
	1.02 Test Setup
	1.03 Development Tools
	2.00 Directories and Files
	3.00 µC/OS-II Port Files
	3.01 OS_CPU.H
	3.01.01 OS_CPU.H, macros for ‘externals’
	3.02.02 OS_CPU.H, Data Types
	3.01.03 OS_CPU.H, Critical Sections
	3.01.04 OS_CPU.H, Stack growth
	3.01.05 OS_CPU.H, Task Level Context Switch
	3.01.06 OS_CPU.H, Global Variables
	3.02.07 OS_CPU.H, Function Prototypes
	3.02 OS_CPU_C.C
	3.02.01 OS_CPU_C.C, OSTaskCreateHook()
	3.02.02 OS_CPU_C.C, OSTaskStkInit()
	3.02.03 OS_CPU_C.C, OSTaskSwHook()
	3.02.04 OS_CPU_C.C, OSTimeTickHook()
	3.03 OS_CPU_A.S90 (IAR), OS_CPU_A.S (ICC)
	3.03.01 OS_CPU_SR_Save()
	3.03.02 OS_CPU_SR_Restore()
	3.03.03 OSStartHighRdy()
	3.03.04 OSCtxSw()
	3.03.05 OSIntCtxSw()
	3.04 OS_CPU_I.S90 (IAR), OS_CPU_I.H (ICC)
	3.05 OS_DBG.C
	4.00 µC/OS-View Port
	4.01 µC/OS-View Port Files
	4.02 OS_VIEWc.h
	4.03 OS_VIEWc.c
	4.04 OS_VIEWa.s90 (IAR) or OS_VIEW_a.s (ICC)
	5.00 Application code
	5.01 app.c
	5.01.01 Creating a task with OSTaskCreate()
	5.01.02 Creating a task with OSTaskCreateExt()
	5.02 app_cfg.h
	5.03 app_isr.s90 (IAR), app_isr.s (ICC)
	5.04 app_vect.s90 (IAR), app_vect.s (ICC)
	5.05 includes.h
	5.06 os_cfg.h
	6.00 Board Support Package
	6.01 LED Controls
	6.02 Tick ISR (Using the ATmega128 Timer #0)
	6.03 CPU Clock Frequency
	References
	Contacts

