数字示波器设计3

http://www.freepcb.com/eebit/
FPGA-based Logic Analyzer
This project was my entry in the Embedded Linux Journal's "Hack Embedded Linux for Fun and Prizes" contest. My goal was to create an inexpensive logic analyzer using an Altera FPGA and an embedded Linux processor from ZFLinux. Although I didn't win the contest, the logic analyzer works well and I am continuing to develop and support it just for fun.

Latest News...
	12-31-04
	Please note that my email address has changed (see bottom of page).

	10-09-04
	Due to problems running the software under Windows XP, I have modified the code slightly and there is a new installation procedure. See Section 1.3 of the Help file for details. You can download the new version of logic2.exe (version 1.01) from the Software page.

	5-17-04
	I found a great site for anyone interested in FPGA design for fun projects, called FPGA4Fun. Check it out.

	9-18-03
	I have run out of blank PCBs, and I don't think that I will make any more. I sold about 15 of them, but no one has actually built a working board, as far as I know. I think that the soldering proved too difficult for most people. Also, the FPGA remains pretty expensive. I have started to port the design to one of the newer Cyclone FPGAs, which should be a lot cheaper, and might enable me to offer an assembled board for a reasonable price. I don't know when I'll get it done, though.

	9-2-2002
	Well, 6 months have gone by but I finally got around to building a new PP version prototype. I used a slower FPGA (the -3 speed, which is available from arrow.com), but the analyzer still seems to run fine at 100 MHz. With the slower chip, the trigger point is offset by one in the data display window, but everything else seems OK. I can't guarantee that everyone using the slower chip will get this performance, however, and the parts list still calls for the -1 part.

Now that the prototype is working, I am willing to supply blank PCBs to anyone who wants to build one. See below.

	3-3-2002
	I'm still working on getting a new FPGA, but I posted a picture of the PP board and the Gerber files on the PCB page. These should be considered preliminary until the board works.

	2-26-2002
	Arrgh! I assembled one of the new PP boards, and the FPGA seems to configure OK, but it doesn't work. I have tried some simple configuration files, just toggling pins, and nothing happens. I think that I have a bad FPGA. The one I used was on the shelf for a year. It'll take a few weeks to replace it. Sorry for the delay.

	1-29-2002
	I finished the PCB layout for the parallel port version, and sent in the Gerber files for PCB fab. Go to the PCB page to see the layout and parts list.

	1-21-2002
	I posted the schematic file for the parallel port version.
Go to the PCB page and look under "Schematics" to view or download.

	1-8-2002
	I posted the FPGA design files for the parallel port version.
Go to the FPGA page to download.

	12-23-2001
	I finally finished the application software!
Please go to the Software page download binaries, sources and documentation for logic2.exe.

Networked Version
The contest prototype is shown below. It is a 32-channel logic analyzer based on an MZ104 processor board from Tri-M Systems, a network card, and a custom card which I designed, which I call the Analyzer PCB. The Analyzer PCB contains an FPGA, SRAM buffer, clock chip, clock switch, headers for data and clock inputs, an FPGA programming port and a PC/104 interface. The combination of the FPGA (which can be reconfigured under program control), and the MZ104 (which is essentially a complete PC running Linux), provides an exceptionally flexible instrument which can be adapted to many purposes besides logic analysis. In its current configuration it does not have a user interface, but is controlled by a remote Windows or Linux workstation over the network.

[image: image1.jpg]

Parallel Port (PP) Version
Although the contest prototype used the ZFLinux embedded processor with an ethernet card, it is also possible to connect the Analyzer PCB directly to a host PC using the parallel port, without any other boards. This reduces the cost considerably, and is the best way to go if you just need a PC-based logic analyzer and don't want to develop a stand-alone instrument. You still have the option of using the board for lots of other purposes besides logic analysis, if you are willing to design your own logic with the Altera software.

I modified my prototype by adding an external PP interface board. Once I verified that it worked, I designed a new PCB which incorporates the PP interface. My first prototype didn't work, apparently due to a bad FPGA, so I built a second one, which is shown below. I used a lower speed grade FPGA than the original (-3 instead of -1) which is much easier to get (you can usually get it online from arrow.com.) My prototype is working nicely at 100 MHz, but I don't guarantee that you will get the same performance. The parts list still calls for the -1 part.

[image: image2.jpg]

Blank PCBs . . . Sorry, there are no more of these available ! ! !

Contact me:

My email address is:

	[image: image3.png]allan@freepcb.com

	 (sorry for no hyperlink, but I am getting killed by spam)

Overview

The Analyzer is built on a single PCB, with a PC/104 interface. The board can be used in two different ways:

· When combined with other PC/104 modules such as the MZ104 embedded processor board from Tri-M and a networking card, it becomes a self-contained instrument which can be accessed over the network by a remote PC, which provides the user interface.

· When connected to the parallel port of a host PC, the Analyzer can be operated directly without other PC/104 modules for a lower-cost system. This is the version which I am currently using and developing.

The logic for the Analyzer is implemented in an Altera 10K30A FPGA (FPGA = Field-Programmable Gate Array). The logic was designed in the Altera Max+PlusII design environment, using the schematic editor. The design is compiled into a configuration file which is downloaded into the FPGA after power-up. This provides a great deal of flexibility, as the logic in the FPGA can be changed at any time without changing the hardware. In fact, by reconfiguring the FPGA, the Logic Analyzer can be converted into something completely different, such as a digital sequencer, signal processor, protocol analyzer, robotics controller, etc. By adding external components such as DACs or ADCs you can make it into an arbitrary waveform generator, digital oscilloscope, audio analyzer, spectrum analyzer, or just about anything else that you can think of. You can even put a simple microprocessor into the FPGA, turning it into a computer! (Did you ever want your own PDP8 ?)

PCB

The Analyzer board is PC/104 compatible, and contains the following parts:

· FPGA

· SRAM (32x65K)

· Header for 32 logic inputs and an external clock input

· Header for the programming port of the FPGA

· PC/104 ISA-bus header

· Voltage regulator

· Crystal-controlled 100 MHz clock, with clock divider

· FET switch for clock selection

· Configuration EPROM

FPGA

The FPGA is an Altera 10K30A. It contains all of the logic for the Analyzer, as well as the ISA-bus or parallel port interface. The programming port of the FPGA is brought out to a header and a socket so that configuration files can be downloaded from a PC, or loaded automatically from a configuration EPROM. Altera makes a family of FPGAs, varying in speed and size, and many of them are pin-compatible with the 10K30A, so a different FPGA could be substituted on the board if desired.

Software

There are two applications that work together to operate the logic analyzer.

· Logic - This is a Windows or Linux application which runs on the remote PC. It controls the Analyzer using either the parallel port or network interface. It displays setup information and data with a user-friendly GUI.

· Netshell - For the networked version, this is a Linux application running on the MZ104 embedded processor. It controls the Analyzer board using port I/O, and communicates with a remote PC over the network. It provides a command-line interface which can be accessed locally or remotely using Telnet. Applications on the remote PC can use the command-line interface to control the Analyzer and download data from it.

Specifications

· 32 channels, 1 clock input

· inputs accept 2.5V, 3.3V or 5V logic levels

· 65K samples per channel

· 100 MHz maximum internal or external clock rate

· 2 state detectors for triggering, STATE1 and STATE2

· STATE1 can be 0, 1 or DON'T_CARE on each channel

· STATE2 can be 0, 1, DON'T_CARE, UP_EDGE, DOWN_EDGE or ANY_EDGE on each channel.

· the trigger condition is: STATE1 for N cycles then STATE2, where N is between 0 and 255

· ISA-bus (PC/104) or parallel port interface

FPGA

The Altera 10K30A FPGA is the heart of the logic analyzer. An FPGA (Field Programmable Gate Array) is a chip containing a large number of general-purpose logic elements with an interconnection matrix. The logic elements and the interconnections are configured by downloading a data file into the device, either from an EPROM or from the parallel port of a PC. The functionality of the device is determined entirely by the downloaded code. The code which I created for this project implements a logic analyzer, but an entirely different instrument could be created simply by modifying the configuration file.

The configuration file is created by a logic compiler. Altera provides a compiler as part of their "Max+PlusII" software for Windows. This software provides a complete design environment, from design entry through synthesis, simulation, and programming the FPGA. The logic design can be created as a schematic or by using a hardware description language such as VHDL, or by a combination of both methods. I chose to use schematic entry, since it provides a more direct representation of the logic which will be created in the device. Max+PlusII encourages a hierarchical approach to design, allowing you to create logic modules which can be incorporated into higher-level modules and eventually into the top-level module which is the complete design. Either "top-down" or "bottom-up" approaches can be used. The simulator is invaluable for debugging, and can be used with individual modules or the complete design.

Max+PlusII can be downloaded from the Altera web-site, using the link below. It is free, but you have to register and then Altera will email you a license file. The current free version is 10.0. I used the commercial version 9.5 for this project. The main advantage of the commercial version is that it supports "timing-driven synthesis", which can result in higher speed. Using the commercial version of the software, the logic analyzer runs at 112 MHz (in simulation) vs. about 87 MHz using the free version.

The top-level schematic page for my logic analyzer FPGA is shown below. It uses high-level modules such as "ISA_INTERFACE" which have their own schematic pages, incorporating lower level modules which have their own pages, etc., etc. If you want to peruse the complete design, you can download the design files (using the links below) and look at them in Max+PlusII.

[image: image4.jpg]

Click here for medium-sized image (48 KB)

Click here for larger image (165 KB)

Click here to download logic analyzer design files (PC/104 Version)

Click here to download logic analyzer design files (parallel port version)

Click here for Altera download page

PCB

Schematics
Here are the schematics for the Analyzer board as .pdf files.

Depending on how your browser is set up, you may have to right-click and chose "Save link as..." to download.

	schematics.pdf
	PC/104 version

	schematics_pp.pdf
	parallel port (PP) version

Parts Lists
PC/104 Version
	Name
	P/N
	Manufacturer
	# Used
	Package
	Refs
	Comments

	FPGA
	EPF10K30AQC240-1
	Altera
	1
	QFP240
	U4
	-

	FET SWITCH
	IDTQS3126S1
	I.D.T.
	1
	SOIC14
	U5
	-

	EPROM
	EPC1
	Altera
	1
	PLCC20
	U3
	Use socket

	SRAM
	CY7C1329
	Cypress
	1
	QFP100
	U2
	-

	REGULATOR
	DigiKey LM1085IT-3.3-ND
	National Semi.
	1
	TO220
	U1
	-

	LED
	DigiKey 67-1056-ND
	Lumex
	1
	HDR1X2
	D1
	-

	OSCILLATOR
	DigiKey SE3514CT-ND
	EPSON
	1
	SMT4
	X1
	-

	HEADER(1X2)
	DigiKey WM4000-ND
	Molex
	1
	HDR1X2
	J10
	-

	PROTECTED HEADER(2X5)
	DigiKey A26268-ND
	AMP
	1
	HDR2X5
	J2
	-

	PIN HEADER(2X5)
	DigiKey S2022-5-ND
	AMP
	1
	HDR2X5
	J1
	-

	HEADER(PCI/104)
	1375795-1
	AMP
	1
	HDR2X32
	J3+J4 (combined)
	-

	HEADER(I/O)
	?
	?
	?
	HDR1x20
	J5-J9
	These can be configured various ways

	RES_220_5%
	DigiKey P220ACT-ND
	Panasonic
	1
	805
	R1
	-

	RES_1K_5%
	DigiKey P1.0KACT-ND
	Panasonic
	5
	805
	R2-R6
	-

	RES_4.7K_5%
	DigiKey P4.7KACT-ND
	Panasonic
	1
	805
	R7
	-

	RES_33_5%
	DigiKey P33ACT-ND
	Panasonic
	33
	805
	R8-R40
	-

	CAP_100UF_10V
	DigiKey P11313CT-ND
	Panasonic
	1
	EIA-D
	C1
	-

	CAP_47UF_6.3V
	DigiKey P11305CT-ND
	Panasonic
	4
	EIA-B
	C2-C5
	-

	CAP_0.1UF_10V
	DigiKey PCC1840CT-ND
	Panasonic
	38
	805
	C6-C43
	-

PP Version
	Name
	P/N
	Manufacturer
	# Used
	Package
	Refs
	Comments

	FPGA
	EPF10K30AQC240-1
	Altera
	1
	QFP240
	U4
	-

	FET SWITCH
	IDTQS3126S1
	I.D.T.
	1
	SOIC14
	U5
	-

	CMOS BUFFER
	74HC244
	various
	1
	SOIC20
	U3
	-

	SRAM
	CY7C1329-133AC or MT58L64L32D-7.5A
	Cypress or Micron
	1
	QFP100
	U2
	-

	REGULATOR
	DigiKey LM1085IT-3.3-ND
	National Semi.
	1
	TO220
	U1
	-

	LED
	DigiKey 67-1056-ND
	Lumex
	1
	HDR1X2
	D1
	-

	OSCILLATOR
	DigiKey SE3514CT-ND
	EPSON
	1
	SMT4
	X1
	-

	HEADER(1X2)
	DigiKey WM4000-ND
	Molex
	1
	HDR1X2
	J10
	-

	RIGHT-ANGLE 0.156" HEADER(1X2)
	DigiKey WM4640-ND
	Molex
	1
	MOLEX
	J2
	-

	RIGHT-ANGLE BOX HEADER(2X13)
	DigiKey A26275-ND
	AMP
	1
	HDR13X2
	J1
	-

	HEADER(I/O)
	?
	?
	?
	HDR1x20
	J5-J9
	These can be configured various ways

	RES_220_5%
	DigiKey P220ACT-ND
	Panasonic
	1
	805
	R1
	-

	RES_1K_5%
	DigiKey P1.0KACT-ND
	Panasonic
	5
	805
	R2-R6
	-

	RES_4.7K_5%
	DigiKey P4.7KACT-ND
	Panasonic
	8
	805
	R7, R72-R78
	-

	RES_33_5%
	DigiKey P33ACT-ND
	Panasonic
	33
	805
	R8-R40
	-

	RES_100_5%
	DigiKey P100ACT-ND
	Panasonic
	21
	805
	R50-R62, R64-R71
	-

	CAP_100UF_10V
	DigiKey P11313CT-ND
	Panasonic
	1
	EIA-D
	C1
	-

	CAP_47UF_6.3V
	DigiKey P11305CT-ND
	Panasonic
	4
	EIA-B
	C2-C5
	-

	CAP_0.1UF_10V
	DigiKey PCC1840CT-ND
	Panasonic
	35
	805
	C6-C40
	-

	Enclosure (black)
	DigiKey SR071B-ND
	Serpac
	1
	
	
	Various colors available

Layout
I designed the PCBs using Ultiboard 5.63. Unfortunately, I made an error in the pin assignment for the PC/104 interface connector, so I had to rework the board by adding a mezzanine connector and wiring it to the board by hand, but this turned out OK.

PC/104 version
[image: image5.jpg]

Click here for larger image (94 KB)

Click here for full-sized image (309 KB)

The layout for the parallel port version is shown below.

PP version
[image: image6.jpg]

Click here for larger image (108 KB)

Click here for full-sized image (49 KB)

Click here to download Gerber and drill files for PP version

Fab and Assembly
I had the boards fabbed by PCBExpress, who did a very nice job. I assembled my prototypes by hand. Hand-soldering the large surface-mount parts was a challenge, although with the right equipment and a little practice it proved to be easier than I expected. Don't try it without a good soldering iron!

I used the following equipment:

· An illuminated magnifier.

· A Weller temperature-controlled soldering iron with 0.01" and 0.03" conical tips.

· Rosin-core solder, 0.015" thick.

· Liquid rosin flux and flux cleaner (M.G. Chemicals).

· Fine-tip tweezers.

· Desoldering braid for mistakes.

· A steady hand (no caffeine!)

Radio Shack makes a hand-held 30X microscope which is great for final inspection of solder joints. It also includes a small 8X lens. It's a bargain at $10!

The hardest part is soldering the FPGA and the SRAM to the PCB, since these are very fine pitch parts. I used the solder that was already on the PCB pads from the board tinning process. This is not as much solder as you would find on a factory-assembled board, but it seems to be enough for a good connection. I coated the pads with liquid solder flux, and then placed the part on the PCB, using a magnifier to make sure that the pins lined up perfectly with the pads. Then I tacked down a few corner pins with the soldering iron. After rechecking the alignment, I soldered each pin without adding any more solder. If you want to add solder to the pads, I would suggest doing this BEFORE you place the part. Just add a small amount of solder to each pad with the soldering iron, trying to use the same amount for each pad so they will be even. I found it VERY difficult to add solder once the pins were in place. Then I used the magnifier to check every pin for a good solder joint.

I started out by using the micro 0.01" tip on my soldering iron, but this proved to have insufficient heat capacity for the power and ground pads, so I switched to the 0.03" tip which worked much better.

The finished boards are shown below.

PC/104 version (with one 2X18 header)

[image: image7.jpg]

 PP version (with two 2X17 box headers)
[image: image8.jpg]

Headers
The I/O headers for the Logic Analyzer inputs can be configured several different ways, using a 5X20 array of pads on the board.

· A single 2X17 header can be used, providing one clock input, 32 data inputs and one ground.

· For longer cable runs, two 2X17 headers can be used. The first provides all of the odd-numbered data inputs, with alternating grounds. The second provides the clock input and all of the even-numbered data inputs, with alternating grounds. If you want to use box headers (as shown on the PP version above) you will have to trim the edge of one of the headers in order to fit them side-by-side. I used a small hobby saw for this.

· Extending the headers to 2X18 provides two extra grounds per header.

· Extending them to 2X20 provides +5V and +3.3V as well, in case you want to power an off-board adapter of some kind.

Enclosures

PC/104 version (with one 2X18 header)

This is the PC/104 version, with the MZ104 and network card. The enclosure is a Serpac standard box. Ethernet and power connectors are on the left-hand side of the box, along with a fuse holder. The header on the right is for the clock and data inputs. The small header on the top is for programming the FPGA.

[image: image9.jpg]

Click here for larger image (47KB)
PP version (with two 2X17 headers)

This is the PP version. The enclosure is a Serpac box (see parts list), with the same dimensions as the PC/104 version except for the height. It has a power connector and a ribbon cable with a DB25 connector on the left, and the clock and data input headers on top.

[image: image10.jpg]

Logic Analyzer Programming

1 I/O Port Addresses
1.1 PC/104 Version
The Analyzer PCB (PC/104 version) occupies a block of 4 bytes in the I/O port address space of the host. The base address is hard-coded into the FPGA logic, and is currently set to 0x220. This is the address normally used by the SoundBlaster audio card, and is usually avoided by other devices. This address can be changed by recompiling the FPGA.

This 4-byte space is organized as 2 16-bit words, called DATA and LADD, where:

DATA = 0x220
LADD = 0x222

The registers in the logic analyzer are accessed using an indirect addressing scheme, in which the local address of the register is written to LADD. Reads and writes to DATA then access the local register which was selected by LADD.

1.2 Parallel Port Version
The parallel port version of the logic analyzer uses the same indirect addressing scheme as the PC/104 version, in which the local registers in the FPGA are selected by writing an address to the LADD register. The parallel port is used to write to the LADD register, and also to read and write the FPGA local register selected by LADD.

The parallel port interface in the PC consists of 3 sequential 8-bit registers in the I/O port address space of the host, called Data, Status and Control. If the base address of the parallel port is 0x378, for example, then these registers are:

Data = 0x378
Status = 0x379
Control = 0x37A

In the original design of the parallel port on early IBM PCs, the Data register was unidirectional and could only be used for output. All recent PCs support bidirectional Data registers. However, it may be necessary to configure the port for bidirectional mode in the BIOS setup of the PC. Typically, the BIOS setup screen offers 4 possible modes for each parallel port: Compatibility, Bidirectional, EPP and ECP. These may be named differently, for example, compatibility mode is sometimes called SPP mode, and bidirectional mode is sometimes called PS/2 mode. Compatibility mode will usually be the first choice in the list of options presented by the BIOS setup. Basically, any mode EXCEPT compatibility mode should support bidirectional Data.

The Status register is not used by the logic analyzer. However, some of the Control bits are looped back to the Status register so that the FPGA programming application can test for proper connection of the configuration cable.

The Control register is output-only, and 4 of its bits are used to control the parallel port interface of the logic analyzer. Another bit is used to switch the direction of the Data register in the PC. These bits are:

	BIT
	D-SUB pin
	Name
	Function

	0
	1
	PC0
	command strobe

	1
	14
	PC1
	0=command mode, 1=configuration mode

	2
	16
	PC2
	command bit 0

	3
	17
	PC3
	command bit 1

	5
	none
	PC5
	0=Data is output, 1=Data is input

Setting PC1 to 1 puts the FPGA in configuration mode. This allows downloading of the configuration file into the FPGA. Once the configuration file has been downloaded, setting PC1 to 0 allows reading and writing of the local registers in the FPGA, using 4 command sequences as described below:

	Command
	Sequence
	Function

	LADD
	Write 0xC to Control
Write address to Data
Write 0xD to Control
Write 0xC to Control
	Write 8-bit address to LADD

	WRITE
	Write 0x4 to Control
Write high byte of data to Data
Write 0x5 to Control
Write low byte of data to Data
Write 0x4 to Control
	Write 16-bit data to the local register selected by LADD.

	READ
	Write 0x20 to Control
Write 0x21 to Control
Read low byte of data from Data
Write 0x20 to Control
Read high byte of data from Data
	Read 16-bit data from local register selected by LADD.
The FPGA data port is left in Output mode.
A NOP must be issued before the next LADD or WRITE.

	NOP
	Write 0x8 to Control
Write 0x9 to Control
Write 0x8 to Control
	No data is exchanged but the FPGA data port is switched to Input mode.
This is required between a READ and a following LADD or WRITE.

2 Registers
These are the local registers in the logic analyzer that can be read/written by the host.

	NAME
	LADD

	R/W
	SIZE
	FUNCTION

	CONTROL
	0x0000
	W
	16
	Run, stop, clear, etc.

	STATE1_CNT
	0x0001
	W
	8
	State1 count for trigger

	LENGTH
	0x0002
	W
	16
	Number of cycles to capture after trigger

	INT_CLK_DIV
	0x0003
	W
	8
	Divider ratio for internal clock

	SRAM_ADD
	0x0004
	R/W
	16
	Address to read from SRAM

	STATUS
	0x0008
	R
	1
	Get status

	TRIG_CNT
	0x0010
	R
	16
	Counter value when trigger occurred

	COUNT
	0x0020
	R
	16
	Current counter value

	STATE1_B0_LO
	0x0040
	W
	16
	State1 condition bit 0 for trigger (low 16 bits)

	STATE1_B0_HI
	0x0041
	W
	16
	State1 condition bit 0 for trigger (high 16 bits)

	STATE1_B1_LO
	0x0042
	W
	16
	State1 condition bit 1 for trigger (low 16 bits)

	STATE1_B1_HI
	0x0043
	W
	16
	State1 condition bit 1 for trigger (high 16 bits)

	STATE2_B0_LO
	0x0044
	W
	16
	State2 condition bit 0 for trigger (low 16 bits)

	STATE2_B0_HI
	0x0045
	W
	16
	State2 condition bit 0 for trigger (high 16 bits)

	STATE2_B1_LO
	0x0046
	W
	16
	State2 condition bit 1 for trigger (low 16 bits)

	STATE2_B1_HI
	0x0047
	W
	16
	State2 condition bit 1 for trigger (high 16 bits)

	STATE2_B2_LO
	0x0048
	W
	16
	State2 condition bit 2 for trigger (low 16 bits)

	STATE2_B2_HI
	0x0049
	W
	16
	State2 condition bit 2 for trigger (high 16 bits)

	SRAM_DATA
	0x0080
	R
	16
	Value in SRAM at address SRAM_ADD

A detailed description of these registers is given below.

2.1 CONTROL

The bits in this register control the logic analyzer data acquisition. These are:

	BIT
	MASK
	NAME
	FUNCTION

	0
	0x0001
	CLR
	Clear counters, stop acquisition

	1
	0x0002
	RUN
	Start acquisition, wait for trigger

	2
	0x0004
	STOP
	Stop acquisition

	3
	0x0008
	LOAD
	Load LENGTH into trigger counter

	4
	0x0010
	ISA_CLK_EN
	Enable ISA clock to SRAM

	5
	0x0020
	EXT_CLK_EN
	Enable external clock to SRAM and FPGA

	6
	0x0040
	INT_CLK_EN
	Enable internal clock to SRAM and FPGA

	7
	0x0080
	SRAM_HI_WORD
	0 selects SRAM data bits 0..15 for reading, 1 selects bits 16..31

	8
	0x0100
	SRAM_CS
	1 disables SRAM

	9
	0x0200
	SRAM_ZZ
	1 puts SRAM to sleep
	

	10
	0x0400
	TRIG_EN
	1 enables trigger events
	

2.2 STATUS

This register returns several bits indicating device status. These are:

	BIT
	MASK
	NAME
	FUNCTION

	0
	0x0001
	RUN_FLAG
	0 = stopped, 1 = running

	1
	0x0002
	OVERFLOW
	1 = address counter overflowed before trigger

2.3 STATE registers

The condition for triggering the analyzer is:

STATE1 for N cycles then STATE2

The number of consecutive cycles that STATE1 must be true for triggering (N in the expression above) is stored in register STATE1_CNT. This value must be between 0 and 255. A value of 0 means that STATE1 is ignored, and triggering is determined solely by STATE2.

The possible states for each input channel on any cycle are:

	DON'T CARE

	LO

	HI

	LOW-to-HIGH TRANSITION

	HIGH-to-LOW TRANSITION

	ANY TRANSITION

STATE1 is defined for each of the 32 input channels as 0, 1, or X. There are two STATE1 bits for each channel, called STATE1_B0 and STATE1_B1. . The encoding is:

	STATE1_B1
	STATE1_B0
	state

	0
	0
	DON'T CARE

	1
	0
	LO

	1
	1
	HI

The STATE1_B0 bits for channels 0...15 are stored in register STATE1_B0_LO. The STATE1_B0 bits for channels 16...31 are stored in STATE1_B0_HI. Similarly, the STATE1_B1 bits are stored in registers STATE1_B1_LO and STATE1_B1_HI.

STATE2 is defined for each input channel as 0, 1, X, UP, DOWN, or EDGE. There are three STATE2 bits for each input channel, called STATE2_B0, STATE2_B1 and STATE2_B2. The encoding is:

	STATE2_B2
	STATE2_B1
	STATE2_B0
	state

	0
	0
	0
	DON'T CARE

	0
	1
	0
	LO

	0
	1
	1
	HI

	1
	0
	0
	EDGE

	1
	1
	0
	UP

	1
	1
	1
	DOWN

The STATE2_B0 bits for channels 0...15 are stored in register STATE2_B0_LO. The STATE2_B0 bits for channels 16...31 are stored in STATE2_B0_HI. Similarly, the STATE2_B1 bits are stored in registers STATE2_B1_LO and STATE2_B1_HI, and the STATE2_B2 bits are stored in registers STATE2_B2_LO and STATE2_B2_HI.

2.4 LENGTH

This 16-bit register sets the number of cycles to capture after the trigger event occurs.

2.5 SRAM_ADD

This register sets the SRAM address for reading. The data word in SRAM at this address is retrieved by reading from SRAM_DATA. The SRAM_WORD bit in the CONTROL register determines whether data bits 0..15 or 16..31 are read. After each read, the value in SRAM_ADD is incremented by one.

2.6 TRIG_CNT

This register is read-only. It returns the value of the address counter at the time of the last trigger.

2.7 COUNT

This register is read-only. It returns the current value of the address counter.

2.8 SRAM_DATA

This register is read-only. It returns the data in the SRAM at the address determined by SRAM_ADD, and post-increments SRAM_ADD.

2.9 INT_CLK_DIV

This register sets the frequency of the internal clock, according to the following table:

	INT_CLK_DIV
	Period (nsec)
	Frequency (MHz)

	0x0F
	10
	100

	0x0E
	20
	50

	0x0D
	30
	33.33

	0x0C
	40
	25

	0x0B
	50
	20

	0x0A
	60
	-

	0x09
	70
	-

	0x08
	80
	12.5

	0x07
	90
	-

	0x06
	100
	10

	0x05
	110
	-

	0x04
	120
	-

	0x03
	130
	-

	0x02
	140
	-

	0x01
	150
	-

	0x00
	160
	-

	0x1F
	10
	100

	0x1E
	200
	5

	0x1D
	300
	3.33

	0x1C
	400
	2.5

	0x1B
	500
	2

	0x1A
	600
	1.67

	0x19
	700
	-

	0x18
	800
	1.25

	0x17
	900
	-

	0x16
	1000
	1

	0x15
	1100
	-

	0x14
	1200
	-

	0x13
	1300
	-

	0x12
	1400
	-

	0x11
	1500
	-

	0x10
	1600
	-

3 Operating Sequence
Sample C pseudocode to set up and run the PC/104 version of the logic analyzer is shown below:

short* LADD = 0x222;
short* DATA = 0x220;
short length = desired number of samples after trigger;
short trigger_address; // will be set to the SRAM address at trigger
short buffer_start; // will be set to the starting address in SRAM
short buffer_size; // will be set to the number of samples in SRAM
short run_status;

// Stop acquisition and clear registers
*LADD = CONTROL;
*DATA = CLR | STOP;
*DATA = 0;

// Set number of samples to capture after trigger
*LADD = LENGTH;
*DATA = length;
*LADD = CONTROL;
*DATA = LOAD;
*DATA = 0;

// Set trigger state
*LADD = STATE_B0_LO;
*DATA = desired state value;
// Repeat above 2 steps for all state registers, including STATE1_CNT

// If using internal clock, set frequency
*LADD = INT_CLK_DIV;
*DATA = desired value to select frequency from table above

// Enable clock
*LADD = CONTROL;
*DATA = xxx_CLK_EN; // where xxx = INT or EXT

// Start acquisition
*LADD = CONTROL;
*DATA = RUN | xxx_CLK_EN | TRIG_EN;

// Test for acquisition complete:
*LADD = STATUS;
run_status = *DATA & RUN_FLAG
If (run_status == 0) then acquisition is complete

// Turn off SRAM and acquisition
*LADD = CONTROL;
*DATA = STOP;

// Get SRAM address of trigger
*LADD = TRIG_CNT;
trigger_address = *DATA;

// Get OVERFLOW bit
*LADD = STATUS;
overflow = *DATA & OVERFLOW
// if (overflow == 0) then trigger occurred in < 65K cycles

// Determine starting address and length of data in SRAM
if (overflow == 0) and (trigger_address + length)<65K
{
buffer_size = length + trigger_address;
buffer_start = 0;
}
else
{
buffer_size = 65K;
buffer_start = (trigger_address + length) & 0xFFFF;
}

// Get low 16 bits of data
*LADD = CONTROL;
*DATA = SRAM_CS | ISA_CLK_EN;
*LADD = SRAM_ADD;
*DATA = buffer_start;
*LADD = SRAM_DATA;
for(long i=0; i<buffer_size; i++)
long_data[i] = (unsigned long)*DATA;

// Get high 16 bits:
*LADD = CONTROL;
*DATA = SRAM_CS | ISA_CLK_EN | SRAM_HI_WORD;
*LADD = SRAM_ADD;
*DATA = buffer_start;
*LADD = SRAM_DATA;
for(long i=0; i<buffer_size; i++)
long_data[i] |= (unsigned long)*DATA << 16;

// Turn off SRAM:
*LADD = CONTROL;
*DATA = 0;
Software

Logic2.exe (runs on remote PC)
This is the application which provides the user interface to the Logic Analyzer. It uses the V class library by Bruce Wampler for its GUI framework. Currently, I am compiling and running it under Windows 98, but it should run under Linux with a simple recompile since the V library supports both Windows and X. Screenshots of the Windows version are shown below:

Data Window

[image: image11.jpg]e 1] e b e o ot [ol o] o ol v

; maalinsaniaa tarale
i —_ i
i — i

Click here for full-sized image (95 KB)

Setup Window

[image: image12.jpg]e T e

Click here for full-sized image (83 KB)

Trigger Window

[image: image13.jpg]e o e Y P R P

Click here for full-sized image (107 KB)

You can download binaries, source code and documentation using the liks below. Please refer to the Help File for installation instructions.

Version 1.01 (needed for Windows XP)
logic_1_0_1_bin.zip- binaries and documentation
logic_1_0_1_doc.zip- documentation only

Version 1.00
logic_1_0_0_bin.zip- binaries and documentation
logic_1_0_0_source.zip- source (including the V library), binaries and documentation
logic_1_0_0_doc.zip- documentation only

Embedded Linux Kernel (runs on MZ104)
Currently I am using one of the demo kernels from Blue Cat Linux which came with the contest kit. The only change that I made was to recompile it with support for the network card. I have also booted the TOMSRTBT distribution from a floppy. Since the MZ104 is basically a complete PC on a PC/104 card, just about any i386 Linux kernel should work. You will need to compile the kernel with the DiskOnChip drivers to use the DOC (I haven't done this yet).

Netshell (runs on MZ104)
This application runs on the embedded system. It controls the Analyzer board by reading and writing the I/O ports, and handles communications with a remote PC over ethernet. It provides a simple command-line interface using TCP sockets. It will accept a Telnet connection from the remote PC, but it is really intended to be accessed from the Logic application (see below).

Available commands are shown below (all numeric entries are hexadecimal):

	LA aa
	write aa to LADD

	RD
	read DATA

	WD nnnn
	write nnnn to DATA

	RR aa
	write aa to LADD, then read DATA

	WR aa nnnn
	write aa to LADD, then write nnnn to DATA

	RA nnnn
	read nnnn words from DATA (ascii)

	RB nnnn
	read nnnn words from DATA (binary)

	RESET
	clear all registers to zero

	SHOW
	display status

	CLK n
	select clock (0=int, 1=ext, 2=ISA)

	DIV nn
	set internal clock divider to nn

	LEN nnnn
	set capture length (post-trigger) to nnnn

	ST1_B0 nnnnnnnn
	set state1 bit 0 to nnnnnnnn

	ST1_B1 nnnnnnnn
	set state1 bit 1 to nnnnnnnn

	ST1CNT nn
	set state1 count to nn

	ST2_B0 nnnnnnnn
	set state2 bit 0 to nnnnnnnn

	ST2_B1 nnnnnnnn
	set state2 bit 1 to nnnnnnnn

	ST2_B2 nnnnnnnn
	set state2 bit 2 to nnnnnnnn

	ADD nnnn
	set SRAM address to nnnn

	GET nn
	display nn words from SRAM

	RUN
	start acquisition

	STOP
	stop acquisition

	CLOSE
	close connection

FPGA-based Logic Analyzer

Version 1.01

Help File

Table of Contents

1. Software Installation for Windows
· 1.1. Binaries
· 1.2. Sources
· 1.3. Port Driver for NT, 2000 and XP
2. Hardware Installation
3. Using the Software
· 3.1. Overview
· 3.2. Data Window
· 3.3. Setup Window
· 3.4. Trigger Window
· 3.5. Connecting to the analyzer
· 3.6. Running the analyzer
· 3.7. Saving and loading setup and data files

1. Software Installation for Windows

1.1. Binaries

1. Download the software from eebit.com as a ZIP archive. The file will be called something like logic_1_0_1_bin.zip (for version 1.01)

2. Unzip the file into a folder such as C:\logic. This will be your working directory.

3. After unzipping, you should have the following files and folder in your working directory:

· logic2.exe - the executable

· logic_pp.rbf - configuration file for the FPGA

· instdrv.exe - utility for installing NT drivers

· giveio.sys - NT port driver

· default.las - setup file

· default.lad - data file

· doc - folder containing documentation, including this help file

4. Note that instdrv.exe and giveio.sys are only necessary for Windows NT, 2000, or XP. See section 1.3 for instructions on installing giveio.sys..

5. The files default.las and default.lad are not really necessary, but it is a good idea to keep at least one *.las and *.lad file in the folder because otherwise when you save a setup or data file, the File Save dialog in Windows will default to your My Documents folder, instead of your working directory.

6. Double-click on logic2.exe to start the application.

7. You might want to create a shortcut to logic2.exe on your desktop. In Windows Explorer, drag logic2.exe to the desktop with the right mouse button. A menu will pop up with various options. Select Create Shortcut. If you like, you can rename your shortcut something like "Logic Analyzer".

1.2. Sources

1. Download the source files from eebit.com as a ZIP archive. The file will be called something like logic_1_0_1_source.zip (for version 1.01)

2. Unzip the file into a folder such as C:\logic_source.

3. After unzipping, your folder should contain a file called v.dsw and the following subdirectories:

· logic2 - source files for the logic2.exe application

· include/v - header files for the V library

· vlib - source files for the V library (version 1.25)

· bin - binaries

· bin/doc - documentation, including this help file

4. If you are using Microsoft Visual C++, you can double-click on v.dsw to open a workspace. This workspace contains 2 projects:

· logic2 - this is the project for the logic analyzer application

· vlib - this is the project for the V library, compiled as a static library

5. Now you should be able to compile and run logic2.exe.

6. If you are using a compiler other than MSVC++, you will have to create your own makefile, which should be pretty simple. If you have trouble getting vlib to compile, please refer to the objectcentral.com website.

1.3. Port Driver Installation for Windows NT, 2000 and XP (this is new for Version 1.01)

When using the parallel port under Windows NT, 2000 or XP, version 1.00 of the logic2.exe application automatically loaded and unloaded the port driver giveio.sys. For some reason, this approach doesn't work reliably under Windows XP. Therefore, the installation procedure has been modified to load the driver manually. Also, you must use version 1.01 of logic2.exe.

The installation procedure for the port driver is described below. Note that this is only necessary for Windows NT, 2000 or XP.

1. After downloading the binaries for version 1.01 as described in Section 1.1 above, copy the file giveio.sys into the system driver folder. Under Windows NT or 2000, this will probably be C:\WINNT\System32\drivers. Under XP, it will probably be C:\Windows\System32\drivers.

2. Open a Command Prompt window (i.e. a "DOS box").

3. Go to the folder in which you installed the binaries. For example, if you installed into C:\logic, you would type the following after the prompt character ">":
C:
CD \LOGIC

4. Install the port driver by typing either:
INSTDRV GIVEIO C:\WINNT\SYSTEM32\DRIVERS\GIVEIO.SYS
or
INSTDRV GIVEIO C:\WINDOWS\SYSTEM32\DRIVERS\GIVEIO.SYS
depending on the location of your system driver folder. You should get a response indicating that the driver was installed successfully.

5. If you ever want to remove the driver, use the command
INSTDRV GIVEIO REMOVE

6. Make sure that your environment variable PATH contains the path to the system folder that contains the system program net.exe. This will probably be either C:\WINNT\System32 or C:\Windows\System32. To test this, type
NET START GIVEIO
You should get a response indicating that the giveio service was started successfully. If you get a response indicating that net.exe was not found, then you should use the System control panel to modify your PATH.

7. To test the port driver, launch the logic2.exe application, and select Test Port Driver from the File menu. You should hear a little tune from the speaker in your PC (assuming that you have an internal speaker).

2. Hardware Installation

1. Prior to running logic2.exe for the first time, determine the hardware address of the parallel port on your PC. This will probably be 0x378.

2. For the logic analyzer to work, the parallel port must be in bidirectional mode. All modern PCs have bidirectional parallel ports, but the port may be configured through the BIOS setup to be unidirectional. This is sometimes referred to as "compatibility mode". Check your BIOS settings, and if necessary change the port to PS/2, EPP or ECP mode.

3. Attach a cable from the parallel port to the logic analyzer.

4. Power up the analyzer. Connect one of the inputs to a signal source, if available.

5. Launch logic2.exe.

6. Click on the Connect button on the taskbar to open the Connect dialog. The default setting for the parallel port address is 0x378. If this is not correct for your system, change it and then click on Save Settings. Then click on OK to connect to the logic analyzer and download the FPGA code. If all is well, a dialog will appear after a few seconds indicating successful completion of the download. If unsuccessful, the dialog should give an error message describing the problem.

7. Now you can run the analyzer by clicking on the Run button on the taskbar. With the default settings, it will trigger immediately and a dialog will appear telling you how much data was accumulated. When you dismiss this dialog, the data buffer will upload and be displayed.

8. If you have gotten this far, the analyzer should be working properly.

3. Using the Software

3.1. Overview

The logic2.exe application allows you to connect to the analyzer, run it, and examine the data that it collects. The user interface is fairly simple, consisting of:

· File menu

· Open Setup - open setup file

· Open Data - open data file

· Save Setup as... - save setup file, default extension is .las

· Save Data as... - save data file, default extension is .lad

· Test Data - fill buffer with dummy data

· Test Port Driver - test the port driver by playing a little tune on your PC's speaker

· Exit

· Taskbar

· Connect - connect to analyzer

· Run - start capturing data, wait for trigger

· Stop - stop capture

· Clock - select clock

· Cycles post-Trigger - set number of cycles to capture post-trigger

· << - scroll data window left 5 divisions

· < - scroll data window left 1 division

· > - scroll data window right 1 division

· >> - scroll data window right 5 divisions

· + - zoom in on data X 2

· - - zoom out on data X 2

· T - center data window on trigger

· C - center data window on cursor

· R - reset data window to defaults

· Data - show data window

· Setup - show setup window

· Trigger - show trigger window

· Main window - this can be switched to 3 views, using taskbar buttons

· Data - shows data as waveforms and hex

· Setup - assign symbols to inputs

· Trigger - set trigger condition

· Status bar

· Time/date

· Connection type - not connected, parallel port or IP address

· Clock setting

· Connection status

There are a few keyboard shortcuts:

· Pressing "R" starts the analyzer (same as clicking on the Run button on the taskbar

· Pressing "S" stops the analyzer (same as clicking on the Stop button on the taskbar)

· Pressing "T" centers the data window on the trigger point (same as clicking on the T button on the taskbar)

· Pressing "C" centers the data window on the trigger point (same as clicking on the C button on the taskbar)

3.2. Data Window

This window displays data from the logic analyzer as waveforms (for single-bit signals) and hex numbers (for bussed signals).

Selecting Test Data from the File menu loads some dummy data, so that you can experiment with the user interface without actually running the analyzer. This will produce the display shown below:

[image: image14.png][default las - [Logic Analyzer] [-[o[x]

Fie

[comest Fun | oo | ook [0 =] pspontions [0 =] cc| <[]+

Al o] seue | _tiom |

FROH TRIGGE!

CURSOR -90 CYCLES, HARK -32001 CYCLES, DIFF -31911 CYCLES

[T

NANE UALUE 180 80 60 =T 20 1 20 uo 50 80 i

PIN_1 6 1 T 1 T 1 T T ! T 1 T !

PIN 2 17 1 r r 1 r

PIN 3 [l I e N N

PIN 4 1

PIN 5 [l

PIN 6]

PIN 7 1

PIN 8 1

BUS[16:9] L e 7 s S T T & T @ [& [& [& T«
w6a?7 T dr T aw [ww [aw T e [e a1 ew [e T w1 sw | mw Tmwm

LogicAnalyzer | 184618 22Dec2001 Taiget | Paralelpat Clock | Intemal 100MHz Status | Connected

Signal names are assigned to combinations of input pins using the Setup window (see below), and these names are displayed along the left edge of the Data window. The order of the signal names can be changed by dragging them up or down with the left mouse button. Signal names can be edited or deleted by right-clicking them.

The main part of the Data window is used to display the data for each signal. This part of the window can be scrolled left or right and zoomed in or out using taskbar buttons. A horizontal scale is shown along the top of the waveform display indicating the position of the data points relative to the trigger point. The trigger point is represented by a vertical red line with "T" at its upper end.

A cursor can be applied to the data by left-clicking the mouse at the appropriate data point. This will be displayed as a violet-colored vertical line with "C" at its upper end. The VALUE column next to the list of signal names shows the value of each signal at the cursor.

A second marker can be applied by right-clicking the mouse. This will be displayed as a vertical blue line with "M" at its upper end. The positions of the cursor and the marker are displayed numerically at the top of the window, along with the distance between them.

Clicking the T button on the taskbar centers the window on the trigger point, while clicking the C or M buttons centers the window on the cursor or marker, respectively.

3.3. Setup Window

[image: image15.png][default las - [Logic Analyzer] [-[o[x]

File
[Comaat Fin|_Stp | cock [T0OMH =] Cotrpontiooer D =] <] <[] 0]+ v | o

LEFT DRAG ON NAME TO MOUE, RIGHT CLICK ON NAME TO EDIT OR DELETE
LEFT CLICK ON GRID TO ASSIGN PINS
PINS

AR
lo[1[0/918[7[6]s(3(2(1/alo/8[7|els|

PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
BUS[16:9]
BUS[32:17]
Add_new nane

o |~ o n oo

LogioAnayzer | 184702 22052001 Togek | Paslelpon | Clok | Inemal 100 Hz Steus | Comectd

This window is used to assign signal names to combinations of input pins.

The signal names are shown at the left side of the window, next to a grid with the pin numbers along the top. One or more pins can be assigned to each signal name, by clicking on the appropriate squares of the grid. When a pin is assigned, an "*" is placed in the grid square. Clicking the square again de-assigns the pin. Pins can be assigned to multiple names, if desired. Signal names with no assigned pins are indicated by a grey background.

The order of the signal names in the list can be changed by dragging them up or down with the left mouse button. Names can be edited or deleted by right clicking them. Up to 32 names are allowed. If there are fewer then 32 names assigned, there will be an entry at the bottom of the name list called "Add new name". Clicking on this will allow adding a new name to the list.

3.4. Trigger Window

[image: image16.png]default las - [Logic Analyzer] [_[O]x]

Fie

comest | Fun| Sop | ok [0 =] coomspontioomr [0 =] c| <[5] | o] 1| c|R] oaa] souw [Tomer

TRIGGER - STATE1 for N cycles, then STATEZ (if N-0 then ignore STATET)

STATET for & cycles STATEZ

leleellelo el R[] AARRRAR
lo/1]0/918[7[6 o!u(3(211 o 876/ tuis[211]olo 191876151}

PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
BUS[16:9]

BUS[32:17]

o |~ o n oo

[Coomanavea | 18717 220552007 Tage | Nolcomenied Dok [Inara 100WHz States | Nt Corrected

This window is used to set the trigger condition for the analyzer. The trigger condition can be represented as:

STATE1 for N cycles followed by STATE2

STATE1 is a combination of 0, 1 or "don't care" on each pin. STATE2 is a combination of 0, 1, "rising edge", "falling edge", "any edge" or "don't care" on each pin. N is an integer from 0 to 255. Setting N to zero effectively disables the STATE1 detector (which is the same as setting each pin in STATE1 to "don't care".)

The condition assigned to each pin is shown on a grid next to the signal names. The violet part of the grid is for STATE1, and the blue part of the grid is for STATE2. To set the condition of each pin for either state, click on the appropriate square of the grid. Each click will scroll the setting for the pin through the sequence of available states.

The value of N is displayed in the caption above the STATE1 grid, within a light blue rectangle. Clicking on this rectangle pops up a dialog which allows editing the value.

In the screenshot shown above, the analyzer will trigger when BUS[16:9] = D6 for 5 cycles, followed by a falling edge on PIN_1.

3.5. Connecting to the analyzer

Click on the Connect button on the taskbar. A dialog will open, with fields for:

· Choosing the parallel port or network interface

· Setting the parallel port address (in hex) (default = 378)

· Selecting the filename for the FPGA configuration file (default = logic_pp.rbf)

· Selecting the filename for the port driver for NT (default = giveio.sys)

· Setting the IP address for the networked version of the analyzer

Assuming that you are using the parallel port version, check that the port address is correct, and change it if necessary. If you have to change it, click on Save Settings to save your change. Then click on OK. After a few seconds, a dialog should appear confirming a successful download. If an error occurs, the dialog will give an error message to help you troubleshoot the problem.

3.6. Running the analyzer

Before running the analyzer, check the settings for the Clock and the Cycles post-Trigger in the taskbar. Then click on the Run button, or press "R" on the keyboard. The analyzer will capture data for about 1/2 second in order to fill the data buffer. It then continues capturing while waiting for the trigger condition to be met. When it detects the trigger, it captures the number of post-trigger cycles which were requested, and then stops. If no trigger is detected, it will keep running until you click Stop or press "S". When the analyzer stops, a dialog will pop up indicating the number of cycles captured and the start and trigger positions in the SRAM buffer.

When you dismiss the dialog, the data will be uploaded into the data buffer, which is 64000 cycles long. The number of pre-trigger cycles will be equal to 64000 minus the number of post-trigger cycles. For example, if you requested 16000 cycles post-trigger, there will be 48000 pre-trigger cycles followed by 16000 post-trigger cycles. If you can't see the trigger point in the Data window, click on T in the taskbar which re-centers the data display on the trigger point. You can scroll the data display left and right and zoom in and out using the taskbar buttons, as described above. Clicking on the data display with the mouse places a cursor on the display.

3.7. Saving and loading setup and data files

From the File menu:

· select Save Setup as... to save setup information (i.e. signal names, pin assignments, trigger settings and acquisition parameters) to a file. The default file extension is .las.

· select Open Setup to load a setup file, or load the setup parameters from a data file.

· select Save Data as... to save the data buffer to a file. Setup information is saved as well. The default extension is .lad.

· select Open Data to load a data file.

· select Test Data to load dummy data.

last revised Jan-25-2004 by Allan Wright
