数字示波器设计

http://www.fpga4fun.com/board_flashy.html
Flashy acquisition board

Flashy is a fast acquisition board. It is typically used with an FPGA board to create a digital oscilloscope.
Here's Flashy (top board) and a BNC connector mounted on Pluto-II (bottom board):

[image: image1.jpg]

Characteristics

· ADC08100 or ADC08200 (100MSPS or 200MSPS) high-speed ADC from National Semiconductor.

· Input bandwidth is 100MHz (typical).

· High impedance input, so that it can be used with regular oscilloscope probes.

· Compatible with different HF connectors (BNC, SMA, F, RCA).

· V-pos and V-range adjusted with potentiometers, or DACs, depending of the Flashy revision.

· Typical input stage range of -5V to +10V when using regular 10:1 oscilloscope probes, good for probing digital logic signal or similar low voltage applications.

· Uses 3.3V power, 3.3V IOs, 0.1" spacing connector.

For the latest Flashy datasheet, see here.

Flashy block diagram

Here's the block diagram of a typical Flashy board.

[image: image2.png]yepos
A% o ouput

Analog
input Fre-am)
signal gbis| , FPGA
Apc board

Frage
I

oscileior

The input signal on the left is analog, while the output signals on the right are digital.

The input signal (coming from an oscilloscope probe for example) is adjusted by the pre-amplifier to be compatible with the ADC. The ADC digitizes the signal and creates the 8-bits 100MSPS output. The ADC is clocked from a 100MHz local oscillator. The 100MHz clock signal is also made available outside Flashy, so that the 8-bits output bus can be synchronously captured (typically by an FPGA board).

The V-pos and V-range controls allow moving the signal up or down (vertical scale). As for the horizontal scale, the ADC is always clocked at 100MHz. If a different time base is desired, an FPGA attached to Flashy implements a FIR to downsample the data.

The period output is generated by the pre-amplifier. It allows the FPGA to measure the frequency of the input signal, which can be used to reconstruct periodic signals ("equivalent-time sampling" oscilloscope mode).

Flashy and FlashyD

Flashy is available in 2 versions: Flashy (one input) and FlashyD (two inputs).
Here's the block diagram of a typical FlashyD (two inputs) board.

[image: image3.png]Input 1

o

nput 2

Peio ot
)
oo | s
Frage
T
[
e
i
—
w2— avc2 |

Frrage

Flashy and FPGA boards

Flashy/FlashyD are compatible with all the fpga4fun.com boards. The 3.3V digital signals are compatible with other FPGA boards as well.
Here's the fpga4fun boards compatibility table:

	
	Pluto
	Pluto-II
	Pluto-3
	Pluto-P
	Saxo/Xylo/Xylo-EM
	Dragon

	compatible with
	Flashy
	Flashy
	FlashyD
	Flashy
	FlashyD
	FlashyD

The boards that accept FlashyD can also accept Flashy (Flashy pinout is a subset of FlashyD).

Flashy revisions

Flashy exists in different revisions, each with its own feature set.
This page is for Flashy "Rev. D and above" - see the older Flashy page here.

Flashy revision D

This revision adds potentiometers to adjust the input stage voltage levels, as well as the sensibility of the period output.

Flashy revision H

This revision adds an optional jumper to help temporarily disabling the local oscillator.

Flashy revision J

This revision replaces the V-pos and V-range potentiometers by DACs, controlled from the FPGA. That makes the board plug-and-play (no potentiometers to adjust anymore).

Here's the rev. J block diagram.

[image: image4.png]Analog
input
signal

vow [

[

rarel | soc |28l e
o |1

oscileior

Where to buy Flashy?

Flashy is available for sale on the KNJN.com website.

Flashy software

For more details about the HDL/software design, see the digital oscilloscope project.

Links

· Information about RF connectors on Amphenol RF site.

· Pictures of the most common HF connectors on this Common Microwave cable connectors page.

Digital oscilloscope

You can build a digital oscilloscope simply by hooking an ADC and an FPGA together.
This particular design uses an 100MHz flash ADC, so we are building an 100MSPS (mega-samples-per-seconds) oscilloscope.

A digital oscilloscope has many advantages over its analog counterpart, like the ability to capture single events, and to display what happens before the trigger.

This oscilloscope design is interesting because it shows how powerful and useful modern FPGAs can be. But if you are new to FPGA technology, keep that in mind this is not the easiest design to understand on this site.

Finally, note that a digital oscilloscope is very similar to a logic analyzer. Both are storage devices. Simply remove the ADC and feed directly the FPGA. Maybe the object of a future project?

HDL design

· HDL part 1 - FIFO-based design.

· HDL part 2 - RAM-based design.

· HDL part 3 - Trigger mechanism.

· HDL part 4 - More functionality.

Electronic design: see the Flashy board.

Software

· Software features and screen shots.

· See also interference patterns.

Screenshot

Here's the view of a 27MHz signal, sampled at 100MHz and reconstructed using the "sample equivalent time" technique.

[image: image5.png]i &

Options - Close.

Time per div

512 ns/dyv
1.02 ps/dv
205 ps/dv
410 ps/dv
519 ps/dv
164 us/div
328 ps/div
655 ps/dv
131 ps/dv
262 ps/dv
524 psidv
105 me/dv
2710 me/dv
419 me/dv
539 me/dv

Tiigger Mode § Trace brightness

& Auo I~ Bhowchamel# T Show chamel i) o
e ¥ Show channel A requency o
 singe ¥ Show channel A econstucted signal period I ol
Tiigger slope

& Rising edge T~ Show fiame number

€ Faiing edge I~ Fiter data nput

Links

· How to build a digital oscilloscope based on the ADC0804 and OpenGL

· A nice Oscilloscope FAQ site with lots of information.

· How oscilloscopes work from B&K Precision.

· Probing High-Speed Digital Designs from Signal Consulting, Inc.

Digital oscilloscope - part 1

Here's what is built here:

[image: image6.png]FPGA

F TxD.
flash [7 | s ot
ADC £ j
oz 0 e[z

The FPGA receives 2 clocks:

· A slow "system" clock, fixed at 25MHz.

· An ADC sampling clock (something faster, let's say 100MHz), that is connected to both the ADC and the FPGA.

Having these 2 clocks gives flexibility to the design. But that also means we need a way to transfer information from one clock domain to the other. To validate that the hardware works, let's go the easy route and use a FIFO. The acquired samples from the ADC are stored in the FPGA FIFO at full ADC speed (100MHz).

Then, the FIFO content is read back, serialized and sent on a serial port at a much slower speed (115200 baud). Finally we connect the serial output to a PC that receives each byte and displays a signal trace.

For this first attempt, there is no trace triggering mechanism. The ADC storage starts at random intervals so the trace will jump left and right, but that's fine for now.

Design considerations

At 100MHz, the FIFO fills up in about 10us. That's pretty fast. Once full, we have to stop feeding it. What is stored needs to be completely sent to the PC before we can start feeding the FIFO again.

The serial communication used here works at 115200 bauds, so roughly 10KBytes/s. 1024 samples take about 100ms to transmit. During that time, the oscilloscope is "blind", because we discard the data coming from the ADC. So it is blind 99.99% of the time. That's typical of this type of architecture.

That can be partially compensated when we add a trigger mechanism later, because while the trigger is armed, it works at full ADC speed and can stay armed as long as it takes for the trigger condition to happen. More on that later.

Register the inputs

The ADC output data bus is connected to the FPGA using 8 pins that we call "data_flash[7:0]". These come at speed of up to 100MHz. Since this is fast, it is best to "register" them right when they come in the FPGA.

	reg [7:0] data_flash_reg;
always @(posedge clk_flash) data_flash_reg <= data_flash;

Now "data_flash_reg" is fully internal to the FPGA and can be fed to the FPGA FIFO.

The FIFO

The FIFO is 1024 words deep x 8 bits wide. Since we receive 8 bits per clock from the ADC, we can store 1024 ADC samples. At 100MHz, it takes about 10us to fill up the FIFO.

The FIFO uses synchronous static RAM blocks available inside the FPGA. Each storage block can store typically 512x8bits. So the FIFO uses 2 blocks.

The FIFO logic itself is created by using the FPGA vendor "function builder". Xilinx calls it "coregen" while Altera "Megafunctions wizard". Here let's use Altera's Quartus to create this file.

So now, using the FIFO is just a connectivity issue.
fifo myfifo(.data(data_flash_reg), .wrreq(wrreq), .wrclk(clk_flash), .wrfull(wrfull), .wrempty(wrempty), .q(q_fifo), .rdreq(rdreq), .rdclk(clk), .rdempty(rdempty));

Using a FIFO is nice because it takes care of the different clocks. We connected the write side of the FIFO to the "clk_flash" (100MHz), and the read side of the FIFO to "clk" (25MHz).

The FIFO provides the full and empty signals for each clock domain. For example, "wrempty" is an empty signal that can be used in the write clock domain ("clk_flash"), and "rdempty" can be used in the read clock domain ("clk").

Using the FIFO is simple: Writing to it is just a matter of asserting the "wrreq" signal (and providing the data to the ".data" port), while reading from it a matter of asserting "rdreq" (and the data comes on the ".q" port).

Writing to the FIFO

To start writing to the FIFO, we wait until it is empty. Of course, at power-up (after the FPGA is configured), that is true.
We stop only when it gets full. And then the process starts again... we wait until it is empty... feed it until it is full... stop.

	reg fillfifo;
always @(posedge clk_flash)
if(~fillfifo)
 fillfifo <= wrempty; // start when empty
else
 fillfifo <= ~wrfull; // stop when full

assign wrreq = fillfifo;

Reading to the FIFO

We read from the FIFO as long as it is not empty. Each byte read is send to a serial output.

	wire TxD_start = ~TxD_busy & ~rdempty;
assign rdreq = TxD_start;

async_transmitter async_txd(.clk(clk), .TxD(TxD), .TxD_start(TxD_start), .TxD_busy(TxD_busy), .TxD_data(q_fifo));

We use the async_transmitter module to serialize the data and transmit it to a pin called "TxD".

Complete design

Our first working oscilloscope design, isn't that nice?

	module oscillo(clk, TxD, clk_flash, data_flash);
input clk;
output TxD;

input clk_flash;
input [7:0] data_flash;

reg [7:0] data_flash_reg; always @(posedge clk_flash) data_flash_reg <= data_flash;

wire [7:0] q_fifo;
fifo myfifo(.data(data_flash_reg), .wrreq(wrreq), .wrclk(clk_flash), .wrfull(wrfull), .wrempty(wrempty),
 .q(q_fifo), .rdreq(rdreq), .rdclk(clk), .rdempty(rdempty));

// The flash ADC side starts filling the fifo only when it is completely empty,
// and stops when it is full, and then waits until it is completely empty again
reg fillfifo;
always @(posedge clk_flash)
if(~fillfifo)
 fillfifo <= wrempty; // start when empty
else
 fillfifo <= ~wrfull; // stop when full

assign wrreq = fillfifo;

// the manager side sends when the fifo is not empty
wire TxD_busy;
wire TxD_start = ~TxD_busy & ~rdempty;
assign rdreq = TxD_start;

async_transmitter async_txd(.clk(clk), .TxD(TxD), .TxD_start(TxD_start), .TxD_busy(TxD_busy), .TxD_data(q_fifo));

endmodule

Digital oscilloscope - part 2

The FIFO allowed us to get a working design very quickly.
But for our simple oscilloscope, it is overkill.

We need a mechanism to store data from one clock domain (100MHz) and read it in another (25MHz). A simple dual-port RAM does that.

The disadvantage of not using a FIFO is that all the synchonization between the 2 clock domains (that the FIFO was doing for us) has to be done "manually" now.

Trigger

The "FIFO based" oscilloscope design didn't have an explicit trigger mechanism.
Let's change that. Now the oscilloscope will be triggered everytime it receives a character from the serial port. Of course, that's still not a very useful design, but we'll improved on that later.

We receive data from the serial port:

	wire [7:0] RxD_data;
async_receiver async_rxd(.clk(clk), .RxD(RxD), .RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data));

Everytime a new character is received, "RxD_data_ready" goes high for one clock. We use that to trigger the oscilloscope.

Synchronization

We need to transfer this "RxD_data_ready went high" information from the "clk" (25MHz) domain to the "clk_flash" (100MHz) domain.

First, a signal "startAcquisition" goes high when a character is received.

	reg startAcquisition;
wire AcquisitionStarted;

always @(posedge clk)
if(~startAcquisition)
 startAcquisition <= RxD_data_ready;
else
if(AcquisitionStarted)
 startAcquisition <= 0;

We use synchronizers in the form of 2 flipflops (to transfer this "startAcquisition" to the other clock domain).

	reg startAcquisition1; always @(posedge clk_flash) startAcquisition1 <= startAcquisition;
reg startAcquisition2; always @(posedge clk_flash) startAcquisition2 <= startAcquisition1;

Finally, once the other clock domain "sees" the signal, it "replies" (using another synchronizer "Acquiring").

	reg Acquiring;
always @(posedge clk_flash)
if(~Acquiring)
 Acquiring <= startAcquisition2; // start acquiring?
else
if(&wraddress) // done acquiring?
 Acquiring <= 0;

reg Acquiring1; always @(posedge clk) Acquiring1 <= Acquiring;
reg Acquiring2; always @(posedge clk) Acquiring2 <= Acquiring1;
assign AcquisitionStarted = Acquiring2;

The reply resets the original signal.

Dual-port RAM

Now that the trigger is available, we need a dual-port RAM to store the data.
Notice how each side of the RAM uses a different clock.

	ram512 ram_flash(
 .data(data_flash_reg), .wraddress(wraddress), .wren(Acquiring), .wrclock(clk_flash),
 .q(ram_output), .rdaddress(rdaddress), .rden(rden), .rdclock(clk)
);

The ram address buses are created easily using binary counters.
First the write address:

	reg [8:0] wraddress;
always @(posedge clk_flash) if(Acquiring) wraddress <= wraddress + 1;

and the read address:

	reg [8:0] rdaddress;
reg Sending;
wire TxD_busy;

always @(posedge clk)
if(~Sending)
 Sending <= AcquisitionStarted;
else
if(~TxD_busy)
begin
 rdaddress <= rdaddress + 1;
 if(&rdaddress) Sending <= 0;
end

Notice how each counter uses a different clock.

Finally we send data to the PC:

	wire TxD_start = ~TxD_busy & Sending;
wire rden = TxD_start;

wire [7:0] ram_output;
async_transmitter async_txd(.clk(clk), .TxD(TxD), .TxD_start(TxD_start), .TxD_busy(TxD_busy), .TxD_data(ram_output));

The complete design

	module oscillo(clk, RxD, TxD, clk_flash, data_flash);
input clk;
input RxD;
output TxD;

input clk_flash;
input [7:0] data_flash;

///
wire [7:0] RxD_data;
async_receiver async_rxd(.clk(clk), .RxD(RxD), .RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data));

reg startAcquisition;
wire AcquisitionStarted;

always @(posedge clk)
if(~startAcquisition)
 startAcquisition <= RxD_data_ready;
else
if(AcquisitionStarted)
 startAcquisition <= 0;

reg startAcquisition1; always @(posedge clk_flash) startAcquisition1 <= startAcquisition ;
reg startAcquisition2; always @(posedge clk_flash) startAcquisition2 <= startAcquisition1;

reg Acquiring;
always @(posedge clk_flash)
if(~Acquiring)
 Acquiring <= startAcquisition2;
else
if(&wraddress)
 Acquiring <= 0;

reg [8:0] wraddress;
always @(posedge clk_flash) if(Acquiring) wraddress <= wraddress + 1;

reg Acquiring1; always @(posedge clk) Acquiring1 <= Acquiring;
reg Acquiring2; always @(posedge clk) Acquiring2 <= Acquiring1;
assign AcquisitionStarted = Acquiring2;

reg [8:0] rdaddress;
reg Sending;
wire TxD_busy;

always @(posedge clk)
if(~Sending)
 Sending <= AcquisitionStarted;
else
if(~TxD_busy)
begin
 rdaddress <= rdaddress + 1;
 if(&rdaddress) Sending <= 0;
end

wire TxD_start = ~TxD_busy & Sending;
wire rden = TxD_start;

wire [7:0] ram_output;
async_transmitter async_txd(.clk(clk), .TxD(TxD), .TxD_start(TxD_start), .TxD_busy(TxD_busy), .TxD_data(ram_output));

///
reg [7:0] data_flash_reg; always @(posedge clk_flash) data_flash_reg <= data_flash;

ram512 ram_flash(
 .data(data_flash_reg), .wraddress(wraddress), .wren(Acquiring), .wrclock(clk_flash),
 .q(ram_output), .rdaddress(rdaddress), .rden(rden), .rdclock(clk)
);

endmodule

Digital oscilloscope - part 3

Our first trigger is simple - we detect a rising edge crossing a fixed threshold. Since we use an 8-bit ADC, the acquisition range goes from 0x00 to 0xFF.
So let's set the threshold to 0x80 for now.

Detecting a rising edge

If a sample is above the threshold, but the previous sample was below, trigger!

	reg Threshold1, Threshold2;
always @(posedge clk_flash) Threshold1 <= (data_flash_reg>=8'h80);
always @(posedge clk_flash) Threshold2 <= Threshold1;

assign Trigger = Threshold1 & ~Threshold2; // if positive edge, trigger!

Mid-display trigger

One great feature about a digital scope is the ability to see what's going on before the trigger.

How does that work?
The oscilloscope is continuously acquiring. The oscilloscope memory gets overwritten over and over - when we reach the end, we start over at the beginning. But if a trigger happens, the oscilloscope keeps acquiring for half more of its memory depth, and then stops. So it keeps half of its memory with what happened before the trigger, and half of what happened after.

We are using here a 50% or "mid-display trigger" (other popular settings would have been 25% and 75% settings, but that's easy to add later).

The implementation is easy. First we have to keep track of how many bytes have been stored.

	reg [8:0] samplecount;

With a memory depth of 512 bytes, we first make sure to acquire at least 256 bytes, then stop counting but keep acquiring while waiting for a trigger. Once the trigger comes, we start counting again to acquire 256 more bytes, and stop.

	reg PreTriggerPointReached;
always @(posedge clk_flash) PreTriggerPointReached <= (samplecount==256);

The decision logic deals with all these steps:

	always @(posedge clk_flash)
if(~Acquiring)
begin
 Acquiring <= startAcquisition2; // start acquiring?
 PreOrPostAcquiring <= startAcquisition2;
end
else
if(&samplecount) // got 511 bytes? stop acquiring
begin
 Acquiring <= 0;
 AcquiringAndTriggered <= 0;
 PreOrPostAcquiring <= 0;
end
else
if(PreTriggerPointReached) // 256 bytes acquired already?
begin
 PreOrPostAcquiring <= 0;
end
else
if(~PreOrPostAcquiring)
begin
 AcquiringAndTriggered <= Trigger; // Trigger? 256 more bytes and we're set
 PreOrPostAcquiring <= Trigger;
 if(Trigger) wraddress_triggerpoint <= wraddress; // keep track of where the trigger happened
end

always @(posedge clk_flash) if(Acquiring) wraddress <= wraddress + 1;
always @(posedge clk_flash) if(PreOrPostAcquiring) samplecount <= samplecount + 1;

reg Acquiring1; always @(posedge clk) Acquiring1 <= AcquiringAndTriggered;
reg Acquiring2; always @(posedge clk) Acquiring2 <= Acquiring1;
assign AcquisitionStarted = Acquiring2;

Notice that we took care of remembering where the trigger happened. That's used to determine the beginning of the sample window in the RAM to send to the PC.

	reg [8:0] rdaddress, SendCount;
reg Sending;
wire TxD_busy;

always @(posedge clk)
if(~Sending)
begin
 Sending <= AcquisitionStarted;
 if(AcquisitionStarted) rdaddress <= (wraddress_triggerpoint ^ 9'h100);
end
else
if(~TxD_busy)
begin
 rdaddress <= rdaddress + 1;
 SendCount <= SendCount + 1;
 if(&SendCount) Sending <= 0;
end

With this design, we finally get a useful oscilloscope. We just need to customize it now.
Digital oscilloscope - part 4

Now that the oscilloscope skeleton is working, it is easy to add more functionality.

Edge-slope trigger

Let's add the ability to trigger on a rising-edge or falling-edge. Any oscilloscope can do that.

We need one bit of information to decide with direction we want to trigger on. Let's use bit-0 of the data sent by the PC.

	assign Trigger = (RxD_data[0] ^ Threshold1) & (RxD_data[0] ^ ~Threshold2);

That was easy.

More options

Let's add the ability to control the trigger threshold. That's an 8-bits value. Then we require horizontal acquisition rate control, filtering control... That requires multiple control bytes from the PC to control the oscilloscope.

The simplest approach is to use the "async_receiver" gap detection feature. The PC sends control bytes in burst, and when it stops sending, the FPGA detects it and assert an "RxD_gap" signal.

	wire RxD_gap;
async_receiver async_rxd(.clk(clk), .RxD(RxD), .RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data), .RxD_gap(RxD_gap));

reg [1:0] RxD_addr_reg;
always @(posedge clk) if(RxD_gap) RxD_addr_reg <= 0; else if(RxD_data_ready) RxD_addr_reg <= RxD_addr_reg + 1;

// register 0: TriggerThreshold
reg [7:0] TriggerThreshold;
always @(posedge clk) if(RxD_data_ready & (RxD_addr_reg==0)) TriggerThreshold <= RxD_data;

// register 1: "0 0 0 0 HDiv[3] HDiv[2] HDiv[1] HDiv[0]"
reg [3:0] HDiv;
always @(posedge clk) if(RxD_data_ready & (RxD_addr_reg==1)) HDiv <= RxD_data[3:0];

// register 2: "StartAcq TriggerPolarity 0 0 0 0 0 0"
reg TriggerPolarity;
always @(posedge clk) if(RxD_data_ready & (RxD_addr_reg==2)) TriggerPolarity <= RxD_data[6];
wire StartAcq = RxD_data_ready & (RxD_addr_reg==2) & RxD_data[7];

We've also added a 4 bits register (HDiv[3:0]) to control the horizontal acquisition rate. When we want to decrease the acquisition rate, either we discard samples coming from the ADC, or we filter/downsample them at the frequency we are interested in.

More and more features

As you can see, there are lots of features that can be added. The interesting thing is that you can design the oscilloscope the way you need it - maybe a special trigger mechanism? a special filtering function?
Your turn to experiment.
Probing High-Speed Digital Designs
http://www.signalintegrity.com/Pubs/straight/probes.htm
(Originally published in Electronic Design Magazine, March, 1997)
Have you ever tried to debug a broken signal that only worked when your probe was touching it? Join the crowd. It's like a badge of honor. It means you work on really fast systems. Then again, it may just mean you need a better probe. The one that you are using just isn't up to par, or the way it is being used is inappropriate for the task at hand. To help solve such problems, this article will explore some ways to characterize their behavior, and the trade-offs inherent in various probe styles. It will even describe how to make a resistive-input probe that performs well into the gigahertz range.

How Probes Work
Basically, all probes work the same way. When applied to a logic trace, a probe "siphons" off a portion of the signal energy and conveys it to the scope's vertical amplifier input. From there, the scope amplifies the signal and then displays it on the instrument's screen.

The siphoning process always distorts the signal being measured, because any probe loads down the circuit to which it is connected. Even with a 1-pF probe, the loading can be substantial. A 1-pF probe looks like a 160-ohm load at 1 GHz, which is the frequency associated with a 0.5-ns rise or fall time. (The effective upper band edge of a digital signal with a rise/fall time T is 0.5 T/ Hz.. See High-Speed Digital Design, H.W. Johnson and M. Graham, Prentice-Hall, 1993.) Technically, the complex impedance is -J160-ohm, but that's splitting hairs because the phase doesn't matter as much as the fact that the 160-ohm magnitude is noticeable to a 50-ohm circuit.

Think about it. If you connected a 160-ohm load to your circuit, it's going to change the termination conditions. Wouldn't the levels shift? Wouldn't the signals change shape slightly? Might it not ring, or overshoot differently, or cross the switching threshold at a different point in time? These same effects occur when probes are connected.

Room For Improvement
Some engineers assume that these effects are a manifestation of the Heisenberg Uncertainty Principle, but that is not the case. For ordinary digital problems, probe performance is nowhere near its fundamental physical limits. The problems are simply a manifestation of the rather crude state of the art of probe design. Better probes will do less damage to the signal under test. The industry can anticipate several more generations of improved probe designs before encountering limitations due to the immutable laws of physics.

You may be interested to know that electrical engineers in many other fields of study are also concerned with the general effect of probes on the device under measurement. (A good general reference on the subject is, Electrical Measurements, by Frank A. Laws, first published by McGraw-Hill in 1938.) We are not dealing here with any fundamentally new problems.

Besides the loading problem, a probe can introduce its own distortion, often in the form of additional ringing or overshoot. Even if it doesn't load down the circuit under test, a probe whose internal workings are ringy will fail to convey to the oscilloscope a faithful reproduction of the incoming signal. The actual waveforms in the circuit under test may look ideal, but what is conveyed to the scope looks completely different.

I can't count the number of times I have seen engineers chase down "ringing" problems in a circuit, trying every termination trick in the book, only to discover that the ringing was not present in the system at all, it was only a ghost image created by poor probing.

Three Probe Styles
There are three popular oscilloscope probe styles in use today:

· 10:1 Capacitive-input probes

· FET-input probes

· Resistive-input probes (also called Z0 probes)

The capacitive-input probe was originally developed for use on vacuum-tube equipment (Fig 1).

	Figure 1—Capacitive-Input Style Probe

	[image: image7.png]9MQard11F
tdnin e ip Equtzertox s

Stor sl catls o220

el v
Sorfrmtor SosFadiua
it anema

It provides a very high input impedance at dc (about 10 M-ohm), which was a nice feature when engineers spent a lot of time probing grid-bias circuits on vacuum tube systems. Nowadays digital applications don't require a 10 M-ohm input impedance at dc. For digital applications, the probe's impedance at very high frequencies is much more important.

Proper operation of the capacitive-input probe hinges on the assumption that the center conductor of the connecting cable has an aggregate capacitance to ground of 50 pF. At frequencies for which the cable begins to act like a transmission line (that is, at the frequencies you care about in fast digital design), the probe no longer performs correctly. A little box of compensating components at the end often includes a circuit to help ameliorate this effect, but because of the fundamental limitations of the connecting cable few probes of this style are rated for more than 500 MHz.

The FET-input probe (Fig 2) has an active amplifier built right in to its tip. This circuit, which incorporates an FET-input buffer stage, amplifies the incoming signal and prepares it for its journey down the 50-ohm connecting cable to the scope. To use this probe, the scope must be equipped with a 50-ohm-terminated input circuit, and a power connection to feed bias power to the FET amplifier. Always check to make sure the power from your scope is compatible with the FET probe you are planning to use.

	Figure 2—FET-Input Style Probe

	[image: image8.png]f—
et stendofestie
e 0 ot catle

500 e
 scope ingut

The resistive-input probe, also called a Z0 probe, combines characteristics of both of the other types (Fig 3). Like the 10:1 capacitive-input probe, the resistive-input probe is an entirely passive device. That means that it will work with practically any scope. Like the FET-input probe, the resistive-input probe makes optimal use of its 50-ohm connecting cable. Once the input signal is coupled into the cable, it flows in a linear, time-invariant, almost lossless, and practically distortionless fashion all the way to the scope input termination, where reflections are damped. The scope must be set for a 50-ohm termination.

	Figure 3—Resistive-Input Style Probe (Z0 Probe)

	[image: image9.png]1K-Q resistor
agosdatip

T 500 comil atle

500 e
aseope ingut

The resistive-input probe is cheap, it has a terrific bandwidth, and it is more tolerant of long ground wires than the other probes. These advantages come at the cost of higher IOH required in your digital circuits in order to drive the 1K resistor. In modern high-speed systems, the extra drive current is almost always readily available.

How to Characterize a Probe
Probes are available in many different styles, shapes and sizes to suit a wide variety of applications. Not all styles are appropriate for digital use. As an aid to choosing probes for a digital design lab, this section examines how to characterize those aspects of probe performance most relevant to high-speed digital logic applications.

Input Loading
Probes can load down a circuit, substantially distorting the signal under test. This happens when the input impedance of the probe is comparable to (or less than) the driving impedance of the device under test.

	Figure 4—Effect of three probe styles on digital signal

	[image: image10.png]4
3 1-gF FET probe -
Vel A
1Kol sesistive prche 7
8.pF probe
| £F p
o
u 1 2 3 4 H

Figure 4 depicts the effects of probe loading. The figure shows three traces, all measured with a high-quality reference probe installed at the end of a long, source-terminated trace. In all three cases, the trace impedance is 50 ohms, and the signal rise-fall time as measured on the scope is about 2 nS. In all three cases, in addition to the reference probe used to make this picture, the signal is loaded with one additional scope probe. The difference between the traces is that in one case, the additional loading probe is a 1-pF FET-input probe, in one case it is an 8-pF capacitive-input style probe, and in the third case it is a 1K-ohm resistive-input probe. A separate trigger circuit is used to maintain time-synchronism between the three measurements, which have been superimposed onto this figure.

Even at the rather pedestrian signal speed of 2 nS, the loading effect of the 8-pF probe shows clearly (blue dotted line). When the 8-pF probe is attached, the rising edge is delayed by about 200 pS. In systems with little or no timing margin, this can easily be enough to cause a noticeable change in system behavior. At the frequency associated with this rising edge (250 MHz), the input impedance of the 8-pF probe is a mere 80 ohms, hardly good enough for fast digital work.

In contrast, the 1-pF FET probe and the 1K-ohm resistive-input probe do not materially affect the transition time, although the 1K-ohm probe does have the effect of scaling the signal amplitude to 95% of its nominal open-circuit value (1K/(1K+50) = 95%). The input impedance of both these probes, at the frequency of interest (250 MHz), is much higher than 80 ohms.

As we go higher in frequency, eventually the 1-pF probe will run into difficulties. At signaling rates faster than about 300-pS rise-fall, only a resistive-input style probe can maintain a high enough input impedance to remain useful.

Bandwidth and Gain
Four classic criteria for evaluating an oscilloscope measuring system are sensitivity, linearity, gain flatness, and bandwidth. In modern high-performance oscilloscopes, problems with sensitivity, non-linear distortion and ringing internal to the vertical amplifier and display circuits have largely been conquered. These issues are no longer a factor. The primary limiting factor that remains, for digital applications, is bandwidth.

For very fast input signals an inadequate bandwidth in your measurement instruments will, at the minimum, distort measured rise-fall times, skew timing measurements, and under-represent the extent of ringing problems. At worst, it can cause you to miss important features of the signals under test. Without adequate bandwidth, narrow pulses, glitches and other effects can go unnoticed and untreated.

Given a scope's rated bandwidth, you can estimate it's characteristic 10-90% rise/fall time of the scope (Table 1). If the rise/fall time of your scope is at least three times faster than the rise/fall time of your logic, expect to see little measurable distortion in any observed waveform. If the rise-fall time of your scope is comparable with the rise/fall time of your logic, expect to see a substantial deterioration of observed rise/fall times, but few other deleterious effects. Don't use a scope with a rise/fall time slower than the rise/fall time of your logic.

Table 1—Formulas for Oscilloscope Rise/Fall Time Versus Format of Bandwidth Specification

	
	3-dB Bandwidth
	6-dB Bandwidth
	RMS Bandwidth

	Rise/Fall
10%-90%
	 .339
 BW
	 .429
 BW
	 .361
 BW

All commercial probes come with a bandwidth rating. The conversion from bandwidth to 10-90% rise-fall time is, depending on the form of bandwidth specification the same as for an oscilloscope (see table 1). On a high-end scope (one for which you purchase the scope and probes separately) you must then combine the scope rise-fall time and the probe rise-fall time to get an accurate picture of how the whole instrument will perform. The formula for this combination is:

toverall = sqrt(tscope2 + tprobe2)
As you can see, a 500-MHz scope and a 500-MHz probe does not a 500-MHz instrument make. For best results, plan for a combined overall rise-fall time from your measuring instrument that is 3 times faster than the signal you wish to observe.

When purchasing probes, you will note that, due to the transmission-line effects inherent in the capacitive-input style probe, they are generally not made with a bandwidth rating higher than about 500 MHz. The FET-input probes are limited today to around 1 GHz. Resisitve-input probes are available with bandwidths as high as 10 GHz.

If you are interested in working with very low-level signals (for instance, in fiber-optic receivers) then the probe gain is going to become important. All three probe styles introduce signal loss.

The capacitive-input probe, as depicted in figure 1, has an attenuation ratio of 10:1 (-20 dB). If your scope has a minimum input sensitivity of 1 mV/div, then with this probe your effective minimum input sensitivity will be 10 mV/div. Popular FET probes have an attenuation ratio of about 20:1 (-26 dB). It's fairly straightforward to build a tiny FET amplifier this way and then boost the signal back up at the scope. Insisting on 1:1 performance at the probe level would require additional stages of amplification. The 1K resistive-input probe also has an attenuation ratio of about 20:1 (depending on the exact resistor values used).

Sensitivity To The Probe Ground Wire
Capacitive-input probes, and to a lesser extent FET-input probes, sometimes perform poorly when connected to drivers with low source impedances. This effect is greatly exacerbated by the presence of any significant length of ground wire between the sensing end of the probe and the board.

This effect can be described analytically by looking at the driver source impedance, the probe input capacitance, and the ground-wire inductance as an R-C-L series resonant circuit. Let’s analyze all three probe types this way, assuming use of a 6" ground wire (about 200 nH).

For the 10-pF capacitive-input probe (with a six-inch ground wire), as the drive impedance drops below 100 ohms, the probe develops a nasty resonance at about 110 MHz. This resonance is right in the heart of digital territory, and is the primary reason why ground wires are not used in conjunction with 10-pF style probes when attempting to make accurate measurements.
The resonance in the 1-pF FET-input probe (with a six-inch ground wire) becomes evident at an even higher impedance level, which is a worse problem for low-impedance digital circuits. The resonance in FET-input probes begins developing at a drive impedance of 300 ohms, but fortunately it is shifted up to about 350 MHz. You won’t notice it unless your circuit rise-fall times are 3-nS or faster.

The resistive-input probe (with a six-inch ground wire) doesn’t have a resonance. It’s first-order circuit parameters form an R-L network, which doesn’t ring. To first order, this circuit is always damped. That’s one of the nice things about it: a resistive-input probe is less susceptible to ground wire length than any other probe style.

Figure 5 shows how this information translates into the time domain. In figure 5, we show the same signal, measured four different ways. The probes were applied one at a time, and the results stored, scaled and time-shifted to fit the display. In the figure, all four waveforms clearly show a 37-MHz clock. If that's all the detail you need, then the waveforms are essentially identical. If, on the other hand, you have been chasing glitchy bus ringing problems and need to quantify the undershoot , the differences are substantial.

	Figure 5—Effect of ground wire on three probe styles

	[image: image11.png]5 ;0 HT

2 -y
ane \\,,Jf

10 E EY a El

Tire, 5

A 1pFFET probe
B: 1.pF FET probe wf6" ground wire
€ 1K sesistive probe wf6" ground wire
D: 8F probe with 6" ground wire

The top trace was taken using the FET probe, with no ground wire. In the absence of a ground wire (that is, with the shiny metal probe ground barrel directly connected to the PCB ground using a wire not longer than 0.100"), all three probes gave the same result. In that sense they all performed reasonably well (except for the 200-pS timing shift noted above under "probe loading"). Since they are all practically the same, only one, non-ground-wire picture is shown.

The bottom trace shows a capacitive-input style probe with a six inch ground wire, rated at 8-pF and 500 MHz. This configuration has a resonance at 125 MHz, which shows up clearly in the figure as an 8-nS ripple. With a 6" ground wire, this probe is not suitable for fast digital work.

The second trace from the top shows the FET probe with a 6" ground wire. The resonance in this case lies at about 350 MHz, which shows up as a noticeable, but smaller, 3-nS ripple.

The third trace from the top shows the resistive-input probe with a 6" ground wire. This probe is clearly the least sensitive to ground wire distortion.

When probing low-impedance circuits, the capacitive-input probe is highly sensitive to ground-wire length, an FET probe less so, and the resistive-input probe performs best of all.

Making A 1-KOhm Probe
The 1K-ohm resistive-input probe cheap, easily constructed, and remarkably effective up to 1-GHz. If you want to build some yourself, here are a few tips.

Basic Construction
For reasonable performance up to 1 GHz, use a 1-m piece of RG-174 cable for the connecting cable. Terminate the scope end of the cable with a BNC connector, and solder a 1/8W-1K carbon-composition or carbon-film resistor to the center conductor of the sensing end. Dress the braid at the sensing end for soldering directly to the PCB ground plane.

I have seen some engineers who like to solder a dozen or so resistive-input probes on a board, and then connect them to the scope in various combinations as needed. They like this approach because the probes stay put and can be operated hands-free. Alternately, you can adapt this probe for free-roving operation by tacking a solid ground wire onto the end of the RG-174 ground braid. A number of ground-wire attachments made for other probes can be adapted for use with a resistive-input probe. On the end of the 1K-resistor, try applying the crimp-on center-conductor contact from a male BNC connector. It makes an excellent permanent plated tip. In this form, the shop-built probe works well up to 1 GHz.

As you move toward 10-GHz, you will find that the resistive-input probe is still an excellent choice, but it requires more care in its construction. For example, the 10-GHz probes offered by Tektronix use an exquisitely crafted multi-braided low-loss coax, gold-plated SMA connectors and very nice, long, skinny 1K resistors. These features extend the useful range of the probe easily into the 10-GHz region.

Parasitic Capacitance
The resistive-input probe presents a flat 1K-ohm impedance across the band, all the way up to about 1 GHz. Above that, the input impedance begins to roll off, dominated by the approximately 1/6 pF unavoidable parasitic capacitance that shunts end-to-end across the 1K sense resistor. Using two 1/8-watt, 470-ohm resistors in series instead of a single 1K will reduce the parasitic capacitance, improving the roll-off characteristics by a factor of two. Also, pay attention to the positioning of the sense resistor. It should be kept up off the board, away from the ground plane. When pressed down near a solid ground plane you will pick up another 1/2 pF of parasitic capacitance to ground, substantially affecting the probe's performance. Kept 1/2" or more away from ground this effect will be negligible.

Attenuation
The resistive-input style probe incorporates a fixed degree of signal attenuation. This is not usually a problem, assuming that your scope has adequate vertical sensitivity to make up the difference. As described above, the resistive-input probe provides a 21:1 attenuation ratio.

If you need to make exact measurements, calibrate your resistive-input probes. Being made from carbon-composition or carbon-film resistors, they may not be too accurate. If you order up a batch of custom-select 950-ohm carbon composition resistors, you can tune in a more precise 20:1 ratio. Beware the temptation to use a 1% MF resistor at the tip unless you are certain of its construction—many MF resistors incorporate an internal serpentine pattern in the metal film that will destroy the probe's high-frequency properties.

Other Practical Issues
Now we get down to some of the issues that can make or break your day. Things like flexibility of the connecting cable, size of the probe head, and cost. Here are some practical factors to think about:

· Will the probe fit between the cards in your chassis? It had better, because most truly fast bus systems won't function with extender cards, which add too much bus capacitance and screw up critical clock timing. Probes need to be squeezed between cards, with a right-angle bend at the tip. The shop-built resistive-input probe is a good candidate for this type of abuse.

· Will it stay on your bench (or get stolen)? If you have invested in something nice, consider taking defensive actions to protect your property. I've seen more than one really good probe with a little tag on it saying: flaky connector—do not use. In this respect, the shop-built 1K probe takes the cake; it's truly ugly.

· Will the probe help you meet higher-ups in the organization? Only the FET-input probe meets this requirement. Try ordering fifty of these, and you’ll get to meet plenty of higher-level executives while they grill you about the cost.

Conclusions
In high-speed system developments, the ubiquitous 10-pF 10:1 capacitive-input probe is no longer adequate. The two alternatives are the FET-input probe and the resistive-input probe.

Of the two, the resistive-input probe is cheaper, it has as good or better bandwidth, and it is more tolerant of long ground wires. These advantages come at the cost of higher IOH required in your digital circuits in order to drive the 1K resistor. In modern high-speed systems, because the extra drive current is almost always readily available, the resistive-input probe makes a lot of sense.

As we go higher in frequency, the FET-input probes will run into increasing difficulties. At signaling rates faster than about 300-pS rise-fall, only a resistive-input style probe can maintain a high enough input impedance to remain useful.

