
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
June 30, 2000

Designing A Low Cost USB-PS/2 Combination Interface Mouse
with the Cypress Semiconductor CY7C63723 enCoRe USB

Microcontroller

Introduction
The Universal Serial Bus (USB) is an industry
standard serial interface between a computer and
peripherals such as a mouse, joystick, keyboard,
UPS, etc. This application note describes how a
cost-effective combination USB-PS/2 mouse can
be built using the Cypress Semiconductor
CY7C63723 USB microcontroller. The document
starts with the basic operations of a computer
mouse peripheral followed by an introduction to
the CY7C63723 USB microcontroller. A
schematic of the CY7C63723 USB
microcontroller to the optics and buttons of a
standard mouse can be found in the Hardware
Implementation Section. The software section of
this application note describes the architecture of
the firmware required to implement the USB
and PS/2 mouse functions. This application note
assumes that the reader is familiar with the
CY7C63723 USB microcontroller and the
Universal Serial Bus standard. The CY7C63723
data sheet is available from the Cypress web site
at www.cypress.com. USB documentation can be
found at the USB Implementers Forum web site
at www.usb.org.

Mouse Basics

A standard PC mouse has a switch for each
button and a ball and rollers to measure
movement. The rollers are connected to optics
that output quadrature information, which can be
deciphered into movement and direction
information. This application note shows how to
connect to and manage a standard configuration
of mouse hardware, as well as handle the USB
and PS/2 protocols. Each of these protocols
provides a standard way of reporting mouse
movement and button presses. For a better
understanding of these protocols you should
have four documents:

Universal Serial Bus Specification Revision
1.1, September 23, 1998
Available on-line from the USB Implementers
Forum at http://www.usb.org.

Device Class Definition for HID Version 1.1,
April 7, 1999

Available on-line from the USB Implementers
Forum at http://www.usb.org.

IBM Personal System/2 Mouse
Technical Reference
IBM Document #S68X-2229-00

IBM Personal System/2 Hardware Interface
Technical Reference - Common Interfaces
IBM Document #S84F-9809-00

Introduction to the CY7C63723

The CY7C63723 is an 8-bit RISC microcontroller
with an integrated USB Serial Interface Engine
(SIE). The architecture executes general-
purpose instructions that are optimized for USB
applications. The CY7C63723 has a built-in clock
oscillator and timers as well as programmable
drive strength and pull-up resistors on each I/O
line. High performance, low-cost human-interface
type computer peripherals can be implemented
with a minimum of external components and
firmware effort. For a detailed look at the
CY7C63723 please see the following document:

CY7C63723/23 CY7C63742/43 enCoRe™
USB
Combination Low-Speed USB & PS/2
Peripheral Controller
Available on-line from the Cypress
Semiconductor web at http://www.cypress.com

Clock Circuit

The CY7C63723 has a crystal-less oscillator
circuit that eliminates the need for an external
resonator or crystal. This also frees up an
additional input on the XTALIN line. At power up
the oscillator will be within 5% of nominal 6MHz.
Then as USB traffic starts up, the oscillator will
self tune itself to within 1% of the 6MHz reference
from low speed USB traffic. An external oscillator
can be used by changing the value of the clock
configuration register via firmware if your
application demands stand alone clock accuracy.

http://www.usb.org
http://www.cypress.com
http://www.usb.org
http://www.cypress.com
http://www.usb.org

2

USB Serial Interface Engine (SIE)

The operation of the SIE is totally transparent to
the user. In the receive mode, USB packet
decode and data transfer to the endpoint FIFO
are automatically done by the SIE. The SIE
then generates an interrupt request to invoke the
service routine after a packet is unpacked.
In the transmit mode, data transfer from the
endpoint and the assembly of the USB packet are
handled automatically by the SIE.

General Purpose I/O

The CY7C63723 has 16 general purpose I/O
lines divided into 2 ports: Port 0 and Port 1, as
well as four special input only pins.

A general purpose I/O pin can have two
selectable drive strengths: CMOS and resistive.
CMOS mode is a general-purpose mode used for
driving logic and other relatively fast signaling.
Resistive mode was designed to act as a pull up
resistor with a value of about 14kΩ, which in this
design will be used for pull up resistors on the
button switches.

The CY7C63723 also has three sink modes
including a super strong 50mA mode for driving,
otherwise hard to drive, optics. It should be
noted that this microcontroller has a current sink
limit of 70mA total on all I/O pins at one time.

In addition to these output modes, this
microcontroller has two user selectable input
thresholds for interfacing with TTL and CMOS
level signaling.

Four additional inputs are available on the
CY7C63723. If the crystal-less oscillator is used,
then the XTALIN pin can act as an input.

When the VREG output is disabled, this pin may
also act as an input. The other two inputs that
are used for PS/2 communications are the D+/D-
pins, normally used for the USB interface. A
configuration register also allows you to select a
number of configurations for these pins, meaning
that USB and PS/2 can co-exist on the same
signal pins.

Voltage Regulator

The CY7C63723 has a built in 3.3V regulator that
is designed to drive the USB D- pull up resistor.
This regulator supplies a small amount of current
and should not be used as a general-purpose
regulator. The output resistance of this regulator
is 200Ω, which necessitates a 1.3kΩ resistor as a
pull up on the D- line to create the 1.5kΩ resistor
required by the USB specification.

The VREG pin is automatically turned off by the
SIE (Serial Interface Engine) during USB data
transmission, so this pin should not be used as a
general-purpose voltage reference.

When disabled, the VREG pin can act as an input
and is read via the port2 register.

Hardware Implementation
The standard hardware to implement a mouse is
shown in figure 1.0. For each axis (x & y for the
mouse ball, z for the wheel) there are a set of
optics that output quadrature signals. For each
button there is a switch that is pulled up internally
by the built in pull up resistors. The D- line is
pulled up via a 1.3kΩ resistor connected to the
VREG pin.

Figure 1.0 Standard Mouse Hardware Connected to a CY7C63723

CY7C63723

X optics

Y optics

Z optics

Left Button

Wheel Button

Right Button

G
PI
O

PI
N
S

USB/PS/2
InterfaceD+/D-

SCLK/SDATA

VREG

3

Firmware Configurable GPIO

The reference firmware is configured to use the
GPIO pins as shown on the schematic in
appendix A. However, it may be more optimal for
you to use a different IO configuration to meet the
mechanical constraints of your particular PCB.
The reference firmware is designed to be easily
configured to another set of pin connections.
This is accomplished through changes in the IO
definitions at the beginning of the combi.c listing.
The following statements are the pin definitions
as they exist today. The firmware will use these
definitions to read and configure the GPIO pins,
without any other modifications.

#define OPTICS_PORT PORT0
#define OPTICS_MASK 0x3f

#define GET_X_OPTICS(x) ((x >> 0)&0x3)
#define GET_Y_OPTICS(x) ((x >> 2)&0x3)
#define GET_Z_OPTICS(x) ((x >> 4)&0x3)

#define LEFT_SWITCH_PORT PORT0
#define LEFT_SWITCH_MASK BIT7
#define RIGHT_SWITCH_PORT PORT1
#define RIGHT_SWITCH_MASK BIT0
#define MIDDLE_SWITCH_PORT PORT1
#define MIDDLE_SWITCH_MASK BIT1

#define PORT0_OPTICS_MASK 0b00111111
#define PORT1_OPTICS_MASK 0b00000000
#define PORT0_LED_MASK 0b01000000
#define PORT1_LED_MASK 0b00000000
#define PORT0_SWITCH_MASK 0b10000000
#define PORT1_SWITCH_MASK 0b00000011

Mouse Optics

The standard way mouse optics are connected
are via two phototransistors connected in a
source follower configuration. An infrared LED
shines, causing the phototransistors to turn on.
In between the phototransistors and LED is a
pinwheel that turns on the mouse ball rollers.
The fan of this pinwheel is mechanically designed
to block the infrared light such that the
phototransistors are turned on and off in a
quadrature output pattern. Every change in the
phototransistor outputs represents a count of
mouse movement. Comparing the last state of
the optics to the current state derives direction
information. As is shown in figure 2.0 below,
travelling along the quadrature signal to the right
produces a unique set of state transitions, and
travelling to the left produces another set of
unique state transitions. In this reference design,

there are three sets of phototransistors. They are
assigned to the x-axis, y-axis, and z-axis (wheel).

Figure 2.0 Optics Quadrature Signal Generation

Mouse Buttons

Mouse buttons are connected as standard
switches. These switches are pulled up by the
pull up resistors inside the microcontroller.
Normally the switches are debounced in firmware
for 15-20ms. In this reference design there are
three switches: left, wheel, and right.

USB and PS/2 Connection

The CY7C63723 has a configuration register that
switches control from the SIE to manual control
on the D+ and D- pins. This allows the firmware
to dynamically configure itself to operate on the
bus you plug the mouse into. This way the
signaling lines for USB and PS/2 can be shared
without taking extra GPIO pins for PS/2
operation. The firmware for this reference design
will automatically detect the host topology (USB
or PS/2) at plug-in and will configure itself for
operation on that bus.

If a USB host connection is detected then the
firmware will enable the VREG pin, such that the
1.3kΩ resistor connected to the D- line can be
pulled up to 3.3V. It is this action that causes the
host to recognize that there is a low-speed USB
peripheral attached.

Photo-
transistors

Infrared
LED

Q1.1
output
Q1.3
output

4

The connections for the connectors are shown in
figure 3.0 below.

Figure 3.0 USB and PS/2 peripheral connectors

Overall circuit

A schematic of the overall circuit is shown in
Appendix A of this document. Appendix B lists
the bill of materials.

Firmware Implementation
The firmware for this reference design is written
in the C language and requires the ByteCraft M8
C-compiler. The following files are required to
compile the mouse firmware

Chip.h – interrupt table, register and port
constants for the CY7C63723 microcontroller

Combi.h – main mouse firmware

Macros.h – general macros used with this design

Ps2defs.h – PS/2 interface constants

Usb_desc.h – USB descriptor tables

Usbdefs.h – USB interface constants

At power up, the firmware tests the host interface
and automatically determines if the mouse if
plugged into a USB or a PS/2 host connection.
After interface detection, the host firmware
configures itself to operate on the detected
interface.

USB Interface

All USB Human Interface Device (HID) class
applications follow the same USB start-up
procedure. The procedure is as follows

1. Device Plug-in
When a USB device is first connected to the bus,
it is powered and is running firmware, but
communications on the USB remain non-
functional until a USB bus reset by the host.

2. Bus Reset
The pull-up resistor on D– notifies the hub that a
low-speed (1.5 Mbps) device has just been
connected. The host recognizes the presence of
a new USB device and initiates a bus reset to
that device.

3. Enumeration
The host initiates SETUP transactions that reveal
general and device specific information about the
mouse. When the description is received, the
host assigns a new and unique USB address to
the mouse. The mouse begins responding to
communication with the newly assigned address,
while the host continues to ask for information
about the device description, configuration
description and HID report description. Using the
information returned from the mouse, the host
now knows the number of data endpoints
supported by the mouse (2). At this point, the
process of enumeration is completed. The USB
descriptors used during enumeration are listed in
Appendix C.

4. Post Enumeration Operation
Once the communications connection between
the host and mouse is established, the peripheral
now has the task of sending and receiving data
on the control AND data endpoints. In this case,
when the host configures endpoint 1, the mouse
starts to transmit button and motion data back to
the host when there is data to send. At any time
the peripheral may be reset or reconfigured by
the host.

USB Requests – Endpoint 0

Endpoint 0 acts as the control endpoint for the
host. At power up endpoint 0 is the default
communication channel for all USB devices. The
host initiates Control-Read and Control-Write
(see Chapter 8 of the USB specification) to
determine the device type and how to configure
communications with this device. In this
particular design, only Control-Read transactions

USB type-A connector

PS/2 Male connector

SDATA

GND

SCLK

VCC

G
N
D D+ D-

V
C
C

5

are required to enumerate a mouse. For a list of
valid requests see Chapter 9 of the USBG
specification. In addition to the standard
“Chapter 9” requests, a mouse must also support
all valid HID requests for a mouse. Appendix C
of this document lists the valid requests that are
recognized by the mouse firmware.

USB Requests – Endpoint 1

Endpoint 1 is the data transfer communications
channel for mouse button, wheel, and movement
information. Requests to this endpoint are not
recognized until the host configures endpoint 1.
Once this endpoint is enabled, then interrupt IN
requests are sent from the host to the mouse to
gather mouse data. When the mouse is left idle
(i.e. no movement, no new button presses, no
wheel movement) the firmware will NAK requests
to this endpoint. Data is only reported when
there is a status change with the mouse.

Two reporting formats are used in this design.
The boot protocol, as defined by the HID
specification, is the default reporting protocol that
all USB enabled systems understand. The boot
protocol has a three-byte format, and so does not
report wheel information. The HID report
descriptor defines the report protocol format.
This format is four bytes and is the same as the
report format with the exception of the fourth
byte, which is the wheel information.

PS/2 Interface

The host driver determines the PS/2 mouse start
up sequence. However, a few standard
commands must be sent in order to enable all
PS/2 mice.

The mouse is the clock master on this bus. The
host must request the mouse to clock data into
itself.

1. Device Plug-in
When a PS/2 mouse is first connected to the bus,
it is powered and is running firmware. PS/2
communications generally begin with the host
sending a RESET command to the mouse. The
mouse will not report button, wheel, or movement
back to the host until the ENABLE command is
sent. Depending on the particular operating
system the mouse is used with, the start up
sequence will vary.

2. Device Configuration

During this time the host will set the standard
PS/2 parameters such as scaling, resolution,
stream mode, and eventually enabling stream
mode for data reports. For a list of the valid PS/2
commands that this mouse recognizes see
Appendix E.

3. Wheel Enable (optional)
Since the wheel is not part of the standard PS/2
specification, there is a sequence of commands
that enable the wheel. Wheel-aware drivers,
such as those for Microsoft and Linux operating
systems will initiate this special sequence.

After the following sequence of commands, the
wheel report format is enabled.

0xF3, 0xC8 Set Sampling Rate 200 per
second

0xF3, 0x64 Set Sampling Rate 100 per
second

0xF3, 0x80 Set Sampling Rate 50 per
second

0xF2, 0x03 Read Device Type returns a
value of 0x03

After the Read Device Type command returns
0x03 to indicate that this is a Microsoft
compatible three button-wheel mouse, the wheel
report format is enabled. See Appendix E for
information on PS/2 standard and wheel reporting
formats.

4. Post Start Up Operation
After the streaming mode is set and data reports
are enabled, the mouse will send button,
movement, and optionally wheel reports back to
the host. Whenever the mouse has new data to
send it will initiate a transfer to the host.

USB Firmware Description

A function call map for USB operation is shown in
figure 4.0. The following are descriptions of the
functions in combi.c.

USB Functions

void UsbReInitialize(void) - Wake up and delay
50mS. Initialize the PS2 BAT delay counter. For
a period of 2mS, poll the SCLK and SDATA lines
every 10uS. If we get 4 samples in a row with
non-zero data on either line, detect PS2. If 2mS
expires, enable the USB pull up resistor and
delay 500uS. Poll the SCLK and SDATA lines
indefinitely until a non-zero condition exists on
either line. During this polling period, we begin to

6

count down the PS2 BAT delay. If SCLK(D+) is
sampled high, detect PS2. If SDATA(D-) sampled
high, disable the USB connect resistor and Delay
100uS. If D+ and D- are both 0, detect a USB
interface, else detect a PS2 interface.

void MouseTask(void) - This routine is called
every 4 msec from the main loop. It maintains the
idle counter, which determines the rate at which
mouse packets are sent to the host in the
absence of a state change in the mouse itself. It
also sends a mouse packet if either of X, Y, or Z
counts or the buttons have changed state.

void Suspend(void) - This routine handles the
entrance/exit from suspend. If the mouse is
configured for remote wakeup, the bus reset,
wakeup, and GPIO interrupts are enabled. The
optical inputs are sampled once. The code then
enters a loop in which the chip is suspended, and
will wake at least as often as the wakeup ISR, but
perhaps due to a GPIO or a USB bus reset
interrupt. Each time the chip wakes up, the LED
drive is re-enabled, and the switches and optical
inputs are sampled to see if a change occured,
and bus activity is monitored. Any of these
conditions will cause the firmware to exit the loop.
If the device is not enabled for remote wakeup, all
ports are put into the high-Z state, only the USB
bus reset interrupt is enabled, and the part is
suspended. If the resume was due to bus
activity, the firmware returns to the main loop. If
the resume was due to mouse movement or a
button press, a K state is driven upstream for 14
milliseconds prior to returning to the main loop.

void usbmain(void) – This function spins in an
infinite loop waiting for an event that needs
servicing. Main is entered from either the power-
on reset or the USB bus reset. Both of these
reset routines insures that all USB variables have
been initialized prior to calling usbmain().

void HandleSetup(void) - This routine is entered
whenever an SETUP packet has come in on
endpoint 0. It performs some preliminary
validation on the packet, then parses the packet
and calls the appropriate routine to handle the
packet.

void HandleIn(void) - This routine is entered
whenever an IN packet has come in on endpoint
0.

void USB_control_read(void) - This routine is
called after a SETUP has been received that is

requesting data response from the mouse. Upon
entry, XmtBuff has been initialized to point to the
data buffer that needs to be transmitted. This
function adjusts the length of the data to be
returned if the host requested less data than the
actual length of the buffer. It then loads the FIFO
with the first packet of data and prepares the SIE
to ACK with the data.

char LoadEP0Fifo(void) - This routine loads the
USB endpoint 0 FIFO with data pointed to by
XmtBuff. It then returns the length of data
actually loaded into the FIFO.

void SetConfiguration(void) - This routine is
entered when a SET CONFIGURATION request
has been received from the host.

void SetAddress(void) - This routine is entered
whenever a SET ADDRESS request has been
received. The address change cannot actually
take place until after the status stage of this no-
data control transaction, so we just save the
address and set a flag to indicate that a new
address was just received. The code that
handles IN transactions will recognize this and
set the address properly.

void GetDescriptor(void) - This routine is entered
when a GET DESCRIPTOR request is received
from the host. This function decodes the
descriptor request and initializes XmtBuff to the
proper descriptor, then initiates the transfer by
calling USB_control_read().

void SetIdle(void) - This routine is entered
whenever a SET IDLE request is received. See
the HID spec for the rules on setting idle periods.
This function sets the HID idle time. See the HID
documentation for details on handling the idle
timer.

void SetProtocol(void) - This routine is entered
whenever an SET PROTOCOL request is
received. This no-data control transaction
enables boot or report protocol.

void GetReport(void) - This routine is entered
whenever a GET REPORT request to get a report
is received. The most recent mouse data report
is sent to the host via a control-read transaction
on endpoint 0, instead of endpoint 1.

void GetIdle(void) - This routine is entered
whenever a GET IDLE request is received. This
function then initiates a control-read transaction

7

that returns the idle time. See the HID
documentation for more details.

void GetProtocol(void) - This routine is entered
whenever a GET PROTOCOL request is
received. This request initiates a control-read
transaction that tells the host if the mouse is
configured for boot or report protocol. See the
HID class documentation for more details.

void GetConfiguration(void) - This routine is
entered whenever a GET CONFIGURATION
Request is received. This function then starts a
control read transaction that sends the
configuration, interface, endpoint, and HID
descriptors to the host.

void USB_Stall_In_Out(void) – This function sets
endpoint 0 to stall IN and OUT tokens from the
host. Unsupported or invalid descriptor requests
will cause this firmware to STALL these
transactions.

char BusInactive(void) - This routine should be
called every millisecond from the main loop. It
maintains an internal count of the successive
samples of the USB status register in which no
bus activity was recorded. When this count
exceeds 3 milliseconds, this function returns 1,
indicating that bus activity has suspended. When
the bus activity suspends for more than 3
milliseconds, the mouse must enter a low power
state until a wakeup even

PS/2 Firmware Description

A function call map for PS/2 operation is shown in
figure 5.0. The following are descriptions of the
functions in combi.c.

PS/2 Functions

void ps2BAT(void) - delays for 500 milliseconds,
then sends the AA 00 initialization string to the
host for the PS/2 Basic Assurance Test.

void ps2_send(char data) - This routine sends a
byte to the host according to the standard PS/2
protocol. This routine is written in assembler to
precisely control the number of execution cycles
required for the appropriate PS/2 timing.

char ps2_receive(void) - This routine receives a
byte from the host according to the standard PS/2
protocol. This routine is written in assembler in
order to control the receive timing.

void Reset(void) - This routine simply waits in a
loop for the watchdog to perform a reset.

void Resend(void) - A copy of the last
transmission is always left intact in the message
buffer. To re-send it , this routine simply resets
the message length.

void SetDefault(void) – This routine is called in
response to a SET DEFAULT command from the
host. It then sets the mouse parameters to the
default settings.

void Disable(void) - Disables the mouse.

void Enable(void) - Enables the mouse.

char SetSampleRate(char p) - This routine is
called in response to a SET SAMPLE RATE
command from the host. It then verifies that the
requested sample rate is valid and sets the
sample rate for the mouse. Valid sample rates
are defined in the PS/2 Mouse specification.

void ReadDeviceType(void) - This routine is
called in response to a READ DEVICE TYPE
request from the host. This mouse always sends
a 0x00 in response to this request.

void SetRemoteMode(void) – This routine is
called in response to a SET REMOTE MODE
command from the host. The PS/2 mode is then
set to remote.

Figure 4.0 USB Operation Function Call Map

Main

usbReinitializeusbmainIsUsbInterface

MouseTask

TuneWakeup

ProcessOptics

DebounceButtons

MouseMoved

Suspend

GetButtons

8

void SetWrapMode(void) - This routine is called
in response to a SET WRAP MODE command
from the host. It then sets the mouse mode to
wrap. See the PS/2 specification for more details
on wrap mode.

void ResetWrapMode() -This routine is called in
response to a RESET WRAP MODE command
from the host. The mode is then reset to the
previous mode. According to the IBM spec, if
stream mode is enabled, the mouse is disabled
when the wrap mode is reset.

void ReadData(void) - This routine is called in
response to a READ DATA command from the
host. This routine then sends a mouse packet in
response to the command

void SetStreamMode(void) - This routine is called
in response to a SET STREAM MODE command
from the host. Stream mode is then enabled.
See the PS/2 specification for more information
about stream mode.

void StatusRequest(void) - This routine is called
in response to a STATUS REQUEST command
from the host. A three byte report is sent to the
host in response to this request. See the PS/2
mouse specification for more details.

char SetResolution(char p) - This routine is called
in response to a SET RESOLUTION command
from the host. Set Resolution is a two byte
command; the 2nd byte being the resolution
itself. This routine is called after reception of the
first byte, and so does nothing by itself

void SetScaling(void) - This routine is called in
response to a SET SCALING command from the
host. Scaling then changes to 2:1.

void ResetScaling(void) - This routine is called in
response to a RESET SCALING command from
the host. The scaling is then reset back to 1:1.

char GetByte(void) – This routine checks to see if
the host is requesting to send data, and if so,
it clocks in a data byte from the host. The
function returns the received byte and implicitly
sets the carry to 0 if the reception occurred
without errors. GetByte() turns off the 1.024
millisecond interrupt during PS/2 clocking so as
not to impose the potential for clock jitter due to
that interrupt.

void ProcessCommand(char p) - This routine
dispatches the received PS/2 command byte to
the proper handler.

void SendMouseData(void) – This routine formats
a mouse packet according to the PS/2 Mouse
specification and sends it to the host.

void Put(char p) - Put() attempts to send
a byte to the host. It is called to send an ACK,
ERROR, or RESEND to the host. In accordance
with the IBM specification, these responses are
not held for retransmission in the event that the
host requests to send a byte before the mouse
can send the response itself. Thus, this routine
waits for host inhibit to go away, then sends the
byte. If the host requests-to-send before this
happens, it simply returns without sending the
byte

void ps2main(void) - ps2main() spins in an infinite
loop waiting for an event that needs servicing.

void PutNextByte(void) - This routine sends the
next byte of the message buffer to the host.

void ReInitialize(void) - This routine reinitializes
PS/2 variables to their default states

void ResetInterval(void) - This routine resets the
mouse report interval to the value last sent by the
host. The report interval is counted down in the
main loop to provide a time base for sending
mouse data packets.

void Ps2MouseTask(void) - This routine handles
ps2 mouse data packet management

void CheckZmouse(void) - This function is called
whenever a set sample rate parameter is
received. It maintains a sequence counter which
advances each time a rate is received that
matches the above sequence. If the sequence is
completed, the z-wheel is enabled.

void ApplyResolution(void) - This routine scales
the mouse output by right-shifting the mouse
counts to achieve a /2 for each resolution factor.

void ApplyScaling(void) - This routine scales the
mouse output according to the following to the
PS/2 mouse specification, when scaling is
enabled by the host.

send1 (assembler routine) – sends a PS/2 1 bit

send0 (assembler routine) – sends a PS/2 0 bit

9

getbit (assembler routine) – receives a PS/2 bit
from the host

SET RESOLUTION Command

The SET RESOLUTION command is
conditionally enabled by the statement “#define
ENABLE_RESOLUTION” at the beginning of the
combi.c listing. On most systems this command
is not supported. If you wish to disable this
command in the firmware, comment out the
aforementioned statement.

SET SCALING Command

The SET SCALING command is conditionally
enabled by the statement “#define
ENABLE_SCALING” at the beginning of the
combi.c listing. On most systems this command
is not supported. If you wish to disable this
command in the firmware, comment out the
aforementioned statement.

10

Figure 5.0 PS/2 Operation Function Call Map

ps2main

Ps2MouseTask Ps2BAT ProcessOpticsGetByteProcessCommand PutNextByteSetDefaultReInitialize

DebounceButtons

ResetInterval

SendMouseData

ClearRam

ApplyResolution

ApplyScaling

Put

CheckZmouse

ResetScaling

SetScaling

StatusRequest

SetStreamMode

SendMouseData

ResetWrapMode

SetWrapMode

SetRemoteMode

ReadDeviceType

Enable

Disable

SetDefault

Resend

Reset

ps2receive

getbit

send0

ps2send

send1

send0

ps2send

Send1

Send0

ResetInterval

ApplyResolution

ApplyScaling

Main

11

Interrupt Jump Table

The interrupt jump table is defined in chip.h. This
jump table must be defined in accordance with
the documentation for the ByteCraft C-compiler.
See section 10.3.10 in the ByteCraft C-compiler
manual for more information about assigning
interrupt vectors.

Interrupt Handlers

void MY_RESET_ISR(void) - This function
initializes the data stack pointer, clears ram,
initializes port I/O, enables the 1.024 millisecond
interrupt, and jumps to main loop.

void USB_BUS_RESET_ISR(void) - The reset
vector initializes the data stack pointer and
program stack pointer, clears ram, makes a call
to initialize system variables, and resets the USB
address.

void MICROSECONDx128_ISR(void) - This ISR
samples the mouse optics and places the sample
in a queue for later processing by the main loop.
This is done to minimize the execution time of
this ISR, which can interrupted during the time
PS/2 bits are being clocked to the host. The
timing of the PS/2 clocking is critical (20 us
margin), so the corresponding execution time of
this ISR must be kept to less than 20 us.

void MILISECOND_ISR(void) - This ISR
maintains the 1 millisecond counter variable, and
sets a flag indicating a 1.024 millisecond interrupt
has occurred. The main loop uses these
variables for timing purposes.

void USB_A_EP0_ISR(void) - This ISR is entered
upon receiving an endpoint 0 interrupt. Endpoint
0 interrupts occur during the Setup, data , and
status phases of a control-read transaction. This
ISR handler dispatches the proper routine to
handle one of these phases. The interrupt will
remain active until the phase of the transaction is
complete.

void USB_A_EP1_ISR(void) - This ISR is entered
upon receiving an endpoint 1 interrupt. If the
ACK bit is sent, indicating that a valid mouse
packet was just transmitted to the host, the SIE is
set to NAK ins, and the data toggle bit is flipped
for the next transaction.

void WAKEUP_ISR(void) - The wakeup ISR
increments a global counter which is used to

"tune" the frequency of the occurrence of the ISR
itself (See routine TuneWakeup()).

A A

B B

C C

D D

E E

4
4

3
3

2
2

1
1

C
Y
P
R
E
S
S

S
E
M
I
C
O
N
D
U
C
T
O
R

©

2
0
0
0

1.
1

U
SB

/P
S2

 M
O

U
SE

 R
EF

ER
EN

C
E

D
ES

IG
N

 -
 A

pp
en

di
x

A:
C

Y7
C

63
72

3

A

1
1

F
ri

da
y,

 J
ul

y
21

, 2
00

0

Ti
tle

Si
ze

D
oc

um
en

t N
um

be
r

R
ev

D
at

e:
Sh

ee
t

of

LE
D

_D
rv

#

XA XB W
A

W
B

S
W

2

S
W

3

S
W

1YB
D

+
D

-
YA

Vc
c

S

S

S

Vc
c

S

S

Q
1

2 1 3

D
3

D
2

D
1

Q
3

2 1 3

Q
2

2 1 3

R
3 24

0

R
2

10
0

S1 S3S2

U
1

C
Y7

C
63

72
3

1 2 3 4 18 17 16 15 5 14

13 1211 8 679 10

P0
.0

P0
.1

P0
.2

P0
.3

P0
.4

P0
.5

P0
.6

P0
.7

P1
.0

P1
.1

D
+/

Sc
lk

D
-/S

da
ta

Vc
c

Vr
eg Vs

s
Vp

p

Xt
l_

In

Xt
l_

O
ut

R
5

2.
2K

R
4

2.
2K

R
8

2.
2K

R
9

2.
2K

R
6

2.
2K

R
7

2.
2K

R
1

1.
3K

J1 1 2 3 4 5

C
1

0.
1u

F
+

C
2

4.
7u

F
10

V

13

Appendix B: Bill of Materials for Components Shown on Schematic

Designator Part Type
U1 Cypress CY7C63723 USB Microcontroller
D1 Infrared LED
D2 Infrared LED
D3 Infrared LED
Q1 Dual emitter output infrared phototransistor
Q2 Dual emitter output infrared phototransistor
Q3 Dual emitter output infrared phototransistor
S1 Momentary switch – normally open
S2 Momentary switch – normally open
S3 Momentary switch – normally open
C1 0.1uF ceramic capacitor, 10V or larger voltage rating
C2 4.7uF electrolytic capacitor, 10V or larger voltage rating
R1 1.3kΩ resistor, 5%*

R2 100Ω resistor
R3 240Ω resistor
R4 2.2kΩ resistor
R5 2.2kΩ resistor
R6 2.2kΩ resistor
R7 2.2kΩ resistor
R8 2.2kΩ resistor
R9 2.2kΩ resistor
J1 Mouse cable header

* - tolerance specified by USB specification

14

Appendix C. USB Descriptors
The following USB requests are supported. For details on these requests see the USB 1.1 and HID 1.0
specifications.

Request Name
Control

Read
No-Data
Control Dev Intf Ep Description

GET_STATUS X X X X Return status for the specified recipient. The reply
depends on recipient.

CLEAR_FEATURE X X X Clears or disables the specified feature.
SET_FEATURE X X X Sets or enables a EP stall and remote wakeup features
SET_ADDRESS X X Sets the device address
GET_DESCRIPTOR X X The returned data depends on the specified wValue.

See table 9-4 in the USB 1.1 spec for a list of descriptor
types. The entire table should be supported.

GET_CONFIGURATION X X Returns the current device configuration
SET_CONFIGURATION X X Sets the device configuration.
GET_INTERFACE X X Returns the selected alternate setting for the specified

interface.
SET_INTERFACE X X Allows the host to select an alternate setting for the

specified interface.
GET_REPORT X X Allows the host to receive a report via the control pipe
GET_IDLE X X Reads the current idle rate for the particular input report
GET_PROTOCOL X X Reads which protocol is currently active (boot/report)
SET_REPORT X X Allows the host to send a report to the device, possibly

setting the state of input, output, or feature controls
SET_IDLE X Silences a particular report on the Interrupt In pipe until a

new event occurs or the specified amount of time passes
SET_PROTOCOL X X Switches between the boot protocol and the report

protocol

Device Descriptor

Offset Field Size Value Description
0 Blength 1 0x12 Size of device descriptor
1 BdescriptorType 1 0x01 Device Descriptor Type
2 BcdUSB 2 0x0110 USB Specification Number
4 BdeviceClass 1 0x00 Not Supported
5 BdeviceSubClass 1 0x00 Not Supported
6 BdeviceProtocol 1 0x00 Protocol Depends on selected interface
7 BmaxPacketSize 1 0x08 Max Packet size on endpoint 0
8 IdVendor*1 2 0x04B4 Vendor ID – Cypress

10 IdProduct*2 2 0x6370 Product ID
12 BcdDevice 2 0x0100 Device version number
14 Imanufacturer 1 0x01 Index of manufacturer string descriptor
15 Iproduct 1 0x02 Index of Product string descriptor
16 IserialNumber 1 0x00 Not supported
17 BNumConfigurations 1 0x01 Number of configurations

15

Configuration Descriptor

Offset Field Size Value Description
0 Blength 1 0x09 Size of configuration descriptor
1 BdescriptorType 1 0x02 Configuration Descriptor Type
2 WtotalLength 2 0x0022 Total size of configuration descriptor including interface, hid

and endpoint descriptors
4 BnumInterfaces 1 0x01 One interface
5 BconfigurationValue 1 0x01 Used by SET CONFIGURATION to select this configuration
6 Iconfiguration 1 0x04 USB HID Compliant Mouse
7 BmAttributes 1 0xA0 Bus powered and able to perform remote wakeup
8 MaxPower*3 1 0x19 Bus power draw is about 50mA

Interface Descriptor

Offset Field Size Value Description
0 Blength 1 0x09 Size of interface descriptor
1 BdescriptorType 1 0x04 Interface Descriptor Type
2 BinterfaceNumber 1 0x00 Interface Number 0
3 BalternateSetting 1 0x00 Alternate Setting 0
4 BnumEndpoints 1 0x01 1 Endpoint
5 BinterfaceClass 1 0x00 Interface Class assigned by USB spec
6 BinterfaceSubClass 1 0x01 Interface Sub Class assigned by USB spec
7 BinterfaceProtocol 1 0x02 Interface Protocol assigned by USB spec
8 Iinterface 1 0x00 Not supported

HID Descriptor

Offset Field Size Value Description
0 Blength 1 0x09 Size of HID descriptor
1 BdescriptorType 1 0x21 HID descriptor type
2 BcdHID 2 0x0110 Version of HID spec 1.1
4 BcountryCode 1 0x00 Country Code USA
5 BnumDescriptors 1 0x01 Number of report descriptors
6 BdescriptorType 1 0x22 Descriptor type
7 WdescriptorLength 2 0x0048 HID report Descriptor length

Endpoint Descriptor

Offset Field Size Value Description
0 Blength 1 0x07 Size of Endpoint descriptor
1 BdescriptorType 1 0x05 Endpoint descriptor type
2 BendpointAddress 1 0x81 IN endpoint on endpoint 1
3 BmAttributes 1 0x03 Interrupt endpoint
4 WmaxPacketSize 2 0x0004 Maximum packet size 4 bytes
6 Binterval 1 0x0A Polling interval of 10ms

16

HID Report Descriptor

Offset Field Size Value Description
0 Usage page 2 0x05, 0x01 Generic Desktop Controls
2 Usage 2 0x09, 0x02 Mouse
4 Collection 2 0xA1, 0x01 Application
6 Usage page 2 0x05, 0x09 Buttons
8 Usage minimum 2 0x19, 0x01 1 bits for button data

10 Usage maximum 2 0x29, 0x03 3 bits for button data
12 Logical minimum 2 0x15, 0x00 0 – button open
14 Logical maximum 2 0x25, 0x01 1 – button closed
16 Report count 2 0x95, 0x03 3 reports, first byte of report
18 Report size 2 0x75, 0x01 Each button report is 1 bit, left = bit0, right = bit1, middle = bit2
20 Input 2 0x81, 0x02 Variable Data Bit Field with Absolute position
22 Report count 2 0x95, 0x01 1 report
24 Report size 2 0x75, 0x05 5 report bits for padding
26 Input 2 0x81, 0x03 Constant Variable Bit Field with Absolute position
28 Usage page 2 0x05, 0x01 Generic Desktop
30 Usage 2 0x09, 0x01 Pointer
32 Collection 2 0xA1, 0x00 Linked
34 Usage 2 0x09, 0x30 X
36 Usage 2 0x09, 0x31 Y
38 Logical minimum 2 0x15, 0x81 -127
40 Logical maximum 2 0x25, 0x7F 127
42 Report size 2 0x75, 0x08 The x and y reports are 8 bits
44 Report count 2 0x95, 0x02 2 reports, x is byte 1, y is byte 2
46 Input 2 0x81, 0x06 Variable Data Bit Field with Relative position
48 End collection 1 0xC0 End collection
49 Usage 2 0x09, 0x38 Wheel
51 Report size 2 0x95, 0x01 Wheel data size is 1 byte
53 Input 2 0x81, 0x06 Variable Data Bit Field with Relative position
55 Usage 2 0x09, 0x3C Motion wakeup
57 Logical Minimum 2 0x15, 0x00 0 no movement
59 Logical Maximum 2 0x25, 0x01 1 movement
61 Report size 2 0x75, 0x01 Wheel report is 1 bit for movement, bit 0 of byte 3
63 Report Count 2 0x95, 0x01 1 report
65 Feature (Data, Ary, Abs) 2 0xB1, 0x22 Variable Data Bit Field with absolute positioning and no

preferred state
67 Report Count 2 0x95, 0x07 7 reports for reversing, upper 7 bits of byte 3
69 Feature (Cnst, Ary, Abs) 2 0xB1, 0x01 Constant Array Bit Field with absolute positioning
71 End collection 1 0xC0 End collection

Language Descriptor

Offset Field Size Value Description
0 Blength 1 0x04 Language descriptor length
1 BdescriptorType 1 0x03 Language Descriptor Type
2 Language 1 0x09 English
3 Sub-Language 1 0x04 US

17

Manufacturer String*4

A request for the manufacturer string will return the following string.

“Cypress Semiconductor”

Product String*5

A request for the product string will return the following string.

“Cypress CY7C637xx USB Mouse v?.??”

Configuration String

A request for the configuration string will return the following string.

“HID Mouse”

Endpoint 1 String

A request for the endpoint string will return the following string.

“Endpoint 1 Interrupt Pipe”

Note 1: idVendor should be changed to the value supplied to you by the USBIF
Note 2: idProduct should be assigned by you for your specific product.
Note 3: MaxPower value should be changed as per your specific circuit’s current draw.
Note 4: The Manufacturer String should be changed to the name of your company.
Note 5: The Product String should be changed to your product’s name.

18

Appendix D: USB data reporting format

The USB report has two formats, depending on if boot or report protocol is enabled. The following format is
the boot protocol and is understood by a USB aware BIOS.

Bit 7 Bit 0
Byte 0 0 0 0 0 0 Middle Right Left
Byte 1 X X X X X X X X
Byte 2 Y Y Y Y Y Y Y Y

The following is the USB report protocol format and allows the additional wheel movement information in
the fourth byte. When the wheel is moved forward the fourth byte reports a 0x01, and when moved
backward the fourth byte reports 0xFF. When the wheel is idle, then this byte is assigned 0x00.

Bit 7 Bit 0
Byte 0 0 0 0 0 0 Middle Right Left
Byte 1 X X X X X X X X
Byte 2 Y Y Y Y Y Y Y Y
Byte 3 R R R R R R R F/R

19

Appendix E: PS/2 reporting format

The PS/2 portion of the firmware handles the following requests and commands listed in the table below.

Hex Code Command Action
0xFF Reset Resets mouse to default states
0xFE Resend Resends last data to host
0xF6 Set Default Sets mouse to use default parameters
0xF5 Disable Disables the mouse
0xF4 Enable Enables the mouse
0xF3 Set Sampling Rate Set sampling rate to 10,20,40,60,80,100,200/second
0xF2 Read Device Type Returns 0x00 to host, indicating the device is a mouse
0xF0 Set Remote Mode Sets remote mode so data values are only reported after a read

data command
0xEE Set Wrap Mode Set wrap mode until 0xFF or 0xEC is received
0xEC Reset Wrap Mode Reset to previous mode of operation.
0xEB Read Data Responds by sending a mouse report packet to host
0xEA Set Stream Mode Sets stream mode
0xE9 Status Request Returns current mode, en/disabled, scaling, button, resolution, and

sampling rate information to the host.
0xE8 Set Resolution Sets resolution to 1,2,4,8 counts/mm
0xE7 Set Scaling 2:1 Sets scaling to 2:1
0xE6 Reset Scaling Resets scaling to 1:1
0xAA Completion Code Command completion code
0xFA Peripheral ACK Sent to acknowledge host requests

The PS/2 specification calls out the following default mouse report format. Byte 0 is the button data
(1=pressed, 0=released), X and Y optics sign bits, and X and Y overflow bits. Byte 1 is the X optics data in
2’s complement format. Byte 2 has the Y optics data in 2’s complement format. At reset or power-on the
standard PS/2 reporting format is enabled.

Bit 7 Bit 0
Byte 0 Y

overflow
X

overflow
Y sign X sign Reserved

0
Reserved

0
Right
button

Left
button

Byte 1 X X X X X X X X
Byte 2 Y Y Y Y Y Y Y Y

20

After the following sequence of commands, the wheel report format is enabled.

0xF3, 0xC8 Set Sampling Rate 200 per second
0xF3, 0x64 Set Sampling Rate 100 per second
0xF3, 0x80 Set Sampling Rate 50 per second
0xF2, 0x03 Read Device Type returns a value of 0x03

After the Read Device Type command returns 0x03 to indicate that this is a Microsoft compatible three
button-wheel mouse, the wheel report format is enabled. After this initialization sequence, the PS/2 wheel
reporting format is enabled. The fourth byte represents the wheel data. This byte is assigned 0x01 for
forward wheel movement and 0xFF for backward wheel movement. When the wheel is idle, this value is
0x00.

Bit 7 Bit 0
Byte 0 Y

overflow
X

overflow
Y sign X sign Always 1 Middle

Button
Right
button

Left
button

Byte 1 X X X X X X X X
Byte 2 Y Y Y Y Y Y Y Y
Byte 3 Wheel* Wheel* Wheel* Wheel* Wheel* Wheel* Wheel* Wheel*

The PS2 data transmission according to the PS/2 Hardware Interface Technical Reference including eleven
bits for each byte sent. The bits are sent in the following order with data valid on the falling edge of the
clock. See the PS/2 Hardware Interface Technical Reference manual for timing information.

Start Bit
(Always 0)

Data
Bit 0

Data
Bit 1

Data
Bit 2

Data
Bit 3

Data
Bit 4

Data
Bit 5

Data
Bit 6

Data
Bit 7

Odd Parity
Bit

Stop Bit
(Always 1)

