

AN-8
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Aug 8, 2001 updated on Aug 20, 2001
All trademarks mentioned herein are properties of their respective companies.

Implementing a Quad 1200 baud
Full-duplex Software UART with
Salvo

Introduction
A Software-driven Universal Asynchronous Receiver Transmitter
(UART)1 is a low-cost solution to the problem of not enough
hardware UARTs in a microcontroller. This Application Note
illustrates how to implement up to four 1200 baud full-duplex
UARTs in software by using the Salvo� RTOS on various
Microchip® PICmicro® devices, including the PIC16F877.

The only dedicated resources required are general-purpose I/O pins
for the receivers and transmitters, ROM and RAM, a single
periodic interrupt at four times the baud rate and a free-running
timer to count instruction cycles. The application is written entirely
in C.

The software is configurable for one to four software receivers and
one to four software transmitters. The processor clock speed and
baud rate can also be specified. It can be used with all versions of
Salvo, including the freeware version, Salvo Lite�.2 It can easily
be incorporated into a larger multitasking application, or users can
add conventional "superloop" code to it.

A detailed analysis of the system behavior is presented, using
Logic Analyzer screen dumps to illustrate the run-time behavior of
the system's tasks, interrupt handler, main loop and serial I/O.

Simple Serial Communications
Figure 1 illustrates the serial bitstream for the letter 't' (ASCII 116,
0x74, 0b01110100) as it would appear on an I/O pin.

 Application Note

2 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

5V

8333

0V

us

01 1 stop

5833 6667 7500

0 01 1

2500 3333 4167 5000

start 0

0 833 1667
Figure 1: 1200 baud Serial Bitstream on Microcontroller

I/O Pin

This is the sort of signal you would see between a microcontroller's
hardware UART output pin and an RS-232 transmitter, for
instance. Note the following:

� when idle, the bitstream is logic high (+5V),3
� the start of transmission is marked by a transition

from high to low (the start bit),
� there are eight data bits, transmitted least-significant

bit (LSB) first and
� the end of transmission is marked by a transition from

low to high (the stop bit)

At 1200 baud, bit transitions may occur every 833µs, and one byte
of data can be transmitted and received every 8.333ms, or ten bit
periods. Baud rate errors of less than 5% are generally acceptable
at low baud rates. Full-duplex means that serial data can be
received and transmitted at the same time. In this case, separate
signals are used for receive and transmit bitstreams.

Note This Application Note's software UARTs are set to 1200
baud, with no parity, eight data bits, and one stop bit. These
settings � commonly referred to as 1200,N,8,1 � can be modified to
suit other requirements by editing the source code.

Resources Required
Each full-duplex software UART, consisting of a software receiver
and a software transmitter, will require two I/O pins � one for the
receiver and one for the transmitter. The code to implement them
will require ROM, as well as some RAM. Lastly, some form of
timing and/or periodic timing signal will be required. This is often
accomplished via a periodic interrupt driven by a hardware timer.

Design Challenges
Salvo is a priority-based event-driven cooperative multitasking
RTOS. Tasks may be delayed for a specified number of system
ticks, but time-slicing is not explicitly supported. Thus it might
seem difficult to implement the timing-sensitive receiver and
transmitter algorithms in software. However, Salvo's tasks, task

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

3

priorities, events and means of intertask communications can be
combined with a multi-purpose interrupt service routine (ISR) to
implement the desired functionality.

While effort was made to minimize ROM and RAM usage, the
greatest challenge � not surprisingly � was to guarantee proper
serial bitstream timing.

Implementation

Theory of Operation

Serial Reception in Software
Implementing a serial receiver in software requires that the start bit
be detected as quickly as possible, and that each data bit be
sampled thereafter in the middle of its bit period.4 Finally, a valid
stop bit must also be detected. Listing 1 contains pseudocode for a
simple software receiver.

while (no start bit detected)
 do nothing;
if (start bit valid)
 wait one and a half bit periods;
 data bit #1 (LSB) = receiver pin;
 wait one bit period;
 data bit #2 = receiver pin;
 wait one bit period;
 …
 data bit #8 (MSB) = receiver pin;
 wait one bit period;
 stop bit = receiver pin;
if (not stop bit valid)
 discard data;
wait half bit period;

Listing 1: Pseudocode for Software Receiver

To implement this software receiver successfully, the application
must have sufficiently fast response time to detect the start bit soon
after it occurs and begin sampling incoming data, and it must have
accurate internal timing so that each bit is sampled in the middle of
its bit period, so that false readings are not taken during the signal's
logic level transitions.

 Application Note

4 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

Serial Transmission in Software
Implementing a serial transmitter in software is relatively
straightforward. Each bit of the data being sent must be shifted out
the transmitter pin serially, preceded by a start bit and followed by
a stop bit. An accurate shift clock is required and synchronization
must be maintained so that the serial bitstream represents valid
data to a connected receiver. Listing 2 contains pseudocode for a
software transmitter, where bits and pins each have values of either
0 (logic low, GND) or 1 (logic high, often +5V).

transmitter pin = start bit;
wait one bit period;
transmitter pin = data bit #1 (LSB);
wait one bit period;
transmitter pin = data bit #2;
wait one bit period;
…
transmitter pin = data bit #8 (MSB);
wait one bit period;
transmitter pin = stop bit;
wait one bit period;

Listing 2: Pseudocode for Software Transmitter

The final wait of one bit period is required to ensure that the stop
bit is valid for at least one bit period before the next transmission
occurs.

Buffers and Buffer Control
In order for this implementation to be as general-purpose as
possible, each software receiver and transmitter has a dedicated
data buffer (buff[]). Each buffer is implemented as a ring buffer
holding byte-sized data. Functions are provided to put and get data
from each buffer. Each buffer also has a dedicated buffer control
block (bcb), which is used by these functions to access and
manipulate the buffer. Each buffer's size can be specified
independently. By using this standardized buffer architecture, just
two buffer routines5 service all eight buffers, thus conserving
ROM.

Upon receipt of valid data, a software receiver places that data into
its buffer via a call to PutRxNBuff().6 The data can then be
extracted by calling GetRxNBuff(). To send data via a software
transmitter, the data is placed into its buffer via PutTxNBuff(). It
is extracted from the buffer via GetTxNBuff() when the software
transmitter is active.

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

5

Note The software transmitters and their output pins are labeled
TX1 through TX4. The software receivers and their input pins are
labeled RX1 through RX4. The hardware UART (used in testing)
and its output pins are labeled TX5/RX5. Please see Source Code
Listings below for more information.

Software Receivers
In order to simplify the application, it was decided to run the
software receivers as tasks, with an interrupt-driven start-bit
detector for each one. The start bit detector is a simple code
snippet that watches for the receiver pin to go logic low, and
resamples it again to be sure. At this point, one could signal a
binary semaphore upon which a receiver task was waiting. But to
conserve RAM (each semaphore requires three bytes in this
application), a different approach was taken. Each software
receiver task is started by its start-bit-detector via a call to the
RTOS service OSStartTask(), and once running, samples the
incoming bitstream at the appropriate times.

In addition to starting the software receiver task, each start-bit-
detector also records a timestamp when detection occurs. The
timestamp is in units of instruction cycles,7 and will be used by the
receiver task to maintain synchronization while sampling the
bitstream.

Lastly, once the start bit is detected, the start-bit detector must
disable itself until the receiver task is done sampling the bitstream
and placing valid data into its buffer.

Since maximum responsiveness from the software receiver tasks is
desirable, in order for each task to run entirely independent of the
others (since incoming data will not be synchronized across the
four receivers), each software receiver requires its own start-bit
detector and receiver task.

Receiver Task Operation
When multitasking begins, each software receiver task initializes
its buffer and then stops via the RTOS service OS_Stop(). It will
remain in the stopped state until its start-bit detector starts it up
again.

Upon restarting, TaskRxN() should find itself running in the first
or even second bit periods (i.e. start bit or first data bit) of the
serial reception. It then computes (via BitDelay()) the number of

 Application Note

6 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

system ticks it should delay itself by calling the RTOS service
OS_Delay() so that when its delay expires in the future, it will find
itself in the middle of the bit period, and can sample the data bit.
By setting the system tick period to be a quarter-bit period,
software receiver tasks can delay themselves with a resolution of
one quarter-bit period. To achieve this, the RTOS service
OSTimer() is called every quarter-bit period via a periodic
interrupt trigger by timer TMR2.

Note The delay portion of the algorithm in Listing 1 will not
work in this application, because of accumulated error from one bit
sampling to the next. When a task is delayed, it will only be made
eligible to run when the delay expires � it will not necessarily run
immediately thereafter. That's because there may be other, higher-
priority tasks eligible to run, and so the task in question will be
delayed by an additional number of processor cycles.

One solution to this problem is to delay each software receiver task
by a computed number of system ticks after the start bit was
detected. In other words, each task is re-synchronized with the start
bit when it calculates what its next delay should be. Accumulated
delay error is thus avoided.

This is repeated until all of the data bits and the stop bit are
sampled. If any error occurs (e.g. the stop bit was not logic high, or
an appropriate delay could not be implemented), the data is
discarded and an error is flagged. Otherwise the data is inserted
into the software receiver's buffer.

Finally, the software receiver's start-bit detector in ISR() is re-
enabled.

Note The astute reader will recognize that since there is no
disabling and re-enabling of interrupts around this final operation
of the software receiver task, it is possible for the receiver's start-
bit detector to be triggered � and hence OSStartTask() to be
called � while the task is still running. However, this does not
cause problems because OSStartTask() can only start a task that
is stopped, which will only be the case after the software receiver
task executes OS_Stop().

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

7

Software Transmitters

Interrupt-driven Core for Accurate Timing
In order to avoid transmission errors8, it is imperative that the shift
clock for each software transmitter have minimal error. While it is
possible to implement one or more software transmitters as
independent tasks, it was found that timing errors were
unacceptably high. Therefore, a state machine with different states
representing the different stages in transmitting data, as shown in
Table 1, is used to serially shift out the start, data and stop bits.

TXSTATE_IDLE Transmitter is idle
TXSTATE_START Transmit start bit(s)
TXSTATE_DATA0-DATA7 Transmit data bit(s)
TXSTATE_STOP Transmit stop bit(s)
TXSTATE_DONE Wait for stop bit to finish

Table 1: Transmitter State Machine States

The software transmitter's state machine is one of several
independent parts of the interrupt service routine ISR(), which
occurs via a periodic timer interrupt every quarter-bit period, i.e.
every 208µs. Once transmitting, the state machine transitions from
one state to the next every bit period (833µs).

Since there is no benefit from operating each software transmitter
asynchronously, all four operate together, i.e. bit transitions for all
four software transmitters occur at the same time. Only active
software transmitters � i.e. those that currently have non-empty
buffers � send data while the state machine is not idle.

Transmit Task Empties Buffers, Improves Performance
Running a software transmitter via a state machine from inside an
interrupt handler is commonplace. In order to minimize the size of
ISR(), it was decided to remove data from each transmit buffer
and ready it for transmission via a task. This is accomplished via
TaskTx().

TaskTx() initializes the software transmitter buffers, and then
waits via the RTOS service OS_WaitBinSem() for the binary
semaphore BINSEM_TXBUFF to be signaled. When this occurs
elsewhere in the application, it means that data in one or more
software transmitter buffers is ready for transmission. Then, for
each software transmitter, TaskTx() strips a data byte from a non-

 Application Note

8 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

empty buffer, places it in a globally accessible variable (txNData)
and makes the corresponding transmitter (see ISR()) active. It then
starts the transmitter state machine (see Transmit Task and ISR
Interaction, below). When transmission is complete, it signals
BINSEM_TXBUFF if any of the software transmitter buffers remain
non-empty.

Since independent software transmitter tasks would consume more
RAM as well as ROM, and offer no other benefit given the
construction of the state machine in ISR(), only a single software
transmitter task is required.

Transmit Task Handles Software Transmitters
When the application wants to send data via a particular software
transmitter, it simply places the data in the corresponding buffer
and signals a binary semaphore that indicates that data is ready for
transmission. This is done via calls to PutTxNBuff() and the
RTOS service OSSignalBinSem(BINSEM_TXBUFF_P). This binary
semaphore represents the flow of information from other parts of
the program to TaskTx().

Transmit Task and ISR Interaction
With the software transmitter state machine idling in ISR(), and
TaskTx() having readied data for transmission, some means of
communicating between TaskTx() and ISR() are required. Again,
binary semaphores are used � one to indicate that the state machine
should begin transmitting (BINSEM_TXSTART), and one to indicate
when it has finished (BINSEM_TXSTOP). The former represents the
flow of information from TaskTx() to ISR(), the latter from
ISR() back to TaskTx().

Note Of special interest is the use of the binary semaphore
BINSEM_TXSTART. ISRs cannot wait events in the conventional
sense � i.e. OS_WaitBinSem() cannot be called from within ISR().
However, a related function, OSTryBinSem() can be called from
the foreground (i.e. interrupt level). ISR() uses this RTOS service
to detect when transmission should begin.

Choosing Task Priorities
Salvo's tasks are assigned priorities. In this application, the timing-
sensitive receiver tasks run in the background. Therefore they
should be given the highest task priorities to ensure that they get

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

9

processor cycles when they need them. The transmitter task is not
time-critical, and so it can run at a lower priority. Additional tasks
should run at even lower priorities.

Timing Issues
Two issues dictate the minimum interrupt rate � the rate at which
the start-bit detectors must be called, and the minimum system tick
rate for adequate delay resolution (via OS_Delay()) for use in the
receiver tasks. An interrupt rate of four times the baud rate �
giving minimum delays of 208µs �works well.

Test Code
To verify the quad UART's proper operation, test code was written
to take 8-bit data received via the hardware UART (RX5), permute
it four different ways, and pass the permuted data on to the four
software transmitters TX1-TX4. Each receiver RX1-RX4, which is
connected externally to its respective transmitter (see Figure 2,
below) reverses the permutation and passes the result to the
hardware UART (TX5). The permutations are listed in Table 2.

TX1 none
TX2 data is complemented
TX3 data's nibbles are swapped
TX4 data's nibbles are swapped and complemented

Table 2: Test Code Permutations on Incoming Data

Any errors in the software transmitters or receivers will be
reflected in the output of TX5 not matching the input of RX5. A
simple terminal program is used to send data to RX5 and receive it
from RX5. The terminal program's serial output comes from both
individual keystrokes and text file dumps. The test code was
implemented as an additional task TaskTestCode() with low
priority.

Hardware UARTs
The test code requires the use of a hardware UART at 9600 baud
(N,8,1) to send data to and receive data from the system under test.
The target processor has its own hardware UART, which supports
interrupt-driven or polled operation. It was found that the
application could not tolerate these additional two9 sources of
interrupts, due to the frequency at which ISR() is called coupled
with its context-saving and restoring times.

 Application Note

10 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

Therefore polled operation for the hardware UART was selected.
This has no discernable deleterious effect on the system, as the
receiver is at least double-buffered, and its receiver full register
(RCIF) is polled five times faster than 8-bit data is received.
Similarly, the transmitter also benefits from the rapid rate at which
its transmitter empty register (TRMT) is polled.

Each hardware receiver and transmitter has its own buffer
(rx5Buff[] and tx5Buff[]). Discrete buffer control variables are
used (as opposed to the software receivers' and transmitters' buffer
control blocks) for added speed and slightly different functional
requirements.

Test Setup
The test setup consists of a Microchip PIC16F877 PICmicro®
MCU with a few external components, running at 20MHz (200ns
instruction cycle). A schematic diagram is presented in Figure 2. A
PC running a terminal program at 9600,N,8,1 is connected via a
null-modem cable to connector H1.

+5V

R5
10K

RB1 34

RB2 35

RB3 36

RB4 37

RB5 38

RB6 39

RB7 40

RB0/INT 33

PSP0/RD0 19

PSP1/RD1 20

PSP2/RD2 21

PSP3/RD3 22

PSP4/RD4 27

PSP5/RD5 28

PSP6/RD6 29

PSP7/RD7 30

CS/RE2 10WR/RE1 9RD/RE0 8

RA5/SS 7

RA3 5 RA2 4 RA1 3 RA0 2

OSC1/CLKIN 13

OSC2/CLKOUT 14

MCLR/VPP 1

RA4/T0CKI 6

T1OSO/T1CKI/RC0 15

T1OSI/CCP2/RC1 16

CCP1/RC2 17

SCK/SCL/RC3 18

SDI/SDA/RC4 23

SDO/RC5 24

TX/CK/RC6 25

RX/DT/RC7 26

U1
PIC16F877-20/P

R1
TX1

TX5
RX5

+5V R7
10

TO 5

RI 7TI 3

RO 1

V
C
C

8

G
N
D

4

V- 6

V+ 2

U2
DS276S Hardware

9600,N,8,1

 1

 2

 3

 4

 5

 6

 7

 8

 9

1
0
1
1

H1
DB-9P

UART

DTE
RS232

D1
1N4148

C3
100U-10-LP

RX1_SC
RX2_SC
RX3_SC
RX4_SC
TSTCOD
INT_E
INT_B
TX

R2

R3

R4
1K

RX1
TX2
RX2
TX3
RX3
TX4
RX4

Y1
20MHz

C1
22P

C2
22P

R6
100

Figure 2: Test Setup Schematic Diagram

A functionally identical test setup can be derived from the
Microchip PICDEM-2 Demonstration board by placing a quad-
resistor network 10 in U2's pins 21-28.11

Nomenclature
The signals in the Test Setup and displayed in the logic analyzer
screens (below) are described in Table 3.

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

11

RX5 data received from PC terminal program at 9600
baud

TX5 data transmitted to PC terminal program at 9600
baud

INT_B beginning of ISR() (after context save)
INT_E end of ISR() (before context restore)
TX toggles when TaskTx() runs, tx1Data1-tx4Data

are ready for transmission
TX/RX1 RX1 input pin (connected to TX1), 1200 baud
TX/RX2 RX2 input pin (connected to TX2), 1200 baud
TX/RX3 RX3 input pin (connected to TX3), 1200 baud
TX/RX4 RX4 input pin (connected to TX4), 1200 baud
TSTCOD set high at the beginning of TaskTestCode() and

reset low at the end
RX1_SC toggles when TaskRx1() samples RX1
RX2_SC toggles when TaskRx2() samples RX2
RX3_SC toggles when TaskRx3() samples RX3
RX4_SC toggles when TaskRx4() samples RX4

Table 3: Signal Names for Analysis

Performance
The minimum clock speeds12 for a PIC16F877 to echo 9600 baud
data received on RX5 back to TX5 without error are shown in
Table 4. These results were obtained with the test code running as
a task.13

1 software receiver/transmitter pair 10MHz
2 software receiver/transmitter pairs 12.5MHz
3 software receiver/transmitter pairs 16MHz
4 software receiver/transmitter pairs 20MHz

Table 4: Speed Requirements for UART Configurations

The non-uniform rise in minimum clock speed as the number of
software receivers and transmitters increases is not surprising.
Each additional receiver/transmitter pair requires one additional
task. As the number of tasks increases, more cycles are expended
by the RTOS in managing the priority-based scheduling of tasks.

 Application Note

12 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

Analysis
A logic analyzer14 was connected to RX1, RX2, RX3, RX4, RX5,
TX5 and PORTD[0..7] of the test setup. Waveform capture was
triggered on TX5's start bit.

Single Byte Received
Figure 3 shows a single byte (ASCII '5', 0x35, 0b00110101)
received via RX5.15

a b

c d

e
f
f
f
f

g

h
i
j
k

l

m
n

1 0 1 0 1 01 0start stop

o

Figure 3: Single Byte Reception and Re-Transmission

Description of Events
The terminal program begins transmitting the start bit at 9600 baud
at a. After the stop bit is received, the byte is placed into RX5's
buffer at b in ISR(). During this time (c), TaskTestCode() has
been polling RX5's buffer for an incoming byte. In
TaskTestCode(), the '5' is stripped from RX5's buffer and put into
TX1-TX4's buffers at d, and binary semaphore BINSEM_TXBUFF is
signaled to indicate that data is waiting to be transmitted. This
launches the first significant RTOS activity outside of OSTimer(),
and changes TaskTx() from waiting to eligible.

At e, TaskTx() has stripped a byte from each TX1-TX4's buffers
and has signaled BINSEM_TXSTART and is now waiting
BINSEM_TXDONE. TaskTx() will not run again until another byte is
received on RX5. At f, ISR() (see signal INT_B) begins sending
data with the start bit for each transmitter TX1-TX4. Note the long
time spent in ISR() (approx 400µs) between f and g � this is when

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

13

ISR() detects start bits on RX1-RX4 and starts tasks TaskRx1()-
TaskRx4() via calls to OSStartTask(). Prior to g, time spent in
ISR() was around 120µs. From this point forward, ISR() will
update TX1-TX4 every four system ticks (i.e. one bit time, 833µs)
with the required bit values representing the data being transmitted.

The time between g and h is spent in the scheduler, making
TaskRx1()-TaskRx4() eligible,16 followed by TaskRx1()
running, since it has the highest priority of the four receiver tasks.
TaskRx2(), TaskRx3() and TaskRx4() follow in quick succession
at i, j and k, respectively. They follow in this order because each
task has a lower task priority than the previous one. Each of the
receiver tasks delays itself for right amount of system ticks so that
it will run again in the middle of the next data bit, i.e. 1.5 bit times,
or 1250µs, after the falling edge of the start bit (f).

From k to l, TaskTx() remains waiting for transmission on TX1-
TX4 to complete, and TaskRx1()-TaskRx4() are delayed.
Therefore TaskTestCode() is able to run despite its having the
lowest priority. At l, TaskRx1()'s computed delay has expired, and
it samples RX1 for a 1. Similarly, TaskRx2()-TaskRx4() sample
RX2-RX4, respectively, all within a 250µs window centered
around the middle of the bit period. Then TaskRx1()-TaskRx4()
again delay themselves for a computed number of system ticks for
the next data bit.

This process continues until each data bit has been sampled by
TaskRx1()-TaskRx4(). Note at m and n how the order in which
the receiver tasks run has been changed � this is not due to
priorities changing, but rather due to differences in the number of
system ticks each receiver task is computing as being required for
the proper inter-data-bit delay. This also illustrates how each
receiver TaskRx1()-TaskRx4()synchronizes itself to the incoming
serial bitstream independently and with a resolution of a single
system tick, or one quarter of a bit period. When the delays of
multiple receiver tasks expire in the same system tick, then the
tasks will run in priority order, and that is why the predominant
order in Figure 3 is one based on task priority.

At o, TaskRx1()-TaskRx4() have each received valid data and put
it into TX5's buffer. Transmission begins on TX5 at the next
system tick, and sure enough, an ASCII '5' is being transmitted.

Processing Power In Reserve
It's instructive to note that between data bit samplings by
TaskRx1()-TaskRx4(), TaskTestCode() is still able to run ten or

 Application Note

14 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

more times per bit period, over roughly half the bit period (400µs).
This illustrates that there is still considerable processing power
available for other tasks while TaskRx1()-TaskRx4() are active
and receiving serial data.

As a test, three additional tasks with the same priority as
TaskTestCode() were added to the application. Each task
repeatedly delayed itself for one system tick. All communications
continued without error. The main effect of the three additional
tasks was that TaskTestCode() only ran two times per bit period,
on average.

Multiple Bytes Received
Figure 4 shows multiple bytes received via RX5.

Figure 4: Multi-Byte Reception and Re-Transmission

System Responsiveness
Figure 517 can be used to observe the response times of the
software transmitters and receivers when running the test code.

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

15

a b

c

d e

f

g

i

j
k

h

h

h
h

l

Figure 5: Response of Software Transmitters and

Receivers under Test

At a, the stop bit of the 9600 baud transmission into RX5 has
begun, and by b, it has ended and a valid test byte has been
received into the hardware UART's receive buffer. ISR() begins at
c, detects the incoming data, and places it into the hardware
receiver's ring buffer rx5Buff[]. At d, TaskTestCode() strips the
byte from rx5Buff[] and places the permuted copies into all four
software transmitter buffers. By e it has finished, taking
approximately 112µs, or 560 cycles at 20MHz, to put data into
four buffers and call the RTOS service OSSignalBinSem() four
times.

Between e and f the scheduler dispatches TaskTx(), and by f
TaskTx() has stripped a byte from each software transmitter's
buffer, activated all four transmitters in ISR(), and signaled the
binary semaphore BINSEM_TXSTART. Almost immediately after the
start of the next system tick, at g, the transmitters begin
transmitting by sending out their start bits (h). Thus, it took
roughly 430µs � or roughly one-half of a 1200 baud bit period �
between the receipt of data on RX5 and its transmission on TX1-
TX4.

By i, the start-bit detectors in ISR() have all detected activity on
TX1-TX4. A timestamp for each software receiver is recorded, and
TaskRx1()-TaskRx4() are started. Since the receiver tasks have
higher priorities than TaskTestCode(), they would normally run
next. However, the interrupt at g happened immediately prior to
the scheduler dispatching TaskTestCode() � hence it runs one last
time (j) before TaskRx1()-TaskRx4() start running. By k,
TaskRx1() � the highest-priority software receiver � is already

 Application Note

16 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

running and is ready to delay itself until the middle of the first data
bit on TX1 (l). Again, it has taken roughly one-half of a 1200 baud
bit period between the start-bit detectors in ISR() starting a
receiver task and the tasks TaskRx1()-TaskRx4() actually
running.

Timing Specifications
Timing specifications for the quad software UART application
were obtained from the above analysis and through empirical
testing. The results are shown in Table 5.

Maximum delay between

putting data into software
transmitter and transmission
beginning

< 500µs,
less than one bit period

Maximum delay between
detecting receive data's start
bit and software receiver task
starting

< 500µs,
less than one bit period

Software transmitter timebase
error

< 0.2%, assuming
20.000000MHz.

Software transmitter clock error < 5%
Software receiver maximum

sampling time error
±175µs,

less than one-quarter bit period
Table 5: Timing Specifications for 1200 baud Quad Full-

duplex Software UART

Building Your Own Application
This application is intended to be the framework for up to four full-
duplex 1200 baud software UARTs, and leaves plenty of ROM and
RAM for additional functionality. You can add your own code,
whether it's called from main() or from one or more tasks, and use
as few or as many of the software UARTs as you need.

If you add your own code in main(), you must ensure that it does
not interfere with task execution. This usually means that it should
never run for more than, say, one eighth of one bit period:

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

17

 …
 for (;;) {
 OSSched();
 /* your code here – make it short! */
 …
 }

Listing 3: Adding User Code to main()

This approach is not recommended because the system's
responsiveness suffers from the extra code that delays the
operations of the scheduler. A better solution is to place your code
in tasks with priorities lower than those of the software receivers
and transmitters. This way, your application will run your code
only when it is not busy with the software UARTs. Thus, the
system will dynamically allocate its processing power � when
there is no UART activity, your tasks will run flat-out, and when
there is UART activity, Salvo's scheduler will ensure that the
software UARTs are able to function without being held off by
other parts of your application.18

The header file d5.h contains various symbols you can redefine to
suit your application. For example, you change the crystal speed
(XTAL) and baud rate (BAUD), the buffer sizes (RX1_BUFF_SIZE), the
pin assignments (TX1, etc.) and where variables are located in
RAM (LOC_BCB). You can also disable the test and debugging code
(ENABLE_TEST_CODE, ENABLE_TEST_PINS and
RUN_TEST_CODE_TASK).

Enhancements
Several avenues exist for reducing code size, reducing the
minimum clock speed required, or porting to smaller PICmicro®
devices.

The best opportunity for code size reduction, and with it greater
performance, lies with ISR(). The compiler generates fairly large
context save and restore code because the RTOS services called
from within ISR() are not included in int.c. A source-code build
that includes the relevant Salvo source files in int.c will result in
a smaller � and therefore faster � ISR().

The available stack depth (which is reduced by the two levels
required by ISR()) can be increased in a source code build by in-
lining OSSched().

Using a fixed buffer size will reduce RAM and ROM requirements.

 Application Note

18 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

A source-code build can be used with task priorities disabled. This
will reduce ROM somewhat, and may be adequate for certain
applications with only a few tasks.

Using your own binary semaphores instead of Salvo's is not
recommended. While this approach may decrease RAM usage by
up to 8 bytes,19 it's unlikely to reduce ROM usage, and
performance will probably suffer. That's because these binary
semaphores will have to be polled by the transmitter and receiver
tasks on a regular basis (e.g. every system tick) in order to respond
quickly to software receive and transmit activity. This major
burden on the system is avoided by using the event-driven RTOS
approach.

Conclusion
A robust timing-critical serial communications application can be
built with the Salvo RTOS. Careful structuring of the interrupt
service routine may be required. Through the use of task priorities,
the Salvo scheduler dynamically allocates processing power where
it's needed most. With adequate system timer resolution, task delay
services can be used to synchronize receivers with the incoming
bitstream. The application is highly scalable, with plenty of ROM
and RAM left for additional functionality.

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

19

Build Results
Listing 4 displays the linker output for project
salvo\demo\d5\sysa\d5lib.pjt when the quad UART
application is built using a Salvo standard library for the
PIC16F877 with debugging and test code included. Library
spl42Caa.lib supports multitasking and delays with event
signaling from foreground and the background levels. This build
was done with full 20-byte receive buffers for RX1-RX4, 4-byte
transmit buffers for TX1-4, and 10-byte buffers for RX5 and TX5.
RAM bank1 contains Salvo variables, RAM bank2 contains buffer
control blocks, RX5 and TX5 buffers, receiver timestamps, and
other variables used in the application, and RAM bank3 contains
TX1-4 and RX1-4 buffers.

Linking:
Command line: "C:\HT-PIC\BIN\PICC.EXE -G -INTEL -Md5lib.map -16F877
-oD5LIB.HEX -fakelocal -I\salvo\include D:\SALVO\DEMO\D5\MAIN.OBJ
D:\SALVO\SOURCE\MEM.OBJ D:\SALVO\DEMO\D5\INT.OBJ
D:\SALVO\DEMO\D5\SWRXUART.OBJ D:\SALVO\DEMO\D5\SWTXUART.OBJ
D:\SALVO\DEMO\D5\BUFF.OBJ D:\SALVO\LIBRARY\SLP42CAA.LIB "
Enter PICC -HELP for help

Memory Usage Map:

Program ROM $0000 - $0812 $0813 (2067) words
Program ROM $0E33 - $0FFF $01CD (461) words
Program ROM $2007 - $2007 $0001 (1) words
 $09E1 (2529) words total Program ROM

Bank 0 RAM $0020 - $003A $001B (27) bytes
Bank 0 RAM $0070 - $0072 $0003 (3) bytes
 $001E (30) bytes total Bank 0 RAM

Bank 1 RAM $00A0 - $00D0 $0031 (49) bytes total Bank 1 RAM
Bank 2 RAM $0110 - $0161 $0052 (82) bytes total Bank 2 RAM
Bank 3 RAM $0190 - $01EF $0060 (96) bytes total Bank 3 RAM

Listing 4: Build Results for Library Build

Table 6 illustrates the build results for different configurations with
the symbols ENABLE_TEST_CODE, ENABLE_TEST_PINS and
RUN_TEST_CODE_TASK all defined as non-zero in d5.h.

 Application Note

20 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

UART ROM RAM

receivers transmitters words
Bank

0
bytes

Bank
1

bytes

Bank
2

bytes

Bank
3

bytes
1 0 1434 25 20 39 20
2 0 1648 25 25 47 40
3 0 1862 25 30 55 60
4 0 2077 25 35 63 80
0 1 1264 26 29 33 4
0 2 1331 27 29 37 8
0 3 1399 28 29 41 12
0 4 1468 29 29 45 16
1 1 1682 27 34 46 24
2 2 1963 28 39 58 48
3 3 2245 29 44 70 72
4 4 2529 30 49 82 96

Table 6: Build Results for Different UART Configurations

Table 7 illustrates the results of a library build with one receiver
and one transmitter. All the Salvo variables are in RAM Bank 1
and the UART buffers, control blocks, etc. have all been placed in
RAM Bank 3:

UART ROM RAM

receivers transmitters words
Bank

0
bytes

Bank
1

bytes

Bank
2

bytes

Bank
3

bytes
1 1 1735 27 34 0 70

Table 7: Build Results for all UART Variables in RAM
Bank 3

For this implementation of a single full-duplex UART, 237 bytes
of RAM remain free, representing 64% of available RAM. Table 8
illustrates results of another configuration when all of the non-
Salvo variables are placed in RAM bank 0. Of note is the reduction
in ROM because of the reduced need for bank switching.

UART ROM RAM

receivers transmitters words
Bank

0
bytes

Bank
1

bytes

Bank
2

bytes

Bank
3

bytes
0 1 1214 63 29 0 0

Table 8: Build Results for all UART Variables in RAM
Bank 0

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

21

Source Code Listings

salvocfg.h
/**
Copyright (C) 1995-2001 Pumpkin, Inc. and its
Licensor(s). Freely distributable.

$Source: C:\\RCS\\D\\salvo\\demo\\d5\\sysa\\salvocfg.h,v $
$Author: aek $
$Revision: 1.1 $
$Date: 2001-08-09 21:46:47-07 $

Configuration options for demo program.

**/

#define TEST_SYSTEM_A TRUE

#if defined(MAKE_WITH_STD_LIB) || defined(MAKE_WITH_FREE_LIB)

#define OSUSE_LIBRARY TRUE
#if defined(MAKE_WITH_FREE_LIB)
#define OSLIBRARY_TYPE OSF
#define OSTASKS 3
#elif defined(MAKE_WITH_STD_LIB)
#define OSLIBRARY_TYPE OSL
#define OSTASKS 6
#endif
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSA

#define OSEVENTS 3
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 0

#endif

 Application Note

22 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

d5.h
/**
Copyright (C) 1995-2001 Pumpkin, Inc. and its
Licensor(s). Freely distributable.

$Source: C:\\RCS\\D\\salvo\\demo\\d5\\d5.h,v $
$Author: aek $
$Revision: 1.5 $
$Date: 2001-08-19 21:31:57-07 $

Header file for demo program.

**/

/**
**** ****
** **
User-definable symbols and settings. Each and every symbol
in this block can be changed to suit the user's preferences
and/or requirements.

Tested at 10, 12.5, 16, and 20MHz for 1, 2, 3 and 4 1200bps
rx/tx pairs, respectively.

Also works with other baud rates, e.g. 1 2400bps rx/tx pair
at 20MHz.

** **
**** ****
**/
#define XTAL 20000000 /* Xtal freq */
#define BAUD 1200 /* baud rate */

#define RECEIVERS 4 /* # s/w rcvrs */
#define TRANSMITTERS 4 /* # s/w xmtrs */

#define RX1_BUFF_SIZE 20 /* size of s/w */
#define RX2_BUFF_SIZE 20 /* receiver */
#define RX3_BUFF_SIZE 20 /* buffers */
#define RX4_BUFF_SIZE 20 /* "" */
#define TX1_BUFF_SIZE 4 /* size of s/w */
#define TX2_BUFF_SIZE 4 /* xmitter */
#define TX3_BUFF_SIZE 4 /* buffers */
#define TX4_BUFF_SIZE 4 /* "" */

#define RX5_BUFF_SIZE 10 /* size of UART */
 /* receiver */
 /* buffer */
#define TX5_BUFF_SIZE 10 /* size of UART */
 /* xmitter */
 /* buffer */

#define RX1 RB1 /* receiver and */
#define RX2 RB3 /* xmitter pin */
#define RX3 RB5 /* assignments */
#define RX4 RB7 /* "" */
#define TX1 RB0 /* Normally all */
#define TX2 RB2 /* are on same */
#define TX3 RB4 /* port. */
#define TX4 RB6 /* "" */

#define InitUARTTris() { TRISB = 0xAA; } /* must */
#define InitUARTPort() { PORTB = 0xFF; } /* match */
 /* port bits */
 /* above. */

#define LOC_BUFF bank3 /* RAM bank for */
 /* s/w receiver*/
 /* and xmitter */
 /* buffers. */
#define LOC_BCB bank2 /* RAM bank for */
 /* s/w receiver*/
 /* and xmitter */
 /* buffer ctrl */
 /* blocks. */

#define LOC_RX5 bank2 /* RAM bank for */
 /* UART's */

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

23

 /* receiver */
 /* buffer, etc.*/
#define LOC_TX5 bank2 /* RAM bank for */
 /* UART's */
 /* transmitter */
 /* buffer, etc.*/

#define LOC_RX_LOCALS bank2 /* RAM bank for */
 /* Rx tasks' */
 /* static local*/
 /* variables. */
#define LOC_INT_LOCALS bank2 /* RAM bank for */
 /* ISR's */
 /* static local*/
 /* variables. */

#define LOC_TEST_VARS bank2 /* RAM bank for */
 /* test code */
 /* variables */

#define ENABLE_TEST_CODE 1
#define ENABLE_TEST_PINS 1
#define RUN_TEST_CODE_TASK 1

/**
**** ****
** **

** **
**** ****
**/
#if (TRANSMITTERS < 0) || (TRANSMITTERS > 4)
#error This configuration not supported.
#endif

#if (RECEIVERS < 0) || (RECEIVERS > 4)
#error This configuration not supported.
#endif

/**
**** ****
** **
Normally a user wouldn't change any of these ...

** **
**** ****
**/
/* taskID's for each sw UART task. */
#define TASKTESTCODE_TASKID 1
#define TASKTX_TASKID 2
#define TASKRX1_TASKID 3
#define TASKRX2_TASKID 4
#define TASKRX3_TASKID 5
#define TASKRX4_TASKID 6

/* task priorities for each sw UART task. Rx tasks need */
/* to be highest. A higher priority could be used for */
/* a dramatic error-handling task. */
#define TASKRX1_PRIO 1
#define TASKRX2_PRIO 2
#define TASKRX3_PRIO 3
#define TASKRX4_PRIO 4
#define TASKTX_PRIO 5
#define TASKTESTCODE_PRIO 6

/**
**** ****
** **
Test code.

** **
**** ****
**/
#if ENABLE_TEST_PINS
#define InitTestPins() { TRISD &= 0x00; PORTD = 0x00; }
#define ToggleTPRx1SC() { RD0 ^= 1; }
#define ToggleTPRx2SC() { RD1 ^= 1; }
#define ToggleTPRx3SC() { RD2 ^= 1; }
#define ToggleTPRx4SC() { RD3 ^= 1; }
#define ToggleTPMain() { RD4 ^= 1; }
#define ToggleTPIntDone() { RD5 ^= 1; }
#define ToggleTPInt() { RD6 ^= 1; }
#define ToggleTPTx() { RD7 ^= 1; }

 Application Note

24 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

#else

#define InitTestPins()
#define ToggleTPRx1SC()
#define ToggleTPRx2SC()
#define ToggleTPRx3SC()
#define ToggleTPRx4SC()
#define ToggleTPMain()
#define ToggleTPIntDone()
#define ToggleTPInt()
#define ToggleTPTx()

#endif

/**
**** ****
** **
Target-specific #defines.

** **
**** ****
**/
#define DisableTMR1() { TMR1ON = 0; }
#define EnableTMR1() { TMR1ON = 1; }
static volatile unsigned int TMR1 @ 0x0E;

#define PORTBIT(adr, bit) ((unsigned)(&adr)*8+(bit))

/* for use with 1:8 postscalar with 1/4-bit resolution. */
#define TMR2_RELOAD (XTAL/BAUD)/(4*8*4)

#define INT_TIME QUARTER_BIT_TIME
#define ONE_SEC 1000000 /* in microseconds */
#define FULL_BIT_TIME ONE_SEC/BAUD
#define QUARTER_BIT_TIME ONE_SEC/BAUD/4
#define FULL_BIT_CYCLES XTAL/BAUD/(4*1)
#define FULL_BIT_TICKS (FULL_BIT_TIME)/(INT_TIME)

#define TASKTESTCODE_P OSTCBP(TASKTESTCODE_TASKID)
#define TASKTX_P OSTCBP(TASKTX_TASKID)
#define TASKRX1_P OSTCBP(TASKRX1_TASKID)
#define TASKRX2_P OSTCBP(TASKRX2_TASKID)
#define TASKRX3_P OSTCBP(TASKRX3_TASKID)
#define TASKRX4_P OSTCBP(TASKRX4_TASKID)

#define BINSEM_TXBUFF_P OSECBP(1)
#define BINSEM_TXDONE_P OSECBP(2)
#define BINSEM_TXSTART_P OSECBP(3)

#define TXSTATE_IDLE 0
#define TXSTATE_START 1
#define TXSTATE_DATA0 2
#define TXSTATE_DATA1 3
#define TXSTATE_DATA2 4
#define TXSTATE_DATA3 5
#define TXSTATE_DATA4 6
#define TXSTATE_DATA5 7
#define TXSTATE_DATA6 8
#define TXSTATE_DATA7 9
#define TXSTATE_STOP 10
#define TXSTATE_DONE 11

#define RX1BCB rxBcbArray[0]
#define RX2BCB rxBcbArray[1]
#define RX3BCB rxBcbArray[2]
#define RX4BCB rxBcbArray[3]
#define TX1BCB txBcbArray[0]
#define TX2BCB txBcbArray[1]
#define TX3BCB txBcbArray[2]
#define TX4BCB txBcbArray[3]

#define RX1BCBP &rxBcbArray[0]
#define RX2BCBP &rxBcbArray[1]
#define RX3BCBP &rxBcbArray[2]
#define RX4BCBP &rxBcbArray[3]
#define TX1BCBP &txBcbArray[0]
#define TX2BCBP &txBcbArray[1]
#define TX3BCBP &txBcbArray[2]
#define TX4BCBP &txBcbArray[3]

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

25

/* buffer control block */
struct bcb {
 unsigned char count;
 unsigned char inP;
 unsigned char outP;
 unsigned char size;
}
typedef struct bcb typeBcb;

#define typeSize unsigned char
#define typeBuff unsigned char
#define typeBuffP LOC_BUFF typeBuff *
#define typeBcbP LOC_BCB typeBcb *

void TaskRx1(void);
void TaskRx2(void);
void TaskRx3(void);
void TaskRx4(void);
void TaskTx(void);

void InitUART(void);
void InitBcb(typeBcbP txBcbP, typeSize size);
unsigned char GetBuff(unsigned char * dataP,
 typeBcbP bcbP,
 typeBuffP buffP);
unsigned char GetRx5Buff(unsigned char * dataP);
unsigned char PutBuff(unsigned char data,
 typeBcbP bcbP,
 typeBuffP buffP);
unsigned char PutTx5Buff(unsigned char data);

#define GetRx1Buff(c) GetBuff(c, RX1BCBP, rx1Buff)
#define GetRx2Buff(c) GetBuff(c, RX2BCBP, rx2Buff)
#define GetRx3Buff(c) GetBuff(c, RX3BCBP, rx3Buff)
#define GetRx4Buff(c) GetBuff(c, RX4BCBP, rx4Buff)
#define GetTx1Buff(c) GetBuff(c, TX1BCBP, tx1Buff)
#define GetTx2Buff(c) GetBuff(c, TX2BCBP, tx2Buff)
#define GetTx3Buff(c) GetBuff(c, TX3BCBP, tx3Buff)
#define GetTx4Buff(c) GetBuff(c, TX4BCBP, tx4Buff)
#define PutRx1Buff(c) PutBuff(c, RX1BCBP, rx1Buff)
#define PutRx2Buff(c) PutBuff(c, RX2BCBP, rx2Buff)
#define PutRx3Buff(c) PutBuff(c, RX3BCBP, rx3Buff)
#define PutRx4Buff(c) PutBuff(c, RX4BCBP, rx4Buff)
#define PutTx1Buff(c) PutBuff(c, TX1BCBP, tx1Buff)
#define PutTx2Buff(c) PutBuff(c, TX2BCBP, tx2Buff)
#define PutTx3Buff(c) PutBuff(c, TX3BCBP, tx3Buff)
#define PutTx4Buff(c) PutBuff(c, TX4BCBP, tx4Buff)

#define putch(a) putchar(a)

#ifndef MAIN_C_INCLUDES

extern LOC_INT_LOCALS txState;
extern unsigned char tx1Data;
extern unsigned char tx2Data;
extern unsigned char tx3Data;
extern unsigned char tx4Data;

extern LOC_INT_LOCALS unsigned int rx1Timestamp;
extern LOC_INT_LOCALS unsigned int rx2Timestamp;
extern LOC_INT_LOCALS unsigned int rx3Timestamp;
extern LOC_INT_LOCALS unsigned int rx4Timestamp;

extern LOC_RX5 unsigned char rx5Count;
extern LOC_RX5 unsigned char rx5InP, rx5OutP;
extern LOC_RX5 unsigned char rx5Buff[];
extern LOC_TX5 unsigned char tx5Count;
extern LOC_TX5 unsigned char tx5InP, tx5OutP;
extern LOC_TX5 unsigned char tx5Buff[];

extern LOC_INT_LOCALS struct {
 unsigned char tx1Active:1;
 unsigned char tx2Active:1;
 unsigned char tx3Active:1;
 unsigned char tx4Active:1;
 } txStatus;

extern LOC_INT_LOCALS struct {
 unsigned char rx1Error:1;
 unsigned char rx2Error:1;

 Application Note

26 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

 unsigned char rx3Error:1;
 unsigned char rx4Error:1;
 unsigned char rx1Active:1;
 unsigned char rx2Active:1;
 unsigned char rx3Active:1;
 unsigned char rx4Active:1;
 } rxStatus;

extern LOC_BUFF typeBuff rx1Buff[RX1_BUFF_SIZE];
extern LOC_BUFF typeBuff rx2Buff[RX2_BUFF_SIZE];
extern LOC_BUFF typeBuff rx3Buff[RX3_BUFF_SIZE];
extern LOC_BUFF typeBuff rx4Buff[RX4_BUFF_SIZE];
extern LOC_BUFF typeBuff tx1Buff[TX1_BUFF_SIZE];
extern LOC_BUFF typeBuff tx2Buff[TX2_BUFF_SIZE];
extern LOC_BUFF typeBuff tx3Buff[TX3_BUFF_SIZE];
extern LOC_BUFF typeBuff tx4Buff[TX4_BUFF_SIZE];

extern LOC_BCB typeBcb rxBcbArray[4];
extern LOC_BCB typeBcb txBcbArray[4];

extern LOC_RX5 unsigned char rx5Count;
extern LOC_RX5 unsigned char rx5InP, rx5OutP;
extern LOC_RX5 unsigned char rx5Buff[];
extern LOC_RX5 unsigned char tx5Count;
extern LOC_RX5 unsigned char tx5InP, tx5OutP;
extern LOC_RX5 unsigned char tx5Buff[];

#endif

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

27

main.c
/**
Copyright (C) 1995-2001 Pumpkin, Inc. and its
Licensor(s). Freely distributable.

$Source: C:\\RCS\\D\\salvo\\demo\\d5\\main.c,v $
$Author: aek $
$Revision: 1.11 $
$Date: 2001-08-19 21:31:57-07 $

Demo program. Runs on Microchip PICDEM-2 (PIC16C77,
PIC16F877, PIC18C452, etc.) and MPLAB-ICD (PIC16F877).

Implements quad full-duplex 1200bps UARTs in software.
Requires Salvo v2.3.0 or higher.

**/

#ifndef MAIN_C_INCLUDES
#define MAIN_C_INCLUDES

#include "d5.h"
#include "salvo.h"

/**
**** ****
** **
Test-system-specific configuration.

** **
**** ****
**/
#if defined(TEST_SYSTEM_A)
#ifdef _16F877
__CONFIG(FOSC0 | UNPROTECT);
#else
__CONFIG(XT | UNPROTECT);
#endif
#elif defined(TEST_SYSTEM_F)
__CONFIG(1, FOSC0 | UNPROTECT);
#elif defined(TEST_SYSTEM_H)
__CONFIG(FOSC0 | UNPROTECT);
#endif

/**
**** ****
** **
Global variable declarations.
** **
**** ****
**/
/* current value of character being shifted out by s/w */
/* UART. Cannot be banked because PutTxNChar() expects */
/* non-banked parameter. */
/* state of transmitter state machine (runs in ISR). */
/* xmitter status is used to control which xmitters are */
/* currently running. */
/* buffer control blocks for transmitters. */
/* ring buffers for transmitters. */
#if TRANSMITTERS >= 1
unsigned char tx1Data;
LOC_INT_LOCALS txState;
LOC_INT_LOCALS struct {
 unsigned char tx1Active:1;
 unsigned char tx2Active:1;
 unsigned char tx3Active:1;
 unsigned char tx4Active:1;
 } txStatus;
LOC_BCB typeBcb txBcbArray[TRANSMITTERS];
LOC_BUFF typeBuff tx1Buff[TX1_BUFF_SIZE];
#endif
#if TRANSMITTERS >= 2
unsigned char tx2Data;
LOC_BUFF typeBuff tx2Buff[TX2_BUFF_SIZE];
#endif
#if TRANSMITTERS >= 3
unsigned char tx3Data;

 Application Note

28 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

LOC_BUFF typeBuff tx3Buff[TX3_BUFF_SIZE];
#endif
#if TRANSMITTERS >= 4
unsigned char tx4Data;
LOC_BUFF typeBuff tx4Buff[TX4_BUFF_SIZE];
#endif

/* receiver status is used to control which receivers */
/* are running and also to flag rx errors. */
/* rx timestamps are used to mark when the bitstream's */
/* start bit goes low. In current value of TMR1. */
/* buffer control blocks for receivers. */
/* ring buffers for receivers. */
#if RECEIVERS >= 1
LOC_INT_LOCALS unsigned int rx1Timestamp;
LOC_INT_LOCALS struct {
 unsigned char rx1Error:1;
 unsigned char rx2Error:1;
 unsigned char rx3Error:1;
 unsigned char rx4Error:1;
 unsigned char rx1Active:1;
 unsigned char rx2Active:1;
 unsigned char rx3Active:1;
 unsigned char rx4Active:1;
 } rxStatus;
LOC_BCB typeBcb rxBcbArray[RECEIVERS];
LOC_BUFF typeBuff rx1Buff[RX1_BUFF_SIZE];
#endif
#if RECEIVERS >= 2
LOC_INT_LOCALS unsigned int rx2Timestamp;
LOC_BUFF typeBuff rx2Buff[RX2_BUFF_SIZE];
#endif
#if RECEIVERS >= 3
LOC_INT_LOCALS unsigned int rx3Timestamp;
LOC_BUFF typeBuff rx3Buff[RX3_BUFF_SIZE];
#endif
#if RECEIVERS >= 4
LOC_INT_LOCALS unsigned int rx4Timestamp;
LOC_BUFF typeBuff rx4Buff[RX4_BUFF_SIZE];
#endif

/* control vars and ring buffers for RX5/TX5: built-in */
/* UART. We use explicit vars instead of control */
/* blocks because GetRx5Buff() and PutRx5Buff() are */
/* different from GetBuff() and PutBuff() due */
/* to interrupts. */
LOC_RX5 unsigned char rx5Count;
LOC_RX5 unsigned char rx5InP, rx5OutP;
LOC_RX5 unsigned char rx5Buff[RX5_BUFF_SIZE];
LOC_TX5 unsigned char tx5Count;
LOC_TX5 unsigned char tx5InP, tx5OutP;
LOC_TX5 unsigned char tx5Buff[TX5_BUFF_SIZE];

/* local function declarations. */
#if ENABLE_TEST_CODE
void TestCode(void);
#if RUN_TEST_CODE_TASK
void TaskTestCode(void);
#endif
#endif

/* context-switching labels. */
_OSLabel(TaskTestCode1)

/**
**** ****
** **
main()

Initialize relevant hardware registers, initialize Salvo and
create tasks (idle task is created automatically), enable
interrupts and start multitasking.

IMPORTANT NOTE: Since PICC (stackless) compiler is used,
background calls to OSSignalBinSem() must be protected,
since it's also called in the foreground.

** **
**** ****
**/
int main(void)

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

29

{
 #if ENABLE_TEST_PINS
 /* setup test port. */
 InitTestPins();
 #endif

 /* initialize the port we'll be bit-banging. */
 InitUARTTris();
 InitUARTPort();

 /* configure TMR1 for 1:1 prescale, use internal */
 /* clock. TMR1 is used to count instruction */
 /* cycles. Note that TMR1CS is 0, and will remain */
 /* unchanged. */
 T1CON = 0b00000001;

 /* initialize RS-232 transmitter software. */
 InitUART();

 /* set TMR2 for 1:8 postcale. TMR2 is used to call */
 /* the Salvo system timer every quarter bit */
 /* period. */
 PR2 = TMR2_RELOAD;
 T2CON = 0b00111100;

 /* initialize global flags. */
 #if RECEIVERS >= 1
 rxStatus.rx1Error = 0;
 rxStatus.rx2Error = 0;
 rxStatus.rx3Error = 0;
 rxStatus.rx4Error = 0;
 rxStatus.rx1Active = 0;
 rxStatus.rx2Active = 0;
 rxStatus.rx3Active = 0;
 rxStatus.rx4Active = 0;
 #endif
 #if TRANSMITTERS >= 1
 txState = TXSTATE_IDLE;
 txStatus.tx1Active = 0;
 txStatus.tx2Active = 0;
 txStatus.tx3Active = 0;
 txStatus.tx4Active = 0;
 #endif

 /* initialize Salvo. */
 OSInit();

 /* create tasks. */
 #if TRANSMITTERS >= 1
 OSCreateTask(TaskTx, TASKTX_P, TASKTX_PRIO);
 #endif
 #if RECEIVERS >= 1
 OSCreateTask(TaskRx1, TASKRX1_P, TASKRX1_PRIO);
 #endif
 #if ENABLE_TEST_CODE && RUN_TEST_CODE_TASK
 OSCreateTask(TaskTestCode, TASKTESTCODE_P, TASKTESTCODE_PRIO);
 #endif

 /* these tasks will work only with the standard */
 /* libraries, since the freeware libraries support */
 /* only 3 tasks. */
 #if RECEIVERS >= 2
 OSCreateTask(TaskRx2, TASKRX2_P, TASKRX2_PRIO);
 #endif
 #if RECEIVERS >= 3
 OSCreateTask(TaskRx3, TASKRX3_P, TASKRX3_PRIO);
 #endif
 #if RECEIVERS >= 4
 OSCreateTask(TaskRx4, TASKRX4_P, TASKRX4_PRIO);
 #endif

 /* transmit buffers are initially empty. */
 #if TRANSMITTERS >= 1
 OSCreateBinSem(BINSEM_TXBUFF_P, 0);
 OSCreateBinSem(BINSEM_TXDONE_P, 0);
 OSCreateBinSem(BINSEM_TXSTART_P, 0);
 #endif

 /* enable TMR2 interrupts, enable peripheral */
 /* interrupts, enable (global) interrupts. */
 TMR2IE = 1;
 PEIE = 1;
 OSEnableInts();

 Application Note

30 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

 /* start multitasking. */
 for (;;) {
 OSSched();

 #if ENABLE_TEST_CODE && !RUN_TEST_CODE_TASK
 TestCode();
 #endif
 }
}

/**
**** ****
** **
TestCode()

Test code -- feed each transmit buffer with permuted data.
Since each receiver is listening to its associated
transmitter, undo the permutation and send the data back
out the hardware UART. Test pin marks how long this op takes
and when we're in here.

OSSignalBinSem() must be protected for use with stackless
compilers because it's also called from within ISR().

** **
**** ****
**/
#if ENABLE_TEST_CODE
void TestCode(void)
{
 unsigned char data;

 ToggleTPMain();

 #if TRANSMITTERS >= 1
 if (GetRx5Buff(&data) == TRUE) {

 if (PutTx1Buff(data)) {
 OSProtect();
 OSSignalBinSem(BINSEM_TXBUFF_P);
 OSUnprotect();
 }

 #if TRANSMITTERS >= 2
 if (PutTx2Buff(~data)) {
 OSProtect();
 OSSignalBinSem(BINSEM_TXBUFF_P);
 OSUnprotect();
 }
 #endif

 #if TRANSMITTERS >= 3
 if (PutTx3Buff((data << 4) | (data >> 4))) {
 OSProtect();
 OSSignalBinSem(BINSEM_TXBUFF_P);
 OSUnprotect();
 }
 #endif

 #if TRANSMITTERS >= 4
 if (PutTx4Buff(~((data << 4) | (data >> 4)))) {
 OSProtect();
 OSSignalBinSem(BINSEM_TXBUFF_P);
 OSUnprotect();
 }
 #endif
 }
 #endif /* #if TRANSMITTERS >= 1 */

 #if RECEIVERS >= 1
 if (GetRx1Buff(&data) == TRUE)
 PutTx5Buff(data);
 #endif

 #if RECEIVERS >= 2
 if (GetRx2Buff(&data) == TRUE)
 PutTx5Buff(~data);
 #endif

 #if RECEIVERS >= 3
 if (GetRx3Buff(&data) == TRUE)
 PutTx5Buff((data << 4) | (data >> 4));

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

31

 #endif

 #if RECEIVERS >= 4
 if (GetRx4Buff(&data) == TRUE)
 PutTx5Buff(~((data << 4) | (data >> 4)));
 #endif

 ToggleTPMain();
}
#endif

/**
**** ****
** **
TaskTestCode()

Run test code as a task. Return to scheduler when done.

** **
**** ****
**/
#if ENABLE_TEST_CODE && RUN_TEST_CODE_TASK
void TaskTestCode(void)
{
 for (;;) {
 TestCode();

 OS_Yield(TaskTestCode1);
 }
}
#endif

/**
**** ****
** **
InitUART()

Initialize the hardware UART as a 9600bps UART. This UART
has two ring buffers for receive and transmit.

** **
**** ****
**/
void InitUART(void)
{
 /* reset Tx ring buffer pointers. */
 tx5Count = 0;
 tx5InP = 0;
 tx5OutP = 0;
 rx5Count = 0;
 rx5InP = 0;
 rx5OutP = 0;

 /* PORTC is output on pin 6, rest is input. */
 /* Set Tx out high to avoid bad chars. */
 PORTC |= 0x40; /* 01000000 */
 TRISC |= 0x80; /* 10000000 */
 TRISC &= 0xBF; /* 10111111 */

 /* Serial Port is ON, 8-bit data reception, */
 /* continuous receive. */
 RCSTA = 0x90; /* 10x1xxxx */

 /* force Tx ints off now to avoid spurious */
 /* outgoing chars when transmitter is enabled. */
 TXIE = 0;

 /* 8-bit transmit, Tx enabled, Async, BRGH=1 */
 TXSTA = 0x24; /* x010x100 */

 /* 9600 baud. */
 SPBRG = XTAL/16/9600-1;
}

/**
**** ****
** **
GetRx5Buff(dataP)

Removes a character (if present) from the hardware UART's
receiver ring buffer and copies it to variable specified.

Interrupt control is required because PutRx5Buff() is in
ISR.

 Application Note

32 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

Returns: TRUE if a character was present.
 FALSE if buffer was empty.

** **
**** ****
**/
unsigned char GetRx5Buff(unsigned char * dataP)
{
 if (rx5Count) {
 *dataP = rx5Buff[rx5OutP++];

 if (rx5OutP > RX5_BUFF_SIZE-1)
 rx5OutP = 0;

 OSDisableInts();
 rx5Count--;
 OSEnableInts();

 return TRUE;
 }
 else
 return FALSE;
}

/**
**** ****
** **
PutTx5Buff(data)

Puts the character into the hardware UART's xmitter
ring buffer if room is available.

Interrupt control is required because GetTx5Buff() is in
ISR.

Returns: TRUE on if there was room in buffer.
 FALSE if buffer was full.

** **
**** ****
**/
unsigned char PutTx5Buff(unsigned char data)
{
 if (tx5Count < TX5_BUFF_SIZE)
 {
 tx5Buff[tx5InP++] = data;

 if (tx5InP > TX5_BUFF_SIZE-1)
 tx5InP = 0;

 OSDisableInts();
 tx5Count++;
 OSEnableInts();

 return TRUE;
 }
 else
 return FALSE;
}

/**
**** ****
** **
OSIdleFnHook()

Used primarily for debug. User can add idle task code in
here or create a new task in its place.

Test pin marks when idle function runs.

** **
**** ****
**/
void OSIdleFnHook(void)
{
 ;
}

#endif

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

33

buff.c
/**
Copyright (C) 1995-2001 Pumpkin, Inc. and its
Licensor(s). Freely distributable.

$Source: C:\\RCS\\D\\salvo\\demo\\d5\\buff.c,v $
$Author: aek $
$Revision: 1.10 $
$Date: 2001-08-19 21:17:09-07 $

Support file.

**/

#ifndef BUFF_C_INCLUDES
#define BUFF_C_INCLUDES

#include "d5.h"
#include "salvo.h"

#if (RECEIVERS >= 1) || (TRANSMITTERS >= 1)
/**
**** ****
** **
InitBcb()

Initialize the specified buffer by setting the buffer's
control parameters, which reside in the buffer control block.

Not compatible with buffer functions called from ISR().

** **
**** ****
**/
void InitBcb(typeBcbP bcbP, typeSize size)
{
 bcbP->count = 0;
 bcbP->inP = 0;
 bcbP->outP = 0;
 bcbP->size = size;
}

/**
**** ****
** **
GetBuff()

Get char from buffer and wrap pointer if necessary.

** **
**** ****
**/
unsigned char GetBuff(unsigned char * dataP,
 typeBcbP bcbP,
 typeBuffP buffP)
{
 if (bcbP->count) {
 *dataP = buffP[bcbP->outP++];

 if (bcbP->outP >= bcbP->size)
 bcbP->outP = 0;

 bcbP->count--;

 return TRUE;
 }
 else
 return FALSE;
}

/**
**** ****
** **
PutBuff()

Insert char into buffer and wrap pointer if necessary.

 Application Note

34 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

** **
**** ****
**/
unsigned char PutBuff(unsigned char data,
 typeBcbP bcbP,
 typeBuffP buffP)
{
 if (bcbP->count < bcbP->size)
 {
 buffP[bcbP->inP++] = data;

 if (bcbP->inP >= bcbP->size)
 bcbP->inP = 0;

 bcbP->count++;

 return TRUE;
 }
 else
 return FALSE;
}
#endif

#endif

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

35

int.c
/**
Copyright (C) 1995-2001 Pumpkin, Inc. and its
Licensor(s). Freely distributable.

$Source: C:\\RCS\\D\\salvo\\demo\\d5\\int.c,v $
$Author: aek $
$Revision: 1.5 $
$Date: 2001-08-19 21:31:56-07 $

Support file.

**/

#ifndef INT_C_INCLUDES
#define INT_C_INCLUDES

#include "d5.h"
#include "salvo.h"

#if TRANSMITTERS >= 1
unsigned char intPS;
#endif

/**
**** ****
** **
intVector()

Periodic interrupt via TMR2 occurs every quarter bit time.
TMR2 is reloaded automatically from period register PR2. This
is the system tick period. Every system tick, Rx lines are
sampled and flagged if we detect a start bit. If detected,
a timestamp is recorded, and the associated receiver task is
started. This only happens if the associated receiver task
is inactive. OSTimer() is called at system tick rate.

Hardware UART activity is handled on an interrupt basis.

** **
**** ****
**/
#pragma interrupt_level 0
void interrupt ISR(void)
{
 ToggleTPInt();

 #if TRANSMITTERS >= 1
 /* when idling, check to see if we've been */
 /* signaled by TaskTx(). */
 if (txState == TXSTATE_IDLE) {
 if (OSTryBinSem(BINSEM_TXSTART_P)) {
 /* if so, start up state machine and */
 /* set PS to minimize delay. */
 txState++;
 intPS = 1;
 }
 }

 /* we're now transmitting data every fourth */
 /* system tick. By using if() if() instead of */
 /* if() else we reduce startup delay by 1 */
 /* system tick. */
 if (txState != TXSTATE_IDLE) {
 if (--intPS == 0) {
 intPS = 4;

 /* first, set start bit for each active */
 /* transmitter. */
 if (txState == TXSTATE_START) {

 if (txStatus.tx1Active)
 TX1 = 0;

 #if TRANSMITTERS >= 2
 if (txStatus.tx2Active)

 Application Note

36 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

 TX2 = 0;
 #endif

 #if TRANSMITTERS >= 3
 if (txStatus.tx3Active)
 TX3 = 0;
 #endif

 #if TRANSMITTERS >= 4
 if (txStatus.tx4Active)
 TX4 = 0;
 #endif

 ++txState;
 }

 /* now pump the data out, bit by bit. */
 /* Do nothing if transmitter is */
 /* disabled, i.e. has no data to xmit. */
 else if (txState < TXSTATE_STOP) {

 if (txStatus.tx1Active) {
 if (tx1Data & 0x01)
 TX1 = 1;
 else
 TX1 = 0;
 tx1Data >>= 1;
 }

 #if TRANSMITTERS >= 2
 if (txStatus.tx2Active) {
 if (tx2Data & 0x01)
 TX2 = 1;
 else
 TX2 = 0;
 tx2Data >>= 1;
 }
 #endif

 #if TRANSMITTERS >= 3
 if (txStatus.tx3Active) {
 if (tx3Data & 0x01)
 TX3 = 1;
 else
 TX3 = 0;
 tx3Data >>= 1;
 }
 #endif

 #if TRANSMITTERS >= 4
 if (txStatus.tx4Active) {
 if (tx4Data & 0x01)
 TX4 = 1;
 else
 TX4 = 0;
 tx4Data >>= 1;
 }
 #endif

 ++txState;
 }

 /* now send the stop bit. Can set it */
 /* regardless of txStatus.txNActive. */
 else if (txState == TXSTATE_STOP) {

 TX1 = 1;

 #if TRANSMITTERS >= 2
 TX2 = 1;
 #endif

 #if TRANSMITTERS >= 3
 TX3 = 1;
 #endif

 #if TRANSMITTERS >= 4
 TX4 = 1;
 #endif

 ++txState;
 }

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

37

 /* we got here after a full bit delay, */
 /* so stop bit is valid -- done. */
 else if (txState == TXSTATE_DONE) {
 txState = TXSTATE_IDLE;
 OSSignalBinSem(BINSEM_TXDONE_P);
 }
 }
 }
 #endif /* #if TRANSMITTERS >= 1 */

 if (TMR2IE && TMR2IF) {

 /* clear flag -- req'd. */
 TMR2IF = 0;

 /* any start bit activity on RX1? If we haven't */
 /* detected any already, capture free-running */
 /* instruction cycle counter and start task. */
 /* If successful (i.e. task was stopped when */
 /* OSStartTask() was called) then disable this */
 /* start-bit detector. It will be re-enabled */
 /* when TaskRx1() is finished receiving this */
 /* character. If not successful (i.e. task */
 /* hadn't stopped yet), then we'll be back in */
 /* one system tick to check again. Test RX1 */
 /* twice to ensure it wasn't noise. */
 #if RECEIVERS >= 1
 if (!rxStatus.rx1Active)
 if (!RX1 && !RX1) {
 DisableTMR1();
 rx1Timestamp = TMR1;
 EnableTMR1();
 if (OSStartTask(TASKRX1_P) == OSNOERR)
 rxStatus.rx1Active = 1;
 }
 #endif

 #if RECEIVERS >= 2
 if (!rxStatus.rx2Active)
 if (!RX2 && !RX2) {
 DisableTMR1();
 rx2Timestamp = TMR1;
 EnableTMR1();
 if (OSStartTask(TASKRX2_P) == OSNOERR)
 rxStatus.rx2Active = 1;
 }
 #endif

 #if RECEIVERS >= 3
 if (!rxStatus.rx3Active)
 if (!RX3 && !RX3) {
 DisableTMR1();
 rx3Timestamp = TMR1;
 EnableTMR1();
 if (OSStartTask(TASKRX3_P) == OSNOERR)
 rxStatus.rx3Active = 1;
 }
 #endif

 #if RECEIVERS >= 4
 if (!rxStatus.rx4Active)
 if (!RX4 && !RX4) {
 DisableTMR1();
 rx4Timestamp = TMR1;
 EnableTMR1();
 if (OSStartTask(TASKRX4_P) == OSNOERR)
 rxStatus.rx4Active = 1;
 }
 #endif

 /* finally, call Salvo's timer since this is */
 /* all happening at the system tick rate. */
 OSTimer();
 }

 /* */
 if (RCIF) {
 rx5Buff[rx5InP++] = RCREG;

 if (rx5InP > RX5_BUFF_SIZE-1)
 rx5InP = 0;

 rx5Count++;

 Application Note

38 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

 }

 /* */
 if (tx5Count && TRMT) {
 /* send the valid char, and advance the */
 /* pointer. */
 {
 TXREG = tx5Buff[tx5OutP++];

 if (tx5OutP > TX5_BUFF_SIZE-1)
 tx5OutP = 0;

 tx5Count--;
 }
 }

 /* this will NEVER occur. It's here because the */
 /* Salvo library in use groups many services */
 /* together as callable from interrupts, and all */
 /* such services are #pragma interrupt_level 0. */
 /* This isn't too costly, ROM-wise, so don't */
 /* worry about it. */
 if (TMR1CS) {
 OSCreateBinSem(BINSEM_TXBUFF_P, 0);
 OSSignalBinSem(BINSEM_TXBUFF_P);
 OSTryBinSem(BINSEM_TXSTART_P);
 }

 ToggleTPIntDone();
}

#endif

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

39

swrxuart.c
/**
Copyright (C) 1995-2001 Pumpkin, Inc. and its
Licensor(s). Freely distributable.

$Source: C:\\RCS\\D\\salvo\\demo\\d5\\swrxuart.c,v $
$Author: aek $
$Revision: 1.4 $
$Date: 2001-08-19 21:31:57-07 $

Support file.

**/

#ifndef SWRXUART_C_INCLUDES
#define SWRXUART_C_INCLUDES

#include "d5.h"
#include "salvo.h"

/* measured instructions between obtaining desired */
/* delay in cycles and when task has been enqueued */
/* into delay queue. This is an average of the */
/* non-interrupted and interrupted case. */
#define OVERHEAD 200

/* these are the desired times, in number of */
/* instruction cycles from the start bit going low,*/
/* when we want to sample data. */
/* see discussion in BitDelay() below for timing */
/* issues. */
#if RECEIVERS >= 1
const unsigned int samplePts[9] = {
 (unsigned int) (1.625*FULL_BIT_CYCLES),
 (unsigned int) (2.625*FULL_BIT_CYCLES),
 (unsigned int) (3.625*FULL_BIT_CYCLES),
 (unsigned int) (4.625*FULL_BIT_CYCLES),
 (unsigned int) (5.625*FULL_BIT_CYCLES),
 (unsigned int) (6.625*FULL_BIT_CYCLES),
 (unsigned int) (7.625*FULL_BIT_CYCLES),
 (unsigned int) (8.625*FULL_BIT_CYCLES),
 (unsigned int) (9.625*FULL_BIT_CYCLES) };

#if ENABLE_TEST_CODE
LOC_TEST_VARS long unsigned int rxErrors = 0;
#endif
#endif

#if RECEIVERS >= 1
_OSLabel(TaskRx1a);
_OSLabel(TaskRx1b);
_OSLabel(TaskRx1c);
_OSLabel(TaskRx1d);
_OSLabel(TaskRx1e);
#endif

#if RECEIVERS >= 2
_OSLabel(TaskRx2a);
_OSLabel(TaskRx2b);
_OSLabel(TaskRx2c);
_OSLabel(TaskRx2d);
_OSLabel(TaskRx2e);
#endif

#if RECEIVERS >= 3
_OSLabel(TaskRx3a);
_OSLabel(TaskRx3b);
_OSLabel(TaskRx3c);
_OSLabel(TaskRx3d);
_OSLabel(TaskRx3e);
#endif

#if RECEIVERS >= 4
_OSLabel(TaskRx4a);
_OSLabel(TaskRx4b);
_OSLabel(TaskRx4c);
_OSLabel(TaskRx4d);

 Application Note

40 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

_OSLabel(TaskRx4e);
#endif

/**
**** ****
** **
BitDelay(timestamp, period)

This is an interesting function. It returns its best-fit
estimate for how many ticks we should delay the receiver
task before sampling the incoming bitstream.

There are several source of error to contend with: 1) system
timer jitter (-1, +0 system ticks), 2) errors resulting from
the quantization of the delay in cycles into system ticks,
3) the number of cycles from when the delay is calculated
to when the task is actually delayed, 4) interrupts and 5)
delays from when the task is made eligible to when it can
actually run.

1) and 2) result in delays that can be too short. 3), 4) and
5) result in delays that can be too long. 1) and 2) are up to
one system tick in size. 3), 4) and 5) are smaller.

By attempting to sample the bitstream one half of one
quarter-cycle after the theoretical mid-time of the data
bit, we hope to increase our chances of sampling between
3/8 and 5/8 into the data bit, i.e. during a one-quarter
bit-time period in the middle of the data bit. Empirical
data suggests this works quite well.

** **
**** ****
**/
#if RECEIVERS >= 1
OStypeDelay BitDelay(unsigned int timestamp,
 unsigned char period)
{
 unsigned int tmr;
 unsigned int elapsed;
 unsigned int desired;

 /* capture current instruction cycle count. */
 DisableTMR1();
 tmr = TMR1;
 EnableTMR1();

 /* calculate instruction cycles elapsed since time- */
 /* stamp. Deal with wrap as necessary. */
 /* OVERHEAD is derived from the average number of */
 /* instruction cycles from here to exiting the */
 /* function, below. */
 if (tmr < timestamp)
 elapsed = tmr + 65536 - timestamp;
 else
 elapsed = tmr - timestamp;

 /* obtain the desired total cycle count (in the */
 /* future) for when we want to sample the data */
 /* again. Adjust slightly for the time we're */
 /* spending in here. */
 desired = samplePts[period] - elapsed - OVERHEAD;

 /* now we know when (in terms of instruction cycles */
 /* from now) we want to sample data again. Figure */
 /* out how many ticks into the future that is. */
 /* this could use some optimization ... but */
 /* */
 /* return (OStypeDelay) \ */
 /* ((4 * desired)/FULL_BIT_CYCLES) */
 /* */
 /* takes more ROM and is likely to be slower. */
 if (desired < (unsigned int) (0.25*FULL_BIT_CYCLES))
 return 0;
 else if (desired < (unsigned int) (0.50*FULL_BIT_CYCLES))
 return 1;
 else if (desired < (unsigned int) (0.75*FULL_BIT_CYCLES))
 return 2;
 else if (desired < (unsigned int) (1.00*FULL_BIT_CYCLES))
 return 3;
 else if (desired < (unsigned int) (1.25*FULL_BIT_CYCLES))

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

41

 return 4;
 else if (desired < (unsigned int) (1.50*FULL_BIT_CYCLES))
 return 5;
 else if (desired < (unsigned int) (1.75*FULL_BIT_CYCLES))
 return 6;
 else
 /* this catches case of (desired < 0), i.e. */
 /* we're too late, as well as (desired > 1 3/4 */
 /* bit times. */
 return 0xFF;
}
#endif

/**
**** ****
** **
TaskRx1(timestamp, period)

Receiver task. Is normally stopped, wakes up when interrupt-
driven start bit detector sees start bit go low.

Uses BitDelay() to re-synchronize itself to the start bit.
O/wise looks like a normal software UART, with delays
implemented via OS_Delay() instead of looping.

** **
**** ****
**/
#if RECEIVERS >= 1
void TaskRx1(void)
{
 LOC_RX_LOCALS static char c;
 LOC_RX_LOCALS static char i;
 OStypeDelay delay;

 InitBcb(RX1BCBP, RX1_BUFF_SIZE);

 for (;;) {
 /* sample incoming data as soon as the start-bit*/
 /* detector in the ISR starts this task. We */
 /* remain stopped until this happens. */
 OS_Stop(TaskRx1a);

 /* now that we're here, calculate the right */
 /* delay so that when we return we're ready */
 /* to sample the next data bit (in this case, */
 /* the LSB -- data bit 0). */
 delay = BitDelay(rx1Timestamp, 0);

 /* if we're too late then we have to give up. */
 /* Re-activate start-bit detector one full */
 /* character time from now. */
 if (delay == 0xFF) {
 OS_Delay(8*FULL_BIT_TICKS, TaskRx1e);
 rxStatus.rx1Active = 0;
 continue;
 }
 /* else we seem to have enough time to delay */
 /* and return to sample the data bit. */
 else {
 ToggleTPRx1SC();

 /* if time is really short, don't delay, */
 /* o/wise go ahead and delay. */
 if (delay)
 OS_Delay(delay, TaskRx1d);

 /* we're back, ready to begin sampling data */
 /* bits. c need not be initialized since */
 /* all 8 bits will be shifted out. */
 i = 8;
 rxStatus.rx1Error = FALSE;
 do {
 ToggleTPRx1SC();

 c = (c >> 1) | (RX1 << 7);
 delay = BitDelay(rx1Timestamp, 9-i);
 if (delay == 0xFF) {
 rxStatus.rx1Error = TRUE;
 break;
 }

 Application Note

42 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

 else if (delay)
 OS_Delay(delay, TaskRx1b);
 } while (--i);

 ToggleTPRx1SC();

 /* if the stop bit is still high, we got */
 /* valid data. */
 if (RX1 && !rxStatus.rx1Error)
 PutRx1Buff(c);
 #if ENABLE_TEST_CODE
 else
 rxErrors++;
 #endif

 /* done receiving char -- re-enable start */
 /* bit detection. No need to control */
 /* interrupts, as OSStartTask() can only */
 /* start a stopped task, and right now */
 /* we're still running. */
 rxStatus.rx1Active = 0;
 }

 /* now we're done receiving a char. Return to */
 /* top of loop and remain in the stopped state */
 /* until the start-bit detector wakes us up. */
 }
}
#endif

#endif

N.B. TaskRx2() through TaskRx4() omitted for brevity.

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

43

swtxuart.c
/**
Copyright (C) 1995-2001 Pumpkin, Inc. and its
Licensor(s). Freely distributable.

$Source: C:\\RCS\\D\\salvo\\demo\\d5\\swtxuart.c,v $
$Author: aek $
$Revision: 1.5 $
$Date: 2001-08-19 21:31:56-07 $

Support file.

**/

#ifndef SWTXUART_C_INCLUDES
#define SWTXUART_C_INCLUDES

#include "d5.h"
#include "salvo.h"

#if TRANSMITTERS >= 1
_OSLabel(TaskTxa);
_OSLabel(TaskTxb);
_OSLabel(TaskTxc);
_OSLabel(TaskTxd);
#endif

/**
**** ****
** **
TaskTx()

This is bit-banging transmit task that handles up to four
transmitters at once.

It explicitly takes its data from txNBuff[] and places it in
txNData. It context-switches whenever it has nothing to do.

There's little point in having independent transmitter tasks,
since having the transmitters run synchronously results in a
maximum of one character delay. By placing all four
transmitters in the same task, a considerable RAM and ROM
savings is realized.

** **
**** ****
**/
#if TRANSMITTERS >= 1
void TaskTx(void)
{
 /* Start with all Tx outputs inactive (i.e. idling).*/
 TX1 = 1;

 #if TRANSMITTERS >= 2
 TX2 = 1;
 #endif

 #if TRANSMITTERS >= 3
 TX3 = 1;
 #endif

 #if TRANSMITTERS >= 4
 TX4 = 1;
 #endif

 /* initialize transmitters. */
 InitBcb(TX1BCBP, TX1_BUFF_SIZE);

 #if TRANSMITTERS >= 2
 InitBcb(TX2BCBP, TX2_BUFF_SIZE);
 #endif

 #if TRANSMITTERS >= 3
 InitBcb(TX3BCBP, TX3_BUFF_SIZE);
 #endif

 #if TRANSMITTERS >= 4
 InitBcb(TX4BCBP, TX4_BUFF_SIZE);

 Application Note

44 AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

 #endif

 txState = 0;

 for (;;) {

 /* nothing happens until the semaphore is */
 /* signaled. */
 OS_WaitBinSem(BINSEM_TXBUFF_P, TaskTxa)

 /* get local copy of data to be sent. Activate */
 /* transmitter if there's data to send. O/wise */
 /* deactivate transmitter. */
 if (GetTx1Buff(&tx1Data))
 txStatus.tx1Active = 1;
 else
 txStatus.tx1Active = 0;

 #if TRANSMITTERS >= 2
 if (GetTx2Buff(&tx2Data))
 txStatus.tx2Active = 1;
 else
 txStatus.tx2Active = 0;
 #endif

 #if TRANSMITTERS >= 3
 if (GetTx3Buff(&tx3Data))
 txStatus.tx3Active = 1;
 else
 txStatus.tx3Active = 0;
 #endif

 #if TRANSMITTERS >= 4
 if (GetTx4Buff(&tx4Data))
 txStatus.tx4Active = 1;
 else
 txStatus.tx4Active = 0;
 #endif

 /* tell ISR data is ready to be shifted out. */
 OSProtect();
 OSSignalBinSem(BINSEM_TXSTART_P);
 OSUnprotect();

 ToggleTPTx();

 /* wait till ISR is done. */
 OS_WaitBinSem(BINSEM_TXDONE_P, TaskTxb);

 /* since we're using only a binsem to indicate */
 /* data being available in _any_ buffer, and */
 /* since more than a single byte may have been */
 /* put into any buffer, and since we just got */
 /* (i.e. stripped) a maximum of one byte from */
 /* each buffer, then buffers may still be non- */
 /* empty, and we must stay alive until they're */
 /* completely empty -- all four of 'em. */
 #if TRANSMITTERS == 1
 if (TX1BCB.count != 0)
 #elif TRANSMITTERS == 2
 if ((TX1BCB.count != 0) || (TX2BCB.count != 0))
 #elif TRANSMITTERS == 3
 if ((TX1BCB.count != 0) || (TX2BCB.count != 0) \
 || (TX3BCB.count != 0))
 #elif TRANSMITTERS == 4
 if ((TX1BCB.count != 0) || (TX2BCB.count != 0) \
 || (TX3BCB.count != 0) || (TX4BCB.count != 0))
 #endif
 OSSignalBinSem(BINSEM_TXBUFF_P);
 }
}
#endif

#endif

1 Also called bit-banged serial comms.

 Application Note

AN-8 Implementing a Quad 1200 baud Full-duplex Software UART with Salvo

45

2 Applications compiled with Salvo Lite support up to four software transmitters

and a maximum of two software receivers.
3 Do not confuse this with the state of the RS-232 signal line itself, which will

typically be between �3 and �12V when idling.
4 Enhanced software receiver algorithms can look for bit transitions at the

expected times, etc. These are not covered here.
5 E.g. PutRxNBuff(data) is a macro invoking PutBuff(data, bcbP,

buffP).
6 Where N is 1, 2, 3 or 4.
7 The timestamp is derived from the free-running 16-bit counter TMR1.
8 E.g. framing errors in the attached receivers.
9 The hardware receiver and the hardware transmitter.
10 Isolated resistors, single inline package (SIP), e.g. Panasonic P/N EXB-

F8V152G (1.5kΩ each).
11 U2 on the PICDEM-2 board is a PIC16C73 or equivalent.
12 The clock speed is divided by four internally to obtain the instruction cycle time,

e.g. a 20MHz clock results in 200ns instruction cycles.
13 The test code can also be configured to run in the scheduler's main loop via a

compile-time option.
14 Hewlett-Packard® 1633A.
15 LSB first.
16 It's time that is not spent running tasks, since TaskTestCode() � which is

always eligible to run � does not run during this time.
17 Note the different time scale.
18 Of course, user tasks must also be relatively quick between context switches � a

maximum of a few hundred cycles at 20MHz should be observed.
19 Each binary semaphore can be represented by a single bit. Each Salvo binary

semaphore requires three bytes (two for source-code builds with
OSUSE_EVENT_TYPES set to FALSE) for its event control block.

	Implementing a Quad 1200 baud Full-duplex Software UART with Salvo
	Introduction
	Simple Serial Communications
	Resources Required
	Design Challenges
	Implementation
	Theory of Operation
	Serial Reception in Software
	Serial Transmission in Software

	Buffers and Buffer Control
	Software Receivers
	Receiver Task Operation

	Software Transmitters
	Interrupt-driven Core for Accurate Timing
	Transmit Task Empties Buffers, Improves Performance
	Transmit Task Handles Software Transmitters
	Transmit Task and ISR Interaction

	Choosing Task Priorities
	Timing Issues
	Test Code
	Hardware UARTs

	Test Setup
	Nomenclature

	Performance
	Analysis
	Single Byte Received
	Description of Events
	Processing Power In Reserve

	Multiple Bytes Received
	System Responsiveness
	Timing Specifications

	Building Your Own Application
	Enhancements
	Conclusion
	Build Results
	Source Code Listings
	salvocfg.h
	d5.h
	main.c
	buff.c
	int.c
	swrxuart.c
	swtxuart.c

