
Digital Storage
Oscilloscope

Thomas Grocutt
April 2000

i

Acknowledgements

I would like to thank my project supervisor Milos Kolar for his time, help, and

encouragement, Philip Cupitt for his previous work and for proving the basic

concepts, and the technical staff in the engineering department, particularly Ian

Hutchinson and Anthony McFarlane.

I would also like to thank the programming team that created MS Office 97, for

making the writing of this report so… challenging.

ii

Summary

The objective was to design and build a low cost, high performance, dual channel

Digital Storage Oscilloscope (DSO). Costs were minimised compared to

conventional, commercial DSO’s by utilising a personal computer to provide both the

display functions and the majority of the control functions. The remaining control

functions were implemented using a Field Programmable Gate Array making the

system very flexible and enabling it to be customised for specific tasks in abnormal

situations.

One of the major limitations of commercial DSO’s is their small storage depths. To

address this, the project DSO has a storage depth approximately 400 times greater

than most commercially available DSO’s. It contains 6Mbits of memory capable of

capturing nearly 8ms when sampling at 100MHz. The DSO hardware has a low

component count making extensive use of surface mount technology. This reduces

cost, enhances reliability and increases the signal to noise ratio producing traces with

noticeably less noise than the commercial reference DSO.

The project DSO also features a built in Logic Analyser, advanced triggering

modes (such as pre-trigger) and variable sample rates together with user friendly,

Windows based, software makes this system both versatile and easy to use.

iii

Contents

1) Introduction 1
1.1) Previous Work 4

2) Theory 5
2.1) Digital Storage Oscilloscope Operation 5

2.2) PC Based Digital Storage Oscilloscope 6

2.3) Logic Analysers 7

2.4) Sample Rates and Aliasing 8

2.5) Storage Depth 10

3) Design 11
3.1) Initial Concept 11

3.2) Design Overview 13
3.2.1) Memory 13

3.2.2) Analogue To Digital Converter 14

3.2.3) Buffer Amplifier 15

3.2.4) Control Logic 15

3.2.5) Software 17

3.2.5.1) Main.c 19

3.2.5.2) Gui.c And Gui.rc 20

3.2.5.3) Plot_Data.c 21

3.2.5.4) DSO_IO.c 21

3.2.5.5) P_Port_IO.c 22

3.2.5.6) Numeric.c, File_IO.c, And Error.c 22

3.2.6) PC Interface 23

iv

3.3) Detailed Design 24
3.3.1) FPGA Configuration 24

3.3.2) Pre-Trigger Mode 24

3.3.3) Trigger Detection Unit 27

3.3.4) Clock Generation 29

3.3.5) Tri-State Buses 30

3.3.6) Parallel Port Interface Logic 31

3.3.7) ADC Operation 31

3.3.8) PCB And Power Supplies 33

4) Results 35
4.1) Analogue Performance 35

4.2) Logic Analyser Performance 39

5) Discussion 42
5.1) Possible Improvements 44

5.1.1) Sample Rate 44

5.1.2) Triggering 44

5.1.3) Input Range 45

5.1.4) Parallel Port Interface 45

5.1.5) FPGA Migration 45

5.1.6) Software 46

6) Conclusion 47

7) References 49

v

Diagrams

Fig 1. Conventional DSO Block Diagram 5

Fig 2. Pre-Trigger 6

Fig 3. Variable Pre-Trigger 6

Fig 4. Logic Analysers Block Diagram 7

Fig 5. Logic Plot Of 8 Bit Counter 8

Fig 6. Aliasing Effects 9

Fig 7. System Block Diagram 11

Fig 8. Interleave Sampling 12

Fig 9. DSO Software Screen Shot 18

Fig 10. DSO Circuit Diagram 25

Fig 11. Memory Alignment 26

Fig 12. Trigger Unit Circuit Diagram 28

Fig 13. Intermediate Bus Values 29

Fig 14. Clock Divider 30

Fig 15. Data Output Bus 30

Fig 16. Parallel Port Interface Unit 32

Fig 17. Picture Of Project DSO 34

Fig 18. 5KHz Sin Wave Sampled At 1.6MHz Using Project DSO 35

Fig 19. 5KHz Sin Wave Sampled At 500KHz With Reference DSO 35

Fig 20. Amplitude Modulation Of 1MHz Sin Wave, Sampled at 50MHz 36

Fig 21. 500KHz Sin Wave & 300KHz Square Wave Sampled At 50MHz 37

Fig 22. 500KHz Sin Wave Sampled At 100MHz Using Interleaving 38

Fig 23. Affect Of Offset Correction On Interleave Sampling 38

Fig 24. Logic Output From A PC Parallel Port Sampled At 50MHz 39

Fig 25. Crosstalk and Glitches Present In Parallel Port Data 39

Fig 26. Crosstalk On Parallel Port, Captured Using Reference DSO 40

Fig 27. Combined Logic Analyser & Analogue Waveform 41

1

1) Introduction

The aim of the project was to design a PC based Digital Storage Oscilloscope

(DSO. A DSO built by Philip Cupitt proved the basic concepts behind the project. A

standard oscilloscope displays the changes in a voltage over time, as the display is

continuously updated with the current state of the input signal. A standard

oscilloscope is of limited use for non-repeating signals or for observing signal

glitches.

A storage scope is more useful as it captures and stores the signal. Which can then

be displayed to the user. Because the screen is not continuously refreshed with the

current state of the signal the scope can be used to analyse non-repeating signals and

signal glitches. Both analogue storage and digital storage scopes are available, with

digital scopes being by far the most common.

Normal oscilloscopes use an electron beam, which is swept across a phosphor

screen, the vertical deflection of the beam being proportional to input voltage. Areas

of the screen that are bombarded by the electron beam will emit light, resulting in an

image that shows the waveform of the input signal. Analogue storage scopes use a

specially modified cathode ray tube (CRT) to store the signal.

Unlike a conventional scope an analogue storage scope only sweeps the electron

beam (the write beam) across the screen once. Then by exposing the entire screen

with a low level electron beam (the flood beam) this image can then be preserved for

several minutes.

Unfortunately the faster the write beam is swept across the screen the shorter the

residence time of the image. This results in fast recording only being visible for a few

ten’s of milliseconds. To solve this problem the write beam is scanned onto an

intermediate target at high speed, then before the image decays it is transferred to the

phosphor screen by a read gun. As the image is transferred to the screen at a relatively

low speed it will have a high residence time.

2

A Digital Storage Oscilloscope (DSO) uses digital memory to store a waveform. In

order to do this the incoming signal must first be digitised, once this is complete the

data in the memory can be continuously replayed through a digital to analogue

converter and displayed on a CRT. Unlike analogue storage scopes the captured

waveform does not decay over time.

The speed and length of the recording are parameters that limit the type of signals

that can be analysed by a DSO. Most commercially available DSO’s allow the user to

increase the length of the recording only by reducing the sampling frequency. This is

not always desirable as it can lead to aliasing of the signal and the loss of small details

like signal glitches that can seriously restrict the usefulness of a DSO, as engineers are

often interested in these very glitches.

The memory capacity of a DSO determines the maximum length of a recording for

a given sample rate. Therefore increasing the storage capacity of a DSO enables the

recording to be lengthened without reducing the sample rate.

Commercial DSO’s cost up to £5000. This limits the number that can be purchased

and can lead to engineers sharing equipment, reducing productivity. The cost of a

DSO can be dramatically reduced by using a standard PC for the display. As PC’s are

common place in a lab this would reduce the need to share equipment. Although PC

based DSO’s are currently available they often have small memory capacities and low

maximum sample rates, in addition they are still quite expensive (~ £400).

Logic Analysers like DSO’s capture data and then display it to the user. however

instead of displaying voltage variations a Logic Analyser will simply show the Logic

State of several channels in parallel. Just like DSO’s, Logic Analysers suffer from the

same problems of cost and low storage capacities. The only major difference between

a Logic Analyser and a DSO is the display, in a PC based system this could be

handled in software therefore the two could be combined with little extra cost.

3

The specification of the project DSO should be as follows:-

• The module must connect to a standard PC with little or no modifications,

and should be easy to set-up.

• The DSO must be capable of high sample rates of around 40MHz. Lower

sample rates should be user selectable from within the software.

• The DSO should have a large storage depth of 3Mbit. This would give a

recording length of around 10mS at a sample rate of 40MHz.

• The cost of the final DSO must be less than £100. If the unit was

commercially produced this price could be significantly reduced through

bulk purchasing.

• The DSO should have 2 analogue channels with an 8Bit resolution.

• The unit should also be able to operate as a 16Bit Logic Analyser with no

analogue channels, or an 8Bit Logic Analyser with 1 analogue channel.

• The unit should be able to trigger from either of the analogue channels or the

logic input. The unit must also have a Pre-Trigger mode to allow the user to

capture data that occurs before the trigger point.

• The software should allow the user to save captured data for future reference,

it should also be able to export this data in a standard format for use in a

spreadsheet.

A DSO of this specification would have the following applications:-

• Long term signal observation. As captured data could be saved to disk,

several readings could be taken over time and compared.

• Debugging complex none repeating systems.

• Performance analysis of ADC’s and DAC’s, possible because the unit would

be capable of simultaneously capturing both an analogue channel and an 8

Bit data bus.

• Tracing the source of ‘signal glitches’.

4

1.1) Previous Work

The previous DSO produced by Philip Cupitt was capable of sampling a single

channel at 40MHz, it had no onboard triggering and therefore required an external

trigger source. The system was based on the ‘Hitachi HM530281’ Frame Memory and

the ‘Philips TDA8703’ Flash ADC, the control signals for these two chips were

generated by a series of Programmable Logic Devices (PLD’s), 74 Series logic chips

and a ‘PIC’ microcontroller. This system proved the concept but was not a usable tool

due to the lack of onboard triggering and user selectable sample rates. These

limitations were addressed by this project.

5

2) Theory
2.1) Digital Storage Oscilloscope Operation

A basic block diagram of a conventional DSO can be seen in fig 1.

The analogue signal being monitored is fed into a pre amp, which changes it’s

amplitude so that it falls within the input range of the Analogue to Digital Converter

(ADC) and the trigger detector. When the resulting voltage crosses a threshold set by

the user the trigger unit signals the device to start recording. The ADC samples the

output of the pre amp at regular intervals and the digital output from the ADC is then

stored in consecutive locations in the memory. When the memory is full the recording

is stopped.

The Digital to Analogue Converter (DAC) continuously scans through the

recording producing a repeating analogue signal representing the contents of the

memory, which is sent to the Cathode Ray Tube (CRT) for display. This is required

because the CRT image will fade away if not continuously refreshed.

If changes in the input voltage re-triggers the DSO then the memory is overwritten

with a new recording unless the user puts the system into HOLD mode, Hold mode

allows the user to analyse the signal trace for as long he/she requires.

Pre Amp

Trigger
Detector

ADC Memory DAC

CRT

Analogue
Input

Fig 1. Conventional DSO Block Diagram

Control Logic

6

As the number of samples in any recording is determined by the size of the

memory, changing the sample frequency of the ADC’s enables the user to alter the

length of the recording.

Most modern DSO’s have additional trigger modes that allow the user to make

better use of the available storage space. One of the most important of these is the Pre-

Trigger mode, which allows the user to capture events that occur before the trigger

pulse. This is achieved by the DSO continuously recording the analogue signal until

the trigger pulse is detected. This leaves data from before the trigger point still in the

memory, as can be seen in fig 2.

 By adding a delay between detecting the trigger point and terminating the

recording it is possible to capture data from before and after the trigger point, as

shown in fig 3. This can be very useful as it allows engineers to look at events both

preceding and following an error or glitch that triggers the DSO.

2.2) PC Based Digital Storage Oscilloscope

Digital Storage Oscilloscopes are expensive pieces of equipment. This makes it

unpractical to give to every engineer. To alleviate this problem several manufacturers

have started making DSO modules for PC’s. This dramatically cuts down the cost of a

DSO as the PC monitor can be used for display. Additionally much of the complex

control structure can be transfered into software.

Trigger Point &
End Of Recording

Start Of
Recording

Fig 2. Pre-Trigger

End Of
Recording

Start
Recording

Fig 3. Variable Pre-Trigger

Trigger
Point

7

Because of the relatively low data transfer rates (~500KB/S) that are available

through the parallel port and other suitable IO channels of a PC, it is not possible to

transfer the data directly from the ADC’s to the computer. This approach would also

cause problems due to the non-real time nature of most PC operating systems. To

resolve this problem PC based DSO’s have an onboard memory. This memory is used

to buffer the recorded data so it can be subsequently transferred to the PC at a slower

speed.

A typical commercial PC based DSO costing £500 would be capable of a 2 channel

recording at 25 Mega Samples Per Second (MSPS), in an 8 bit resolution with 8K

sample depth. Although this is considerably cheaper than a standalone DSO of the

same specification, it is still relatively expensive. As with normal DSO’s the small

sample depth is very limiting.

2.3) Logic Analysers

The block diagram of a typical logic analyser can be seen in fig 4.

Buffer

Trigger
Unit

Memory
Controller

Memory Display
Controller

CRT

Digital
Inputs

Fig 4. Logic Analysers Block Diagram

Control Logic

8

Logic analysers record digital data from a bus. This data initially is fed into a

buffer, and then to a trigger unit whish watches the data for a user defined bit pattern.

When this is found the memory controller starts recording the incoming data. When

the memory is full, the recording process is stopped. The display controller now reads

through the stored data and displays it on the CRT as a series of lines, showing how

the state of the bits change with time (See fig 5). Just like DSO’s, logic analysers

usually have a pre-trigger mode so that the user can capture events that occur before

the trigger point. Because of their ability to capture data and display it to the user,

logic analysers are very useful in fault tracing and in the evaluation of digital systems.

Due to their similarities with DSO’s, logic analysers are also available as add on

modules for PC’s. However both the standalone and the PC based systems suffer from

the same small storage depths that plague DSO’s.

2.4) Sample Rates and Aliasing

Nyquist’s Sampling Theorem states:-

“If a signal contains no frequency components above a

frequency fmax the signal can be uniquely represented by equally

spaced samples if the sample frequency fs is greater that twice fmax.

That is, the sampling frequency must satisfy the inequality

fs>2fmax”

Fig 5. Logic Plot Of 8 Bit Counter
MSB 7

6

5

4

3

2

1

LSB 0

9

Fig 6 shows the effect of sampling a 50KHz sin wave, at the Nyquist frequency of

100KHz, and below the Nyquist frequency at 60KHz.

The trace sampled at the Nyquist frequency appears to be a triangle wave at the

same frequency as the original sin wave. However the trace obtained by sampling

below the Nyquist frequency is misinterpreted as a triangle wave at a much lower

frequency, this is caused by aliasing. In most DSO applications to correctly identify

the shape of the waveform it has to be sampled around 10 times faster than the

Nyquist frequency.

DSO’s are often used to record complex waveforms such as video signals. These in

theory, contain components of infinite frequency due to square sync pulses,

suggesting that to sample them correctly you would need to sample at an infinitely

high frequency. Obviously this is not possible. In practice simple signals, such as

square waves can be captured relatively accurately by sampling at 10 times the

fundamental frequency. Therefore complex waveforms like video signals should be

sampled at roughly 10 times the frequency of the fastest event.

-1

-0.5

0

0.5

1

Original 50KHz Sin Wave Sampled At 100KHz (Nyquist Frequency)
Sampled At 60KHz

Fig 6. Aliasing Effects

10

Most faults in digital systems are the result of signal glitches, which can be the

result of cross talk (see fig 26). Unfortunately these glitches are usually only a few

nano seconds in duration. A DSO which samples a waveform at intervals greater than

the length of the glitch is unlikely to detect them.

Obviously the faster a DSO can sample a waveform the better the representation of

the incoming signal, and the more complex the waveform that the DSO can capture.

As technology and speed advances, faster and faster DSO’s are required to debug the

next generation of equipment.

2.5) Storage Depth

The length of a recording by a DSO is determined by the sample speed and the

storage depth available and is as follows:-

As discussed in section 2.4 it is advantageous to use a high sample rate. The higher

the sample rate the shorter the length of the recording for any given storage depth.

Engineers often need to make long recordings at a high sample rate, to stop aliasing.

The solution is to provide a large storage depth, enabling the user to make long, high

frequency recordings. Unfortunately most DSO’s and logic analysers have only

enough memory for a few thousand samples (and in some cases as low as a few

hundred), leading to recording lengths as small as a few micro seconds.

 Although advanced trigger modes like Pre-Trigger and Delayed Trigger make

better use of the available storage the user is still left examining fragments instead of

the whole picture.

(Hz)Frequency Sample
Samples) of(Number Depth Storage(Seconds) Recording ofLength =

11

3) Design
3.1) Initial Concept

Fig 7 shows a simplified block diagram of the project DSO. (There are additional

control signals from the control logic to all parts of the system, which have been left

out for the sake of clarity.)

The principle of operation is relatively simple. The ADC and the logic buffer both

share the same tri-state bus. The control logic selects which one of the two outputs to

the bus, and therefore whether the channel is analogue or digital. The bus is then fed

into the memory so that the data can be recorded. The control logic additionally

monitors the data to watch for a trigger point. This approach eliminates additional

circuitry that would normally be required for triggering and shortens the analogue

signal path, thereby reduceing noise susceptibility. This also provides the ability to

trigger off the digital signal when in logic analyser mode.

In addition to triggering, the control logic also performs all “Glue Logic” functions

and advanced modes such as pre-trigger. When the memories have been filled the

recording is stopped and the data is transferred to the PC via the parallel port.

Control
Logic

Memory

ADC Logic
Buffer

PC
Interface Memory

ADCLogic
Buffer

Analogue
Signal

Analogue
Signal

Logic
Input

Logic
Input

Parallel Port Bus

Data Bus A Data Bus B

Fig 7. System Block Diagram

12

Because the two channels are completely separate from each other they are able to

act independently. For example channel A could be in logic analyser mode while

channel B is in analogue mode. By connecting the two analogue inputs together and

phase shifting the second channel by 180° it is possible to double the effective sample

rate (this can be seen in fig 8). After the data is downloaded into the PC it is

interleaved by the software and the waveform reconstructed. Even though the signal is

sampled at twice the normal frequency the length of the recording is not reduced, as

both memories are being used to store a single waveform.

Fig 8. Interleave Sampling

50KHz Sin Wave
Channel A. Sampled At 500KHz
Channel B. Sampled At 500KHz. 180 Degrees Out Of Phase

13

3.2) Design Overview
3.2.1) Memory

From the DSO specification the following requirements for the memory can be

derived:-

8 Bit wide data bus

3Mbit Storage capacity

40Mbytes/Second Data Rate

Separate “read” and “write” ports

Although separate “read” and “write” ports are not required this would greatly

simplify the design. The Hitachi Frame Memory as used in the last DSO (By Philip

Cupitt) meets these requirements, however it is expensive and very difficult to obtain.

For this reason it was decided to look for an alternative. Frame memories are mainly

used in video applications, such as time base correction and picture in picture. They

are ideally suited to this sort of application due to their large storage capacity, fast

data rates, and separate read and write ports. In addition they are usually highly

integrated, which simplifies the circuit design.

After looking at available devices the Averlogic AL422 was chosen. Like most

frame memories it is based on DRAM technology. DRAM requires special controllers

and provides relatively low data rates. The AL422 avoids these pitfalls by being

heavily integrated. Although the external data bus is only 8 bits wide most frame

memories use much wider internal bus widths. This increases the effective speed due

to parallelism. High speed logic is used to split the internal bus into 8 bit segments

which are then placed on to the output data bus. In addition to this the DRAM

controller and the address generation logic are embedded inside the AL422.

The specific memory location that data is written to is determined by a write

pointer. The value of this pointer can either be incremented or reset to zero (the start

of the memory). However it can’t be moved to a specific location. As a result all write

operations have to be sequential. Frame memories behave like circular buffers in that

after the write pointer reaches the end of the memory it automatically resets to the

14

beginning and overwrites the existing data. Read operations use a similar read pointer.

Because of this frame memories are often called First In First Out Buffers (FIFO’s).

The AL422 uses 3 pins to control write operations. WCLK, /WE, and /WRST.

Data is clocked into the memory on the rising edge of the write clock (WCLK), unless

the write enable line (/WE) is high, in which case the write pointer is not incremented

and the data in not captured. By pulling the write reset pin (/WRST) low and pulsing

the write clock (WCLK) the write pointer is reset to the start of the memory.

Read operations are controlled by 4 pins, RCLK, /RE, /RRST and /OE. By pulsing

the read clock (RCLK) the read pointer is incremented unless the read enable pin

(/RE) is high, causing the read pointer to stop, and new data is not applied to the

output. The read pointer can be reset to the start of the memory by holding the read

reset pin (/RRST) low and pulsing RCLK. The data outputs can be tri-stated by

holding the output enable pin (/OE) low, /OE is fetched on the rising edge of RCLK.

Although handled internally, the DRAM refresh is derived from RCLK or WCLK

(whichever is the faster), because of this in order to maintain data integrity at least one

of these signals MUST be kept running faster than 1MHz.

3.2.2) Analogue To Digital Converter

Analogue to Digital Converters (ADC’s) are used to sample an analogue waveform

and produce a digital representation. Because of the discrete nature of a digital signal

the incoming analogue waveform is quantised to the nearest digital equivalent. The

greater the resolution of the ADC the smaller the quantisation error that is introduced.

For a DSO an 8bit resolution, which provides 256 levels is more than adequate.

Because of the noise problems with the previous DSO (by Philip Cupitt) it was

decided to change from the Philips TDA8703 ADC to the Intersil HI5667 ADC. As

well as having a higher maximum sample rate, the HI5667 allows for separate

analogue and digital power supplies and differential inputs.

15

Most high speed ADC’s utilise a Flash Conversion method, which uses a parallel

array of 2n-1 comparators (where n is the resolution of the ADC in bits). This means

that an 8bit converter would require 255 comparators. This level of complexity not

only increases the cost but also limits the maximum speed at which the converter can

operate. The HI5667 uses a hybrid pipelined Flash Conversion method, where the

conversion is split up into 7 stages with each stage using a 2bit flash converter. This

reduces the number of comparators required to 28. Although this introduces a 7 clock

cycle latency between the analogue signal being sampled and the data appearing on

the outputs. This is acceptable for this application.

3.2.3) Buffer Amplifier

When the DSO is operating in interleave mode the analogue inputs to the two

ADC’s must be connected together. In addition to this the incoming analogue signal

needs buffering. Both of these functions can be achieved with a video op-amp such as

the Elantec EL4332C. This chip has a maximum bandwidth of 300MHz and contains

3 matched op-amps with multiplexed inputs. This makes it ideal for this application

because it can perform both the buffering and the input switching. A single logic

signal is used as an input select for all three op-amps. Unfortunately like most high

bandwidth amplifiers the gain is fixed (in this case at 2).

3.2.4) Control Logic

The previous DSO (by Philip Cupitt) used several Programmable Logic Devices

(PLD’s) and a PIC microcontroller to form the control logic. Because of the increased

complexity of the new DSO it was decided to use an Altera Field Programmable Gate

Array (FPGA). This reduces the chip count and hence increases the reliability. Since

there is only one chip that requires programming it is possible to make the DSO In

System Programmable (ISP).

16

FPGA’s consist of a large number of identical logic cells, each cell containing a

flip flop and some basic combination logic. The cells are arranged in blocks with

programmable interconnects between them. By configuring both the logic cells and

the interconnects it is possible to construct complex logic systems. Because of the

number of programmable connections in an FPGA it is impractical to configure the

device manually. Software tools (such as Altera’s MaxPlusII software) allow the

functionality of a design to be separated from it’s implementation.

The first stage (design) is to define the functional blocks and the connection

between them, each block can then be split into sub sections, allowing complex

system to be split up into small manageable blocks. Apart from simplifying the design

this enables the user to verify and simulate each section of the system independently.

There are three methods that can be used to define the behaviour of a block:-

VHDL

AHDL

Schematic Capture

VHDL and AHDL are both hardware description languages that enable the user to

create a hardware design by simply writing a program. This is a very powerful method

and can create easily scaleable designs. Schematic Capture allows the user to enter a

design by drawing the circuit diagram. To simplify this process various

‘MegaFunctions’ are available which enable the user to quickly create complex blocks

such as comparitors and synchronous counters by entering the required specification.

Once the design stage is completed it is compiled and the resulting information is

passed onto the fitter, which maps the configuration onto the available logic cells in

the target device. Because of the large number of different combinations, random

fitting techniques are used to reduce the time required, this can result in the same

design having different implementations each time it is compiled. However the user

does have the option to assign parts of the design to specific hardware resources, for

example an output can be assigned to a specified device pin, eliminating the need to

redesign the PCB every time the design is recompiled.

17

The final stage in this process is to simulate the design and the implementation.

Because the propagation delay of a circuit is dependant on the target device and how

the design is mapped onto it, it is impossible to calculate the performance of the

system manually. Instead a series of test input patterns are fed into the simulator,

which then generates the resulting output patterns. Because the simulator takes into

account the propagation delays of both the logic cells and the interconnects between

them the performance of the device can be calculated. The simulator is also a valuable

tool for design verification and was used extensively throughout the development of

the DSO.

The Altera chosen is EPF8282A-84, which is a member of the FLEX 8K range. It

is an 84 pin PLCC chip with 68 usable I/O lines. This is more than adequate for this

application and has the advantage that the chip can be socketed for easy development.

Because of the nature of FPGA’s the speed at which they can operate at is dependent

on the design that they are implementing. Although the chip chosen has the slowest

speed grade in the range, it is still capable of running large counters at over 80MHz.

As all the logic that the FPGA will implement runs at 50MHz or lower this will

suffice.

As the whole of the Altera FLEX range is based on SRAM technology, an external

non-volatile memory is required to program the Altera from when the system powers

up. Although this increases the chip count it eliminates the need for specialist

programming hardware that non-volatile FPGA’s often require. The cost of the

external memory is offset by the reduced cost of FPGA compared to their non-volatile

counterparts.

3.2.5) Software

Because of the radically different approach of this new design it was not practical

to adapt the software from the previous DSO. Although this meant completely re-

writing the software it also provided the opportunity to produce a fully functional

32Bit Windows (Win32) application. This has the advantage that it uses the standard

Windows user interface and is therefore relatively intuitive. The resolution that the

18

software renders the traces in is only dependant on the size of the window. As this can

be resized the resolution that traces are displayed in is only limited by the computer

being used, and not the software. To make examining the traces easier, the user can

zoom in on any section of the waveform or pan left or right as needed.

Although the software is a Win32 application it uses direct hardware I/O in order

to talk to the DSO. This is allowed under Windows 95-98 but not under Windows NT,

because WinNT classifies “outp” and “inp” as privileged opt-codes. The next version

of the software should use a device driver to communicate with the hardware. This

would allow the DSO to be used under all versions of Windows.

All the hardware options like sample rate and trigger options are selected from a

capture dialog box, which can be seen in the screen shot below (Fig 9).

 Captured waveforms can be saved to disk in the software’s own custom file

format. This has the advantage of preserving additional information like sample rate

and trigger conditions. The file can be reloaded into the software at a later date for

further examination. The DSO software can also export to a standard Comma

Separated Variable (CSV) file for use with a spreadsheet, however most spreadsheets

Fig 9. DSO Software Screen Shot

19

including Microsoft Excel are not capable of handling the large volume of data

generated, and are therefore limited to displaying a small portion of the data captured.

The software was written in ‘C’ using Visual Studio. The Win32 interface uses

direct API calls for efficiency. Because of the large amount of code (approximately

3200 lines) a modular approach was adopted where related functions are grouped

together. This results in several independent source files each handling a different part

of the program. Each source file has a corresponding header file that contains all the

necessary declarations so that functions in the source file can be called from other

parts of the program. The following source files make up the software:-

Main.c

Gui.c

Gui.rc

Plot_Data.c

DSO_IO.c

P_Port_IO.c

Numeric.c

File_IO.c

Error.c

3.2.5.1) Main.c

This file contains the WinMain() function, which is called by Windows to start

execution of the program. The first task that this function performs is to set up the

global variable hInstance, which is the instance handler (this is used by windows to

keep track of multiple instances of an application). The next step is to initialise the

data storage area and preferences variables. Once this is complete the Show_Gui()

function in Gui.c is called, which launches the user interface and starts the message

loop.

Main.c also contains a global Quit() function, which can be called from any point

in the program during execution. This function closes all open files, stops the message

loop and exits.

20

3.2.5.2) Gui.c And Gui.rc

Graphical user interfaces (GUI’s) under Win32 are based on a messaging system.

When a user performs an action the operating system generates the corresponding

message. For example if the user ticks a check box the application is sent a

BST_CHECKED message. These messages are queued until the application can

process them. Each application has a message loop that checks the queue for pending

messages. Every window or dialogue box has a message handler, when the message

loop finds a message in the queue it is dispatched to the appropriate message handler.

Since almost every event generates a message, the way the handler processes these

messages determines the way the user interface behaves. This can be as simple as

closing a dialogue box when the cancel button is pressed or as complex as drawing an

object using the mouse. In addition to responding to user generated events the

messaging system is used to trigger a re-draw of an applications window whenever

the display area is invalidated, for example when a window is re-sized.

The Show_Gui() is the only global function in the Gui.c file, It initialises the main

window of the program and loads the accelerator table, which is used to translate

keyboard shortcuts into the corresponding message. After this is completed the

message loop is started. It is worth noting that at this point the main window is still

blank, however the user will not see this as Windows immediately sends a

WM_PAINT message that triggers a redraw of the display. Because the graph plotting

routines are very large they have been moved into a separate file called Plot_Data.c.

I/O operations with the hardware can take several seconds and during this time the

control software will be unable to process any messages that enter the queue. This will

cause the program to stop responding and it will appear to have crashed. To solve this

problem a separate thread is spawned. This effectively means that both the message

loop and the hardware I/O will occur in parallel. This also enables the I/O thread to

send progress messages to the GUI thread which are then displayed to the user.

The Gui.rc file contains templates for the dialogue boxes, the accelerator table used

for keyboard shortcuts, application icons, and several small pictures used in the GUI.

21

3.2.5.3) Plot_Data.c

Plot_Data.c contains all the functions required to plot graphs of the captured data.

The Show_Gui() examines the Scope_Data structure to determine what mode the

DSO was in when the traces were captured, and therefore how the data should be

plotted.

The first step is to determine the size of the window. Once this information has

been retrieved with an Application Programmers Interface (API) call the size of the

graphs can be calculated. The usual approach for plotting a graph is to calculate the

position of the points and then connect them with straight lines. Although this is

effective if the user is viewing a small number of data points it can be extremely slow

when the entire data set is viewed. To solve this problem the program uses a different

plotting algorithm when large amounts of data are being displayed. This algorithm

draws a series of vertical lines one pixel wide to represent the range data point within

the single pixel width. Unfortunately this method is not usable when a very small

range is being displayed. Therefore if the user zooms in or out the program

automatically switches between the two plotting modes.

After the data has been plotted the display range and sample frequency are used to

calculate the scale of the axes. The size of the window is then used to calculate how

many axis labels can be drawn. A green vertical line is drawn to indicate the location

of the trigger point when pre-trigger is used, similarly a horizontal line is used to

represent the trigger level.

3.2.5.4) DSO_IO.c

When the user starts a new recording the program spawns off a new thread. This

thread starts execution with the Capture_Thread_Func() function, which calls several

local functions to initialise all the hardware registers to the correct values

corresponding to the settings the user requested. When the recording is complete the

download is started. During this process a series of progress messages are sent to the

GUI for display.

22

3.2.5.5) P_Port_IO.c

P_Port_IO.c provides all the hardware I/O routines required to read and write to

the parallel port registers in addition to some initialisation functions. By separating

these functions from the DSO_IO.c file migration to a device driver model is greatly

simplified. To enable the software to be developed under Windows NT this module is

able to emulate the parallel port registers there by avoiding direct hardware I/O, this

option is selected by setting a compile time parameter.

3.2.5.6) Numeric.c, File_IO.c, And Error.c

File_IO.c contains several functions that are used to save and load the captured

data together with the settings that were used during capture, As all of this

information is contained within a single structure this can be done by simply reading

and writing the entire structure to disk. This file also contains the export function,

which saves the data as a Comma Separated Variable (CSV) ASCII file. This can then

be read by any standard spreadsheet. The format of the CSV file depends on the mode

of the DSO, each channel is either represented by a single column of signed integers

or by 8 columns of single binary digits when the channel is in logic analyser mode.

Error handling is provided by the Error() function in Error.c. Each different type of

error is assigned an error number. In the event that an error occurs this number is

passed to the Error() function, which translates the number into an error message that

is then displayed to the user. Depending on the severity of the error the program either

continues running, terminates with cleanup, or terminates without cleanup. This

enables a single function call to handle everything from simple user errors to critical

failures.

Numeric.c contains several common arithmetic functions that are too large to be

inserted directly into the main body of the code. This file would be the ideal place to

implement a Fast Fourier Transform (FFT) in the future. This would enable the

system to be used as a spectrum analyser.

23

3.2.6) PC Interface

There are several options for interfacing the DSO to the PC:-

Serial Port

Parallel Port

USB

ISA

PCI

Because of the relatively large amount of data that is stored in the DSO the serial

port was discounted because the time required to download the data to the PC would

be unacceptable long. USB is not practical because of it’s complexity. In addition to

this not all PC’s have a USB port. Although fast, PCI and ISA both require internal

connection to the PC and therefore would be difficult to install. The parallel port was

chosen because it has a relatively high data transfer rate, is easy to develop device for,

is user friendly and is usually present on laptops, enabling the DSO to be used in the

field

Unfortunately there are several parallel port operating modes, some of which are

not available on old machines. For simplicity and compatibility it was decided to use

the standard bi-directional mode, which has been available from the days of the 386.

This allows byte wide transfer in either direction and has 5 additional input lines

(Status lines) and 4 output lines (Control lines). Normally the parallel port resides at

0x378 in the PC’s I/O space, although this is not always the case. The DSO software

allows the user to select the appropriate address for the particular parallel port. As

there are only 3 addresses that can be used this is relatively easy. This is especially

useful if the PC being used has multiple ports.

24

3.3) Detailed Design

The circuit diagram for the system can be seen in Fig 10.

3.3.1) FPGA Configuration

Because the FPGA is SRAM based it has to be programmed every time the system

is powered up. There are several methods of accomplishing this, the most suitable for

this application is the Active Serial method. This involves connecting a serial

EEPROM (E2) to the FPGA, and has the advantage that only one user I/O pin is

required. The remaining 2 connections to the E2 are dedicated configuration pins.

Additional configuration pins are tied either high or low to indicate which

configuration scheme is being used.

By using a multiplexor the E2 can either be connected to the FPGA or to a

programming header on the board. It is therefore possible to re-program the memory

chip while it is still in the circuit. The select input to the multiplexor is pulled high by

a 1K resistor and connected to the ISP header. When the programmer is plugged into

the header this line is shorted to GND, this switches the E2 from being connected to

the Altera to being connected to the programmer. After programming is complete the

user only has to cycle the power to the DSO to cause the Altera to read the new

configuration data from the memory chip.

3.3.2) Pre-Trigger Mode

As discussed earlier the ability to record data from before the trigger point can be

very useful when debugging systems. This is accomplished by making the DSO

continuously record the incoming signal, terminating the recording process when a

trigger pulse is detected. This leaves the memory containing data from before the

trigger point. By controlling the time between receiving the trigger pulse and stopping

the recording it is possible to position the trigger point anywhere in the recording.

25

Fig 10. DSO Circuit Diagram

26

This is implemented with a 19 bit counter that is clocked from the same signal as

the FIFO’s, so that when the value in the counter is equal to the size of the memory

the recording is stopped. The amount of pre-trigger required can be set by pre-loading

this counter with a value between 0 (no pre-trigger) and 393216 (the size of the

memory and therefore max pre-trigger). Fortunately 393216 is 0x60000 in HEX, this

means that the logic only has to monitor the top two bits of the counter to know when

to stop the recording.

Unfortunately this approach means that the start of the recording can be anywhere

in the memory. A second 19 bit counter is used to identify the start of the recording in

memory. The counter is reset at the same time as the write pointer on the FIFO’s and

is run from the same clock signal, so that the value stored in the counter is equal to the

location of the write pointer and hence the start point of the recording. Before the data

is transferred to the PC the value of this counter is read and used to re-align the

captured data, as seen in fig 11.

Start MiddleEnd

Start Of
Memory

End Of
Memory

Start Of
Recording

Trigger
Point

Start Middle End

After Rearrangement

Before Rearrangement

Fig 11. Memory Alignment

27

The same technique of monitoring only the two most significant bits is used to

reset the counter when the value equals the size of the memory. Because the counter

includes zero it will count to 0x60001, therefore every time the counter resets it gets

out of sync with write pointer by 1 (this is a cumulative effect). To prevent this the

counter is reset to 1 instead of 0. This trick greatly reduces the complexity of the

counter control logic.

Both of these counters and their associated logic are implemented inside the Altera

FPGA.

3.3.3) Trigger Detection Unit

The trigger unit, which is implemented inside the FPGA, monitors both of the

channels for a valid trigger point (See fig 12). Comparitors determine if the incoming

digital word is greater than, equal to, or less than the values stored in each register. By

changing the values in these registers the user can alter the trigger level. The

comparitors outputs are then fed into the trigger selection logic (See table 1), which

forwards the correct trigger signal to the next stage.

Trig
Sel

Trig
Falling

FIFO A
Logic Mode

FIFO B Logic
Mode

High Speed
Rec

0 0 X X X Ext Trig = 1
0 1 X X X Ext Trig = 0

1 X 1 1 0 Channel A AND Channel B
= Trig Value

1 X 1 0 0 Channel A = Trig Value

1 0 0 0 1 Channel A OR Channel B
> Trig Value

1 1 0 0 1 Channel A OR Channel B
< Trig Value

1 0 0 0 0 Channel A > Trig Value
1 1 0 0 0 Channel A < Trig Value
2 0 X X X Channel B > Trig Value
2 1 X X X Channel B < Trig Value
3 X X X X Immediate Trigger

Analogue
Triggering

Trigger Condition
Trigger Selection Inputs

Notes

External
Triggering

Logic
Triggering

Table 1. Trigger Selection Options

28

Fig 12. Trigger Unit Circuit Diagram

29

Since neither the outputs from the ADC nor the outputs logic buffer chips are

likely to change at exactly the same time, intermediate values can appearing on the

bus. For example a transition from 12 to 10 could cause the value 14 to appear in the

bus, as illustrated in fig 13. This can result in a miss triggering. The solution is to

clock the data synchronously so that the output from the trigger selection unit is only

sampled when the data on the bus is stable. This is done by placing a D-Type flip flop

which is run from the system clock on the output of the trigger circuit.

The final stage in the trigger detection unit converts the ‘level triggering’

behaviour produced by the first stage into ‘edge triggering’. This is accomplished by

only forwarding a 1 if the trigger line has first been 0, so that the output only goes

high when there is a transition from low to high and hence an edge. By settings the

Trig_Sel bus to 0x3 the user can disable triggering and start the recording

immediately.

3.3.4) Clock Generation

It is useful to be able to change the sample frequency, enabling the user to trade off

recording length against sample frequency. In this system the primary clock is

provided by a 50MHz TTL clock generator, which is based on a quartz crystal. This is

fed into the FPGA where it undergoes a programmable divide. This is achieved by

feeding the clock signal into a 5 bit counter, which produces signals at 1/2, 1/4, 1/8, 1/16,

and 1/32 times the original frequency. A software selectable multiplexor is then used to

feed the correct clock signal to the rest of the DSO, as can be seen in fig 14.

As mentioned earlier it is possible to double the effective sample rate by

combining the two channels and phase shifting the second by 180°. This is done by

1 1 0 0

1 1 1 0

1 0 1 0

Start Value

Intermediate Value

End Value

Fig 13. Intermediate Bus Values

= 12

= 14

= 10

30

sending the clock signal for the second channel through a XOR gate, This

programmable invert is used to provide the phase shift.

3.3.5) Tri-State Buses

Several devices including the FPGA and both FIFO’s need to be able to transfer

data to the PC. This is accomplished by using a tri-state bus, as shown in fig 15.

Because the FPGA controls the direction pin on the buffer chip and also the output

enable (/OE) pins on the FIFO’s it acts as a bus arbiter and eliminates contentions.

The buffer is a standard 74LS245, which because of it’s low drive capability

compared to a parallel port, is incapable of causing damage to the PC in the event of a

parallel port bus contention. As this buffer chip is socketed it can easily be replaced if

it is damaged.

FIFO A
Altera
FPGA FIFO B

Buffer
Parallel

Port

Fig 15. Data Output Bus

Tri-State Data Bus

Fig 14. Clock Divider

31

The tri-state buses that the ADCs and the logic buffers connect to are very similar

in operation to the parallel port bus, in this case only the ADC and the logic buffer

output to the bus and both the FPGA and the FIFO monitor the data on the bus.

(Again the /OE lines are controlled by the Altera to avoid bus contentions.)

3.3.6) Parallel Port Interface Logic

The control logic requires many control lines to set clock divide, trigger points, etc.

These are generated by the parallel port interface logic (See fig 16). The top 4 bits of

the parallel port control bus are used as a data bus. Data on this bus is latched into the

controller by pulsing the remaining control lines, this approach prevents signal

glitches on the parallel port from causing abnormal behaviour in the DSO. The output

of this latch is then fed into a decoder to increase the number of available lines. Some

of these lines are used to latch data from the main parallel port data bus into one of

four, 8 bit registers. This provides all the control lines required. The remaining lines

from the decoder are used for the FIFO RCLK and to enable the bus output from the

FPGA.

3.3.7) ADC Operation

When the DSO is in single channel interleave mode both of the ADC’s have to

output the same digital value given the same analogue input. Any difference in digital

output will result in noise, as alternate samples will have different values even if there

is a constant analogue input. The analogue to digital conversion is dependent on 2

reference voltages (one for scale, the other for offset). It was decided to use external

references instead of the ones that are built into the ADC’s, this means that the same

reference voltage could be fed into both converts and therefore minimise this noise.

32

Fig 16. Parallel Port Interface Unit

33

Although the ADC’s can be differentially driven it was not possible to find a suitable

op-amp with differential outputs and a high enough bandwidth. For this reason it was

decided to use a single ended approach. when a 2.5 volt reference fed into the ADC

the full scale input voltages is VDC ±0.5 volts, where VDC is a DC bias. To ensure

correct operation of the ADC the input voltage must be in the following range:-

0.5 < VIn < 4.5

Therefore VDC must be in the range:-

1 < VDC < 4

In this DSO VDC is provided by the second reference voltage generator and has a

value of 1.25volts, giving an input voltage range of:-

0.75 < VIn < 1.75

Fortunately this is within the output range of the buffer amplifier. As this amplifier

has a fixed gain of 2 the input voltage range of the DSO is:-

0.375 < VInput < 0.875

By tying the Data Format Select (DFS) pin on the ADC’s either high or low the

data can be outputted as ‘offset binary’ or ‘two’s complement’. Setting the output

format to ‘offset binary’ greatly reduces the complexity of the trigger logic and

therefore the number of logic cells used in it’s synthesis.

3.3.8) PCB And Power Supplies

To reduce the amount of noise that is present in the analogue signal paths it was

decided to use separate analogue and digital power supplies. This creates a large

amount of electrical isolation between the two parts of the DSO, as apart from a logic

input to the op-amp, the only bridges between the two half’s are the ADC’s, which are

specifically designed to operate from dual supplies. However for correct operation of

the ADC’s the analogue and digital grounds have to be within 0.3 volts of each other.

34

To achieve this with maximum noise immunity the two grounds are completely

separate apart from a small link directly underneath one of the ADC’s. The DSO

requires a 5 volt digital power supply which can source up to 500mA, together with a

±5 volts supply for the analogue components which can source 200mA.

To further reduce noise and crosstalk in the system both sides of the PCB have

ground planes, and suitable decoupling capacitors were placed both physically and

electrically near all microchips. In addition to this both of the analogue inputs and the

external trigger input use BNC connectors, so that screened cable can be used to

connect directly to the DSO. The inputs to the logic analyser are split into two 8 bit

busses and each bit is twisted with it’s own ground wire to reduce crosstalk with

adjacent wires. Fig 17 shows the final PCB.

7 = Logic Analyser Inputs
8 = Altera FPGA
9 = FPGA Configuration E2

10 = Frame Memories
11 = Intersil ADC’s
12 = 50MHz TTL Clock Generator

2

3

4

1

6

5

7
8

9

10 10

7

11 11

12

Fig 17. Picture Of Project DSO

1 = Parallel Port Connector
2 = ISP Connector
3 = External Trigger Connector
4 = Analogue Inputs
5 = Digital Power Connector
6 = Analogue Power Connector

35

4) Results

A Tektronix TDS-380 DSO was used as a reference when evaluating the

performance of the project DSO. Several tests were performed in different operating

modes and at different samples frequencies. All the graphs of waveforms from the

project DSO were produced from screen shots of the DSO software.

4.1) Analogue Performance

The use of both triggering and pre-trigger modes is demonstrated in fig 18, which

shows a 5KHz sin wave sampled at 1.6MHz. The green vertical line shows the

location of the trigger point, where as the horizontal line shows the trigger level that

was used. The two green lines intersect at a point on the waveform, indicating that the

triggering system was functioning correctly.

Fig 19. 5KHz Sin Wave Sampled At 500KHz With Reference DSO

Fig 18. 5KHz Sin Wave Sampled At 1.6MHz Using Project DSO

36

For comparison the same signal was sampled using the reference DSO and the

resulting trace can be seen in fig 19. There is a small amount of noise present in the

trace obtained from the project DSO which is inevitable, however there is noticeably

more noise present in the trace produced by the reference DSO. It is worth noting that

the fig 19 represents the entire storage space of the commercial DSO, where as fig 18

is a 460µS portion of a 250mS recording.

To demonstrate the need for an increased sample depth amplitude modulated sin

wave was captured, this can be seen in fig 20. To reproduce the signal correctly the

sample frequency must be greater than the Nyquist frequency, which in this case is

2MHz, The waveform was sampled at 50MHz so that the shape of the carrier could be

determined. Because of the limited storage depth on commercially available DSO’s it

is not possible to sample at a high enough frequency to avoid aliasing and still observe

the modulation envelope.

Fig 20. Amplitude Modulation Of 1MHz Sin Wave, Sampled at 50MHz

Zoomed Out

Zoomed In

37

Fig 21 shows a 500KHz sin wave and 300KHz square wave sampled

simultaneously at 50MHz. Unfortunately the amount of noise present in the waveform

increased when using both channels. However the noise is within acceptable limits

and still smaller than the noise present on the Reference DSO.

A 500KHz sin wave was sampled at 100MHz to demonstrate the interleaving

capability of the DSO, as shown in fig 22. This introduced a noticeable amount of

noise into the captured signal. By looking at a zoomed in section of the trace it was

clear that alternate samples were slightly offset, the result of two analogue channels

not producing exactly the same digital value given the same analogue input. This

could be the result of minor differences in the performance of the two ADC’s or in the

different channels of the buffer amplifier.

It is possible to re-align the data from the two channels. By averaging both

channels the average DC value of each channel can be found. By shifting the whole of

the second channel by the difference between two DC values, most of the noise

created by the interleaving can be eliminated as seen in fig 23. This technique relies

on the average DC values of both channels being the same, although this is not

necessarily the case if the sample rate is close to the Nyquist frequency. In such a case

Fig 21. 500KHz Sin Wave & 300KHz Square Wave Sampled At 50MHz

38

this method of re-aligning the data should not be used. As the offset between the two

channels is relatively constant a low frequency signal could be used to calibrate the

system before capturing data close to the Nyquist frequency.

Fig 22. 500KHz Sin Wave Sampled At 100MHz Using Interleaving

Zoomed Out

Zoomed In

Fig 23. Affect Of Offset Correction On Interleave Sampling

Before Offset Correction

After Offset Correction

39

4.2) Logic Analyser Performance

To test the performance of the logic analyser the 8 bit data bus of a parallel port

was connected to the 8 most significant bits of the DSO, the remaining 8 bits were

allowed to float high. This provided a quick and versatile method of generating

complex digital signals. Fig 24 shows the parallel port data sampled at 50MHz. The

DSO was set to trigger when the value 0xFF was present on the bus (as indicated by

the green vertical line), a pre-trigger of 100,000 samples was also used. On closer

inspection of the trace significant crosstalk was discovered, this can be seen in fig 25.

Fig 24. Logic Output From A PC Parallel Port Sampled At 50MHz

Fig 25. Crosstalk and Glitches Present In Parallel Port Data

40

To investigate the source of the crosstalk the reference DSO was connected to the

bottom 2 bits of the parallel port while the project DSO was disconnected, the

resulting trace can be seen in fig 26. A considerable amount of crosstalk, undershoot

and overshoot is clearly visible, as the project DSO was not connected at the time the

trace was made, it could not be the cause of the glitches. After some further

investigation the parallel port on the PC was found to be the source. Because the

parallel port is synchronously clocked by the strobe pin, these glitches do not affect

the operation of devices connected to the port. The fact that the project DSO detected

these glitches proves it be a useful tool for debugging digital systems.

Data Bit 1 Data Bit 2

Fig 26. Crosstalk On Parallel Port, Captured Using Reference DSO

41

To demonstrate the combined analogue and logic operation of the DSO the data bus

from the parallel port together with an amplitude modulated sin wave were captured at

50MHz. The DSO was triggered when 0xF was present on the parallel port, in

addition to this the DSO was set to pre-trigger 100,000 samples. This can be seen in

fig 27.

Fig 27. Combined Logic Analyser & Analogue Waveform

42

5) Discussion

The captured waveforms in section 4 show that the DSO has met the project

specification laid down in section 1. In fact the system exceeds the specified

maximum sample rate of 40MHz by 25% when operating in dual channel mode, and

by 250% when operating in single channel mode. Table 2 shows the length of a

recording for the minimum and maximum sample frequencies in each mode, along

with the maximum signal frequency according to Nyquists sampling theory.

The DSO’s large storage depth of 393 thousand samples, and high sample rate

enables large waveforms to be captured in high detail. The system is capable of

capturing nearly 8mS of a signal when sampled at 100MHz. In comparison a standard

commercial DSO could capture roughly 10µS. This makes the project DSO invaluable

for analysing video and other complex signals.

The only programmable component in the system is the serial E2, which holds the

configuration data for the Altera FPGA. Because this component is In System

Programmable (ISP) by simply connecting a programming cable, it is easy for the end

user to change the DSO hardware. This could be used to quickly and cost effectively

produce bug fixes and additional features for the system. In addition to this the user

could, for example re-design the triggering hardware, so that an engineer could target

the DSO for a specific application or situation. This process could be further

simplified if the source code for various standard controller blocks was provided. It

would then be a simple matter to include the block required for a specific situation.

This approach would provide an adaptable system with unparalleled flexibility,

Table 2. Available Sample Frequencies And Recording Lengths

Mode

Max
Sampling
Frequency

(MHz)

Max Signal
Frequency

(MHz)

Recording
Length
(mS)

Min
Sampling
Frequency

(MHz)

Max Signal
Frequency

(KHz)

Recording
Length
(mS)

Single
Channel 100 50 7.9 3.1 1563 252

Dual
Channel 50 25 7.9 1.6 781 252

43

especially as programmer used to connect to the DSO is simply a multiplexor and a

connector, costing only a few pounds, a small price to pay for this level of flexibility.

The DSO connects to the PC using a standard parallel port, however the parallel

port can be at different locations in the I/O space of a PC depending on the

configuration, in addition to this a PC can support up to 3 ports. To resolve this the

user can select which port the DSO is connected to from an easy to use drop down

menu in the control software. However it would possible to make the software auto

detect which port the DSO was connected to. In the present implementation only a

single status bit is used to signal to the PC that the capture is complete. Connecting

one of the unused status bits to one of the data bits would create a feedback path, the

software could detect the presence of this, and therefore the DSO by outputting data to

the data bit and monitoring the status bit. Because all standard parallel port devices

only sample the data bits in the rising edge of the strobe pin this would not affect

normal operation. Since all the status bits are connected to the FPGA for future

expansion this could be implemented by simply reprogramming the system.

When in logic analyser mode the system is triggered when a pre-set value is

present on the bus, however it is sometimes useful to be able to trigger the DSO when

a sequence of values are present on the bus. For example if the system was monitoring

the data bus of a processor the recording could be started when a certain sequence of

code was executed. This can be implemented by storing the trigger sequence in a

series of registers, which are compared to the current value of the data bus. A state

machine could then be used to create a trigger pulse when the sequence was detected.

The design for such a system was completed during the course of the project, however

due to limited logic cell resources in the FPGA it could not be tested and is not

present in the final version.

The total cost of the parts used in the construction of the DSO is approximately

£75. This could significantly be reduced if the system went into volume production.

Labour cost for the actual manufacturing process would be minimal due to the heavy

use of surface mount components, placement of which is usually carried out by

robotic equipment. In comparison a typical commercial PC based DSO module costs

approximately £400, and does not posses the flexibility or capability of this system.

44

5.1) Possible Improvements
5.1.1) Sample Rate

To correctly refresh the DRAM either RCLK or WCLK must be greater than

1MHz. Under the current system RCLK is controlled by the PC, which can not be

relied upon to provide this refresh signal, therefore WCLK must be greater than

1MHz, this imposes a minimum sample frequency. If during sampling RCLK could

be controlled directly by the FPGA, WCLK could be clocked at much lower

frequencies, in addition to this the ADC clock would also have to be kept running

about 1MHz. If both of these criteria were met the DSO could be operated at much

lower sample rates and therefore be used as a data logger. It would also be possible to

implement an external clock input for the logic analyser, as this would be useful when

monitoring synchronous systems.

5.1.2) Triggering

When in logic analyser mode the FPGA creates a trigger pulse when the pre-set

value is present on the bus. To increase the flexibility of the system the ability to

process “don’t care” states should be added. This for example, would enable the

system to trigger off 10xx0x1x. To achieve this a second register could be added,

which would be used as a mask for the incoming data.

It is often useful to remove high frequency components from signals before the

triggering stage, this reduces the probability of triggering from signal glitches. This

could be implemented by only generating a trigger pulse when the signal fulfils the

trigger criteria over several samples.

The current DSO allows the user to place the trigger point anywhere in the

recording by changing the initial value of the pre-trigger counter. If the size of this

counter were increased then the start of the recording could be delayed. This would be

useful in situations where the area of interest occurs a relatively long time after a

trigger point.

45

5.1.3) Input Range

As mentioned previously to avoid clipping, the input signal must be in the range:-

0.375 < VInput < 0.875

The next DSO should implement selectable voltage ranges and variable offsets.

This would enable the DSO to be used with almost any input voltage range. In

addition to this the choice between AC and DC signal coupling should be provided.

This would allow the vertical scale in the DSO software to be calibrated, enabling the

DSO to be used for voltage measurement.

5.1.4) Parallel Port Interface

Most of the time spent communicating with the DSO is taken up downloading the

data from the FIFO’s into the PC. Since the control lines are multiplexed, changing

the state of the FIFO RCLK takes 4 separate writes to the parallel port registers.

Therefore to read one byte from a FIFO takes 9 operations. This could be reduced to 3

by implementing a serial interface to the DSO control registers. So that one of the

parallel port control bits could then be made available for direct connection to the

FIFO RCLK. Although this would slow down some I/O operations this would be

more than compensated for by a 3 fold increase in download speed.

5.1.5) FPGA Migration

The final design uses 86% of the available logic cells in the FPGA, before the

above improvements are implemented the design should be migrated to a larger

FPGA with more resources.

The Altera EPF8636A would be an ideal choice as it has over twice the number of

logic cells and available in the same PLCC package as the current FPGA. This would

require a small modification to the PCB as 8 of the pin assignments are different.

Migration of the FPGA design would be a simple matter of recompiling the source

files.

46

5.1.6) Software

By setting both /WRST and /RRST the FIFO could be used to transport data from

the ADC directly to the parallel port. This would enable the software to provide a real

time display of the signal being applied to the analogue input, this would greatly

reduce the time required to set up the DSO for a specific application. Because of the

flexible nature of the current design it would be possible to implement this without re-

programming the FPGA or performing any hardware modifications.

In addition to acting as a DSO and a logic analyser the system could also be used

as a spectrum analyser by implementing a Fast Fourier Transform (FFT) algorithm.

As such algorithms are readily available this would be relatively easy to accomplish.

Because the control software uses direct hardware access to control the DSO it is

not compatible with Windows NT. By converting the I/O routines to a device driver,

compatibility with all known versions of Windows could be implemented. As the

software is modular this could be achieved relatively easily.

47

6) Conclusion

The aim of the project was to design and build a PC based DSO, which has been

achieved by using an FPGA. As well as simplifying the design this has enabled the

following features to be added:-

Variable Pre-Trigger

Variable Sample Rates

Versatile Triggering System

Dual Channel Operation (50MHz)

High Speed Single Channel Operation (100MHz)

16 Bit Logic Analyser

Mixed Operation (1 Analogue Channel + 8Bit Logic Analyser)

3Mbit Storage Depth Per Channel

In System Programmable (ISP)

Windows Based GUI

This approach has resulted in great flexibility and expandability. Thanks to ISP, the

DSO can now be targeted specifically at the system that it is monitoring.

The limited storage depth available on commercial DSO’s greatly restricts their

usefulness. In comparison the large storage depth of the project DSO (3MBits) allows

almost 8mS to be captured at the maximum sample frequency. This enables the

system to capture more than a whole video frame or to correctly sample an AM

signal. The DSO has a maximum sample rate of 100MHz, which is comparable to

most standalone systems and is much greater than that available on PC based systems.

This allows a 50MHz signal to be sampled without aliasing, and 10MHz signals to be

accurately represented. The ability to change the sample frequency enables the user

can make even better use of the available storage depth, to extend the length of the

recording.

As technology progresses embedded processors are becoming more and more

common, which in turn means that a system that in the past would have been

completely analogue now has digital components. To examine and debug these

systems engineers have to use separate DSO’s and Logic Analysers. Apart from the

48

additional cost of two separate pieces of equipment, this also creates problems in that

it is not possible to completely synchronise the two systems. The project DSO solves

this problem by integrating the two pieces of equipment into a single system, and

combining it with a large sample depth.

Although the DSO is a useful tool in its current state, by implementing the

following improvements the system could be transformed into one of the most

versatile pieces of diagnostic equipment available.

Hardware Improvements:-

• Migration to larger FPGA

• Enhanced triggering

� Don’t Care states

� High Frequency Reject

• Input voltage range selection and calibration

• Parallel Port interface optimisation

• Creation of additional modules for the FPGA, this would allow the user to

target the DSO for a specific application simply be adding the required

modules.

Software Improvements:-

• Implementation of Fast Fourier Transform (FFT)

• Real time display

• Windows Device Driver

In conclusion the project has succeeded in producing a useful tool for the analysis

of complex high speed analogue and digital signals.

49

7) References

1. ‘1210CSN’ Data Sheet

AEL Crystals Ltd, 1997

2. ‘Configuring FLEX 8000 Devices’

‘Designing with FLEX 8000 Devices’

‘MAX + PLUS II’

‘Operating Requirements For Altera Devices’

‘Altera Programming Hardware’

‘Altera Device Package Information’

‘FLEX 8000 Programmable Logic Device Family’ Data Sheet

Altera Corporation, 1999

3. ‘FPGA Configurator Programming Kit (Enhanced)’ Data Sheet

‘FPGA Configuration EEPROM Programming Specification’ Data Sheet

‘FPGA Configuration EEPROM Memory’ Data Sheet

Atmel Corporation, 1999

4. ‘AL422’ Data Sheet

Averlogic, 1999

5. Baxendale. P.R.

Swift, J.S.

Microprocessor Systems – 4H Course Notes

6. Cupitt, P.L.

‘Digital Storage Oscilloscope’

University Of Durham, 1998

50

7. Gottfried, B

‘Schaum’s Outlines - Programming With C’

McGraw-Hill, 1996

8. ‘EL4332C’ Data Sheet

Elantec, 1996

9. ‘Semiconductor Data CD-Rom’

Farnell Components, 1999

10. ‘HI5667’ Data Sheet

Intersil, 1999

11. Mellor, J.E.

Advanced Digital Electronics – 4H Course Notes

12. ‘MECL system Design Handbook’

Motorola Inc. 1983

13. Microsoft Developer Network Library

Microsoft Corporation, 1998

14. Peacock, C

‘Interfacing the Standard Parallel Port’

‘Interfacing the Enhanced Parallel Port V1.0’

‘Interfacing the Extended Capabilities Port v1.0’

http://www.senet.com.au/~cpeacock

15. Rice, I.J.

‘Frame Grabber’

University of Limerick, 1998

http://www.senet.com.au/~cpeacock

