Signal and Power Isolated RS-485 Transceiver with ± 15 kV ESD Protection

FEATURES

Isolated RS-485/RS-422 transceiver, configurable as half or full duplex
isoPower ${ }^{\otimes}$ integrated isolated dc-to-dc converter ± 15 kV ESD protection on RS-485 input/output pins
Complies with ANSI/TIA/EIA-485-A-98 and ISO 8482:1987(E)
ADM2582E data rate: 16 Mbps
ADM2587E data rate: $\mathbf{5 0 0}$ kbps
5 V or 3.3 V operation
Connect up to 256 nodes on one bus
Open- and short-circuit, fail-safe receiver inputs
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Thermal shutdown protection
Safety and regulatory approvals
UL recognition: $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
Safety and regulatory approvals (pending)
VDE Certificates of Conformity
DIN EN 60747-5-2 (VDE 0884 Rev. 2): 2003-01
$\mathrm{V}_{\text {IORM }}=560 \mathrm{~V}$ peak
Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Highly integrated, 20-lead, wide-body SOIC package

APPLICATIONS

Isolated RS-485/RS-422 interfaces
Industrial field networks
Multipoint data transmission systems

GENERAL DESCRIPTION

The ADM2582E/ADM2587E are fully integrated signal and power isolated data transceivers with $\pm 15 \mathrm{kV}$ ESD protection and are suitable for high speed communication on multipoint transmission lines. The ADM2582E/ADM2587E include an integrated isolated dc-to-dc power supply, which eliminates the need for an external dc-to-dc isolation block.
They are designed for balanced transmission lines and comply with ANSI/TIA/EIA-485-A-98 and ISO 8482:1987(E).

The devices integrate Analog Devices, Inc., iCoupler technology to combine a 3-channel isolator, a three-state differential line driver, a differential input receiver, and Analog Devices isoPower dc-todc converter into a single package. The devices are powered by a single 5 V or 3.3 V supply, realizing a fully integrated signal and power isolated RS-485 solution.

Figure 1.

The ADM2582E/ADM2587E driver has an active high enable. An active low receiver enable is also provided, which causes the receiver output to enter a high impedance state when disabled.
The devices have current limiting and thermal shutdown features to protect against output short circuits and situations where bus contention may cause excessive power dissipation. The parts are fully specified over the industrial temperature range and are available in a highly integrated, 20-lead, widebody SOIC package.

The ADM2582E/ADM2587E contain isoPower technology that uses high frequency switching elements to transfer power through the transformer. Special care must be taken during printed circuit board (PCB) layout to meet emissions standards. Refer to Application Note AN-0971, Control of Radiated Emissions with isoPower Devices, for details on board layout considerations.

[^0]
ADM2582E/ADM2587E

TABLE OF CONTENTS

Features1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
ADM2582E Timing Specifications 4
ADM2587E Timing Specifications 4
ADM2582E/ADM2587E Package Characteristics 4
ADM2582E/ADM2587E Regulatory Information 5
ADM2582E/ADM2587E Insulation and Safety-Related Specifications 5
ADM2582E/ADM2587E VDE 0884 Insulation Characteristics (Pending) 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 8
Test Circuits 12
REVISION HISTORY
9/10—Rev. 0 to Rev. A
Changes to Features Section 1
Changes to Differential Output Voltage, Loaded Parameter,
Table 1 3
Changes to Table 5 5
Added Table 6; Renumbered Sequentially 5
Change to Pin 8 Description, Table 11 7
Changes to Figure 5 and Figure 6 8
Changes to Table 13 and Table 14 14
Switching Characteristics 13
Circuit Description 14
Signal Isolation 14
Power Isolation 14
Truth Tables. 14
Thermal Shutdown 14
Open- and Short-Circuit, Fail-Safe Receiver Inputs 14
DC Correctness and Magnetic Field Immunity 15
Applications Information 16
PCB Layout 16
EMI Considerations 16
Insulation Lifetime. 16
Isolated Power Supply Considerations 17
Typical Applications 19
Outline Dimensions 20
Ordering Guide 20

SPECIFICATIONS

All voltages are relative to their respective ground; $3.0 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted.

Table 1.

[^1]
ADM2582E/ADM2587E

ADM2582E TIMING SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DRIVER						
Maximum Data Rate		16			Mbps	
Propagation Delay, Low to High	topLH		63	100	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$, see Figure 25 and Figure 29
Propagation Delay, High to Low	$\mathrm{t}_{\text {DPHL }}$		64	100	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{L_{1}}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$, see Figure 25 and Figure 29
Output Skew	$\mathrm{t}_{\text {skew }}$		1	8	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{L 2}=100 \mathrm{pF}$, see Figure 25 and Figure 29
Rise Time/Fall Time	$\mathrm{t}_{\mathrm{tr},} \mathrm{t}_{\text {DF }}$			15	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$, see Figure 25 and Figure 29
Enable Time	$\mathrm{tzL}_{\text {L }}, \mathrm{t}_{\text {z }}$			120	ns	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 26 and Figure 31
Disable Time	$\mathrm{t}_{\mathrm{Lz}}, \mathrm{t}_{\text {Hz }}$			150	ns	$\mathrm{R}_{\mathrm{L}}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 26 and Figure 31
RECEIVER						
Propagation Delay, Low to High	$\mathrm{t}_{\text {RPL }}$		94	110	ns	$C_{L}=15 \mathrm{pF}$, see Figure 27 and Figure 30
Propagation Delay, High to Low	$\mathrm{t}_{\text {RPHL }}$		95	110	ns	$C_{L}=15 \mathrm{pF}$, see Figure 27 and Figure 30
Output Skew ${ }^{1}$	$\mathrm{t}_{\text {SkEw }}$		1	12	ns	$C_{L}=15 \mathrm{pF}$, see Figure 27 and Figure 30
Enable Time	$\mathrm{tzL}^{\text {, }}$ tzH			15	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{L}=15 \mathrm{pF}$, see Figure 28 and Figure 32
Disable Time	tız, thz			15	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{L}=15 \mathrm{pF}$, see Figure 28 and Figure 32

${ }^{1}$ Guaranteed by design.

ADM2587E TIMING SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DRIVER						
Maximum Data Rate		500			kbps	
Propagation Delay, Low to High	$\mathrm{t}_{\text {DPLH }}$	250	503	700	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$, see Figure 25 and Figure 29
Propagation Delay, High to Low	tDPHL	250	510	700	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{L 2}=100 \mathrm{pF}$, see Figure 25 and Figure 29
Output Skew	$\mathrm{t}_{\text {SkEw }}$		7	100	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{L 1}=C_{L 2}=100 \mathrm{pF}$, see Figure 25 and Figure 29
Rise Time/Fall Time	$t_{\text {DR, }}, t_{\text {DF }}$	200		1100	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{L 1}=C_{L 2}=100 \mathrm{pF}$, see Figure 25 and Figure 29
Enable Time	$\mathrm{tzL}_{\text {L }} \mathrm{t}_{\text {z }}$			2.5	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 26 and Figure 31
Disable Time	tız, thz			200	ns	$\mathrm{R}_{\mathrm{L}}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 26 and Figure 31
RECEIVER						
Propagation Delay, Low to High	$\mathrm{t}_{\text {RPL }}$		91	200	ns	$C_{L}=15 \mathrm{pF}$, see Figure 27 and Figure 30
Propagation Delay, High to Low	$\mathrm{t}_{\text {RPHL }}$		95	200	ns	$\mathrm{C}_{L}=15 \mathrm{pF}$, see Figure 27 and Figure 30
Output Skew	tskew			30	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, see Figure 27 and Figure 30
Enable Time	$\mathrm{tzL}^{\text {, }}$ tz ${ }_{\text {z }}$			15	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, see Figure 28 and Figure 32
Disable Time	$\mathrm{t}_{\mathrm{Lz}}, \mathrm{t}_{\mathrm{Hz}}$			15	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{L}=15 \mathrm{pF}$, see Figure 28 and Figure 32

ADM2582E/ADM2587E PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		3		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	Cl_{1}		4		pF	
Input IC Junction-to-Case Thermal Resistance	θ_{JcI}		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
Output IC Junction-to-Case Thermal Resistance	$\theta_{\text {лсо }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside

[^2]
ADM2582E/ADM2587E REGULATORY INFORMATION

Table 5. ADM2582E/ADM2587E Approvals

Organization	Approval Type	Notes
UL	Recognized under the Component Recognition Program of Underwriters Laboratories, Inc.	In accordance with UL 1577, each ADM2582E/ADM2587E is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 second.

Table 6. Pending ADM2582E/ADM2587E Approvals

Organization	Approval Type	Notes
VDE	To be certified according to DIN EN 60747-5-2 (VDE 0884 Rev. 2): 2003-01	In accordance with DIN EN 60747-5-2, each ADM2582E/ADM2587E is proof tested by applying an insulation test voltage \geq 1050 V PEAK for

ADM2582E/ADM2587E INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 7.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage	$\mathrm{L}(101)$	2500	Vrms	1-minute duration Minimum External Air Gap (Clearance)
	$\mathrm{L}(102)$	>8.0	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	mm	Measured from input terminals to output terminals, shortest distance along body		
Minimum Internal Gap (Internal Clearance)	0.017 min	mm	Insulation distance through insulation DIN IEC 112/VDE 0303-1	
Tracking Resistance (Comparative Tracking Index) Isolation Group	CTI	>175	V	Material Group (DIN VDE 0110: 1989-01, Table 1)

ADM2582E/ADM2587E VDE 0884 INSULATION CHARACTERISTICS (PENDING)

This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by means of protective circuits.

Table 8.

Description	Conditions	Symbol	Characteristic	Unit
CLASSIFICATIONS Installation Classification per DIN VDE 0110 for Rated Mains Voltage ≤ 150 V rms ≤ 300 V rms $\leq 400 \mathrm{~V}$ rms Climatic Classification Pollution Degree	DIN VDE 0110, see Table 1		I to IV I to III I to \|l 40/85/21 2	
VOLTAGE Maximum Working Insulation Voltage Input-to-Output Test Voltage Method b1 Method a After Environmental Tests, Subgroup 1 After Input and/or Safety Test, Subgroup 2/Subgroup 3 Highest Allowable Overvoltage	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }} 100 \%$ production tested, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ $\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ Transient overvoltage, $\mathrm{t}_{\text {R }}=10 \mathrm{sec}$	Viorm $V_{\text {PR }}$ $V_{T R}$	$\begin{aligned} & 560 \\ & 1050 \\ & 896 \\ & 672 \\ & 4000 \end{aligned}$	V peak V peak \checkmark peak \checkmark peak V peak
SAFETY-LIMITING VALUES Case Temperature Input Current Output Current Insulation Resistance at T_{s}	Maximum value allowed in the event of a failure $\mathrm{V}_{10}=500 \mathrm{~V}$	T_{s} Is, input Is, output Rs	$\begin{aligned} & 150 \\ & 265 \\ & 335 \\ & >10^{9} \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mA Ω

ADM2582E/ADM2587E

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. All voltages are relative to their respective ground.

Table 9.

Parameter	Rating
Vcc	-0.5 V to +7 V
Digital Input Voltage (DE, $\overline{\mathrm{RE}, ~ T x D) ~}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Digital Output Voltage (RxD)	-0.5 V to V DD +0.5 V
Driver Output/Receiver Input Voltage	-9 V to +14 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD (Human Body Model) on	$\pm 15 \mathrm{kV}$
\quad A, B, Y, and Z pins	
ESD (Human Body Model) on Other Pins	$\pm 2 \mathrm{kV}$
Lead Temperature	
\quad Soldering (10 sec)	$260^{\circ} \mathrm{C}$
\quad Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
\quad Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 10. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Reference Standard
AC Voltage Bipolar Waveform	424	V peak	50-year minimum lifetime
Unipolar Waveform Basic Insulation	600	V peak	Maximum approved working voltage per IEC 60950-1 (pending)
DC Voltage	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10 (pending)
Reinforced Insulation	600	V peak	Maximum approved working voltage per IEC 60950-1 (pending)
560	V peak	Maximum approved working voltage per IEC 60950-1 and	
VDEV 0884-10			
(pending)			

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 11. Pin Function Description

Pin No.	Mnemonic	Description
1	GND_{1}	Ground, Logic Side.
2	V cc	Logic Side Power Supply. It is recommended that a $0.1 \mu \mathrm{~F}$ and a $10 \mu \mathrm{~F}$ decoupling capacitor be fitted between Pin 2 and Pin 1.
3	GND_{1}	Ground, Logic Side.
4	RxD	Receiver Output Data. This output is high when $(A-B)>200 \mathrm{mV}$ and low when $(A-B)<-200 \mathrm{mV}$. The output is tristated when the receiver is disabled, that is, when $\overline{\mathrm{RE}}$ is driven high.
5	$\overline{\mathrm{RE}}$	Receiver Enable Input. This is an active-low input. Driving this input low enables the receiver; driving it high disables the receiver.
6	DE	Driver Enable Input. Driving this input high enables the driver; driving it low disables the driver.
7	TxD	Driver Input. Data to be transmitted by the driver is applied to this input.
8	V cc	Logic Side Power Supply. It is recommended that a $0.1 \mu \mathrm{~F}$ and a $0.01 \mu \mathrm{~F}$ decoupling capacitor be fitted between Pin 8 and Pin 9.
9	GND_{1}	Ground, Logic Side.
10	GND_{1}	Ground, Logic Side.
11	GND_{2}	Ground, Bus Side.
12	$\mathrm{V}_{\text {ISoout }}$	Isolated Power Supply Output. This pin must be connected externally to $\mathrm{V}_{\text {Isoin. }}$. It is recommended that a reservoir capacitor of $10 \mu \mathrm{~F}$ and a decoupling capacitor of $0.1 \mu \mathrm{~F}$ be fitted between Pin 12 and $\operatorname{Pin} 11$.
13	Y	Driver Noninverting Output
14	GND_{2}	Ground, Bus Side.
15	Z	Driver Inverting Output
16	GND_{2}	Ground, Bus Side.
17	B	Receiver Inverting Input.
18	A	Receiver Noninverting Input.
19	VISOIN	Isolated Power Supply Input. This pin must be connected externally to $\mathrm{V}_{\text {ISoout. It }}$ is recommended that a $0.1 \mu \mathrm{~F}$ and a $0.01 \mu \mathrm{~F}$ decoupling capacitor be fitted between Pin 19 and Pin 20.
20	GND_{2}	Ground, Bus Side.

ADM2582E/ADM2587E

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. ADM2582E Supply Current (Icc) vs. Temperature $($ Data Rate $=16 \mathrm{Mbps}, D E=3.3 \mathrm{~V}, \mathrm{~V}$ cc $=3.3 \mathrm{~V})$

Figure 4. ADM2582E Supply Current (Icc) vs. Temperature (Data Rate $=16 \mathrm{Mbps}, D E=5 \mathrm{~V}, V_{c c}=5 \mathrm{~V}$)

Figure 5. ADM2587E Supply Current (Icc) vs. Temperature (Data Rate $\left.=500 \mathrm{kbps}, D E=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$

Figure 6. ADM2587E Supply Current (Icc) vs. Temperature (Data Rate $=500 \mathrm{kbps}, D E=3.3 \mathrm{~V}, V_{C C}=3.3 \mathrm{~V}$)

Figure 7. ADM2582E Differential Driver Propagation Delay vs. Temperature

Figure 8. ADM2587E Differential Driver Propagation Delay vs. Temperature

Figure 9. ADM2582E Driver Propagation Delay

Figure 10. ADM2587E Driver Propagation Delay

Figure 11. Receiver Output Current vs. Receiver Output High Voltage

Figure 12. Receiver Output Current vs. Receiver Output Low Voltage

Figure 13. Receiver Output High Voltage vs. Temperature

Figure 14. Receiver Output Low Voltage vs. Temperature

ADM2582E/ADM2587E

Figure 15. ADM2582E Receiver Propagation Delay

Figure 16. ADM2587E Receiver Propagation Delay

Figure 17. ADM2582E Receiver Propagation Delay vs. Temperature

Figure 18. ADM2587E Receiver Propagation Delay vs. Temperature

Figure 19. ADM2582E Isolated Supply Voltage vs. Temperature ($V_{C C}=3.3 \mathrm{~V}$, Data Rate $=16 \mathrm{Mbps}$)

Figure 20. ADM2582E Isolated Supply Voltage vs. Temperature $\left(V_{c c}=5 \mathrm{~V}\right.$, Data Rate $\left.=16 \mathrm{Mbps}\right)$

ADM2582E/ADM2587E

Figure 21. ADM2582E Isolated Supply Current vs. Temperature ($V_{c c}=3.3 \mathrm{~V}$, Data Rate $=16 \mathrm{Mbps}$)

Figure 22. ADM2587E Isolated Supply Current vs. Temperature (Vcc $=3.3$ V, Data Rate $=500 \mathrm{kbps}$)

ADM2582E/ADM2587E

TEST CIRCUITS

Figure 23. Driver Voltage Measurement

Figure 24. Driver Voltage Measurement

Figure 25. Driver Propagation Delay

Figure 26. Driver Enable/Disable

Figure 27. Receiver Propagation Delay

Figure 28. Receiver Enable/Disable

SWITCHING CHARACTERISTICS

$\mathbf{t}_{\text {SKEW }}=\left|\mathrm{t}_{\text {DPHL }}-\mathrm{t}_{\text {DPLH }}\right|$
Figure 29. Driver Propagation Delay, Rise/Fall Timing

Figure 31. Driver Enable/Disable Timing

Figure 30. Receiver Propagation Delay

Figure 32. Receiver Enable/Disable Timing

ADM2582E/ADM2587E

CIRCUIT DESCRIPTION

SIGNAL ISOLATION

The ADM2582E/ADM2587E signal isolation is implemented on the logic side of the interface. The part achieves signal isolation by having a digital isolation section and a transceiver section (see Figure 1). Data applied to the TxD and DE pins and referenced to logic ground $\left(\mathrm{GND}_{1}\right)$ are coupled across an isolation barrier to appear at the transceiver section referenced to isolated ground $\left(\mathrm{GND}_{2}\right)$. Similarly, the single-ended receiver output signal, referenced to isolated ground in the transceiver section, is coupled across the isolation barrier to appear at the RXD pin referenced to logic ground.

POWER ISOLATION

The ADM2582E/ADM2587E power isolation is implemented using an isoPower integrated isolated dc-to-dc converter. The dc-to-dc converter section of the ADM2582E/ADM2587E works on principles that are common to most modern power supplies. It is a secondary side controller architecture with isolated pulsewidth modulation (PWM) feedback. Vcc power is supplied to an oscillating circuit that switches current into a chip-scale air core transformer. Power transferred to the secondary side is rectified and regulated to 3.3 V . The secondary ($\mathrm{V}_{\text {Iso }}$) side controller regulates the output by creating a PWM control signal that is sent to the primary $\left(\mathrm{V}_{\mathrm{Cc}}\right)$ side by a dedicated iCoupler data channel. The PWM modulates the oscillator circuit to control the power being sent to the secondary side. Feedback allows for significantly higher power and efficiency.

TRUTH TABLES

The truth tables in this section use the abbreviations found in Table 12.

Table 12. Truth Table Abbreviations

Letter	Description
H	High level
L	Low level
X	Don't care
Z	High impedance (off)
NC	Disconnected

Table 13. Transmitting (see Table 12 for Abbreviations)

Inputs		Outputs	
DE	TxD	Y	Z
H	H	H	L
H	L	L	H
L	X	Z	Z
X	X	Z	Z

Table 14. Receiving (see Table 12 for Abbreviations)

Inputs		Output
A-B	$\overline{\mathbf{R E}}$	RxD
$>-0.03 \mathrm{~V}$	L or NC	H
$<-0.2 \mathrm{~V}$	L or NC	L
$-0.2 \mathrm{~V}<\mathrm{A}-\mathrm{B}<-0.03 \mathrm{~V}$	L or NC	X
Inputs open	L or NC	H
X	H	Z

THERMAL SHUTDOWN

The ADM2582E/ADM2587E contain thermal shutdown circuitry that protects the parts from excessive power dissipation during fault conditions. Shorting the driver outputs to a low impedance source can result in high driver currents. The thermal sensing circuitry detects the increase in die temperature under this condition and disables the driver outputs. This circuitry is designed to disable the driver outputs when a die temperature of $150^{\circ} \mathrm{C}$ is reached. As the device cools, the drivers are reenabled at a temperature of $140^{\circ} \mathrm{C}$.

OPEN- AND SHORT-CIRCUIT, FAIL-SAFE RECEIVER INPUTS

The receiver inputs have open- and short-circuit, fail-safe features that ensure that the receiver output is high when the inputs are open or shorted. During line-idle conditions, when no driver on the bus is enabled, the voltage across a terminating resistance at the receiver input decays to 0 V . With traditional transceivers, receiver input thresholds specified between -200 mV and +200 mV mean that external bias resistors are required on the A and B pins to ensure that the receiver outputs are in a known state. The short-circuit, fail-safe receiver input feature eliminates the need for bias resistors by specifying the receiver input threshold between -30 mV and -200 mV . The guaranteed negative threshold means that when the voltage between A and B decays to 0 V , the receiver output is guaranteed to be high.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

The digital signals transmit across the isolation barrier using iCoupler technology. This technique uses chip-scale transformer windings to couple the digital signals magnetically from one side of the barrier to the other. Digital inputs are encoded into waveforms that are capable of exciting the primary transformer winding. At the secondary winding, the induced waveforms are decoded into the binary value that was originally transmitted.

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $1 \mu \mathrm{~s}$, periodic sets of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than approximately $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case, the isolator output is forced to a default state by the watchdog timer circuit.

This situation should occur in the ADM2582E/ADM2587E devices only during power-up and power-down operations. The limitation on the ADM2582E/ADM2587E magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur.

The 3.3 V operating condition of the ADM2582E/ADM2587E is examined because it represents the most susceptible mode of operation. The pulses at the transformer output have an amplitude of $>1.0 \mathrm{~V}$. The decoder has a sensing threshold of about 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \pi r_{n} 2 ; n=1,2, \ldots, \mathrm{~N}
$$

where:
β is magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the nth turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADM2582E/ ADM2587E and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 33.

Figure 33. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse (and is of the worst-case polarity), it reduces the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , which is still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADM2582E/ADM2587E transformers. Figure 34 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown in Figure 34, the ADM2582E/ ADM2587E are extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example, a 0.5 kA current must be placed 5 mm away from the ADM2582E/ADM2587E to affect component operation.

Figure 34. Maximum Allowable Current for Various Current-toADM2582E/ADM2587E Spacings
Note that in combinations of strong magnetic field and high frequency, any loops formed by printed circuit board (PCB) traces can induce error voltages sufficiently large to trigger the thresholds of succeeding circuitry. Take care in the layout of such traces to avoid this possibility.

ADM2582E/ADM2587E

APPLICATIONS INFORMATION

PCB LAYOUT

The ADM2582E/ADM2587E isolated RS-422/RS-485 transceiver contains an isoPower integrated dc-to-dc converter, requiring no external interface circuitry for the logic interfaces. Power supply bypassing is required at the input and output supply pins (see Figure 35). The power supply section of the ADM2582E/ ADM2587E uses an 180 MHz oscillator frequency to pass power efficiently through its chip-scale transformers. In addition, the normal operation of the data section of the iCoupler introduces switching transients on the power supply pins.
Bypass capacitors are required for several operating frequencies. Noise suppression requires a low inductance, high frequency capacitor, whereas ripple suppression and proper regulation require a large value capacitor. These capacitors are connected between Pin $1\left(\mathrm{GND}_{1}\right)$ and Pin $2\left(\mathrm{~V}_{\mathrm{CC}}\right)$ and Pin $8\left(\mathrm{~V}_{\mathrm{CC}}\right)$ and Pin $9\left(\mathrm{GND}_{1}\right)$ for V_{Cc}. The $\mathrm{V}_{\text {Isoin }}$ and $\mathrm{V}_{\text {Isoout }}$ capacitors are connected between Pin $11\left(\mathrm{GND}_{2}\right)$ and Pin 12 ($\mathrm{V}_{\text {Isoout }}$) and Pin 19 (Visoin) and Pin $20\left(\mathrm{GND}_{2}\right)$. To suppress noise and reduce ripple, a parallel combination of at least two capacitors is required. The recommended capacitor values are $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$. The recommended best practice is to use a very low inductance ceramic capacitor, or its equivalent, for the smaller value. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 10 mm .

Figure 35. Recommended PCB Layout
In applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the absolute maximum ratings for the device, thereby leading to latch-up and/or permanent damage.

The ADM2582E/ADM2587E dissipate approximately 650 mW of power when fully loaded. Because it is not possible to apply a heat sink to an isolation device, the devices primarily depend on heat dissipation into the PCB through the GND pins. If the devices are used at high ambient temperatures, provide a thermal path from the GND pins to the PCB ground plane. The board layout in Figure 35 shows enlarged pads for Pin 1, Pin 3, Pin 9, Pin 10, Pin 11, Pin 14, Pin 16, and Pin 20. Implement multiple vias from the pad to the ground plane to reduce the temperature inside the chip significantly. The dimensions of the expanded pads are at the discretion of the designer and dependent on the available board space.

EMI CONSIDERATIONS

The dc-to-dc converter section of the ADM2582E/ADM2587E components must, of necessity, operate at very high frequency to allow efficient power transfer through the small transformers. This creates high frequency currents that can propagate in circuit board ground and power planes, causing edge and dipole radiation. Grounded enclosures are recommended for applications that use these devices. If grounded enclosures are not possible, good RF design practices should be followed in the layout of the PCB. See Application Note AN-0971, Control of Radiated Emissions with isoPower Devices, for more information.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. Analog Devices conducts an extensive set of evaluations to determine the lifetime of the insulation structure within the ADM2582E/ADM2587E.

Accelerated life testing is performed using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined, allowing calculation of the time to failure at the working voltage of interest. The values shown in Table 10 summarize the peak voltages for 50 years of service life in several operating conditions. In many cases, the working voltage approved by agency testing is higher than the 50 -year service life voltage. Operation at working voltages higher than the service life voltage listed leads to premature insulation failure.

The insulation lifetime of the ADM2582E/ADM2587E depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates, depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 36, Figure 37, and Figure 38 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. A 50 -year operating lifetime under the bipolar ac condition determines the Analog Devices recommended maximum working voltage.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 10 can be applied while maintaining the 50 -year minimum lifetime, provided the voltage conforms to either the unipolar ac or dc voltage cases. Any crossinsulation voltage waveform that does not conform to Figure 37 or Figure 38 should be treated as a bipolar ac waveform, and its peak voltage should be limited to the 50 -year lifetime voltage value listed in Table 10.

Figure 36. Bipolar AC Waveform
RATED PEAK VOLTAGE

Figure 37. DC Waveform
rated peak voltage

NOTES

1. THE VOLTAGE IS SHOWN AS SINUSODIAL FOR ILLUSTRATION PURPOSES ONLY. IT IS MEANT TO REPRESENT ANY VOLTAGE WAVEFORM VARYING BETWEEN 0 AND SOME LIMITING VALUE. the limiting value can be positive or negative, but the VOLTAGE CANNOT CROSS OV.

Figure 38. Unipolar AC Waveform

ISOLATED POWER SUPPLY CONSIDERATIONS

The typical output voltage of the integrated isoPower dc-to-dc isolated supply is 3.3 V . The isolated supply in the ADM2587E is capable of supplying a current of 55 mA when the junction temperature of the device is kept below $120^{\circ} \mathrm{C}$. It is important to note that the current available on the $\mathrm{V}_{\text {ISoout }}$ pin is the total current available and includes the current required to supply the internal RS-485 circuitry.

The ADM2587E can typically supply 15 mA externally on $V_{\text {Isoout }}$ when the driver is switching at 500 kbps loaded with 54Ω, while the junction temperature of the part is less than $120^{\circ} \mathrm{C}$.

Table 15. Typical Maximum External Current Available on $V_{\text {isoout }}$

External Load Current (mA)	$\mathbf{R}_{\mathbf{T}}$	System Configuration
15	54Ω	Double terminated bus with
		$R_{\boldsymbol{T}}=110 \Omega$
29	120Ω	Single terminated bus
46	Unloaded	Unterminated bus

The ADM2582E typically has no current available externally on $V_{\text {Isoout. }}$

When external current is drawn from the $\mathrm{V}_{\text {Isoout }}$ pin, there is an increased risk of generating radiated emissions due to the high frequency switching elements used in the isoPower dc todc converter. Special care must be taken during PCB layout to meet emissions standards. See Application Note AN-0971, Control of Radiated Emissions with isoPower Devices, for details on board layout considerations.

Figure 39. ADM2587E Typical Maximum External Current Measurements Rev. A | Page 17 of 20

ADM2582E/ADM2587E

Figure 40. Example Circuit Diagram Using the ADM2582E/ADM2587E

Figure 40 is an example of a circuit diagram using the ADM2582E/ADM2587E.

TYPICAL APPLICATIONS

Figure 41 and Figure 42 show typical applications of the ADM2582E/ ADM2587E in half duplex and full duplex RS-485 network configurations. Up to 256 transceivers can be connected to the RS- 485 bus. To minimize reflections, terminate the line at the
receiving end in its characteristic impedance, and keep stub lengths off the main line as short as possible. For half-duplex operation, this means that both ends of the line must be terminated because either end can be the receiving end.

Figure 41. ADM2582E/ADM2587E Typical Half Duplex RS-485 Network

Figure 42. ADM2582E/ADM2587E Typical Full Duplex RS-485 Network

ADM2582E/ADM2587E

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013-AC CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 43. 20-Lead Standard Small Outline Package [SOIC_W]
Wide Body
(RW-20)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model 1	Data Rate (Mbps)	Temperature Range	Package Description	Package Option
ADM2582EBRWZ $_{\text {ADM2582EBRWZ-REEL7 }}$	16	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead SOIC_W
ADM2587EBRWZ	0.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead SOIC_W	RW-20
ADM2587EBRWZ-REEL7	0.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20-$ Lead SOIC_W	RW-20
EVAL-ADM2582EEBZ		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead SOIC_W	RW-20
EVAL-ADM2587EEBZ		ADM2582E Evaluation Board		

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com Fax: 781.461.3113 ©2009-2010 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1} \mathrm{CM}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. V_{CM} is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common-mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

[^2]: ${ }^{1}$ Device considered a 2-terminal device: short together Pin 1 to Pin 10 and short together Pin 11 to Pin 20.
 ${ }^{2}$ Input capacitance is from any input data pin to ground.

