
a

W 5.0
Device Drivers and System Services

 Manual for Blackfin® Processors

Revision 4.2, May 2010

Part Number
82-000430-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2010 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, the Blackfin logo, EZ-KIT Lite,
SHARC, TigerSHARC, and VisualDSP++ are registered trademarks of
Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 5.0 Device Drivers and System iii
Services Manual for Blackfin Processors

CONTENTS

PREFACE

Purpose of This Manual .. xxxix

Intended Audience .. xxxix

Manual Contents Description .. xl

What’s New in This Manual ... xlii

Technical or Customer Support .. xlii

Supported Processors ... xliii

Product Information ... xliii

Analog Devices Web Site ... xliii

VisualDSP++ Online Documentation xliv

Technical Library CD .. xlv

Social Networking Web Sites .. xlvi

Notation Conventions .. xlvi

INTRODUCTION

System Services Overview .. 1-2

General ... 1-3

Application Interface ... 1-8

Dependencies .. 1-10

Contents

iv VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Initialization ... 1-11

Termination .. 1-12

System Services Directory and File Structure 1-13

Accessing the System Services API 1-13

Linking in the System Services Library 1-16

Rebuilding the System Services Library 1-17

Examples .. 1-19

Dual-Core Considerations .. 1-19

RTOS Considerations ... 1-19

Interoperability of System Services With VDK 1-20

Deployment of Services Within a Multi-Threaded
Application .. 1-21

Device Driver Overview .. 1-22

Application Interface ... 1-23

Device Driver Architecture .. 1-24

Interaction With System Services 1-26

Initialization ... 1-26

Termination .. 1-27

Device Driver Directory and File Structure 1-27

Accessing the Device Driver API 1-28

Device Driver File Locations ... 1-29

Linking in the Device Driver Library 1-30

Rebuilding the Device Driver Library 1-31

Examples on Distribution ... 1-32

VisualDSP++ 5.0 Device Drivers and System v
Services Manual for Blackfin Processors

Contents

INTERRUPT MANAGER

Introduction ... 2-2

Interrupt Manager Initialization .. 2-4

Interrupt Manager Termination ... 2-5

Core Event Controller Functions ... 2-6

adi_int_CECHook() Function ... 2-6

adi_int_CECUnhook() Function ... 2-8

Interrupt Handlers .. 2-8

System Interrupt Controller Functions .. 2-9

adi_int_SICDisable ... 2-10

adi_int_SICEnable .. 2-10

adi_int_SICGetIVG .. 2-10

adi_int_SICInterruptAsserted .. 2-10

adi_int_SICSetIVG ... 2-11

adi_int_SICWakeup .. 2-11

adi_int_SICGlobalWakeup .. 2-12

Protecting Critical Code Regions ... 2-13

Modifying IMASK .. 2-16

Examples .. 2-17

File Structure .. 2-17

Interrupt Manager API Reference .. 2-18

Notation Conventions ... 2-18

adi_int_Init .. 2-19

adi_int_Terminate .. 2-20

Contents

vi VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_CECHook ... 2-21

adi_int_CECUnhook ... 2-23

adi_int_ClearIMaskBits .. 2-25

adi_int_EnterCriticalRegion ... 2-27

adi_int_ExitCriticalRegion ... 2-29

adi_int_GetCurrentIVGLevel ... 2-30

adi_int_GetLibraryDetails .. 2-31

adi_int_SICDisable .. 2-32

adi_int_SICEnable ... 2-33

adi_int_SICGetIVG ... 2-34

adi_int_SICInterruptAsserted ... 2-35

 adi_int_SICSetIVG ... 2-36

adi_int_SetIMaskBits .. 2-37

adi_int_SICWakeup ... 2-39

adi_int_SICGlobalWakeup ... 2-40

POWER MANAGEMENT MODULE

Introduction ... 3-2

PM Module Operation – Getting Started 3-3

Dual-Core Considerations .. 3-5

Using Automatic Synchronization ... 3-5

Synchronization Requirement .. 3-6

Running Applications on One Core Only 3-7

Running Applications on Both Cores 3-8

VisualDSP++ 5.0 Device Drivers and System vii
Services Manual for Blackfin Processors

Contents

Synchronization Between Cores ... 3-9

Built-In Lock Variable and Linking Considerations 3-10

SDRAM Initialization Prior to Loading an Executable 3-12

Power Management API Reference .. 3-14

Notation Conventions ... 3-14

adi_pwr_AdjustFreq .. 3-15

adi_pwr_Control .. 3-16

adi_pwr_GetConfigSize .. 3-18

adi_pwr_GetFreq .. 3-19

adi_pwr_GetPowerMode ... 3-20

adi_pwr_GetPowerSaving .. 3-21

adi_pwr_Init ... 3-22

adi_pwr_LoadConfig .. 3-28

adi_pwr_Reset .. 3-29

adi_pwr_SaveConfig ... 3-30

adi_pwr_SetFreq ... 3-31

adi_pwr_SetMaxFreqForVolt ... 3-33

adi_pwr_SetPowerMode .. 3-34

adi_pwr_SetVoltageRegulator .. 3-37

adi_pwr_Terminate ... 3-41

Public Data Types and Enumerations ... 3-42

ADI_PWR_COMMAND ... 3-42

ADI_PWR_COMMAND_PAIR ... 3-48

ADI_PWR_CSEL ... 3-48

Contents

viii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_DF .. 3-49

ADI_PWR_INPUT_DELAY .. 3-49

ADI_PWR_OUTPUT_DELAY .. 3-49

ADI_PWR_MODE .. 3-50

ADI_PWR_PACKAGE_KIND ... 3-50

ADI_PWR_PCC133_COMPLIANCE 3-51

ADI_PWR_PROC_KIND ... 3-51

ADI_PWR_RESULT .. 3-53

ADI_PWR_SSEL ... 3-55

ADI_PWR_VDDEXT .. 3-56

ADI_PWR_VLEV .. 3-56

ADI_PWR_VR_CANWE .. 3-57

ADI_PWR_VR_CKELOW .. 3-57

ADI_PWR_VR_CLKBUFOE .. 3-57

ADI_PWR_VR_FREQ .. 3-58

ADI_PWR_VR_GAIN ... 3-58

ADI_PWR_VR_GPWE_MXVRWE ... 3-59

ADI_PWR_VR_PHYWE ... 3-59

ADI_PWR_VR_USBWE ... 3-59

ADI_PWR_VR_WAKE .. 3-60

PM Module Macros .. 3-60

VisualDSP++ 5.0 Device Drivers and System ix
Services Manual for Blackfin Processors

Contents

EXTERNAL BUS INTERFACE UNIT MODULE

Introduction ... 4-2

Using the EBIU Module .. 4-3

EBIU API Reference ... 4-9

Notation Conventions ... 4-9

adi_ebiu_AdjustSDRAM ... 4-10

adi_ebiu_Control .. 4-11

adi_ebiu_GetConfigSize .. 4-14

adi_ebiu_Init .. 4-15

adi_ebiu_LoadConfig .. 4-22

adi_ebiu_SaveConfig .. 4-23

adi_ebiu_Terminate .. 4-24

Public Data Types and Enumerations .. 4-25

ADI_EBIU_RESULT ... 4-25

ADI_EBIU_SDRAM_BANK_VALUE .. 4-28

ADI_EBIU_TIME .. 4-29

ADI_EBIU_TIMING_VALUE ... 4-30

ADI_EBIU_ASYNCH_BANK_TIMING 4-30

ADI_EBIU_ASYNCH_BANK_VALUE 4-31

Setting Control Values in the EBIU Module 4-32

ADI_EBIU_COMMAND ... 4-32

ADI_EBIU_COMMAND_PAIR ... 4-39

Contents

x VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Command Value Enumerations ... 4-39

ADI_EBIU_SDRAM_ENABLE 4-40

ADI_EBIU_SDRAM_BANK_SIZE 4-40

ADI_EBIU_SDRAM_BANK_COL_WIDTH 4-41

ADI_EBIU_SDRAM_MODULE_TYPE 4-41

ADI_EBIU_CMD_SET_SDRAM_SCTLE 4-41

ADI_EBIU_SDRAM_EMREN .. 4-42

ADI_EBIU_SDRAM_PASR ... 4-42

ADI_EBIU_SDRAM_TCSR .. 4-43

ADI_EBIU_SDRAM_SRFS ... 4-43

ADI_EBIU_SDRAM_EBUFE .. 4-44

ADI_EBIU_SDRAM_PUPSD .. 4-44

ADI_EBIU_SDRAM_PSM .. 4-45

ADI_EBIU_SDRAM_FBBRW ... 4-45

ADI_EBIU_SDRAM_CDDBG .. 4-46

ADI_EBIU_BANK_NUMBER .. 4-46

ADI_EBIU_ASYNCH_BANK_ENABLE 4-47

ADI_EBIU_ASYNCH_CLKOUT 4-47

ADI_EBIU_ASYNCH_BANK_DATA_PATH 4-47

ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE 4-48

ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY 4-48

ADI_EBIU_ASYNCH_HOLD_TIME 4-48

ADI_EBIU_ASYNCH_SETUP_TIME 4-49

ADI_EBIU_ASYNCH_TRANSITION_TIME 4-50

VisualDSP++ 5.0 Device Drivers and System xi
Services Manual for Blackfin Processors

Contents

ADI_EBIU_DDR_MOBILE_DS 4-50

ADI_EBIU_DDR_DS .. 4-51

ADI_EBIU_DDR_PASR .. 4-51

DEFERRED CALLBACK MANAGER

Introduction ... 5-2

Using the Deferred Callback Manager ... 5-3

Interoperability With an RTOS ... 5-7

adi_dcb_Forward ... 5-8

adi_dcb_RegisterISR ... 5-9

Handling Critical Regions Within Callbacks 5-10

DCB Manager API Reference .. 5-10

Notation Conventions ... 5-10

adi_dcb_Close .. 5-11

adi_dcb_Control ... 5-12

adi_dcb_Init ... 5-14

adi_dcb_Open .. 5-16

adi_dcb_Post .. 5-18

adi_dcb_Remove ... 5-20

adi_dcb_Terminate ... 5-21

Public Data Types and Macros ... 5-22

ADI_DCB_CALLBACK_FN .. 5-22

ADI_DCB_COMMAND_PAIR ... 5-22

ADI_DCB_COMMAND ... 5-23

Contents

xii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DCB_ENTRY_HDR ... 5-23

ADI_DCB_RESULT .. 5-24

DMA MANAGER

Introduction ... 6-2

Theory of Operation .. 6-3

Overview .. 6-3

 DMA Manager Initialization .. 6-4

 DMA Manager Termination ... 6-5

Memory DMA and Peripheral DMA 6-6

Controlling Memory Streams .. 6-7

Opening Memory Streams .. 6-7

Memory Transfers ... 6-8

One-Dimensional Transfers (Linear Transfers) 6-8

Two-Dimensional Transfers ... 6-9

Closing Memory Streams .. 6-10

Controlling DMA Channels .. 6-10

Opening DMA Channels .. 6-11

Single Transfers .. 6-12

Circular Transfers ... 6-14

Large Descriptor Chaining Model 6-16

Small Descriptor Chaining Model 6-20

Arrays of Descriptors .. 6-20

Configuring a DMA Channel ... 6-20

Closing a DMA Channel .. 6-21

VisualDSP++ 5.0 Device Drivers and System xiii
Services Manual for Blackfin Processors

Contents

Transfer Completions .. 6-21

Polling .. 6-22

Callbacks .. 6-22

Memory Stream Callbacks ... 6-22

Circular Transfer Callbacks .. 6-23

Descriptor Callbacks ... 6-23

Descriptor-Based Sub-Modes ... 6-24

Loopback Sub-Mode ... 6-24

Streaming Sub-Mode ... 6-25

DMA Channel to Peripheral Mapping 6-26

Sensing a Mapping .. 6-27

Setting a Mapping ... 6-27

Interrupts .. 6-27

Hooking Interrupts ... 6-28

Unhooking Interrupts ... 6-28

Two-Dimensional DMA .. 6-28

 DMA Traffic Control ... 6-31

DMA Manager API Reference .. 6-31

Notation Conventions ... 6-31

adi_dma_Buffer .. 6-34

adi_dma_Close ... 6-36

adi_dma_Control .. 6-37

adi_dma_GetMapping .. 6-40

adi_dma_GetPeripheralInterruptID ... 6-41

Contents

xiv VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Init .. 6-42

adi_dma_MemoryClose .. 6-43

adi_dma_MemoryCopy .. 6-44

adi_dma_MemoryCopy2D ... 6-46

adi_dma_MemoryOpen ... 6-48

adi_dma_MemoryQueue .. 6-50

adi_dma_MemoryQueueClose .. 6-52

adi_dma_MemoryQueueControl .. 6-53

adi_dma_MemoryQueueOpen .. 6-54

adi_dma_Open ... 6-56

adi_dma_Queue ... 6-58

adi_dma_SetConfigWord .. 6-59

adi_dma_SetMapping ... 6-60

adi_dma_Terminate .. 6-61

Public Data Structures, Enumerations, and Macros 6-62

Data Types .. 6-62

ADI_DMA_CHANNEL_HANDLE 6-62

ADI_DMA_DESCRIPTOR_UNION and
ADI_DMA_DESCRIPTOR_HANDLE 6-63

ADI_DMA_STREAM_HANDLE 6-63

Data Structures ... 6-64

ADI_DMA_2D_TRANSFER ... 6-64

ADI_DMA_CONFIG_REG .. 6-64

ADI_DMA_DESCRIPTOR_ARRAY 6-64

ADI_DMA_DESCRIPTOR_LARGE 6-65

VisualDSP++ 5.0 Device Drivers and System xv
Services Manual for Blackfin Processors

Contents

ADI_DMA_DESCRIPTOR_SMALL 6-66

ADI_DMA_TC_SET ... 6-66

ADI_DMA_TC_GET .. 6-67

General Enumerations ... 6-67

ADI_DMA_CHANNEL_ID .. 6-67

ADI_DMA_EVENT ... 6-67

ADI_DMA_MODE ... 6-68

ADI_DMA_PMAP ... 6-69

ADI_DMA_RESULT ... 6-69

ADI_DMA_STREAM_ID .. 6-71

ADI_DMA_TC_PARAMETER .. 6-71

ADI_DMA_CONFIG_REG Field Values 6-72

ADI_DMA_DMA2D ... 6-72

ADI_DMA_DI_EN .. 6-72

ADI_DMA_DI_SEL ... 6-72

ADI_DMA_EN .. 6-72

ADI_DMA_WDSIZE ... 6-72

ADI_DMA_WNR .. 6-73

DMA Commands .. 6-73

PROGRAMMABLE FLAG SERVICE

Introduction ... 7-2

Operation ... 7-3

Initialization .. 7-3

Termination .. 7-4

Contents

xvi VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Flag IDs .. 7-4

Flag Control Functions ... 7-4

adi_flag_Open .. 7-5

adi_flag_Close .. 7-5

adi_flag_SetDirection ... 7-5

adi_flag_Set .. 7-5

adi_flag_Clear .. 7-6

adi_flag_Toggle .. 7-6

adi_flag_Sense .. 7-6

Callbacks .. 7-6

adi_flag_InstallCallback .. 7-7

adi_flag_RemoveCallback ... 7-8

adi_flag_SuspendCallbacks ... 7-9

adi_flag_ResumeCallbacks .. 7-9

adi_flag_SetTrigger ... 7-9

Coding Example ... 7-9

Initialization ... 7-10

Opening a Flag ... 7-10

Setting Flag Direction ... 7-11

Controlling an Output Flag .. 7-11

Sensing the Value of a Flag .. 7-12

Installing a Callback Function ... 7-12

Suspending and Resuming Callbacks 7-13

VisualDSP++ 5.0 Device Drivers and System xvii
Services Manual for Blackfin Processors

Contents

Removing Callbacks .. 7-13

Termination .. 7-14

Flag Service API Reference .. 7-14

Notation Conventions ... 7-14

adi_flag_Clear ... 7-15

adi_flag_Close .. 7-16

adi_flag_Init ... 7-17

adi_flag_Open .. 7-19

adi_flag_Sense .. 7-20

adi_flag_Toggle ... 7-21

adi_flag_Terminate ... 7-22

adi_flag_Set .. 7-23

adi_flag_SetDirection .. 7-24

adi_flag_SetTrigger ... 7-25

adi_flag_InstallCallback .. 7-26

adi_flag_RemoveCallback .. 7-28

adi_flag_ResumeCallbacks .. 7-29

adi_flag_SuspendCallbacks .. 7-30

Public Data Types, Enumerations, and Macros 7-31

ADI_FLAG_ID ... 7-31

Associated Macros ... 7-32

ADI_FLAG_DIRECTION ... 7-32

ADI_FLAG_EVENT .. 7-32

Contents

xviii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_FLAG_RESULT ... 7-33

ADI_FLAG_TRIGGER .. 7-34

TIMER SERVICE

Introduction ... 8-2

Operation .. 8-3

Initialization ... 8-3

Termination .. 8-3

Timer IDs ... 8-4

Basic Timer Functions ... 8-4

adi_tmr_Open .. 8-4

adi_tmr_Close .. 8-4

adi_tmr_Reset .. 8-5

General-Purpose Timer Functions ... 8-5

adi_tmr_GPControl ... 8-5

adi_tmr_GPGroupEnable ... 8-5

Core Timer Functions ... 8-6

adi_tmr_CoreControl ... 8-6

Watchdog Timer Functions ... 8-6

adi_tmr_WatchdogControl ... 8-6

Peripheral Timer Functions ... 8-7

adi_tmr_GetPeripheralID ... 8-7

Callbacks .. 8-7

adi_tmr_InstallCallback .. 8-8

adi_tmr_RemoveCallback ... 8-9

VisualDSP++ 5.0 Device Drivers and System xix
Services Manual for Blackfin Processors

Contents

Coding Example .. 8-9

Initialization ... 8-10

Opening a Timer .. 8-10

Configuring a Timer ... 8-10

Enabling and Disabling Timers ... 8-12

Installing a Callback Function ... 8-13

Removing Callbacks .. 8-14

Termination .. 8-15

Timer Service API Reference ... 8-15

Notation Conventions ... 8-15

adi_tmr_Init ... 8-16

adi_tmr_Open .. 8-17

adi_tmr_Terminate ... 8-18

adi_tmr_Close .. 8-19

adi_tmr_Reset ... 8-20

adi_tmr_CoreControl ... 8-21

adi_tmr_WatchdogControl ... 8-22

adi_tmr_GPControl .. 8-23

adi_tmr_GPGroupEnable ... 8-24

adi_tmr_InstallCallback .. 8-26

adi_tmr_RemoveCallback ... 8-28

adi_tmr_GetPeripheralID .. 8-29

Contents

xx VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Public Data Types, Enumerations, and Macros 8-30

Timer IDs ... 8-30

Associated Macros .. 8-31

ADI_TMR_RESULT .. 8-32

ADI_TMR_EVENT ... 8-33

ADI_TMR_CORE_CMD .. 8-33

ADI_TMR_WDOG_CMD .. 8-34

ADI_TMR_GP_CMD .. 8-36

PORT CONTROL SERVICE

Introduction ... 9-2

Using the Port Control Manager ... 9-3

Legacy adi_ports_EnableXxx() API Usage 9-3

Newer adi_ports_Configure() API Usage 9-5

Virtual Devices and Device Indexing ... 9-8

Port Control Manager API Reference .. 9-9

Notation Conventions ... 9-10

adi_ports_Init .. 9-11

adi_ports_Terminate ... 9-12

adi_ports_Configure ... 9-13

adi_ports_EnablePPI .. 9-14

adi_ports_EnableSPI .. 9-15

adi_ports_EnableSPORT .. 9-16

adi_ports_EnableUART .. 9-17

adi_ports_EnableCAN .. 9-18

VisualDSP++ 5.0 Device Drivers and System xxi
Services Manual for Blackfin Processors

Contents

adi_ports_EnableTimer ... 9-19

adi_ports_EnableGPIO ... 9-21

adi_ports_ClearProfile .. 9-22

adi_ports_GetProfile ... 9-23

adi_ports_SetProfile .. 9-24

Public Data Types, Enumerations, and Macros 9-24

ADI_PORTS_RESULT ... 9-25

Legacy API Enumeration Values ... 9-25

DEVICE DRIVER MANAGER

Device Driver Model Overview ... 10-3

Using the Device Manager .. 10-6

Device Manager Overview ... 10-6

Theory of Operation ... 10-7

Data ... 10-7

Initializing the Device Manager ... 10-8

Device Manager Termination .. 10-9

Opening a Device ... 10-9

Configuring a Device .. 10-11

Dataflow Method .. 10-11

Enabling Dataflow .. 10-14

Providing Buffers to a Device .. 10-14

Closing a Device ... 10-16

Callbacks .. 10-16

Contents

xxii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Initialization Sequence .. 10-16

Stackable Drivers .. 10-17

Deciding on a Dataflow Method ... 10-17

Chained Without Loopback .. 10-17

Chained With Loopback ... 10-18

Circular .. 10-18

Sequential With and Without Loopback 10-18

Creating One-Dimensional Buffers ... 10-19

Creating Two-Dimensional Buffers ... 10-22

Creating Circular Buffers .. 10-25

Creating Sequential One-Dimensional Buffers 10-27

Device Manager Design .. 10-30

Device Manager API Description ... 10-30

Memory Usage Macros ... 10-31

Handles .. 10-31

Dataflow Enumerations .. 10-31

Command IDs ... 10-32

Callback Events .. 10-32

Return Codes ... 10-32

Circular Buffer Callback Options 10-33

Buffer Data Types ... 10-33

Physical Driver Entry Point .. 10-34

API Function Definitions ... 10-34

VisualDSP++ 5.0 Device Drivers and System xxiii
Services Manual for Blackfin Processors

Contents

Device Manager Code ... 10-34

Data Structures ... 10-34

Static Data .. 10-34

Static Function Declarations .. 10-35

API Functional Description ... 10-35

adi_dev_Init Functional Description 10-35

adi_dev_Open Functional Description 10-36

adi_dev_Close Functional Description 10-36

adi_dev_Read Functional Description 10-37

adi_dev_Write Functional Description 10-38

adi_dev_Control Functional Description 10-38

Static Functions .. 10-41

PDDCallback ... 10-41

DMACallback ... 10-42

PrepareBufferList .. 10-43

SetDataflow .. 10-44

Physical Driver Design .. 10-45

Physical Driver Design Overview ... 10-45

Physical Device Driver API Description 10-47

Physical Driver Include File (“xxx.h”) 10-47

Extensible Definitions ... 10-48

ADI_DEV_PDD_ENTRY_POINT 10-49

Contents

xxiv VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Physical Driver Source (“xxx.c”) .. 10-50

adi_pdd_Open Functional Description 10-51

adi_pdd_Control Functional Description 10-52

adi_pdd_Read Functional Description 10-53

adi_pdd_Write Functional Description 10-54

adi_pdd_Close Functional Description 10-55

Device Manager API Reference ... 10-56

Notation Conventions ... 10-56

adi_dev_Close .. 10-57

adi_dev_Control .. 10-58

adi_dev_Init ... 10-59

adi_dev_Open .. 10-61

adi_dev_Read ... 10-63

adi_dev_Terminate ... 10-64

adi_dev_Write .. 10-65

Device Manager Public Data Types and Enumerations 10-66

ADI_DEV_BUFFER_TYPE ... 10-66

ADI_DEV_MODE .. 10-67

ADI_DEV_DIRECTION ... 10-67

CALLBACK EVENTS .. 10-68

RESULT CODES ... 10-68

COMMAND IDs ... 10-71

ADI_DEV_1D_BUFFER ... 10-73

ADI_DEV_2D_BUFFER ... 10-74

VisualDSP++ 5.0 Device Drivers and System xxv
Services Manual for Blackfin Processors

Contents

ADI_DEV_CIRCULAR_BUFFER 10-75

ADI_DEV_SEQ_1D_BUFFER ... 10-76

ADI_DEV_BUFFER_PAIR ... 10-76

ADI_DEV_DMA_INFO .. 10-76

ADI_DEV_DMA_ACCESS .. 10-77

ADI_DEV_FREQUENCIES ... 10-77

ADI_DEV_ACCESS_REGISTER 10-78

ADI_DEV_ACCESS_REGISTER_BLOCK 10-78

ADI_DEV_ACCESS_REGISTER_FIELD 10-79

ADI_DEV_BUFFER ... 10-79

Physical Driver API Reference ... 10-80

Notation Conventions ... 10-80

adi_pdd_Close .. 10-81

adi_pdd_Control .. 10-82

adi_pdd_Open .. 10-83

adi_pdd_Read ... 10-85

adi_pdd_Write .. 10-86

Examples .. 10-87

REAL-TIME CLOCK SERVICE

Introduction ... 11-2

Operation ... 11-2

Initialization ... 11-3

Termination .. 11-4

Setting and Reading the Date and Time 11-4

Contents

xxvi VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Real-Time Clock Events .. 11-5

One Second Periodic Event ... 11-5

One Minute Periodic Event .. 11-6

Hourly Periodic Event .. 11-6

Daily Periodic Event ... 11-6

Periodic or One-Shot Stopwatch Event 11-7

Once Only Alarm Event ... 11-7

Each Day Alarm Event .. 11-7

Pending Writes Complete Event .. 11-8

Callbacks .. 11-8

The Callback List .. 11-9

Installing a Callback .. 11-9

Removing a Callback ... 11-10

The Real-Time Clock Service Interrupt Handler 11-10

Using the ClientHandle Parameter in a Callback 11-10

Coding Example .. 11-11

RTC Service Application Programming Interface (API) 11-16

Notation and Naming Conventions 11-16

RTC Service API Functions ... 11-17

adi_rtc_Init .. 11-18

adi_rtc_Terminate .. 11-19

adi_rtc_SetDateTime .. 11-20

adi_rtc_GetDateTime ... 11-21

adi_rtc_InstallCallback ... 11-22

VisualDSP++ 5.0 Device Drivers and System xxvii
Services Manual for Blackfin Processors

Contents

adi_rtc_RemoveCallback ... 11-24

adi_rtc_SetEpoch .. 11-25

adi_rtc_GetEpoch ... 11-26

adi_rtc_EnableWakeup ... 11-27

adi_rtc_DisableWakeup .. 11-28

adi_rtc_ResetStopwatch .. 11-29

Real-Time Clock Service API Data Types and Enumerations 11-30

 tm structure ... 11-30

 ADI_RTC_EPOCH ... 11-31

Event IDs .. 11-32

Result Codes ... 11-32

Interdependencies ... 11-33

Interrupt Manager Service ... 11-33

Deferred Callback Service .. 11-34

FILE SYSTEM SERVICE

Introduction ... 12-2

Getting Started ... 12-3

Initialization .. 12-4

Termination .. 12-6

System Service Requirements ... 12-7

Interrupt Manager Service ... 12-8

Deferred Callback Service .. 12-8

DMA Service ... 12-9

Semaphore Service ... 12-10

Contents

xxviii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Real-Time Clock Service ... 12-10

Device Manager .. 12-11

Advanced Configuration ... 12-11

Custom Configuration of Device Drivers 12-11

Dynamic Memory Usage ... 12-13

File Cache ... 12-16

File System Service API Reference ... 12-17

Notation and Naming Conventions 12-18

adi_fss_Init .. 12-19

adi_fss_Terminate .. 12-22

adi_fss_Control .. 12-23

adi_fss_RegisterDevice .. 12-25

adi_fss_DeRegisterDevice ... 12-26

adi_fss_PollMediaOnDevice ... 12-27

adi_fss_PollMedia ... 12-28

adi_fss_Stat .. 12-29

adi_fss_UnMountDevice .. 12-30

adi_fss_FileOpen .. 12-31

adi_fss_FileClose .. 12-33

adi_fss_FileWrite .. 12-34

adi_fss_FileRead ... 12-35

adi_fss_FileSeek .. 12-36

adi_fss_FileTell ... 12-38

adi_fss_IsEOF .. 12-39

VisualDSP++ 5.0 Device Drivers and System xxix
Services Manual for Blackfin Processors

Contents

adi_fss_FileRemove ... 12-40

adi_fss_FileRename ... 12-41

adi_fss_DirOpen ... 12-42

adi_fss_DirClose ... 12-43

adi_fss_DirRead .. 12-44

adi_fss_DirSeek .. 12-45

adi_fss_DirTell ... 12-46

adi_fss_DirRewind .. 12-47

adi_fss_DirChange .. 12-48

adi_fss_GetCurrentDir ... 12-49

adi_fss_DirCreate ... 12-50

adi_fss_DirRemove ... 12-51

File System Service API Data Types and Enumerations 12-52

ADI_FSS_WCHAR .. 12-52

ADI_FSS_VOLUME_IDENT .. 12-52

ADI_FSS_FILE_HANDLE ... 12-52

ADI_FSS_DIR_HANDLE .. 12-53

ADI_FSS_CMD_VALUE_PAIR .. 12-53

ADI_FSS_DIR_ENTRY .. 12-53

ADI_FSS_DEVICE_DEF ... 12-54

Result Codes ... 12-55

The Standard C I/O Interface Functions 12-56

fopen .. 12-57

fclose .. 12-58

Contents

xxx VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

fwrite ... 12-59

fread .. 12-60

fprintf .. 12-61

fscanf ... 12-62

fgetc ... 12-63

fgets ... 12-64

fputc .. 12-65

fputs .. 12-66

fseek ... 12-67

ftell .. 12-68

feof .. 12-69

Additional POSIX Functions Supported by the FSS 12-70

opendir .. 12-71

closedir .. 12-72

readdir ... 12-73

readdir_r .. 12-74

rewinddir ... 12-75

seekdir ... 12-76

telldir ... 12-77

mkdir ... 12-78

rmdir ... 12-79

rename ... 12-80

remove ... 12-81

Extensibility ... 12-82

VisualDSP++ 5.0 Device Drivers and System xxxi
Services Manual for Blackfin Processors

Contents

Examples .. 12-82

HardDiskAccess .. 12-83

Description ... 12-83

Configuration ... 12-84

HardDiskFormat ... 12-84

Description ... 12-85

Configuration ... 12-85

Shell_Browser .. 12-85

Description ... 12-85

Configuration ... 12-86

PULSE-WIDTH MODULATION

Introduction ... 13-2

Operation ... 13-2

Initialization .. 13-2

Termination .. 13-6

PWM Events ... 13-7

Trip Signal Event .. 13-7

Synchronization Pulse Event .. 13-7

Callbacks .. 13-8

Installing a Callback ... 13-9

Removing a Callback ... 13-9

The PWM Service Interrupt Handlers 13-10

Using the ClientHandle Parameter in a Callback 13-11

Contents

xxxii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Programming Examples .. 13-11

Initialization – Command-Pair Table 13-12

Set Switch Reluctance ... 13-17

Crossover ... 13-18

Gate Chopping ... 13-18

Channel Enable/Disable (Individual) 13-19

Low Side Invert .. 13-21

External Sync Pulse .. 13-22

Trip and Sync Interrupts ... 13-23

Change the IVG Level of the Trip or Sync Interrupt 13-24

Trip Input Signal .. 13-25

PWM Enable/Disable ... 13-25

PWM Service Application Programming Interface (API) 13-26

Notation and Naming Conventions 13-26

PWM Service API Functions ... 13-27

adi_pwm_Init ... 13-28

adi_pwm_Terminate ... 13-29

adi_pwm_Control .. 13-30

adi_pwm_InstallCallback .. 13-32

adi_pwm_RemoveCallback ... 13-33

PWM Service API Data Types and Enumerations 13-34

ADI_PWM_CHANNEL_STATUS 13-34

ADI_PWM_CHANNEL_DUTY_CYCLE 13-35

ADI_PWM_COMMAND_PAIR .. 13-36

VisualDSP++ 5.0 Device Drivers and System xxxiii
Services Manual for Blackfin Processors

Contents

ADI_PWM_NUMBER_AND_CHANNEL_STATUS 13-36

ADI_PWM_NUMBER_AND_ENABLE_STATUS 13-37

ADI_PWM_NUMBER_AND_VALUE 13-37

ADI_PWM_PORT_MAP .. 13-38

ADI_PWM_CHANNEL ... 13-39

ADI_PWM_COMMAND .. 13-39

ADI_PWM_ENABLE_STATUS ... 13-45

ADI_PWM_EVENT_ID .. 13-46

ADI_PWM_NUMBER ... 13-46

ADI_PWM_POLARITY ... 13-47

ADI_PWM_PORT_MUX ... 13-47

ADI_PWM_RESULT ... 13-48

ADI_PWM_SYNC_SEL ... 13-50

ADI_PWM_SYNC_SOURCE ... 13-51

ADI_PWM_UPDATE_MODE ... 13-51

Interdependencies ... 13-52

Interrupt Manager Service ... 13-52

Deferred Callback Service .. 13-52

Port Control Manager Service .. 13-53

MEMORY MANAGER SERVICE

Introduction ... 14-2

Getting Started ... 14-2

Initialization ... 14-2

Termination .. 14-3

Contents

xxxiv VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Installing Memory Allocation Schemes 14-4

Creating/Destroying a Memory Pool 14-5

Memory Allocation/Reallocation and Freeing 14-8

Memory Manager Service API Reference 14-10

Notation and Naming Conventions 14-10

adi_mem_Init .. 14-12

adi_mem_Terminate ... 14-13

adi_mem_InstallFixedBlockModel .. 14-14

adi_mem_InstallCircularModel .. 14-15

adi_mem_InstallBinBuddyModel .. 14-16

adi_mem_CreatePrivatePool ... 14-17

adi_mem_CreatePublicPool .. 14-21

adi_mem_DestroyPool ... 14-25

adi_mem_ListPublicPools ... 14-27

adi_mem_Control .. 14-29

adi_mem_Alloc .. 14-31

adi_mem_Free .. 14-33

adi_mem_Free .. 14-34

Coding Example ... 14-36

Memory Manager Initialization ... 14-36

Install the Required Algorithms ... 14-36

Memory Pool Creation .. 14-36

Using Public Pool List ... 14-37

Allocate, Free, and Realloc Memory 14-38

VisualDSP++ 5.0 Device Drivers and System xxxv
Services Manual for Blackfin Processors

Contents

Memory Manager Service API Structures, Definitions, and
Enumerations ... 14-39

Allocation Models (ADI_MEM_ALLOC_MODEL) 14-39

Bank Information (ADI_MEM_BANK_INFO) 14-40

Cache Information (ADI_MEM_CACHE_INFO) 14-40

Memory Type Information (ADI_MEM_TYPE_INFO) 14-41

Commands (ADI_MEM_COMMAND) 14-41

Result Codes (ADI_MEM_RESULT) 14-42

ADI_MEM_INFO Structure ... 14-44

ADI_MEM_CHAR Structure .. 14-45

Adding Custom Allocation Algorithms 14-46

Internal Data Structures .. 14-46

ADI_MEM_MODEL Structure 14-46

ADI_MEM_MEMPOOL_STRUCT Structure 14-48

Memory Block Header Format ... 14-49

Custom Allocation Model Functions API 14-53

Custom_Install ... 14-54

Custom_Create ... 14-55

Custom_Destroy ... 14-57

Custom_Control ... 14-58

Custom_Alloc ... 14-59

Custom_Free .. 14-60

Custom_Realloc .. 14-61

Comparison of Allocation Algorithms .. 14-63

A Quick Comparison Chart ... 14-63

Contents

xxxvi VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Pros and Cons of Allocation Algorithms 14-64

Regular malloc ... 14-64

Fixed Block .. 14-64

Binary Buddy ... 14-65

Circular Buffer ... 14-66

Performance Measurements ... 14-67

STDIO SERVICE

Introduction ... 15-2

Getting Started ... 15-2

Initialization ... 15-2

Register the Required STDIO Device Types 15-5

Open the Required STDIO Device(s) 15-6

Configure STDIO Device ... 15-6

Redirect STDIO Stream .. 15-7

Disable STDIO Stream ... 15-8

Termination .. 15-9

STDIO Service API Reference .. 15-10

Notation and Naming Conventions 15-10

adi_stdio_Init ... 15-11

adi_stdio_RegisterUART .. 15-13

adi_stdio_OpenDevice ... 15-14

adi_stdio_Redirect ... 15-16

adi_stdio_DisableStream ... 15-18

adi_stdio_ControlDevice .. 15-19

VisualDSP++ 5.0 Device Drivers and System xxxvii
Services Manual for Blackfin Processors

Contents

adi_stdio_CloseDevice .. 15-21

adi_stdio_Terminate ... 15-22

STDIO Service API Structures, Definitions, and
Enumerations ... 15-23

Stream Types (ADI_STDIO_STREAM_TYPE) 15-23

Device Type (ADI_STDIO_DEVICE_TYPE) 15-24

Commands (ADI_STDIO_COMMAND) 15-24

ADI_STDIO_COMMAND_ENABLE_UNIX_MODE
(0x120000) .. 15-24

Command Specific Value .. 15-25

ADI_STDIO_COMMAND_ENABLE_CHAR_ECHO
(0x120001) .. 15-25

Command Specific Value .. 15-25

ADI_STDIO_COMMAND_GET_DEVICE_HANDLE
(0x120002) .. 15-25

Command Specific Value .. 15-25

ADI_STDIO_COMMAND_SET_UART_PARITY_TYPE
(0x120004) .. 15-26

Command Specific Value .. 15-26

ADI_STDIO_COMMAND_SET_UART_WORD_LENGTH
(0x120005) .. 15-26

Command Specific Value .. 15-26

ADI_STDIO_COMMAND_SET_UART_NUM_STOP_BITS
(0x120006) .. 15-26

Command Specific Value .. 15-27

Contents

xxxviii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_STDIO_COMMAND_SET_UART_AUTO_BAUD_CHAR
(0x120007) .. 15-27

Command Specific Value .. 15-27

ADI_STDIO_COMMAND_ENABLE_AUTO_BAUD_CHAR
(0x120008) .. 15-27

Command Specific Value .. 15-27

ADI_STDIO_COMMAND_SET_UART_BAUD_RATE
(0x120009) .. 15-28

Command Specific Value .. 15-28

Parity Types (ADI_STDIO_PARITY_TYPE) 15-28

Result Codes (ADI_STDIO_RESULT) 15-28

INDEX

VisualDSP++ 5.0 Device Drivers and System xxxix
Services Manual for Blackfin Processors

 PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
Analog Devices embedded processors.

Purpose of This Manual
The VisualDSP++ 5.0 Device Drivers and System Services Manual for Black-
fin Processors contains information about the Analog Devices device driver
model and system services library suite. Included are architectural descrip-
tions of the device driver design and each system service component. Also
included is a description of the API calls into each library.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices Blackfin® processors. This manual assumes the audi-
ence has a working knowledge of the appropriate processor architecture
and instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts,
such as hardware reference and programming reference manuals, that
describe their target architecture.

Manual Contents Description

xl VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Manual Contents Description
This manual contains:

• Chapter 1, “Introduction”
Provides an overview of system services and device drivers.

• Chapter 2, “Interrupt Manager”
Describes the system interrupt controller (SIC) manager that sup-
ports the general-purpose interrupt events.

• Chapter 3, “Power Management Module”
Describes the power management module that supports dynamic
power management of Blackfin processors.

• Chapter 4, “External Bus Interface Unit Module”
Describes the external bus interface unit (EBIU) module that
enables the power management module to manage the SDRAM
controller operation.

• Chapter 5, “Deferred Callback Manager”
Describes the deferred callback manager that is used by the applica-
tion developer to effectively execute function calls.

• Chapter 6, “DMA Manager”
Describes direct memory access (DMA) manager API.

• Chapter 7, “Programmable Flag Service”
Describes the programmable flag service that provides interface
into the programmable flag subsystem of the Blackfin processor.

• Chapter 8, “Timer Service”
Describes the timer service that provides interface into the core,
watchdog, and general-purpose timers of the Blackfin processor.

VisualDSP++ 5.0 Device Drivers and System xli
Services Manual for Blackfin Processors

Preface

• Chapter 9, “Port Control Service”
Describes the port control manager service used to assign the pro-
grammable flag pins to various functions.

• Chapter 10, “Device Driver Manager”
Describes the device driver model used to control devices, both
internal and external, to ADI processors.

• Chapter 11, “Real-Time Clock Service”
Describes the real-time clock service within the system services
library and how to use it to enable the features of the real-time
clock on Blackfin processors.

• Chapter 12, “File System Service”
Describes the file system service (FSS), which provides access to
mass storage media from the Blackfin processor.

• Chapter 13, “Pulse-Width Modulation”
Describes the basic features of the pulse-width modulation (PWM)
service and the use of this system service in software applications.

• Chapter 14, “Memory Manager Service ”
Describes the memory manager service that supports the manage-
ment of dynamic memory allocation.

• Chapter 15, “STDIO Service ”
Describes the STDIO service that supports the redirection of
STDIO streams to different output peripherals.

What’s New in This Manual

xlii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

What’s New in This Manual
This revision (4.2) of the manual documents changes/additions related to
device drivers and system services for VisualDSP++® 5.0 and subsequent
updates (up to update 8). These changes include:

• Added data structures and code samples for the ADSP-BF50x
Blackfin family, which has two identical PWMs on board, to
Chapter 13, “Pulse-Width Modulation”.

• Added new chapter: Chapter 14, “Memory Manager Service ”.

• Added new chapter: Chapter 15, “STDIO Service ”.

• Incorporated modifications and corrections based on errata reports
against the previous revision (4.1) of the manual.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at:
http://www.analog.com/processors/technical_support

• E-mail tools questions to:
processor.tools.support@analog.com

• E-mail processor questions to:
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

VisualDSP++ 5.0 Device Drivers and System xliii
Services Manual for Blackfin Processors

Preface

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

Supported Processors
The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ supports all ADSP-BFxxx Blackfin processors.

For a complete list of processors supported by VisualDSP++ 5.0, refer to
the online Help.

Product Information
Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive

http://www.analog.com/processors/technical_library
http://www.analog.com
http://www.analog.com/subscriptions

Product Information

xliv VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools software
documentation. You can search easily across the entire VisualDSP++ doc-
umentation set for any topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

File Description

.chm Help system files and manuals in Microsoft Help format

.htm or

.html
Dinkum Abridged C++ library and FLEXnet License Tools software
documentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in (PDF) format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

VisualDSP++ 5.0 Device Drivers and System xlv
Services Manual for Blackfin Processors

Preface

Technical Library CD
The technical library CD contains seminar materials, product highlights, a
selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC®, TigerSHARC®, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the
latest manual revisions and associated documentation errata.

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows
you direct access to ADI technical support engineers. You can search
FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com/processors/technical_library
http://www.analog.com/processors/technical_library
http://ez.analog.com

Notation Conventions

xlvi VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Social Networking Web Sites
You can now follow Analog Devices Blackfin development on Twitter and
LinkedIn. To access:

• Twitter: http://twitter.com/blackfin

• LinkedIn: Network with the LinkedIn group, Analog Devices
Blackfin: http://www.linkedin.com

Notation Conventions
Text conventions used in this manual are identified and described as fol-
lows. Note that additional conventions, which apply only to specific
chapters, may appear throughout this document.

Example Description

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and
separated by vertical bars; read the example as an optional this or
that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipse; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

http://twitter.com/blackfin
http://www.linkedin.com

VisualDSP++ 5.0 Device Drivers and System xlvii
Services Manual for Blackfin Processors

Preface

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Example Description

Notation Conventions

 xlviii VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 1-1
Services Manual for Blackfin Processors

1 INTRODUCTION

This manual describes the system services and device driver architecture
for Analog Devices embedded processors.

The system services form a collection of functions that are commonly
found in embedded systems. Each system service focuses on a specific set
of functionality such as direct memory access (DMA), power management
(PM), interrupt control (IC), and so on. Collectively, the system services
provide a wealth of pre-built, optimized code that simplifies software
development, allowing you to get Blackfin processor-based designs to
market more quickly.

The device driver model provides a simple, clean and familiar interface
into device drivers for Blackfin processors. The primary objective of the
device driver model is to create a concise, effective, and easy-to-use
interface through which applications can communicate with device
drivers. Secondarily, the model and device manager software significantly
simplifies the development of device drivers, making the development of
new device drivers very straightforward.

At the time of this release, the system services and device drivers are avail-
able for use with the following Blackfin processors:

• ADSP-BF504/504F/506F

• ADSP-BF512/514/516/518

• ADSP-BF522/524/526

• ADSP-BF523/525/527

System Services Overview

1-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• ADSP-BF531/532/533

• ADSP-BF534/536/537

• ADSP-BF538/539

• ADSP-BF542/544/547/548/549

• ADSP-BF542M/544M/547M/548M/549M

• ADSP-BF561

• ADSP-BF590/592-A

For a complete list of processors supported by VisualDSP++ 5.0, refer to
the online Help.

This chapter contains:

• “System Services Overview”

• “Device Driver Overview” on page 1-22

System Services Overview
The system services overview covers the following topics:

• “General” on page 1-3

• “Application Interface” on page 1-8

• “Dependencies” on page 1-10

• “Initialization” on page 1-11

• “Termination” on page 1-12

• “System Services Directory and File Structure” on page 1-13

VisualDSP++ 5.0 Device Drivers and System 1-3
Services Manual for Blackfin Processors

Introduction

General
The current revision of the system services library consists of the following
services:

• Interrupt Control Service – The interrupt control service allows
the application to control and leverage the event and interrupt pro-
cessing of the processor more effectively. Specific functionality
allows the application to:

• Set and detect the mappings of the interrupt priority levels
to peripherals.

• Use standard C functions as interrupt handlers.

• Hook and unhook multiple interrupt handlers to the same
interrupt priority level using both nesting and non-nesting
capabilities.

• Detect if a system interrupt is being asserted.

• Protect and unprotect critical regions of code in a portable
manner.

• Power Management Service – The power management service
allows the application to control the dynamic power management
capabilities of a Blackfin processor. Specific functionality allows
the application to:

• Set core and system clock operating frequencies with a func-
tion call.

• Set and detect the internal voltage regulator settings.

• Transition the processor among the various operating
modes including, full-on, active, sleep, and so on.

System Services Overview

1-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• External Bus Interface Unit Control Service (EBIU) – The EBIU
control service provides a collection of routines to set up the exter-
nal interfaces of the Blackfin processor, including the SDRAM
controller. This functionality enables you to:

• Adjust SDRAM refresh and timing rates to optimal values
for given system clock frequencies.

• Set individual bus interface settings.

• Complete single function setup for known configurations,
such as the Blackfin EZ-KIT Lite® platforms.

• Deferred Callback Service – The deferred callback service allows
the application to be notified of asynchronous events outside of
high-priority interrupt service routines. Using deferred callbacks
typically improves the overall I/O capacity of the system while at
the same time reducing interrupt latency. Specific functionality
allows the application to:

• Define how many callbacks can be pending at any point in
time.

• Define the interrupt priority level at which the callback ser-
vice executes.

• Create multiple callback services, each operating at a differ-
ent interrupt priority level.

• Post callbacks to a callback service with a relative priority
among all other callbacks posted to the same callback
service.

• DMA Management Service – The DMA management service
provides access into the DMA controller of a Blackfin processor.
The DMA management service allows the application to schedule

VisualDSP++ 5.0 Device Drivers and System 1-5
Services Manual for Blackfin Processors

Introduction

DMA operations, both peripheral and memory DMA, supporting
both linear and two-dimensional transfer types. Specific function-
ality allows the application to:

• Set and detect the mapping of DMA channels to
peripherals.

• Configure individual DMA channels for inbound/outbound
traffic using circular (autobuffered) DMA or descrip-
tor-based DMA.

• Command the DMA manager to issue live or deferred
callbacks upon DMA completions.

• Queue descriptors, intermixing linear and two-dimensional
transfers on DMA channels.

• Enable the DMA manager to loopback on descriptor chains
automatically.

• Stream data continuously into or out of a memory stream or
peripheral.

• Initiate linear and two-dimensional memory DMA transfers
with simple C-like, memcpy-type functions.

• Programmable Flag Service – The programmable flag service
provides a simple interface into the programmable flags, sometimes
called general-purpose I/O, of the Blackfin processor. This allows
the application to access and control the programmable flags
through a clean and consistent interface. The programmable flag
service allows the application to:

• Configure the direction, either input or output, of any flag.

• Set, clear, and toggle the value of all output flags.

System Services Overview

1-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• Sense the value of input flags.

• Install callbacks, including live and deferred callbacks when
specific trigger conditions occur on a flag.

• Timer Service – The timer service provides applications, drivers,
and services with a simple mechanism to control general-purpose,
core, and watchdog timers of the Blackfin processor. The timer ser-
vice allows the application to:

• Configure and control any timer within the processor,
including general-purpose, core, and watchdog timers.

• Install callbacks, including both “live” and deferred
callbacks, when timers expire or trigger.

• Port Control Service – The port control service configures the pin
multiplexing hardware appropriately to ensure proper operation of
the peripherals that share common input and output pins. All sys-
tem services and device drivers automatically make the appropriate
calls into the port control service to seamlessly configure the pin
muxing hardware without any end-user or application interaction,
other than initialization of the service.

• Device Manager – The device driver model is used to control
devices, both internal and external to Analog Devices processors.
Specific functionality allow the application to:

• Open and close devices used by the application.

• Configure and control devices.

• Receive and transmit data through the devices using a vari-
ety of dataflow methods.

VisualDSP++ 5.0 Device Drivers and System 1-7
Services Manual for Blackfin Processors

Introduction

• Real-Time Clock Service – (not available for the ADSP-BF561)
The real-time clock service reads and writes the date and time, and
installs callbacks for the various real-time clock events. The service
includes the following features:

• Set date and time.

• Read date and time.

• Set and read of epoch time.

• Callbacks for the once only alarm, each day alarm, stop-
watch event, one second event, one minute event, one hour
event, one day event and register write complete event.

• Reset the stopwatch.

• Enable or disable the RTC wakeup to the processor.

• File System Service – The file system service provides access to
embedded mass storage media, from the Blackfin processor. The
file system includes functionality for:

• File operations (open, close, read, write, seek, tell, IsEOF,
remove, rename)

• Directory operations (open, close, read, seek, tell, rewind,
change, get current, create, remove)

• Other operations (get file/directory status, get number of
volumes, get volume info, format volume, media change
notification, poll media, register/deregister device)

• POSIX operations (opendir, closedir, readdir, readdir_r,
rewinddir, seekdir, telldir, rename, mkdir, rmdir, remove)

• Extensibility (additional or replacement drivers can be
inserted)

System Services Overview

1-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• Pulse-Width Modulation Service – (only available on some newer
Blackfin processors)
The pulse-width modulation service facilitates control over the
PWM hardware, generating waveforms to drive a three-phase volt-
age source inverter for use in motor control applications. The
service requires the application to select the port muxing, synchro-
nization pulse period and width, dead time, duty cycle, channel
enable status, polarity, and operating mode. The service allows
optional selection of sync pulse on an output pin, internal or exter-
nal sync pulse, synchronous or asynchronous external sync pulse,
IVG levels for trip and sync interrupt, switch reluctance mode,
channel crossover mode, gate chopping mode, and trip input signal
disable.

Application Interface
Each system service exports an application programming interface (API)
that defines the interface into that service. Application software makes
calls into the API of the system service to access the functionality that is to
be controlled.

Each API can be called using the standard calling interface of the
development toolset’s C run-time model. The API of each service can be
called by any C or assembly language program that adheres to the calling
conventions and register usage of the C run-time model.

In addition to the application software using the API to make calls into a
system service, some system services make calls into the API of other sys-
tem services. For the most part, each service is independent of the other
services; however, redundancies are eliminated by allowing one service to
access the functionality of another service.

For example, does the application need to be notified when a DMA
descriptor has completed processing, and the application has requested

VisualDSP++ 5.0 Device Drivers and System 1-9
Services Manual for Blackfin Processors

Introduction

deferred callbacks? In this case, the DMA management service invokes the
deferred callback service to effect the callback into the application.

Another example of combined operation between services involves the
power management and EBIU services. Assume that the system has
SDRAM and the application needs to conserve power by turning down
the core and system clock frequencies. When the application calls the
power management service to lower the operating frequencies, the power
management service automatically invokes the EBIU service, which
adjusts the SDRAM refresh rate to compensate for the reduced system
clock frequency.

Figure 1-1 illustrates the current collection of system services and the API
interactions among them.

Figure 1-1. System Services and API Interactions

Port Control

Deferred CallbackDMA Manager

Interrupt Manager

Dynamic Power

EBIU (SDRAM)

Flag Control Timer Control

System Services Overview

1-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Dependencies
With few constraints, applications can use any individual service
or combination of services within their application. Applications do not
have to all the services. Further, each service does not need all the
resources associated with the system that the service is controlling.
For example, the DMA manager does not need control over all DMA
channels. The system can be configured for the DMA manager to control
some channels, leaving the application or other software to control other
DMA channels. (See the individual service chapters for more information
on each service.) There are, however, dependencies within the services of
which the application developer should be aware.

All current services, except the EBIU service, invoke the interrupt control
service for the management of interrupt processing. The DMA manager,
deferred callback, and power management services each depend on the
interrupt control service to manage interrupt processing for them.

If directed by the application to adjust SDRAM timing automatically, the
power management service uses the EBIU control service to affect
SDRAM timing parameter changes when the power/operating speed
profile of the processor is changed.

When configured to use deferred callbacks (as opposed to live or
interrupt-time callbacks) the DMA manager leverages the capabilities of
the deferred callback service to provide deferred callbacks to the applica-
tion. However, when configured for live callbacks, the DMA manager
does not use the deferred callback service.

The development toolset automatically determines these dependencies
and links into the executable only those services that are required by the
application. Because each service is built as its own object file within the
system services library file, you can further reduce the code size of the final
executable by commanding the linker to eliminate unused objects. Refer
to the development toolset documentation for more information.

VisualDSP++ 5.0 Device Drivers and System 1-11
Services Manual for Blackfin Processors

Introduction

Initialization
Some system services rely on other system services; thus, there is a
preferred initialization sequence. Usually it is preferable to initialize all
services at one time, typically when the whole system is being initialized,
rather than spreading out the initialization of various services at different
times.

Most applications find the initialization sequence listed below to be opti-
mal. Any service in the sequence that is not used by the application can
simply be omitted from the sequence.

1. Interrupt control service

2. External bus interface unit

3. Power management service

4. Port control (if applicable)

5. Deferred callback service

6. DMA manager service

7. Programmable flag service

8. Timer service

9. Real-time clock service

10.Semaphore service

System Services Overview

1-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Termination
Many embedded systems operate continuously in an endless loop and may
never need to call the termination function of a service. Applications that
do not have a need to terminate a service can save memory by never calling
the termination function.

For applications that need to terminate services, as with the initialization
sequence, there is a preferred sequence of terminating the services.

Most application find the termination sequence listed below to be opti-
mal. Services are usually terminated in the reverse order from which they
were initialized. Any service in the sequence that is not used by the appli-
cation can simply be omitted from the sequence.

1. PWM service (if applicable)

2. Semaphore service

3. Real-time clock service

4. Timer service

5. Programmable flag service

6. DMA manager service

7. Deferred callback service

8. Port control (if applicable)

9. Power management service

10.External bus interface unit

11.Interrupt control service

VisualDSP++ 5.0 Device Drivers and System 1-13
Services Manual for Blackfin Processors

Introduction

System Services Directory and File Structure
All files for the system services are contained within the Blackfin
directory tree. In VisualDSP++ installations, this directory is used for core
development tools. Other development toolsets may use other directory
names for their toolkits, but the system services can always be found
within the Blackfin directory tree.

To use the system services, applications need only include a single include
file in their source code, and link with a single system services library
module that is appropriate for their configuration.

Accessing the System Services API

Applications using system services should include the Black-
fin/include/services directory in the (compiler and/or assembler)
preprocessor search path. User source files that access any of the system
services APIs should simply include the services.h file, located in the
Blackfin/include/services directory. User files do not need to include
any other files to use the system services API.

The system services API and functionality are uniform and consistent
across all Blackfin processors, including all single- and multi-core devices.
Application software does not have to change, regardless of the Blackfin
processor is being targeted. For example, application software running on
a single-core ADSP-BF533 processor can operate unchanged on a
multi-core ADSP-BF561 processor.

In order to provide this consistent API to the application, the system
services API must be aware of the specific processor variant being targeted.
You must ensure that the processor definition macro for the processor
variant being targeted is defined when including the services.h include
file.

The VisualDSP++ toolset automatically sets the processor definition
macro when building projects. Application developers using the

System Services Overview

1-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ toolset need do nothing further to ensure the processor
definition macro is defined.

Application developers using other toolsets, however, should ensure the
processor definition macro is appropriately defined. The services.h file
enumerates the specific processor variants that are supported. These cur-
rent processor variants are shown in Table 1-1, but new defines will be
created for each newly-introduced Blackfin processor so reference to the
latest include file is essential.

Table 1-1. Processor Variants

__ADSPBF504__ The ADSP-BF504 processor

__ADSPBF504F__ The ADSP-BF504F processor

__ADSPBF506F__ The ADSP-BF506F processor

__ADSPBF512__ The ADSP-BF512 processor

__ADSPBF514__ The ADSP-BF514 processor

__ADSPBF516__ The ADSP-BF516 processor

__ADSPBF518__ The ADSP-BF518 processor

__ADSPBF522__ The ADSP-BF522 processor

__ADSPBF523__ The ADSP-BF523 processor

__ADSPBF524__ The ADSP-BF524 processor

__ADSPBF525__ The ADSP-BF525 processor

__ADSPBF526__ The ADSP-BF526 processor

__ADSPBF527__ The ADSP-BF527 processor

__ADSPBF531__ The ADSP-BF531 processor

__ADSPBF532__ The ADSP-BF532 processor

__ADSPBF533__ The ADSP-BF533 processor

__ADSPBF534__ The ADSP-BF534 processor

__ADSPBF535__ The ADSP-BF535 processor

__ADSPBF536__ The ADSP-BF536 processor

VisualDSP++ 5.0 Device Drivers and System 1-15
Services Manual for Blackfin Processors

Introduction

The services.h file contains the full and complete list of processor vari-
ants that are supported.

 Although the API of the system services does not change between
processor variants, the internals of the system services differ,
depending on the specific processor variant and processor revision
number being targeted. For example, the number of DMA
channels for a ADSP-BF533 processor differs from the number of
DMA channels for a ADSP-BF561 processor. Further, a
workaround within the services for revision x.y of a processor may
not be needed for revision x.y of that same processor. These differ-
ences are accounted for in the system service library module. See
“System Services Overview” for more information.

__ADSPBF537__ The ADSP-BF537 processor

__ADSPBF538__ The ADSP-BF538 processor

__ADSPBF539__ The ADSP-BF539 processor

__ADSPBF542__ The ADSP-BF542 processor

__ADSPBF544__ The ADSP-BF544 processor

__ADSPBF547__ The ADSP-BF547 processor

__ADSPBF548__ The ADSP-BF548 processor

__ADSPBF549__ The ADSP-BF549 processor

__ADSPBF542M__ The ADSP-BF542M processor

__ADSPBF544M__ The ADSP-BF544M processor

__ADSPBF547M__ The ADSP-BF547M processor

__ADSPBF548M__ The ADSP-BF548M processor

__ADSPBF549M__ The ADSP-BF549M processor

__ADSPBF561__ The ADSP-BF561 processor

__ADSPBF590__ The ADSP-BF590 processor

__ADSPBF592__ The ADSP-BF592-A processor

Table 1-1. Processor Variants (Cont’d)

System Services Overview

1-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Linking in the System Services Library

All object code for the system services is included in the system services
library file. This file is found in the Blackfin/lib directory. This direc-
tory provides a system services library file for each processor variant and
processor revision that is supported. You should ensure that the appropri-
ate library is included in the list of object files for the linker.

All system service library files are of the form libsslxxx_yyyz.dlb where:

• xxx represents the processor variant – This is typically a three-digit
number that identifies the processor variant, such as 532 for the
ADSP-BF532 processor, 534 for the ADSP-BF534 processor, and
so on.

• _yyy represents the operating environment – This suffix represents
the targeted operating environment, such as vdk for VDK-based
systems, uCOS for uCOS-based systems, and so on. Libraries built
for standalone, specifically non-RTOS environments, do not
include the _yyy suffix.

• z represents any special conditions for the library – The following
combinations are used:

• y – The library is built to avoid all known anomalies for all
revisions of silicon.

• blank – A library without any additional suffix does not
contain workarounds to any anomalies.

Located within the Blackfin/lib directory are subdirectories for
individual silicon revisions. The libraries in these subdirectories are
built for specific silicon revisions of the Blackfin processors.

One system services library file only should be included for the linker to
process. Choose the correct library based on the processor variant,
operating environment, and processor revision number for your system.

VisualDSP++ 5.0 Device Drivers and System 1-17
Services Manual for Blackfin Processors

Introduction

For example, an application targeting silicon revision 0.2 of the
ADSP-BF532 processor without an RTOS should link with the
libss1532.dlb file from the Blackfin/lib/bf532_rev_0.2 subdirectory.
As another example, an application developer who wants a version of the
system services library to run on any revision of ADSP-BF532 silicon and
uses the VDK, should link with the libss1532_vdky.dlb file from the
Blackfin/lib directory.

 It is strongly recommended you use the debug versions of the
system services library during development because the built-in
error-checking code within the library can save countless hours of
development time.

Specify the use of debug versions of the libraries by selecting Use Debug
System libraries on the Link:Processor page of the Project Options dialog
box.

Rebuilding the System Services Library

Under normal situations, there is no need to rebuild the system services
library. However, to accommodate unforeseen circumstances and provide
developers with the ability to tailor the system services to their particular
needs, all source code and include files necessary to rebuild the system
services library are provided. In addition, VisualDSP++ project files are
included for application developers using the VisualDSP++ development
toolset.

System Services Overview

1-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

All code for the system services library is located in the following
directories:

• Blackfin/lib – This directory contains the Analog Devices built
versions of the system service library files (*.dlb).

• Blackfin/lib/src/services – This directory contains all the
source code files and non-API include files for the system services.
This directory also contains the VisualDSP++ project files that can
be used to rebuild the libraries.

• Blackfin/include/services – This directory contains all API
include files for the system services.

VisualDSP++ users can simply rebuild the system services library by using
the build command after opening the appropriate VisualDSP++ project
file.

To rebuild the libraries using other development toolsets:

1. Set the preprocessor include path to include
Blackfin/include/services and blackfin/lib/src/services.

2. Define the processor variant according to the definitions in the
services.h file.

3. Define the silicon revision macro, __SILICON_REVISION__, to the
proper value. Refer to the description of the _si_revision switch
in your processor’s C/C++ Compiler and Library manual for more
information.

VisualDSP++ 5.0 Device Drivers and System 1-19
Services Manual for Blackfin Processors

Introduction

4. Compile/assemble all files in the Blackfin/lib/src/services
directory.

5. Link the appropriate compiled/assembled objects into a library.
Include all object files without any operating environment exten-
sion (such as VDK) and all object files with the appropriate operating
environment extension specific for the environment being targeted
(such as VDK).

Examples

The system services distribution includes many examples that illustrate
how to use the system services. Refer to these examples for additional
information on how to use the system services effectively.

Dual-Core Considerations

For information on how to use the system services on dual-core
ADSP-BF561 processors, see “Dual-Core Considerations” on page 3-5.

RTOS Considerations
Deployment of system services and the device driver model within an
application based around an RTOS, such as VDK, is highly recom-
mended. However, observe these considerations to avoid conflict with the
RTOS and to successfully deploy the system services and device drivers
within a multi-threaded application.

 The following discussion, which is limited to VDK, is also relevant
to other RTOS environments.

RTOS Considerations

1-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interoperability of System Services With VDK
There are three major considerations to keep in mind when deploying sys-
tem services and the device driver model within a VDK-based application.

• Interrupt handling – The interrupt manager is a cornerstone of the
system services and the device driver model. The interrupt manager
is designed to manage only the interrupt vector groups (IVG) that
it is requested to manage, as dictated by each call to
adi_int_CECHook(), leaving the other IVG levels to be handled as
per the user’s requirements. Thus, VDK-managed interrupts can
easily coexist alongside those managed by system services, provided
that neither method manages the same IVG levels as the other. It is
not possible to have a VDK ISR and an interrupt manager chain
assigned to the same IVG level, as one will overwrite the other in
the event vector table (EVT).

All DMA channels and device drivers use the default IVG levels as
defined in the SIC_IARx registers at the time of device initialization
(that is, during the call to adi_dev_Open()).

• Prohibited interrupt levels – Appendix A of the VisualDSP++ 5.0
Kernel (VDK) User’s Guide details four interrupt levels [EVT3
(EVX), EVT6 (IVTMR), IVG14, and IVG15] which are reserved
for exclusive use by VDK and must not be managed by the inter-
rupt manager. IVG15 is also excluded from most VisualDSP++
applications as it is used to run the applications in supervisor
mode.

• Deferred callbacks – The deferred callback manager offers a similar
service to the VDK process running at IVG14. It is highly recom-
mended that the VDK variant of the system services library is used
(and indeed the default VDK .ldf files ensure its use). This variant
essentially passes callbacks posted to the DCB manager to the VDK
level 14 process. In this mode of operation, only one callback
queue can be used. If the standalone library variant is used, several

VisualDSP++ 5.0 Device Drivers and System 1-21
Services Manual for Blackfin Processors

Introduction

queues can be managed but none of them can be assigned to the
IVG 14 level as this would conflict with the VDK process running
at that level.

Deployment of Services Within a Multi-Threaded
Application

Bear in mind these two major considerations when deploying system ser-
vices and the device driver model within a multi-threaded application.

• Critical regions – System services and device drivers use critical
regions where atomicity of a code segment is required. These
regions are managed through calls to the
adi_int_EnterCriticalRegion function and the
adi_int_ExitCriticalRegion function, which are defined in the
adi_int_xxx.c files within the installation. (For more information,
see “Interrupt Manager” on page 2-1.) It is advised that the above
functions are used within threads that use system services rather
than the VDK push/pop critical region functions.

• Initialization – The initialization of system services and the device
manager is performed only once per application. Since their use
may be required in several threads, it is important that the
initialization is performed prior to any subsequent use. In addition,
all device drivers that need to adjust their timing values according
to the peripheral clock (SCLK) frequency must employ a call to
adi_pwr_GetFreq() to determine the frequency (in Hz). The power
management module must be initialized prior to the opening of
any device driver.

Device Driver Overview

1-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

There are basically three approaches that can be adopted:

• Define a function to initialize the system services and device
manager and call it from a user-modifiable section of the
“start” routine in <Project>_basiccrt.s.

• Assign the initialization to the highest-priority boot thread.

• Use a separate boot thread to perform the initialization and
set it at the highest priority and let it yield to other threads
once completed or be destroyed. Use global and not thread
memory to initialize the system services and device manager
in this way.

Device Driver Overview
Device drivers provide a mechanism for applications to control a device
effectively. Devices may be on-chip or off-chip hardware devices, or even
software modules that are best managed as virtual devices. Device drivers
are typically constructed such that the application is insulated from the
nuances of the hardware (or software) being controlled. In this way, both
the device drivers and the devices that are being controlled can be updated
or replaced without affecting the application.

The Analog Devices device driver model provides a simple, convenient
method for applications to control devices commonly found in and
around Analog Devices processors. It has also provides a simple and effi-
cient mechanism for the creation of new device drivers.

The system services overview covers the following topics:

• “Application Interface” on page 1-23

• “Device Driver Architecture” on page 1-24

• “Initialization” on page 1-26

VisualDSP++ 5.0 Device Drivers and System 1-23
Services Manual for Blackfin Processors

Introduction

• “Termination” on page 1-27

• “Device Driver Directory and File Structure” on page 1-27

Application Interface
The device driver model provides a consistent, simple, and familiar appli-
cation programming interface (API) for device drivers. All devices drivers
that conform to the model use the same simple interface into the driver.

Most devices receive and/or transmit data, sometimes transforming the
data in the process. This data is encapsulated in a buffer. The buffer may
contain small bits of data, such as for a UART-type device that processes
one character at a time, or large pieces of data, such as a video device that
processes NTSC frames of approximately 1 MB in size. Applications typi-
cally provide the buffers to the device, though it is possible for devices to
pass buffers from one device to another without any application
involvement.

The actual API is a model-compliant driver that consists of the following
basic functions:

• adi_dev_Open() – Opens a device for use.

• adi_dev_Close() – Closes down a device.

• adi_dev_Read() – Provides a device with buffers for inbound data.

• adi_dev_Write() – Provides a device with buffers for outbound
data.

• adi_dev_Control() – Sets/detects control and status parameters for
a device.

Similar to the system service APIs, the device driver API is designed to be
called using the standard calling interface of the development toolset’s C
run-time model. The device driver API can be called by any C or assembly

Device Driver Overview

1-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

language program that adheres to the calling conventions and register
usage of the C run-time model.

Device Driver Architecture
The device driver model separates the functionality of device drivers into
two main components: the device manager and the physical drivers.

The device manager is a software component that provides much of the
functionality common to the vast majority of device drivers. For example,
depending on how the application wants the device driver to operate, the
application may command a device driver to operate in synchronous mode
or asynchronous mode.

In synchronous mode, when the application calls the adi_dev_Read() or
adi_dev_Write() API function to read data from or send data to the
device, the API function does not return to the application until the oper-
ation has completed. In asynchronous mode, the API function returns
immediately to the application, while the data is moved in the back-
ground. It would be wasteful to force each physical driver to provide logic
that operates both synchronously and asynchronously. The device man-
ager provides this functionality, relieving each physical driver from
reimplementing this capability.

VisualDSP++ 5.0 Device Drivers and System 1-25
Services Manual for Blackfin Processors

Introduction

The device manager architecture is illustrated in Figure 1-2.

The device manager also provides the API to the application for each
device driver. This ensures that the application has the same consistent
interface regardless of the peculiarities of each device.

While there is only one device manager in a system, there can be any num-
ber of physical drivers in a system. A physical driver is that component of a
device driver that accesses and controls the physical device. The physical
driver is responsible for all the “bit banging” and control and status regis-
ter manipulations of the physical device. All device-specific information is
contained and isolated in the physical driver.

Figure 1-2. Device Manager Architecture

APPLICATION

DEVICE MANAGER

RTOS (OPTIONAL)

DEVICE
DRIVER

COMPONENTS
PHYSICAL

DRIVER
PHYSICAL

DRIVER
PHYSICAL

DRIVER

SYSTEM SERVICES

Device Driver Overview

1-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interaction With System Services

As shown in Figure 1-2, the device driver model leverages the capabilities
of the system services. Each software component in the system (whether it
is the application, RTOS (if present), the device manager, or each physical
driver) can access and call into the system services API.

The benefits of using this approach are enormous. In addition to code size
and data memory savings, this approach provides each software compo-
nent with access to the resources of the system and processor in a
cooperative manner. Further, the amount of development effort for physi-
cal drivers is substantially reduced because each driver does not have to
reimplement any of the functionality provided by the device manager or
system services.

Initialization
Prior to accessing any individual driver, the device manager must first be
initialized. The initialization function, adi_dev_Init(), is called by the
application to set up and initialize the device manager.

Though the device driver model is dependent upon system services, the
initialization function of the device manager does not rely on any of the
system services. As such, the current revision of the device manager can be
initialized before or after the system services initialization.

However, future versions of the device manager initialization function
may require some of the system services capabilities. As such, it is good
practice to initialize the required system services prior to initializing the
device manager. Refer to the “Initialization” on page 1-11 for information
on system services initialization.

VisualDSP++ 5.0 Device Drivers and System 1-27
Services Manual for Blackfin Processors

Introduction

Termination
The API of the device driver model includes a termination function that
may be called by the application if the device drivers are no longer
required. The termination function, adi_dev_Terminate(), is called to
free up the resources used by the device manager and any open physical
drivers. Many embedded systems run in an endless operating loop and
never call the termination function of the device manager. An application
that operates in an endless loop can save program memory by not calling
the terminate function.

As part of the termination function processing, the device manager closes
all open physical drivers. The physical drivers are closed in an abrupt man-
ner. If a more graceful shutdown is needed, the application may prefer to
close any open physical drivers first, and then call the termination
function.

Note that because of the reliance on the system services, the termination
function of the device manager should be called prior to any termination
functions of the system services. This ensures that the system services can
be called by the device manager and/or physical drivers as part of their
shutdown procedure.

After the device manager has been terminated, it must be reinitialized
before any of its functionality can be accessed again.

Device Driver Directory and File Structure
All files for the device driver model are contained within the Blackfin
directory tree. In VisualDSP++ installations, this is the directory that
stores the core development tools. Other development toolsets may use
other directory names for their toolkits, but the device driver files can
always be found within the Blackfin directory tree.

Device Driver Overview

1-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

To use the device drivers, applications need only to use include files in
their source code, and link with a device driver library and a system ser-
vices library module.

Accessing the Device Driver API

User source files accessing the device manager API should include the files
services.h and adi_dev.h, located in the Blackfin/include/services
and Blackfin/include/drivers directories, respectively. In addition, your
source file should use the include file of the physical driver that will be
accessed.

For example, user code that accesses the Analog Devices parallel peripheral
interface (PPI) driver would include the following lines in their source file
(in order):

#include <services/services.h> // system services

#include <drivers/adi_dev.h> // device manager

#include <drivers/ppi/adi_ppi.h> // PPI physical driver

The device driver API and functionality is uniform and consistent across
all Blackfin processors, including all single- and multi-core devices.
Regardless of the Blackfin processor being targeted, application software
does not change. For example, application software running on a sin-
gle-core ADSP-BF533 processor can operate unchanged on a multi-core
ADSP-BF561 processor.

In order to provide this consistent API to the application, the system ser-
vices, device manager, and physical drivers need to be aware of the specific
processor variant being targeted. You must ensure that the processor defi-
nition macro for the processor variant being targeted is defined when
including the system services (services.h), device manager (adi_dev.h),
and physical driver include files.

The VisualDSP++ toolset automatically sets the processor definition
macro when building projects. Application developers using the

VisualDSP++ 5.0 Device Drivers and System 1-29
Services Manual for Blackfin Processors

Introduction

VisualDSP++ toolset need do nothing further to ensure the processor def-
inition macro is defined.

Application developers using other toolsets, however, should ensure that
the processor definition macro is appropriately defined. The services.h
file enumerates the specific processor variants that are supported. These
processor variants are listed in Table 1-1 on page 1-14.

The services.h file contains the full and complete list of processor vari-
ants that are supported by the system services. The adi_dev.h file contains
the list of processor families that are supported by the device driver model.

Device Driver File Locations

Device drivers for on-chip peripherals are provided in the libdrvxxx.dlb
library for the various processor derivatives, silicon revisions, and so on.
Device drivers for off-chip peripherals are not provided within the library,
but rather must be included separately with the application. Include files
for off-chip peripheral drivers are included in following subdirectories:

$ADI_DSP\Blackfin\include\drivers

where $ADI_DSP is the location of your VisualDSP installation, which is,
by default, located at:

C:\Program Files\Analog Devices\VisualDSP <version>

Source files for off-chip peripheral drivers are included in subdirectories:

$ADI_DSP\Blackfin\lib\src\drivers

When creating applications that include off-chip device drivers, the appli-
cation should include the .h file for the driver. This is typically done with
something like this:

#include <drivers\codec\adi_ad1836.h>

Device Driver Overview

1-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The source code for an off-chip peripheral driver should be included in
the source file list of the VisualDSP++ project. For example, if using the
AD1836 device driver, the file

$ADI_DSP\Blackfin\lib\src\drivers\codec\adi_ad1836.c

should be included in the source file list.

Linking in the Device Driver Library

All object code for the device manager and Analog Devices-supplied phys-
ical drivers is included in the device driver library file. This file is found in
the Blackfin/lib directory. In this directory is a device driver library file
for each supported processor variant. You should ensure that the appropri-
ate library is included in the list of object files for the linker.

The device driver library file is of the form libdrvxxxz.dlb where:

• xxx represents the processor variant – This is typically a three-digit
number that identifies the processor variant, such as 532 for the
ADSP-BF532 processor, 534 for the ADSP-BF534 processor, and
so on.

• z represents any special conditions for the library – The following
combinations are used:

• y – The library is built to avoid all known anomalies for all
revisions of silicon.

• blank – A library without an additional suffix does not con-
tain workarounds to any anomalies.

Located within the Blackfin/library directory are subdirectories for
individual silicon revisions. The libraries in these subdirectories are built
for specific silicon revisions of the processors.

One device driver library file should be included for the linker to process.
Choose the correct library based on the processor variant for your system.

VisualDSP++ 5.0 Device Drivers and System 1-31
Services Manual for Blackfin Processors

Introduction

For example, an application developer targeting silicon revision 0.2 of the
ADSP-BF532 processor should link with the libdrv532.dlb file from the
Blackfin/lib/bf532_rev_0.2 subdirectory. As another example, the
application developer who wants a version of the device driver library that
will run on any revision of ADSP-BF532 silicon should link with the
libdrv532y.dlb file from the Blackfin/lib directory.

 It is strongly recommended that you use the debug versions of the
device driver library during development, because built-in,
error-checking code within the library can save countless hours of
development time.

Specify the use of debug versions of the libraries by selecting Use Debug
System libraries on the Link:Processor page of the Project Options dialog
box.

Rebuilding the Device Driver Library

Under normal situations, there is no need to rebuild the device driver
library. However, to accommodate unforeseen circumstances and provide
the ability to tailor the implementation to a user’s particular needs, all
source code and include files necessary to rebuild the device driver library
are provided. In addition, VisualDSP++ project files are included for
application developers who use the VisualDSP++ development toolset.

All code for the device driver library is located in the following directories:

• Blackfin/lib – This directory contains the Analog Devices-built
versions of the device driver library files (*.dlb).

• Blackfin/lib/src/drivers – This directory contains all the source
code files and non-API include files for the device manager and
Analog Devices-provided physical drivers. Also in this directory are
VisualDSP++ project files that can be used to rebuild the libraries.

Device Driver Overview

1-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• Blackfin/include/drivers – This directory contains the device
manager API include file and the include files for all Analog
Devices-provided physical drivers.

VisualDSP++ users can rebuild the device driver library by using the build
command after opening the appropriate VisualDSP++ project file.

To rebuild the libraries using other development toolsets:

1. Set the preprocessor include path to include
Blackfin/include/drivers and Blackfin/lib/src/drivers.

2. Define the processor variant according to the definitions in the
services.h file.

3. Define the silicon revision macro, __SILICON_REVISION__, to the
proper value. Refer to the compiler’s -si-revision switch for more
information.

4. Compile/assemble all files in the Blackfin/lib/src/drivers
directory.

5. Link the appropriate compiled/assembled objects including all
object files into a library.

Examples on Distribution

The device driver distribution includes examples that illustrate how to use
the device drivers. Refer to these examples for additional information on
how to use the device drivers effectively.

VisualDSP++ 5.0 Device Drivers and System 2-1
Services Manual for Blackfin Processors

2 INTERRUPT MANAGER

This chapter describes the interrupt manager that controls and manages
the interrupt and event operations of the Blackfin processor.

This chapter contains:

• “Introduction” on page 2-2

• “Interrupt Manager Initialization” on page 2-4

• “Interrupt Manager Termination” on page 2-5

• “Core Event Controller Functions” on page 2-6

• “System Interrupt Controller Functions” on page 2-9

• “Protecting Critical Code Regions” on page 2-13

• “Modifying IMASK” on page 2-16

• “Examples” on page 2-17

• “File Structure” on page 2-17

• “Interrupt Manager API Reference” on page 2-18

Introduction

2-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The Blackfin processor employs a two-tiered mechanism for controlling
interrupts and events. System-level interrupts are controlled by the system
interrupt controller (SIC). All peripheral interrupt signals are routed
through the system interrupt controller and then, depending on the set-
tings of the system interrupt controller, routed to the core event controller
(CEC). The core event controller processes these events and, depending
on the settings of the core event controller, vectors the processor to handle
the events.

The interrupt manager provides functions that allow the application to
control every aspect of the system interrupt controller and the core event
controller. It does this so that events and interrupts are handled and pro-
cessed in an efficient, yet cooperative, manner.

The Blackfin processor provides 16 levels of interrupt and events. These
levels, called interrupt vector groups (IVG), are numbered from 0 to 15,
with the lowest number having the highest priority. Some IVG levels are
dedicated to certain events, such as emulation, reset, non-maskable inter-
rupt (NMI, and so on. Other IVG levels, specifically levels 7 through 15,
are considered general-purpose events and are typically used for system-
level (peripheral) interrupts or software interrupts.

All IVG processing is performed in the CEC. When a specific IVG is trig-
gered, assuming the event is enabled, the CEC looks up the appropriate
entry in the event vector table and vectors execution to the address in the
table where the event is processed.

All system or peripheral interrupts are first routed through the SIC.
Assuming the SIC has been programmed, peripheral interrupts are then
routed to the CEC for processing. The SIC provides a rich set of function-
ality for the processing and handling of peripheral interrupts. In addition
to allowing/disallowing peripheral interrupts to be routed to the CEC, the
SIC allows peripheral interrupts to be mapped to any of the CEC’s

VisualDSP++ 5.0 Device Drivers and System 2-3
Services Manual for Blackfin Processors

Interrupt Manager

general-purpose IVG levels and controls whether these interrupts wake the
processor from an idled operating mode.

In systems that employ Blackfin processors, often there are more potential
interrupt sources than IVG levels. As stated above, some events (such as
NMI) map one-to-one to an IVG level. Other events, typically infrequent
interrupts such as peripheral error interrupts, are often “ganged” in a sin-
gle IVG level.

The interrupt manager allows the application to execute complete control
over how interrupts are handled, whether they are masked or unmasked,
whether they mapped one-to-one or ganged together, whether the proces-
sor should be awakened to service an interrupt, and so on. The interrupt
manager also allows the creation of interrupt handler chains. An interrupt
handler is a C-callable function that is provided by the application to pro-
cess an interrupt. Through the interrupt manager, the application can
hook in any number of interrupt handlers for any IVG level. When
multiple events are ganged to a single IVG level, this allows each handler
to be designed independently from any other and allows the application to
process these interrupts in a straightforward manner.

Further, the interrupt manager processes only those IVG levels and system
interrupts that the application directs the interrupt manager to control.
This allows the application developer to have complete unfettered access
to any IVG level or system interrupt to manually control interrupts.

Multi-core Blackfin processors extend this capability by including one sys-
tem interrupt controller and one core event controller for each core. This
provides maximum flexibility by allowing application developers to decide
how to map interrupts to individual cores, multiple cores, and so on.
When using multi-core Blackfin processors, typically one interrupt man-
ager for each core is used. Because there is no reason to provide multiple
interrupt managers on single-core devices, this service is not supported.
Application developers should not attempt to instantiate more than one
interrupt manager per core.

Interrupt Manager Initialization

2-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Following the convention of all the system services, the interrupt manager
uses a unique and unambiguous naming convention to guard against con-
flicts. All enumeration values, typedef statements and macros use the
ADI_INT_ prefix, while all functions within the interrupt manager use the
adi_int_ prefix.

All interrupt manager API functions return the ADI_INT_RESULT return
code. See the adi_int.h file for the list of return codes. Like all system
services, the return code that signals successful completion,
ADI_INT_RESULT_SUCCESS for the interrupt manager, is defined to be 0.
This allows applications to quickly and easily determine whether any
errors occurred in processing.

Interrupt Manager Initialization
To use the interrupt manager, a function must initialize the interrupt
manager. The function that initializes the interrupt manager is called
adi_int_Init. The application that calls adi_int_Init passes an argu-
ment defining the memory that the interrupt manager uses when
operating.

The amount of memory provided depends on the number of secondary
handlers used by the application. When using interrupt handler chaining,
the interrupt manager considers the first interrupt handler that is hooked
into an IVG level to be the primary interrupt handler. Any additional
interrupt handlers that hooked into that same IVG level are considered
secondary handlers. Without any additional memory from the applica-
tion, the interrupt manager can support one primary interrupt handler for
each IVG level. If the application never has more than one interrupt han-
dler on each IVG level (that is, only the primary interrupt handler and no
secondary handlers are present), the application does not need to provide
memory to the interrupt manager’s initialization function. However, if the
application hooks in secondary interrupt handlers, the application must
provide additional memory to support the secondary handlers.

VisualDSP++ 5.0 Device Drivers and System 2-5
Services Manual for Blackfin Processors

Interrupt Manager

The ADI_INT_SECONDARY_MEMORY macro is defined to be the amount of
memory (in bytes) required to support a single secondary handler. Thus,
the application should provide to the initialization function “n” times
ADI_INT_SECONDARY_MEMORY, where “n” is the number of secondary
handlers that are supported.

Another parameter passed to the initialization function is the parameter
that the interrupt manager passes to the adi_int_EnterCriticalRegion()
function. This value depends upon the operating environment of the
application. See the adi_int_EnterCriticalRegion function for more
information.

When called, the initialization function initializes its internal data struc-
tures and returns. No changes are made to the CEC or SIC during
initialization. After initialization, any other interrupt manager API
functions may be called.

Interrupt Manager Termination
When the functionality of the interrupt manager is no longer required, the
application can call the termination function of the interrupt manager,
adi_int_Terminate(). Many applications operate in an endless loop and
never call the termination function.

When called, the termination function unhooks all interrupt handlers,
masking off (disabling) all interrupts the that the interrupt manager was
controlling. After calling the termination function, any memory provided
to the initialization function may be reused by the application. No other
interrupt manager functions can be called after termination. If interrupt
manager services are required after the termination function is called, the
application must reinitialize interrupt manager services by calling the
adi_init_Init function.

Core Event Controller Functions

2-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Core Event Controller Functions
Only two functions are necessary to provide complete control over the
core event controller (CEC): adi_int_CECHook() and
adi_int_CECUnhook(), as described next.

adi_int_CECHook() Function
The adi_int_CECHook() function is used to hook an interrupt handler
into the handler chain for an IVG level. When called, the application
passes in the IVG number to be handled, the address of the handler func-
tion, a parameter that the interrupt manager automatically passes back to
the interrupt handler when the interrupt handler is invoked, and a flag
indicating whether interrupt nesting should be enabled for this IVG level.

The handler function itself is a simple C-callable function that conforms
to the ADI_INT_HANDLER_FN typedef. The interrupt handler is not an
interrupt service routine (ISR) but a standard C-callable function. When
the IVG level triggers it, the interrupt manager calls the interrupt handler
to process the event. The interrupt manager passes the client argument
that was passed to the interrupt manager via the adi_int_CECHook()
function to the interrupt handler. The interrupt handler takes whatever
action is necessary to process the interrupt, then returns with either the
ADI_INT_RESULT_PROCESSED or ADI_INT_RESULT_NOT_PROCESSED return
code.

Interrupt handlers should be written such that they interrogate the system
quickly when determining whether the event that triggered the interrupt
should be processed by the interrupt handler. If the event that caused the
interrupt is not the event the interrupt handler was expecting, it should
immediately return with the ADI_INT_RESULT_NOT_PROCESSED return code.
The interrupt manager then automatically invokes the next interrupt han-
dler, if any, that is hooked into the same IVG level. If the event that
caused the interrupt is expected by the interrupt handler, the interrupt

VisualDSP++ 5.0 Device Drivers and System 2-7
Services Manual for Blackfin Processors

Interrupt Manager

handler performs whatever processing is necessary and should return the
ADI_INT_RESULT_PROCESSED return code.

The nesting flag parameter is of significance only when the first interrupt
handler is hooked into an IVG chain. The first interrupt handler that
hooks into an IVG chain is called the primary handler. Any additional
handlers that are hooked into that same IVG chain are called secondary
handlers. When the primary handler is hooked into the chain, the
interrupt manager loads an ISR into the appropriate entry of the event
vector table (EVT). If the nesting flag is set, the ISR that the interrupt
manager loads is one that supports interrupt nesting. If the nesting flag is
clear, the ISR that the interrupt manager loads is one that does not sup-
port interrupt nesting. When secondary handlers are hooked into an IVG
chain, the nesting flag is ignored.

Lastly, the adi_int_CECHook() function unmasks the appropriate bit in
the CEC’s IMASK register, thereby enabling the interrupt to be processed.

In most applications, users take great care to optimize the processing that
occurs for the highest frequency and highest urgency interrupts. Typically,
the highest frequency or highest urgency interrupts are assigned their own
IVG level, and less frequent or lower urgency interrupts (such as error
processing) are ganged together on a single IVG level.

The interrupt manager continues that thinking and has been optimized to
allow extremely efficient processing for primary interrupt handlers.
Though still efficient, secondary handlers are called after the primary han-
dler. Secondary handlers are hooked into the IVG chain in a stacked or
last-in, first-out (LIFO) fashion. This means that when an event is trig-
gered, after calling the primary handler (and assuming the primary
handler did not return the ADI_INT_RESULT_PROCESSED return code), the
interrupt manager calls the last secondary handler that was hooked,
followed by the second to last installed handler, and so on.

Core Event Controller Functions

2-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

To ensure optimal performance, the application developer should manage
which interrupt handlers are hooked as primaries and which are hooked as
secondary handlers.

adi_int_CECUnhook() Function
The adi_int_CECUnhook() function is used to unhook an interrupt
handler from the interrupt handler chain for a particular IVG level. When
called, the application passes in the IVG number and the address of the
interrupt handler function to be unhooked from the chain.

The function removes the interrupt handler from the chain of handlers for
the given IVG level. If the primary handler is being removed, the last sec-
ondary handler that was hooked becomes the new primary handler. If,
after removing the given interrupt handler, no interrupt handlers are left
in the IVG chain, the adi_int_CECUnhook() function masks the
appropriate bit in the CEC’s IMASK register, thereby disabling the
interrupt.

Interrupt Handlers
Since the interrupt handlers registered with the interrupt manager are
invoked from within the built-in IVG interrupt service routine (and there
may be several interrupts pending for the same IVG level), individual
interrupt handlers must not invoke the RTI instruction on completion.
Instead, they should return using the RTS return function. Interrupt
handlers are in fact nothing more than typical C-callable subroutines.

Therefore, each peripheral interrupt handler must conform to the
following template,

ADI_INT_HANDLER(mjk_SPORT_RX_handler)

{

... ... // user code

}

VisualDSP++ 5.0 Device Drivers and System 2-9
Services Manual for Blackfin Processors

Interrupt Manager

where the ADI_INT_HANDLER macro is defined as

#define ADI_INT_HANDLER(NAME) \

void (*NAME)(void *ClientArg)

System Interrupt Controller Functions
The following functions are provided to give the application complete
control over the system interrupt controller:

• adi_int_SICEnable – Enables peripheral interrupts to be passed to
the CEC.

• adi_int_SICDisable – Disables peripheral interrupts from being
passed to the CEC.

• adi_int_SICSetIVG – Sets the IVG level to which a peripheral
interrupt is mapped.

• adi_int_SICGetIVG – Detects the IVG level to which a peripheral
interrupt is mapped.

• adi_int_SICWakeup – Establishes whether a peripheral interrupt
wakes up the processor from an idled state.

• adi_int_SICInterruptAsserted – Detects whether a peripheral
interrupt is asserted.

• adi_int_SICGlobalWakeup – Disables all peripherals from waking
the processor, or restores all wakeups to previous state.

Except for the global wakeup disable/enable function, all of these SIC
functions take as a parameter an enumeration value that uniquely identi-
fies a peripheral interrupt. The ADI_INT_PERIPHERAL_ID enumeration
identifies each possible peripheral interrupt source for the processor. This

System Interrupt Controller Functions

2-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

enumeration is defined in the adi_int.h file. Refer to this header file for
the complete list of values for each supported Blackfin processor.

adi_int_SICDisable
The adi_int_SICDisable() function is used to disable a peripheral inter-
rupt from being passed to the core event controller. When called, this
function programs the appropriate SIC IMASK register to disable the given
peripheral interrupt.

adi_int_SICEnable
The adi_int_SICEnable() function is used to enable a peripheral inter-
rupt to be passed to the core event controller. When called, this function
programs the appropriate SIC IMASK register to enable the given peripheral
interrupt.

adi_int_SICGetIVG
The adi_int_SICGetIVG() function is used to detect the IVG level to
which a peripheral interrupt is mapped.

In addition to the ADI_INT_PERIPHERAL_ID parameter, this function is
passed pointer-to-memory location information. The function interro-
gates the proper field of the appropriate SIC interrupt assignment register
and stores the IVG level (0 to 15) to which the given peripheral interrupt
is mapped into the memory location.

adi_int_SICInterruptAsserted
The adi_int_SICInterruptAsserted() function is used to detect whether
the given peripheral interrupt is asserted. Though it can be called at any
time, it is intended that this function is called immediately by the
application’s interrupt handlers to determine if a given peripheral

VisualDSP++ 5.0 Device Drivers and System 2-11
Services Manual for Blackfin Processors

Interrupt Manager

interrupt is being asserted, allowing the interrupt handler to determine if
its peripheral is asserting the interrupt.

Instead of using the usual ADI_INT_RESULT_SUCCESS return code, this func-
tion returns the ADI_INT_RESULT_ASSERTED or
ADI_INT_RESULT_NOT_ASSERTED return code upon a successful completion.
If errors are detected with the calling parameters, this function may return
a different error code.

adi_int_SICSetIVG
The adi_int_SICSetIVG() function is used to set the IVG level to which a
peripheral interrupt is mapped. Upon power-up, the Blackfin processor
invokes a default mapping of peripheral interrupts to the IVG level. This
function alters that mapping. In addition to the ADI_INT_PERIPHERAL_ID
parameter, this function is passed to the IVG level (0 to 15) to which the
peripheral interrupt should be mapped. The function modifies the proper
field within the appropriate SIC interrupt assignment register to the new
mapping.

adi_int_SICWakeup
The adi_int_SICWakeup() function is used to enable or disable a periph-
eral interrupt from waking up the core when the interrupt trigger and the
core are in an idled state. In addition to the ADI_INT_PERIPHERAL_ID
parameter, this function is passed a TRUE/FALSE flag. If the flag is TRUE, the
SIC interrupt wakeup register is programmed such that the given periph-
eral interrupt wakes up the core when the interrupt is triggered. If the flag
is FALSE, the SIC interrupt wakeup register is programmed such that the
given peripheral interrupt does not wake up the core when the interrupt is
triggered.

Note that this function does not enable or disable interrupt processing.
Also note that it is possible to configure the SIC so that a peripheral

System Interrupt Controller Functions

2-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

interrupt wakes up the core from an idled state but does not process the
interrupt. This may or may not be the intended operation.

adi_int_SICGlobalWakeup
The SIC interrupt wakeup register contains bits which correspond to each
peripheral which may wake up the core, when the interrupt trigger and the
core are in an idled state, and the bit corresponding to the peripheral is
set. By default, all bits in the SIC interrupt wakeup register are set.

The adi_int_SICGlobalWakeup() function is used to globally disable all
the peripheral interrupts from waking up the core, by setting all bits of the
SIC interrupt wakeup register to zero. The function is also used to restore
the SIC interrupt wakeup register to a previous state. This function is
passed a TRUE/FALSE flag, and a pointer to a ADI_INT_WAKEUP_REGISTER
structure, into which the values of the wakeup register are saved, when
globally disabling wakeups, or from which they are restored, when glo-
bally re-enabling wakeups.

If the flag is FALSE, the function interrogates the fields of the SIC inter-
rupt wakeup register and stores the values into the corresponding fields of
the ADI_INT_WAKEUP_REGISTER structure, referenced by the function argu-
ment pointer. The SIC interrupt wakeup register is then programmed
such that no peripheral interrupts can wake up the core.

If the flag passed in is TRUE, this function programs the SIC wakeup regis-
ter according to the fields of the ADI_INT_WAKEUP_REGISTER structure,
referenced by the function argument pointer. These values are presumed
to have been saved by a previous call to adi_int_SICGlobalWakeup.

VisualDSP++ 5.0 Device Drivers and System 2-13
Services Manual for Blackfin Processors

Interrupt Manager

For example, this function may be used to switch to a low power mode,
when only selected wakeups are to be left enabled.

/* Declare a wakeup register structure for saving the wakeup reg-

ister state */

ADI_INT_WAKEUP_REGISTER RegIWR;

/* Globally disable wakeups, saving the wakeup register state */

adi_init_SICGlobalWakeup(FALSE, &RegIWR);

/* Enable the PLL wakeup, to change power modes */

adi_int_SICWakeup(ADI_INT_PLL_WAKEUP, 1) ;

/* Enable any other wakeups, to wake the processor from sleep */

/* Go to sleep */

adi_pwr_SetPowerMode(ADI_PWR_MODE_SLEEP);

/* Upon wakeup, restore the wakeups to their previous state */

adi_int_SICGlobalWakeup(TRUE, &RegIWR);

Note that this function does not enable or disable interrupt processing.
Also note that it is possible to configure the SIC so that a peripheral inter-
rupt wakes up the core from an idled state but does not process the
interrupt. This may or may not be the intended operation.

Protecting Critical Code Regions
In embedded systems, it is often necessary to protect a critical region of
code while it is being executed. This is often necessary while one logical
programming sequence is updating or modifying a piece of data. In these
cases, another logical programming sequence, such as interrupt processing
in one system (or different thread in an RTOS-based system) is prevented
from interfering while the critical data is being updated.

Protecting Critical Code Regions

2-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

To that end, the interrupt manager provides two functions that can be
used to bracket a critical region of code: adi_int_EnterCriticalRegion()
and adi_int_ExitCriticalRegion(). The application calls the
adi_int_EnterCriticalRegion() function at the beginning of the critical
section of code, and then calls the adi_int_ExitCriticalRegion()
function at the end of the critical section. These functions must be used in
pairs.

The actual implementation of these functions varies from operating envi-
ronment to operating environment. For example, in a standalone system
(systems without any RTOS), what actually happens in these functions
may be different than the version of these functions for an RTOS-based
system. The principle and usage, however, are the same, regardless of
implementation. In this way, application code always operates the same
way, and does not change, regardless of the operating environment.

The adi_int_EnterCriticalRegion() function is passed an argument of
type void * and returns an argument of type void *. The value returned
from the adi_int_EnterCriticalRegion() function must always be passed
to the corresponding adi_int_ExitCriticalRegion() function. For exam-
ple, examine the following code sequence:
...

Value = adi_int_EnterCriticalRegion(pArg);

... // critical section of code

adi_int_ExitCriticalRegion(Value);

...

The value returned from the adi_int_EnterCriticalRegion() function
must be passed to the corresponding adi_int_ExitCriticalRegion()
function. Although nesting of calls to these functions is allowed, the appli-
cation developer minimizes the use of these functions to only those critical
sections of code, and realizes that in all likelihood, the processor is being
placed in some altered state. This could affect the performance of the sys-
tem, while in the critical regions.

VisualDSP++ 5.0 Device Drivers and System 2-15
Services Manual for Blackfin Processors

Interrupt Manager

For example, it could be that interrupts are disabled in the critical region.
The application developer typically does not want to have interrupts
disabled for long periods of time. These functions should be used spar-
ingly and judiciously.

Nesting of these calls is allowed. For example, consider the following code
sequence that makes a call to the Foo() function while in a critical section
of code. The Foo() function also has a critical region of code.
...

Value = adi_int_EnterCriticalRegion(pArg);

... // critical section of code

Foo(); // call to Foo()

adi_int_ExitCriticalRegion(Value);

...

void Foo(void) {

void *Value;

...

Value = adi_int_EnterCriticalRegion(pArg);

... // critical section of code

adi_int_ExitCriticalRegion(Value);

...

}

This practice is allowed; however, the application developer is cautioned
that overuse of these functions can affect system performance.

The pArg value passed into the adi_int_EnterCriticalRegion() function
depends upon the actual implementation for the given operating environ-
ment. In some operating environments, the value is not used and can be
NULL. For more information on the pArg parameter, check the source file
for the specific operating environment, adi_int_xxx.c, in the Black-
fin/lib/src/services directory where xxx is the operating environment.

Modifying IMASK

2-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

 All system services and device drivers use these functions exclu-
sively to protect critical regions of code. Application software
should also use these functions exclusively to protect critical
regions of code within the application.

Modifying IMASK
Though applications rarely need to have the processor’s IMASK register
value modified, the interrupt manager itself modifies the IMASK register
value to control the CEC properly. In some RTOS-based operating envi-
ronments, the RTOS controls the IMASK register tightly and provides
functions that allow the manipulation of IMASK.

In order to ensure compatibility across all operating environments, the
interrupt manager provides functions that allow bits within the IMASK reg-
ister to be set or cleared. Depending on the operating environment, these
functions may modify the IMASK value directly, or use the RTOS-provided
IMASK manipulation functions. Regardless of how the IMASK value is
changed, the interrupt manager API provides a uniform and consistent
mechanism for this.

Two operating environment implementation-dependent functions are
provided to set and clear bits in the IMASK register: adi_int_SetIMASKBits
and adi_int_ClearIMASKBits. These functions take as a parameter a value
that corresponds to the IMASK register of the targeted processor. When the
adi_int_SetIMASKBits() function is called, the function sets to 1 those
bits in the IMASK register that have a 1 in the corresponding bit position of
the value passed in. When the adi_int_ClearIMASKBits() function is
called, the function clears those bits (to 0) in the IMASK register that have a
1 in the corresponding bit position of the value passed in.

VisualDSP++ 5.0 Device Drivers and System 2-17
Services Manual for Blackfin Processors

Interrupt Manager

Consider the following example code. Assume that IMASK is a 32-bit value
and contains 0x00000000 upon entry into the code:
...

... // IMASK = 0x00000000

ReturnCode = adi_int_SetIMASKBits(0x00000003);

... // IMASK now equals 0x00000003

ReturnCode = adi_int_ClearIMASKBits(0x00000001);

... // IMASK now equals 0x00000002

ReturnCode = adi_int_ClearIMASKBits(0x00000002);

... // IMASK now equals 0x00000000

While it is very unlikely that the application will ever need to control
individual IMASK bit values, the interrupt manager uses these functions to
control the CEC.

Examples
Examples demonstrating use of the interrupt manager can be found in the
Blackfin/EZ-Kits subdirectories.

File Structure
The API for the interrupt manager is defined in the adi_int.h header file.
This file is located in the Blackfin/include/services subdirectory and is
automatically included by the services.h file in that same directory. Only
the services.h file should be included in the application code.

Applications should link with only one of the system services library files.
These files are located in the Blackfin/lib directory. See the appropriate
section in Chapter 6, DMA Manager, for more information on selecting
the proper library file.

File Structure

2-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

For convenience, all source code for the interrupt manager is located in
the Blackfin/lib/src/services directory. All operating environ-
ment-dependent code is located in the file adi_int_xxx.c, where xxx is
the operating environment being targeted. These files should never be
linked into an application because the appropriate system services library
file contains all required object code.

Interrupt Manager API Reference
This section provides descriptions of the interrupt manager module’s
application programming interface (API) functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 2-19
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_Init

Description

The adi_int_Init() function sets aside and initializes memory for the
interrupt manager. It also initializes other tables and vectors within the
interrupt manager. This function is only called once per core. Separate
memory areas are assigned for each core.

Prototype

ADI_INT_RESULT adi_int_Init(

void *pMemory,

const size_t MemorySize,

u32 *pMaxEntries,

void *pEnterCriticalArg

);

Arguments

Return Value

pMemory Pointer to an area of memory used by the interrupt manager

MemorySize Size, in bytes, of memory supplied for the interrupt manager

pMaxEntries On return, this argument contains the number of secondary
handler entries that the interrupt manager can support given the
memory supplied.

pEnterCriticalArg Parameter passed to the adi_int_EnterCriticalRegion

ADI_INT_RESULT_SUCCESS Successfully initialized.

File Structure

2-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_Terminate

Description

The adi_int_Terminate() function closes down the interrupt manager.
All memory used by the interrupt manager is freed up, all handlers are
unhooked, and all interrupt vector groups (IVG) that were enabled and
controlled by the interrupt manager are disabled.

 The adi_int_Terminate function does not alter the system inter-
rupt controller settings. Should changes to the SIC be required, the
application should make the appropriate calls into the relevant SIC
control functions before calling adi_int_Terminate().

Prototype

ADI_INT_RESULT adi_int_Terminate(void);

Arguments

The function takes no arguments.

Return Value

ADI_INT_RESULT_SUCCESS Process completed successfully.

VisualDSP++ 5.0 Device Drivers and System 2-21
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_CECHook

Description

The adi_int_CECHook() function instructs the interrupt manager to hook
(insert) the given interrupt handler into the interrupt handler chain for
the given IVG.

On a return from this call, the core event controller is programmed such
that the given IVG is unmasked (enabled) and the system is properly con-
figured to service the interrupt via the interrupt manager’s built-in ISRs.
The ISRs then invoke the interrupt handler supplied by the caller.
Depending on the state of the NestingFlag parameter, the interrupt man-
ager installs its built-in interrupt service routine with interrupt nesting,
either enabled or disabled.

On the first call for a given IVG level, the interrupt manager registers its
built-in IVG interrupt service routine against that level and establishes the
supplied interrupt handler as the primary interrupt handler for the given
IVG level. Subsequent calls to adi_int_CECHook for the same IVG level
create a chain of secondary interrupt handlers for the IVG level. When the
interrupt for the IVG level is triggered, the primary interrupt handler is
called first, and then if present, each secondary interrupt handler is
subsequently called.

The ClientArg parameter provided in the adi_int_CECHook function is
passed to the interrupt handler as an argument when the interrupt handler
is called in response to interrupt generation.

File Structure

2-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Prototype

ADI_INT_RESULT adi_int_CECHook(

u32 IVG,

ADI_INT_HANDLER_FN Handler,

void *ClientArg,

u32 NestingFlag

);

Arguments

Return Value

IVG Interrupt vector group number being addressed

Handler Client’s interrupt handler inserted into the chain for the
given IVG

ClientArg A void * value that is passed to the interrupt handler

NestingFlag Argument that selects whether nesting of interrupts is
allowed or disallowed for the IVG (TRUE/FALSE)

ADI_INT_RESULT_SUCCESS Interrupt handler was successfully hooked into the chain.

ADI_INT_RESULT_NO_MEMORY Insufficient memory is available to insert the handler into
the chain.

ADI_INT_RESULT_INVALID_IVG IVG level is invalid.

VisualDSP++ 5.0 Device Drivers and System 2-23
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_CECUnhook

Description

The adi_int_CECUnhook() function instructs the interrupt manager to
unhook (remove) the given interrupt handler from the interrupt handler
chain for the given IVG.

If the given interrupt handler is the only interrupt handler in the chain,
the CEC is programmed to disable (mask) the given IVG, and the inter-
rupt manager built-in interrupt service routine is removed from the IVG
entry within the event vector table.

If the chain for the given IVG contains multiple interrupt handlers, the
given interrupt handler is simply purged from the chain. If the primary
interrupt handler is removed and there are secondary interrupt handlers
present in the chain, one of the secondary interrupt handlers becomes the
primary interrupt handler.

Prototype

ADI_INT_RESULT adi_int_CECUnhook(

u32 IVG,

ADI_INT_HANDLER_FN Handler,

void *ClientArg

);

File Structure

2-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

IVG Interrupt vector group number being addressed

Handler Client’s interrupt handler removed from the chain for
the given IVG

ClientArg A void * value that is passed to the interrupt handler.
To remove the interrupt handler successfully, match this
value to the ClientArg parameter that was passed to the
adi_int_CECHook() function when the interrupt han-
dler was hooked into the chain.

ADI_INT_RESULT_SUCCESS Interrupt handler was successfully unhooked from the
chain.

ADI_INT_RESULT_INVALID_IVG IVG level is invalid.

VisualDSP++ 5.0 Device Drivers and System 2-25
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_ClearIMaskBits

Description

The adi_int_ClearIMaskBits() function is used by the interrupt manager
to clear bits in the IMASK register. Though it can also be called by the
application, the application should not attempt to modify bits in the
IMASK register that represent interrupt vector groups that are under the
control of the interrupt manager.

The implementation of this function depends upon the operating environ-
ment. In the standalone version of the service, this function detects
whether the processor is within a protected region of code (refer to the
adi_int_EnterCriticalRegion and adi_int_ExitCriticalRegion
functions, respectively). If it is, the saved value of IMASK is updated
accordingly and the current “live” IMASK value is left unchanged.

When the outermost adi_int_ExitCriticalRegion function is called, the
saved IMASK value with the new bit settings is restored. Upon entering this
function, if the processor is not within a protected region of code, the
“live” IMASK register is updated accordingly.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.c, located in the
blackfin/lib/src/services/int directory, where xxx is the operating
environment.

Regardless of the implementation details, the API is consistent from envi-
ronment to operating environment. Changes to application software are
not required when code is moved to a different operating environment.

Prototype

void adi_int_ClearIMASKBits(

ADI_INT_IMASK BitsToClear

);

File Structure

2-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

None

BitsToClear Replica of the IMASK register containing bits that are to be
cleared in the real IMASK register. A bit with a value of ‘1’
clears the corresponding bit in the IMASK register. A bit
with the value of ‘0’ leaves the corresponding bit in the
IMASK register unchanged.

VisualDSP++ 5.0 Device Drivers and System 2-27
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_EnterCriticalRegion

Description

The adi_int_EnterCriticalRegion() function creates a condition that
protects a critical region of code. The companion function,
adi_int_ExitCriticalRegion, removes the condition. These functions are
used to bracket a section of code that requires protection from other pro-
cessing. These functions are used in pairs sparingly and only when critical
regions of code needs to be protected.

The return value from this function should be passed to the corresponding
adi_int_ExitCriticalRegion function.

The actual condition that is created depends upon the operating environ-
ment. In the standalone version of the service, this function effectively
disables interrupts, saving the current value of IMASK to a temporary loca-
tion. The adi_int_ExitCriticalRegion function restores the original
IMASK value. These functions employ a usage counter so that they can be
nested. When nested, the IMASK value is altered only at the outermost lev-
els. In the standalone version, the pArg parameter to the
adi_int_EnterCriticalRegion is meaningless.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.c, located in the
blackfin/lib/src/services/int directory, where xxx is the operating
environment.

Regardless of the implementation details, the API is consistent from envi-
ronment to operating environment and from processor to processor.
Application software does not need to change when moving to a different
operating environment or moving from one Blackfin derivative to
another.

File Structure

2-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Prototype

void *adi_int_EnterCriticalRegion(

void *pArg

);

Arguments

Return Value

The return value from this function should always be passed to the
corresponding adi_int_ExitCriticalRegion function.

pArg Implementation dependent. Refer to the adi_int_xxx.h
file for details on this parameter for the xxx environment.

VisualDSP++ 5.0 Device Drivers and System 2-29
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_ExitCriticalRegion

Description

The adi_int_ExitCriticalRegion() function removes the condition that
was established by the adi_int_EnterCriticalRegion to protect a critical
region of code. These functions are used to bracket a section of code that
needs protection from other processing. These functions are used spar-
ingly and only when critical regions of code require protection.

The pArg parameter that is passed to this function should always be the
return value from the corresponding adi_int_EnterCriticalRegion
function.

See the adi_int_EnterCriticalRegion function for more information.

Prototype

void adi_int_ExitCriticalRegion(

void *pArg

);

Arguments

Return Value

None

pArg Return value from the corresponding
adi_int_EnterCriticalRegion() function call

File Structure

2-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_GetCurrentIVGLevel

Description

The adi_int_GetCurrentIVGLevel() is a function that senses the IVG
level at which the processor is currently running.

Prototype

ADI_INT_RESULT adi_int_GetCurrentIVGLevel(

u32 *pIVG

);

Arguments

Return Value

pIVG Pointer to the memory location in which the current IVG
level is returned

ADI_INT_RESULT_SUCCESS IVG level was successfully returned.

ADI_INT_RESULT_NOT_ASSERTED No interrupt is currently active.

VisualDSP++ 5.0 Device Drivers and System 2-31
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_GetLibraryDetails

Description

The adi_int_GetLibraryDetails() function accepts a pointer to an
ADI_INT_LIBRARY_DETAILS data structure. This function also returns the
library details in the ADI_INT_LIBRATY_DETAILS structure.

Prototype

ADI_INT_RESULT adi_int_GetLibraryDetails(

ADI_INT_LIBRARY_DETAILS *pLibraryDetails

);

Arguments

Return Value

pLibraryDetails ADI_INT_LIBRARY_DETAILS stucture in which the library
details are stored.

ADI_INT_RESULT_SUCCESS Function completed successfully.

File Structure

2-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICDisable

Description

The adi_int_SICDisable() function configures the system interrupt con-
troller to disable the given interrupt and prevent it from being passed to
the core event controller.

The adi_int_SICDisable function simply programs the system interrupt
mask register to mask interrupts from the given peripheral, thereby pre-
venting them from being passed to the core event controller.

Prototype

ADI_INT_RESULT adi_int_SICDisable(

const ADI_INT_PERIPHERAL_ID PeripheralID

);

Arguments

Return Value

PeripheralID ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies an interrupt source

ADI_INT_RESULT_SUCCESS System interrupt controller has been success-
fully configured.

ADI_INT_RESULT_INVALID_PERIPHERALID Peripheral ID specified is invalid.

VisualDSP++ 5.0 Device Drivers and System 2-33
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_SICEnable

Description

The adi_int_SICEnable() function configures the system interrupt con-
troller to enable the given interrupt and allow it to pass to the core event
controller.

The adi_int_SICEnable function simply programs the system interrupt
mask register to allow interrupts from the given peripheral to be passed to
the core event controller.

Prototype

ADI_INT_RESULT adi_int_SICEnable(

const ADI_INT_PERIPHERAL_ID PeripheralID,

);

Arguments

Return Value

PeripheralID ADI_INT_PERIPHERAL_ED enumeration value that identi-
fies a peripheral interrupt source

ADI_INT_RESULT_SUCCESS System interrupt controller has been successfully
configured.

ADI_INT_RESULT_INVALID_PERIPHERAL_ID Peripheral ID specified is invalid.

File Structure

2-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICGetIVG

Description

The adi_int_SICGetIVG() function detects the mapping of a peripheral
interrupt source to an IVG level. When called, this function reads the
appropriate system interrupt assignment register(s) of the given peripheral
and stores the IVG level to which the peripheral is mapped into the loca-
tion provided by the application. This function does not modify any
parameters of the interrupt controller.

Prototype

ADI_INT_RESULT adi_int_SICGetIVG(

const ADI_INT_PERIPHERAL_ID PeripheralID,

u32 *pIVG

);

Arguments

Return Value

PeripheralID ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies a peripheral interrupt source

pIVG Pointer to an unsigned 32-bit memory location into which
the function writes the IVG level to which the given periph-
eral is mapped

ADI_INT_RESULT_SUCCESS Function completed successfully.

ADI_INT_RESULT_INVALID_PERIPHERAL_ID Peripheral ID specified is invalid.

ADI_INT_RESULT_INVALID_IVG Interrupt vector group level is invalid.

VisualDSP++ 5.0 Device Drivers and System 2-35
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_SICInterruptAsserted

Description

The adi_int_SICInterruptAsserted() function determines whether a
given peripheral interrupt source is asserting an interrupt. This function is
typically called in an application’s interrupt handler to determine whether
the peripheral in question is asserting an interrupt. This function does not
modify any parameters of the interrupt controller but simply interrogates
the appropriate interrupt status register(s).

Prototype

ADI_INT_RESULT adi_int_SICInterruptAsserted(

const ADI_INT_PERIPHERAL_ID PeripheralID

);

Arguments

Return Value

PeripheralID ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies a peripheral interrupt source

ADI_INT_RESULT_INVALID_PERIPHERAL_ID Peripheral ID specified is invalid.

ADI_INT_RESULT_ASSERTED Specified peripheral is asserting an interrupt.

ADI_INT_RESULT_NOT_ASSERTED Specified peripheral is not asserting an interrupt.

File Structure

2-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

 adi_int_SICSetIVG

Description

The adi_int_SICSetIVG() function sets the mapping of a peripheral inter-
rupt source to an IVG level. When called, this function modifies the
appropriate system interrupt assignment register(s) of the given peripheral
to the specified IVG level. This function does not enable or disable
interrupts.

Prototype

ADI_INT_RESULT adi_int_SICSetIVG(

const ADI_INT_PERIPHERAL_ID PeripheralID,

const u32 IVG

);

Arguments

Return Value

PeripheralID ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies a peripheral interrupt source

IVG Interrupt vector group assigned to the peripheral

ADI_INT_RESULT_SUCCESS Function completed successfully.

ADI_INT_RESULT_INVALID_PERIPHERAL_ID Peripheral ID specified is invalid.

ADI_INT_RESULT_INVALID_IVG Interrupt vector group level is invalid.

VisualDSP++ 5.0 Device Drivers and System 2-37
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_SetIMaskBits

Description

The adi_int_SetIMaskBits() function is used by the interrupt manager
to set bits in the IMASK register. Though it can also be called by the appli-
cation, the application should not attempt to modify bits in the IMASK
register that represent interrupt vector groups that are under the control of
the interrupt manager.

The implementation of this function depends upon the operating environ-
ment. In the standalone version of the service, this function detects
whether the processor is within a protected region of code (refer to the
adi_int_EnterCriticalRegion and adi_int_ExitCriticalRegion
functions). If it is, the saved value of IMASK is updated accordingly and the
current “live” IMASK value is left unchanged. When the outermost
adi_int_ExitCriticalRegion function is called, the saved IMASK value
with the new bit settings is restored. Upon entering this function, if the
processor is not within a protected region of code, the “live” IMASK register
is updated accordingly.

Information on the implementation details for this function in other oper-
ating environments can be found in the file adi_int_xxx.c, located in the
blackfin/lib/src/services/int directory, where xxx is the operating
environment.

Regardless of the implementation details, the API is consistent from envi-
ronment to operating environment. Application software does not have to
change when moving to a different operating environment.

Prototype

void adi_int_SetIMASKBits(

ADI_INT_IMASK BitsToSet

);

File Structure

2-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

None

BitsToSet Replica of the IMASK register containing bits that are to be
set in the real IMASK register. A bit with a value of ‘1’ sets
the corresponding bit in the IMASK register. A bit with the
value of ‘0’ leaves the corresponding bit in the IMASK reg-
ister unchanged.

VisualDSP++ 5.0 Device Drivers and System 2-39
Services Manual for Blackfin Processors

Interrupt Manager

adi_int_SICWakeup

Description

The adi_intSICWakeup() function configures the system interrupt con-
troller wakeup register to enable or disable the given peripheral interrupt
from waking up the core processor.

The adi_int_SICWakeup function simply programs the system interrupt
controller wakeup register accordingly. The actual servicing of interrupts
is not affected by this function.

Prototype

ADI_INT_RESULT adi_int_SICWakeup(

const ADI_INT_PERIPHERAL_ID PeripheralID,

u32 WakeupFlag

);

Arguments

Return Value

PeripheralID ADI_INT_PERIPHERAL_ID enumeration value that identi-
fies a peripheral interrupt source

WakeupFlag Enables/disables waking up the core(s) upon triggering of
the peripheral interrupt (TRUE/FALSE)

ADI_INT_RESULT_SUCCESS System interrupt controller has been
successfully configured.

ADI_INT_RESULT_INVALID_PERIPHERAL_ID Peripheral ID specified is invalid.

File Structure

2-40 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_int_SICGlobalWakeup

Description

The adi_int_SICGlobalWakeup() function is used to program the system
interrupt controller (SIC) wakeup register to either disable all the periph-
eral interrupts from waking up the core, or to restore the SIC interrupt
wakeup register to a previous state.

If the flag is FALSE, the function saves the contents of the system interrupt
controller wakeup register in the ADI_INT_WAKEUP_REGISTER structure, ref-
erenced by the function argument pointer. It then sets all bits of the SIC
wakeup register to zero, disabling all the peripherals from waking up the
core.

If the flag passed in is TRUE, the function programs the SIC wakeup regis-
ter according to the fields of the ADI_INT_WAKEUP_REGISTER structure,
referenced by the function argument pointer. These values are presumed
to have been saved by a previous call to adi_int_SICGlobalWakeup.

The actual servicing of interrupts is not affected by this function.

Prototype

ADI_INT_RESULT adi_int_SICGlobalWakeup(

u32 WakeupFlag,

pADI_INT_WAKEUP_REGISTER SaveIWR

);

VisualDSP++ 5.0 Device Drivers and System 2-41
Services Manual for Blackfin Processors

Interrupt Manager

Arguments

Return Value

WakeupFlag Wakeup enable flag to enable or disable waking of the
core(s) upon triggering of peripheral interrupts
(TRUE/FALSE)

SaveIWR Pointer to a structure used for saving the wakeup register
state. (Defined according to the processor type, in
adi_int.h)

ADI_INT_RESULT_SUCCESS System interrupt controller wakeup
register has been programmed accord-
ing to the function arguments.

File Structure

2-42 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 3-1
Services Manual for Blackfin Processors

3 POWER MANAGEMENT
MODULE

This chapter describes the power management (PM) module that supports
dynamic power management of Blackfin processors.

This chapter contains:

• “Introduction” on page 3-2

• “PM Module Operation – Getting Started” on page 3-3

• “Power Management API Reference” on page 3-14

• “Public Data Types and Enumerations” on page 3-42

• “PM Module Macros” on page 3-60

Introduction

3-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The power management (PM) module provides access to all aspects of
dynamic power management:

• Dynamic switching from one operating mode (full-on, active,
sleep, deep sleep, and hibernate) to another

• Dynamic setting of voltage levels and clock frequencies to ensure
that an application can be tuned to achieve the best performance
while minimizing power consumption

• When coupled with the EBIU module, enables the SDRAM
settings to be adjusted upon changes to the system clock to ensure
that the best performance is obtained for the complete system.
For more information about the EBIU module, see “External Bus
Interface Unit Module” on page 4-1.

The module supports two strategies for setting the core and system clock
frequencies:

• For a given voltage level, the core clock (CCLK) is set to the highest
available frequency. The system clock (SCLK) is set accordingly.

• For a given combination of core clock and system clock frequen-
cies, the valid values nearest to the chosen ones are used and the
voltage level of the processor is adjusted accordingly.

In both cases, validity checks are performed at all stages, ensuring that the
processor is not stalled or harmed.

“PM Module Operation – Getting Started” on page 3-3 describes the
basic operating stages required to use the power management module.

VisualDSP++ 5.0 Device Drivers and System 3-3
Services Manual for Blackfin Processors

Power Management Module

The power management module uses an unambiguous naming convention
to safeguard against conflicts with other software libraries provided by
Analog Devices or other companies. To this end, all enumeration values
and typedef statements use the ADI_PWR_ prefix, and functions and global
variables use the lowercase, adi_pwr_ equivalent.

Two versions of the library exist for each processor. These correspond to
the debug and release configurations in the current VisualDSP++ release.
In addition to the usual defaults for the debug configuration, the API
functions perform checks on the arguments passed and report appropriate
error codes, as required. In the release version of the library, most func-
tions return one of two result codes: ADI_PWR_RESULT_SUCCESS on
successful completion, or ADI_PWR_RESULT_NOT_INITIALIZED when the PM
module has not been initialized prior to the function call.

 In order to better facilitate the configuration of timing parameters
for device drivers, the default unit of frequency for communicating
with the power management functions is hertz (Hz) rather than
megahertz (MHz). Refer to the adi_pwr_Init function
(on page 3-22) for more information.

PM Module Operation – Getting Started
The following example illustrates how to use the PM module to configure
a 600 MHz ADSP-BF533 processor on an EZ-KIT Lite board to run at
the requested core clock and system clock frequencies or to minimize
power consumption by pegging the voltage level at 0.95 V.

Step 1:
If used in conjunction with the EBIU controller to adjust SDRAM set-
tings, initialize the EBIU module by calling adi_ebiu_Init(). For more
information about the EBIU module, see “External Bus Interface Unit
Module” on page 4-1.

PM Module Operation – Getting Started

3-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Step 2:
Initialize the power module by calling adi_pwr_Init, passing the parame-
ters for the hardware configuration used. For example, the following code
configures the ADSP-BF533 EZ-KIT Lite.

ADI_PWR_COMMAND_PAIR power_init_table[] = {

{

ADI_PWR_CMD_SET_PROC_VARIANT,(void*)ADI_PWR_PROC_BF533SKBC600 },

/* 600 MHz ADSP-BF533 variant */

{ ADI_PWR_CMD_SET_PACKAGE,(void*)ADI_PWR_PACKAGE_MBGA },

/* in MBGA packaging */

{ ADI_PWR_CMD_SET_VDDEXT, (void*)ADI_PWR_VDDEXT_330 },

/* 3.3 V External supplied

to voltage regulator */

{ ADI_PWR_CMD_SET_CLKIN, (void*) 25 },

/* 25 MHz clock in */

{ ADI_PWR_CMD_END, 0 }

/* no more commands after this */

};

adi_pwr_Init(power_init_table);

Step 3:
Decide on the power management strategy to implement. For example,
the following code segments demonstrate how to configure the PM mod-
ule for optimal speed or optimal power consumption.

Optimal Speed
The following statement requests the PM module set the core and system
clock frequencies to the maximum values possible.

adi_pwr_SetFreq(

0, // Core clock frequency (MHz)

0, // System clock frequency (MHz)

ADI_PWR_DF_ON // Do not adjust the PLL input divider

);

VisualDSP++ 5.0 Device Drivers and System 3-5
Services Manual for Blackfin Processors

Power Management Module

Optimal Power Consumption
The following statement requests the PM module set the core and system
clock frequencies to the maximum that can be sustained at a voltage level
of 0.85 V.

adi_pwr_SetMaxFreqForVolt(ADI_PWR_VLEV_085);

Dual-Core Considerations
The following sections explain how to use system services with a dual-core
configuration.

Using Automatic Synchronization
The PLL programming sequence for a dual-core processor requires that
both cores be brought to the IDLE state while changes are applied to the
PLL and VR registers. A dual-core processor may execute a program on each
core, or it may execute a program on just one core. When both cores are
used to execute a program, a mechanism is required for both cores to go to
the IDLE state, and stay there while the registers are written. The power
management module provides a mechanism that uses the supplemental
interrupt to synchronize the cores for PLL programming. This mechanism
is invoked automatically by calling the adi_pwr_Init() function on both
cores and passing the command ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED
with a NULL argument, as shown in the following command-pair table
for the ADSP-BF561 EZ-KIT Lite.

Dual-Core Considerations

3-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_COMMAND_PAIR power_init_table[] = {

{

ADI_PWR_CMD_SET_PROC_VARIANT,(void*)ADI_PWR_PROC_BF561SKBCZ500X

},

/* 500 MHz ADSP-BF561 variant */

{ ADI_PWR_CMD_SET_PACKAGE,(void*)ADI_PWR_PACKAGE_MBGA },

/* in MBGA packaging */

{ ADI_PWR_CMD_SET_VDDEXT, (void*)ADI_PWR_VDDEXT_330 },

/* 3.3 V External supplied

to voltage regulator */

{ ADI_PWR_CMD_SET_CLKIN, (void*) 30 },

/* 30 MHz clock in */

{ ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED, NULL },

/* enable auto-synchronization */

{ ADI_PWR_CMD_END, 0 }

/* no more commands after this */

};

adi_pwr_Init(power_init_table);

Synchronization Requirement
Blackfin dual-core processors are capable of running one core while the
other core is idle. Power management and EBIU management require that
both cores be placed in the IDLE state when making power management
and EBIU controller changes. If the EBIU module has been initialized,
and the system clock frequency is changed, the SDRAM timing parame-
ters are automatically adjusted. To avoid corruption of SDRAM, the
automatic core synchronization mechanism forces both cores to execute
outside of the SDRAM memory space, while the SDRAM timing parame-
ters are updated.

There are two possible operating modes: running on one core, and
running applications on both cores.

VisualDSP++ 5.0 Device Drivers and System 3-7
Services Manual for Blackfin Processors

Power Management Module

Running Applications on One Core Only
In this case, one core is used and the other core (core B) is disabled. Upon
reset, core B remains disabled until the code running on core A starts core
B running, by clearing bit 5 of the SICA_SYSCR register. For example:

*pSICA_SYSCR &= 0xFFDF; // clears bit 5 so Core B

// will start running

Note that this does not wake core B if it is in the IDLE state. It only
allows core B to start executing instructions on startup. To wake core B
from IDLE, use one of the two supplemental interrupts (supplemental
interrupt 0 is taken over by system services, leaving supplemental
interrupt 1 for other uses).

Single-core applications loaded from flash memory or via the SPI port sat-
isfy the above synchronization requirement with no further intervention.
However, an emulator session within VisualDSP++ unavoidably wakes up
core B. The application developer must return core B to the disabled state
to meet the PLL programming requirements. There are two ways to do
this. The simplest is to run the following C code on core B:

void main() {

while(1) {

asm(“IDLE;”);

}

}

Whenever core B wakes up (due to the PLL programming sequence exe-
cuted by the power management service) it is immediately returned to the
IDLE state.

Dual-Core Considerations

3-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The other method is to disable the PLL wakeup bit in the SICB_IWR0 reg-
ister and go to IDLE. If this is done in the assembler, the following code
can take the place of the startup code:

#include <defBF561.h>

.section program;

start:

P0.H = HI(SICB_IWR0); P0.L = LO(SICB_IWR0);

R0 = 0;

[P0] = R0;

IDLE;

.start.end:

.global start;

.type start,STT_FUNC;

Running Applications on Both Cores
In this case, both cores execute code. Both cores need to synchronize to
ensure that both cores are IDLE and, in some cases, do not execute out of
SDRAM as described in the requirement above. There are two choices:
1) define your own synchronization strategy, or 2) use the built-in syn-
chronization provided by the power management module (which must be
enabled by a separate command).

To use the built-in synchronization, include the following com-
mand-value pair to adi_pwr_Init() on both cores:

{ ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED, NULL }

Once activated, the built-in synchronization has exclusive control over
supplemental interrupt 0 and chains an appropriate interrupt handler to
the appropriate IVG level using the interrupt manager. This prevents the
application from using the interrupt for any other synchronization

VisualDSP++ 5.0 Device Drivers and System 3-9
Services Manual for Blackfin Processors

Power Management Module

between cores. However, the supplemental interrupt 1 is still available for
use outside of system services for other core synchronization purposes.

Additional commands can be used to tailor the synchronization require-
ments (see Table 3-1.)

Synchronization Between Cores
Either core can interrupt the other core using a supplemental interrupt.
There are two of these on the ADSP-BF561 processor: 0 and 1. A shared
lock variable located in L2 memory can send information between the
cores as a method of synchronization.

The built-in mechanism requires that core A initiates all power manage-
ment changes, with core B configured to respond to a supplemental
interrupt 0 event, raised by core A. The configuration and handling of this
interrupt is managed within the power management module itself.
Table 3-2 describes the synchronization sequence.

Table 3-1. Additional Commands for Tailoring Synchronization

Command Description

Available on Core A and Core B

ADI_PWR_CMD_SET_SYNC_LOCK_VARIABLE Provides the address of an alternative unsigned
int lock variable in L2 as an alternative to the
built-in lock variable. Not normally needed.

Available on Core B only

ADI_PWR_CMD_SET_COREB_SUPP_INT0_IVG Specifies the IVG level assigned to supplemen-
tal interrupt 0 on core B. Not normally needed.

Dual-Core Considerations

3-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Built-In Lock Variable and Linking Considerations
The lock variable, adi_pwr_lockvar, is declared within the file Black-
fin\lib\src\ services\pwr\adi_pwr_lockvar.c as:

section ("l2_shared") testset_t adi_pwr_lockvar = 0;

where the memory input section, l2_shared, is mapped to the
MEM_L2_SRAM output section in both the default and generated linker
description files (.ldf).

According to Appendix A of the VisualDSP++ 5.0 C/C++ Compiler and
Library Manual for Blackfin Processors, there are two possible approaches
for building applications that run across both cores.

• One application per core, where executables are built for each core
using two passes of the linker

• One application across both cores, where a five-project group is
used and a single linker pass builds executables for both processors

The latter approach maps the lock variable to L2 memory shared by both
processors without any user intervention. The “one application per core”
approach requires user intervention to ensure that the lock variable is

Table 3-2. Synchronization Sequence Between Cores

Core A Core B

Raises supplemental interrupt 0, sets the shared
adi_pwr_lockvar lock variable, and waits
acknowledgement.

Responds to supplemental interrupt 0 by
entering interrupt handler.

Runs first (optional) callback function.

On receiving acknowledgement, performs PLL
programming sequence, and configures the SDC
accordingly.

Acknowledges interrupt and goes to IDLE.

Wakes on PLL wakeup and waits for the
lock variable to clear.

Completes the process by clearing the lock vari-
able.

Runs second (optional) callback function,
and returns from interrupt.

VisualDSP++ 5.0 Device Drivers and System 3-11
Services Manual for Blackfin Processors

Power Management Module

mapped to the same address in L2 memory in each of the executables.
This is achieved by using the RESOLVE statement in the .ldf file, which
can be used to resolve a symbol to its memory location assigned in the exe-
cutable for the other core.

The default and generated .ldf files for core B contain the following:

/* $VDSG<customize-shared-symbols> */

 /* This code is preserved if the LDF is re-generated. */

///

// ldf_shared_symbols

/* Issue resolve statement for shared symbols mapped in CoreA.

** Below is an example of how to do that.

*/

#if defined(OTHERCORE) /* OTHERCORE is a macro defined to name

of the CoreA DXE */

include <shared_symbols.h> /* C runtime library

 shared symbols,

 ** uses macro OTHERCORE.

 */

#if 0

/* example resolve for user shared data*/

RESOLVE(_a_shared_datum, OTHERCORE)

#endif

#endif /* OTHERCORE */

/* $VDSG<customize-shared-symbols> */

The shared_symbols.h header file contains the RESOLVE statements for the
C/C++ libraries’ shared symbols and includes the additional header file,
services/services_shared_symbols.h, containing the RESOLVE
statements for the system services shared symbols. Currently, the

SDRAM Initialization Prior to Loading an Executable

3-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_lockvar variable is the only shared symbol required by system
services.

All that is required is to define OTHERCORE within the user-modifiable
block ahead of where it is tested (or by setting its value through the
Link:LDF Preprocessing page of the Project Options dialog box within
VisualDSP++). For example, if the executable, CoreA.dxe (say), for core A
is in the Release subdirectory of a directory, CoreA, adjacent to the CoreB
project directory, you need to define OTHERCORE as
..\CoreA\Release\CoreA.dxe. For example:

#define OTHERCORE ..\CoreA\Release\CoreA.dxe

#if defined(OTHERCORE)

:

Refer to Appendix A of the VisualDSP++ 5.0 C/C++ Compiler and Library
Manual for Blackfin Processors and the VisualDSP++ 5.0 Linker and Utili-
ties Manual for details.

SDRAM Initialization Prior to Loading an
Executable

Applications that require code (and/or data) to be located in SDRAM at
load time require the SDRAM controller to be initialized beforehand.
This is the case for all applications where instruction and/or data caching
are enabled. However, the EBIU service’s initialization routine,
adi_ebiu_Init(), is not executed until after the application has loaded.

There are two ways to load an application into the processor core:

• Through an emulator session connected to the VisualDSP++
IDDE

• From flash memory or a device attached to the SPI port when the
processor is reset

VisualDSP++ 5.0 Device Drivers and System 3-13
Services Manual for Blackfin Processors

Power Management Module

In the first case, it is imperative that the Use XML reset values option is
selected in the Target Options dialog box (available through the Settings
menu). This ensures that the SDRAM is correctly (if not optimally) con-
figured prior to the application loading. Once loaded, the application’s
use of the power management services and EBIU services ensures that the
SDRAM is optimally configured.

When the application is not loaded from within an emulator session, it is
necessary for the boot loader to initialize SDRAM prior to loading the
application. This is achieved by using an initialization block as described
in the VisualDSP++ 5.0 Loader and Utilities manual, where the example
given demonstrates the initialization of SDRAM.

This initialization block code is compiled into an executable and is passed
to the loader via the –init filename option or in the Initialization file
field of the Load:Options page of the Project Options dialog box. A sepa-
rate project is thus required for the initialization block. An example
initialization block project is provided in the relevant directory (for the
processor) under the Blackfin\ldr\init_code directory of the
VisualDSP++ installation. The values required for the SDRAM configura-
tion registers can be set to the ones used in the relevant .xml file for the
processor, for example ADSP-BF533-proc.xml, located in the System\Arch-
Def directory of the VisualDSP++ installation.

When a different memory configuration is required (other than the one
supplied with the EZ-KIT Lite evaluation systems), the user is required to
work out the appropriate values. When loading a program from the
IDDE, either use the Custom Board Support feature, now available with
VisualDSP++5.0 (described in Help\Graphical Environment\Custom
Board Support), or simply change the values at the bottom of the relevant
.xml file after backing up the original file.

SDRAM Initialization Prior to Loading an Executable

3-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Power Management API Reference
This section provides descriptions of the PM module’s application pro-
gramming interface (API) functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 3-15
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_AdjustFreq

Description

The adi_pwr_AdjustFreq() function allows the core and system clocks to
be modified by specifying the core and system clock divider ratios, CSEL
and SSEL, in the PLL_DIV register. The processor is not idled.

Prototype

ADI_PWR_RESULT adi_pwr_AdjustFreq(

ADI_PWR_CSEL csel,

ADI_PWR_SSEL ssel

);

Arguments

Return Value

csel ADI_PWR_CSEL value specifies how the voltage core oscillator (VCO) frequency is
divided to obtain a new core clock frequency. The divider value cannot exceed the
ssel value. See “ADI_PWR_CSEL” on page 3-48.

ssel ADI_PWR_SSEL value specifies how the VCO frequency is divided to obtain a new sys-
tem clock frequency. See “ADI_PWR_SSEL” on page 3-55.

ADI_PWR_RESULT_SUCCESS Process completed successfully.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

ADI_PWR_RESULT_INVALID_CSEL Invalid value for CSEL has been specified.

ADI_PWR_RESULT_INVALID_SSEL Invalid value for SSEL has been specified.

ADI_PWR_INVALID_CSEL_SSEL_COMBINATION Core clock divider is greater than the sys-
tem clock divider value, or both
ADI_PWR_CSEL_NONE and
ADI_PWR_SSEL_NONE are specified.

SDRAM Initialization Prior to Loading an Executable

3-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_Control

Description

The adi_pwr_Control() function enables the dynamic power manage-
ment registers to be configured or queried according to command-value
pairs (“ADI_PWR_COMMAND_PAIR” on page 3-48), specified in one
of three ways:

1.) A single command-value pair is passed.

adi_pwr_Control(

ADI_PWR_CMD_SET_INPUT_DELAY,

(void*)ADI_PWR_INPUT_DELAY_ENABLE,

);

2.) A single command-value pair structure is passed.

ADI_PWR_COMMAND_PAIR cmd = {

ADI_PWR_CMD_SET_INPUT_DELAY,

(void*)ADI_PWR_INPUT_DELAY_ENABLE,

};

adi_pwr_Control(ADI_PWR_CMD_PAIR,(void*)&cmd);

3.) A table of ADI_PWR_COMMAND_PAIR structures is passed. The last entry
in the table must be ADI_PWR_CMD_END.

ADI_PWR_COMMAND_PAIR table[] = {

{ ADI_PWR_CMD_SET_INPUT_DELAY,

(void*)ADI_PWR_INPUT_DELAY_ENABLE

{ ADI_PWR_CMD_SET_OUTPUT_DELAY,

(void*)ADI_PWR_OUTPUT_DELAY_ENABLE

{ ADI_PWR_CMD_END, 0}

};

VisualDSP++ 5.0 Device Drivers and System 3-17
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_Control(

ADI_PWR_CMD_TABLE,

(void*)table

);

Refer to “ADI_PWR_COMMAND” on page 3-42 and “Public Data
Types and Enumerations” on page 3-42 for the complete list of com-
mands and associated values.

Prototype

ADI_PWR_RESULT adi_pwr_Control(

ADI_PWR_COMMAND Command,

void *Value

);

Arguments

Return Value

Command ADI_PWR_COMMAND enumeration value specifies the meaning
of the associated value argument.

Value This is the required value.
See “ADI_PWR_COMMAND” on page 3-42.

ADI_PWR_RESULT_SUCCESS Function completed successfully.

ADI_PWR_RESULT_BAD_COMMAND Invalid command has been specified.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

ADI_PWR_RESULT_INVALID_INPUT_DELAY Input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DELAY Output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT PLL lock count value is invalid.

SDRAM Initialization Prior to Loading an Executable

3-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_GetConfigSize

Description

The adi_pwr_GetConfigSize() function returns the number of bytes
required to save the current configuration data. This value is also available
via the ADI_PWR_SIZEOF_CONFIG macro.

The return values of adi_pwr_GetConfigSize and the macro,
ADI_PWR_SIZEOF_CONFIG, incorporate the size of the EBIU module config-
uration, regardless whether the latter is initialized.

Prototype
size_t adi_pwr_GetConfigSize(void);

Return Value

The size of the configuration structure.

VisualDSP++ 5.0 Device Drivers and System 3-19
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_GetFreq

Description

The adi_pwr_GetFreq() function returns the current values of the CCLK,
SCLK, and voltage core oscillator (VCO) frequencies.

Prototype

ADI_PWR_RESULT adi_pwr_GetFreq(

u32 *fcclk,

u32 *fsclk,

u32 *fvco

);

Arguments

Return Value

fcclk Address of location to store the current CCLK value (Hz)

fsclk Address of location to store the current SCLK value (Hz)

fvco Address of location to store the VCO frequency (Hz)

ADI_PWR_RESULT_SUCCESS Process completed successfully.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

SDRAM Initialization Prior to Loading an Executable

3-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_GetPowerMode

Description

The adi_pwr_GetPowerMode() function returns the current power mode of
the processor (only applicable for full-on and active modes).

Prototype
ADI_PWR_MODE adi_pwr_GetPowerMode(void);

Return Value

The current power mode as an ADI_PWR_MODE value.

VisualDSP++ 5.0 Device Drivers and System 3-21
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_GetPowerSaving

Description

The adi_pwr_GetPowerSaving() function calculates the power saving
value for the current PLL and voltage regulator settings, as per the data
sheet formulas with the time ratio set to unity, and the nominal values as
per the maximum possible (that is, at VLEV = 1.3 V).

Prototype
u32 adi_pwr_GetPowerSaving(void);

Return Value

The percentage power saving value.

SDRAM Initialization Prior to Loading an Executable

3-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_Init

Description

The adi_pwr_Init() function initializes the power management module.
The following values must be set for successful initialization:

These are communicated to the adi_pwr_Init function by passing a
pointer to a table of command-value pairs, terminated with the
ADI_PWR_CMD_END command.

Processor variant ADI_PWR_PROC_KIND value describes the processor variant. See
“ADI_PWR_PROC_KIND” on page 3-51.

Package kind ADI_PWR_PACKAGE_KIND value describes the packaging type of
the processor. See“ADI_PWR_PACKAGE_KIND” on
page 3-50.

Core voltage (VDDINT) ADI_PWR_VLEV value specifying the internal voltage, applied to
the core by an external voltage regulator. The internal voltage
regulator is bypassed. Its absence in the command table implies
that the internal regulator is to be used. An external voltage reg-
ulator is required for the ADSP-BF533SKBC750 processor, as
the internal voltage regulator cannot supply the 1.4 V required
for the processor to run at 750 MHz.

External voltage (VDDEXT) ADI_PWR_VDDEXT value specifies the external voltage supplied to
the voltage regulator. This value, when coupled with the packag-
ing, determines the maximum system clock (SCLK) frequency
available. See “ADI_PWR_VDDEXT” on page 3-56.

CLKIN Frequency of the external clock oscillator supplied to the proces-
sor in either MHz or Hz.

VisualDSP++ 5.0 Device Drivers and System 3-23
Services Manual for Blackfin Processors

Power Management Module

For example, the following ADI_PWR_COMMAND_PAIR table gives the EZ-KIT
Lite values:

ADI_PWR_COMMAND_PAIR ezkit_init[] = {

{ ADI_PWR_CMD_SET_PROC_VARIANT, ADI_PWR_PROC_BF533SKBC600 },

{ ADI_PWR_CMD_SET_PACKAGE, ADI_PWR_PACKAGE_MBGA },

{ ADI_PWR_CMD_SET_VDDEXT, ADI_PWR_VDDEXT_330 },

{ ADI_PWR_CMD_SET_CLKIN, 25 /* MHz */ },

{ ADI_PWR_CMD_END, 0 }

};

Table 3-3 lists valid command-value pairs.

Table 3-3. adi_pwr_Init Command-Value Pairs

Command Description

ADI_PWR_CMD_SET_CCLK_TABLE Address of a table containing ADI_PWR_NUM_VLEVS val-
ues of type u16 detailing the maximum CCLK frequency
for each ADI_PWR_VLEV value. These values are used
instead of the data sheet values.

ADI_PWR_CMD_SET_PROC_VARIANT ADI_PWR_PROC_KIND value specifies the processor vari-
ant (mandatory). See “ADI_PWR_PROC_KIND” on
page 3-51.

ADI_PWR_CMD_SET_PACKAGE ADI_PWR_PACKAGE_KIND value describes the packaging
type of the processor (mandatory). See
“ADI_PWR_PROC_KIND” on page 3-51.

ADI_PWR_CMD_SET_CLKIN u16 value specifies the external clock frequency, CLKIN,
supplied to the processor (mandatory).

ADI_PWR_CMD_SET_VDDINT ADI_PWR_VLEV value specifies the core voltage level. This
should only be passed to adi_pwr_Init if an external
voltage regulator is used, as its presence instructs the
module to bypass the internal regulator. See
“ADI_PWR_VLEV” on page 3-56.

ADI_PWR_CMD_SET_VDDEXT ADI_PWR_VDDEXT value specifies the external voltage
level applied to the internal voltage regulator (manda-
tory). See “ADI_PWR_VDDEXT” on page 3-56.

SDRAM Initialization Prior to Loading an Executable

3-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The adi_pwr_Init function can only be called once. Subsequent calls to
adi_pwr_Init are ignored with the ADI_PWR_RESULT_ALREADY_INITIALIZED
result code returned.

Table 3-4 lists valid command-value pairs for an ADSP-BF561 dual-core
processor.

ADI_PWR_CMD_SET_IVG interrupt_kind value (see exception.h) specifies the
IVG level for the PLL_WAKEUP event.

ADI_PWR_CMD_SET_INPUT_DELAY ADI_PWR_INPUT_DELAY value specifies whether to add
approximately 200 ps of delay to the time when inputs
are latched on the external memory interface. See
“ADI_PWR_INPUT_DELAY” on page 3-49.

ADI_PWR_CMD_SET_OUTPUT_DELAY ADI_PWR_OUTPUT_DELAY value specifies whether to add
approximately 200 ps of delay to external memory out-
put signals. See “ADI_PWR_OUTPUT_DELAY” on
page 3-49.

Table 3-4. ADSP-BF561 Dual-Core Processor
Command-Value Pairs

Command Description

Commands relevant to ADSP-BF561 dual-core processor only.

ADI_PWR_CMD_SET_AUTO_SYNC_ENABLED Instructs the power management
module to use its built-in mecha-
nism for synchronizing the cores
across changes to the PLL. Use
NULL as the associated value.
This command is to be passed to
adi_pwr_Init() on both cores.

ADI_PWR_CMD_SET_COREB_SUPP_INT0_IVG IVG level that is assigned to sup-
plemental interrupt 0 on core B.
This command is passed to
adi_pwr_Init() on core B
only.

Table 3-3. adi_pwr_Init Command-Value Pairs (Cont’d)

Command Description

VisualDSP++ 5.0 Device Drivers and System 3-25
Services Manual for Blackfin Processors

Power Management Module

Prototype

ADI_PWR_RESULT adi_pwr_Init(

const ADI_PWR_COMMAND_PAIR *table

);

ADI_PWR_CMD_SET_SYNC_LOCK_VARIABLE Address of a lock variable in L2
that is used for built-in synchro-
nization. The default is to use
the built-in, adi_pwr_lockvar,
variable.

ADI_PWR_CMD_SET_FIRST_CLIENT_CALLBACK Address of a function called by
core B before PLL changes are
made. This command is passed
to adi_pwr_Init() on core B
only.

ADI_PWR_CMD_SET_SECOND_CLIENT_CALLBACK Address of a function called by
core B after PLL changes are
made. This command is passed
to adi_pwr_Init() on core B
only.

ADI_PWR_CMD_SET_CLIENT_HANDLE void* value/address that is sent
to the callback functions. This
command is passed to
adi_pwr_Init() on core B
only.

Table 3-4. ADSP-BF561 Dual-Core Processor
Command-Value Pairs (Cont’d)

Command Description

SDRAM Initialization Prior to Loading an Executable

3-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

In the debug variant of the library, adi_pwr_Init returns the results codes
listed below. Otherwise, the value of ADI_PWR_RESULT_SUCCESS is returned,
or the value of ADI_PWR_RESULT_ALREADY_INITIALIZED is returned when
the PM module is already initialized.

 In order to better facilitate the configuration of timing parameters
for device drivers, the default unit of frequency for communicating
with the power management functions is hertz (Hz) rather than
megahertz (MHz).

Should the application require MHz rather than Hz, the power
management service can be commanded to use MHz by passing the
new command ADI_PWR_CMD_SET_FREQ_AS_MHZ to the
adi_pwr_Init() function. The companion value parameter is
ignored with this command. For example, if passing a table of com-
mands to the adi_pwr_Init() function, the following command
should be added to the table:

{ ADI_PWR_CMD_SET_FREQ_AS_MHZ, NULL },

ConfigData Address of a table of command-value pairs as defined by
“ADI_PWR_COMMAND_PAIR” on page 3-48 and
“Public Data Types and Enumerations” on page 3-42. The
last command in the table must be the ADI_EBIU_CMD_END
command.

VisualDSP++ 5.0 Device Drivers and System 3-27
Services Manual for Blackfin Processors

Power Management Module

Table 3-5 lists and explains the return codes.

Table 3-5. adi_pwr_Init Return Codes

Return Value Explanation

ADI_PWR_RESULT_SUCCESS Function completed successfully.

ADI_PWR_RESULT_BAD_COMMAND Invalid command has been specified.

ADI_PWR_RESULT_ALREADY_INITIALIZED Module has already been initialized.

ADI_PWR_RESULT_INVALID_VLEV Invalid core voltage level has been specified.

ADI_PWR_RESULT_INVALID_VDDEXT Invalid external voltage level has been speci-
fied.

ADI_PWR_RESULT_VDDINT_MUST_BE_SUPPLIED When using external voltage regulation, the
externally-supplied VDDINT must be passed to
adi_pwr_Init.

ADI_PWR_RESULT_INVALID_PROCESSOR Processor type specified is invalid.

ADI_PWR_RESULT_INVALID_IVG IVG level supplied is invalid.

ADI_PWR_RESULT_INVALID_INPUT_DELAY Input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DELAY Output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT PLL lock count value is invalid.

ADI_PWR_RESULT_INVALID_EZKIT Invalid EZ-KIT Lite type specified.

ADI_PWR_RESULT_CANT_HOOK_SUPPLEMENTAL_
INTERRUPT

Unable to hook supplemental interrupt, for
halting other core (dual-core only)

SDRAM Initialization Prior to Loading an Executable

3-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_LoadConfig

Description

The adi_pwr_LoadConfig() function restores the current configuration
values from the memory location pointed to by the hConfig argument.
The PLL controller and voltage regulator are reprogrammed. If the EBIU
module is initialized, its configuration is also loaded and the SDRAM
controller is programmed.

Prototype

ADI_PWR_RESULT adi_pwr_LoadConfig(

const ADI_PWR_CONFIG_HANDLE hConfig,

const size_t szConfig

);

Arguments

Return Value

hConfig Address of the memory area where the current configura-
tion is restored

szConfig Number of bytes available at the given address. This value
must be greater than or equal to the
adi_pwr_GetConfigSize() return value.

ADI_PWR_RESULT_SUCCESS Function completed successfully.

ADI_PWR_RESULT_NO_MEMORY Value of szConfig is insufficient.

ADI_PWR_RESULT_FAILED Address of hConfig is zero.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

VisualDSP++ 5.0 Device Drivers and System 3-29
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_Reset

Description

The adi_pwr_Reset() function resets the PLL controller to its hardware
reset values.

Prototype
void adi_pwr_Reset(void);

Arguments

None

Return Value

None

SDRAM Initialization Prior to Loading an Executable

3-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_SaveConfig

Description

The adi_pwr_SaveConfig() function stores the current configuration val-
ues into the memory area pointed to by the hConfig argument. If the
EBIU module is initialized, its configuration is also saved; otherwise, the
appropriate fields are undefined.

Prototype

ADI_PWR_RESULT adi_pwr_SaveConfig(

ADI_PWR_CONFIG_HANDLE hConfig,

const size_t szConfig

);

Arguments

Return Value

hConfig Address of the memory location where the current con-
figuration is restored

szConfig Number of bytes available at the given address. The
value must be greater than or equal to the
adi_pwr_GetConfigSize() return value.

ADI_PWR_RESULT_SUCCESS Function completed successfully.

ADI_PWR_RESULT_NO_MEMORY Value of szConfig is insufficient.

ADI_PWR_RESULT_FAILED Address of hConfig is zero.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

VisualDSP++ 5.0 Device Drivers and System 3-31
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_SetFreq

Description

The adi_pwr_SetFreq() function sets the PLL controller to provide CCLK
and SCLK values as close as possible to the requested values (in Hz). If the
voltage regulator is not disabled, it is adjusted (where necessary) to pro-
vide the minimum voltage that can sustain the requested frequencies.

The processor is idled to affect the changes.

 This function always finds a solution where the CSEL divider in the
PLL_DIV register is unity. If the PLL input divider is requested, the
difference between the requested and obtained values is minimized.

To determine the values set by this function, use adi_pwr_GetFreq.

Prototype

ADI_PWR_RESULT adi_pwr_SetFreq(

const u32 fcclk,

const u32 fsclk,

const ADI_PWR_DF df

);

SDRAM Initialization Prior to Loading an Executable

3-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

fcclk Requested CCLK value in Hz. If this is set to zero, the
adi_pwr_SetFreq function gives priority to matching the
given SCLK frequency and calculates and sets a CCLK frequency
as close as possible to the maximum possible for the current
voltage level.

fsclk Requested SCLK value in Hz

df The ADI_PWR_DF enumeration (see “ADI_PWR_DF” on
page 3-49) is used in this case to indicate whether this func-
tion should enable the PLL input divider, to minimize the dif-
ference between the requested clock frequency and the actual
frequency that can be obtained. Enabling it can also lead to
lower power dissipation. Passing ADI_PWR_DF_ON indicates
that the PLL input divider has already been enabled. Passing
ADI_PWR_DF_NONE indicates that the function may enable it
to achieve better granularity. (ADI_PWR_DF_OFF has no mean-
ing in this context.)

ADI_PWR_RESULT_SUCCESS Process completed successfully.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

VisualDSP++ 5.0 Device Drivers and System 3-33
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_SetMaxFreqForVolt

Description

The adi_pwr_SetMaxFreqForVolt() function sets the voltage regulator
control register, VR_CTL, with the required voltage level and adjusts the
processor’s CCLK and SCLK values to the maximum sustainable level.

The processor is idled to affect the changes.

Prototype

ADI_PWR_RESULT adi_pwr_SetMaxFreqForVolt(

const ADI_PWR_VLEV vlev

);

Arguments

Return Value

vlev Required voltage level is set as an ADI_PWR_VLEV enumeration
value. See “ADI_PWR_VLEV” on page 3-56.

ADI_PWR_RESULT_SUCCESS Function completed successfully.

ADI_PWR_RESULT_INVALID_VLEV vlev value is invalid.

ADI_PWR_RESULT_VR_BYPASSED Voltage regulator is bypassed. A call to
adi_dma_SetVoltageRegulator with a non-zero
switching frequency value is required prior to this call.
See “adi_pwr_SetVoltageRegulator” on page 3-37.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

SDRAM Initialization Prior to Loading an Executable

3-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwr_SetPowerMode

Description

The adi_pwr_SetPowerMode() function sets the power mode of the proces-
sor. There are five modes:

• Full-On. The processor core clock (CCLK) and system clock (SCLK)
run at the frequencies set via the adi_pwr_SetFreq or
adi_pwr_SetVoltageRegulator functions. Full DMA is enabled.

• Active. The PLL is bypassed so that the processor core clock and
system clock run at the CLKIN input clock frequency. DMA access
is available to configured L1 memories appropriately.

• Sleep. The core processor is idled. The system clock continues to
run at the speed set via the adi_pwr_SetFreq or
adi_pwr_SetVoltageRegulator functions. DMA is restricted to
external memory. See instructions below for selecting wakeup(s) to
bring the processor out of sleep mode.

• Deep Sleep. The processor core and all peripherals, except the
real-time clock (RTC), are disabled. DMA is not supported in this
mode.

SDRAM is set to self-refresh mode. The voltage regulator is
powered up on RTC interrupt or a hardware reset event. In both
cases, the core reset sequence is initiated.

• Hibernate. The internal voltage regulator is powered down.
SDRAM is set to self-refresh mode. The voltage regulator is
powered up on hardware reset. See instructions below for selecting
wakeup(s) to bring the processor out of hibernate mode.

 Until SDRAM is properly configured and the refresh rate is
appropriate, data held in SDRAM will decay. This only applies to
exiting hibernate or deep sleep mode by a hardware reset event. For

VisualDSP++ 5.0 Device Drivers and System 3-35
Services Manual for Blackfin Processors

Power Management Module

ADSP-BF531, ADSP-BF532, and ADSP-BF533 processor cores,
the SCKE pin on the processor is asserted on reset, causing the
SDRAM to exit self-refresh mode. This behavior is a constraint of
PC-133 compliance. For some processors, currently including the
ADSP-BF537 family and the ADSP-BF527 family, this restriction
can be circumvented by enabling the CKELOW bit in the VR_CTL reg-
ister (see “adi_pwr_SetVoltageRegulator” on page 3-37). This can
also be achieved by inserting the following command-value pair to
the table that is passed to the adi_pwr_Init function:

{ ADI_PWR_CMD_SET_PC133_COMPLIANCE, 0 }

To specify the method of wakeup from sleep or hibernate mode:

1. Call adi_int_SICGlobalWakeup to disable all wakeups.

2. Call adi_int_SICWakeup for each wakeup that is to be left enabled,
while the processor is in the low power mode.

3. Call adi_pwr_SetVoltageRegulator to enable the appropriate
wakeup bit(s) in the VR_CTL register (if not already enabled).

4. Call adi_pwr_SetPowerMode to set the power mode.

5. Upon wakeup, restore wakeup registers to their previous state by
calling adi_int_SICGlobalWakeup.

Prototype

ADI_PWR_RESULT adi_pwr_SetPowerMode(

const ADI_PWR_MODE Mode

);

SDRAM Initialization Prior to Loading an Executable

3-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

mode ADI_PWR_MODE value indicates the state the processor is
transitioned to. See “ADI_PWR_MODE” on page 3-50.

ADI_PWR_RESULT_SUCCESS Process completed successfully.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

ADI_PWR_RESULT_INVALID_MODE Either an incorrect mode has been requested or the
requested mode cannot be reached from the current
mode.

VisualDSP++ 5.0 Device Drivers and System 3-37
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_SetVoltageRegulator

Description

The adi_pwr_SetVoltageRegulator() function sets the voltage regulator
control register, VR_CTL, with one or more of the following fields.

VLEV Required voltage level as an ADI_PWR_VLEV enumeration value. See
“ADI_PWR_VLEV” on page 3-56.

FREQ Required voltage regulator switching oscillator frequency as an
ADI_PWR_VR_FREQ enumeration value. See “ADI_PWR_VR_FREQ” on
page 3-58.
Note: supply ADI_PWR_VR_FREQ_POWERDOWN to bypass the on-board voltage reg-
ulator.

GAIN Required gain value as an ADI_PWR_VR_GAIN enumeration value. See
“ADI_PWR_VR_GAIN” on page 3-58.

WAKE ADI_PWR_VR_WAKE enumeration value indicating whether the voltage regulator
can be awakened from power-down upon an interrupt from the real-time clock or
a low-going edge on the RESET# pin. See “ADI_PWR_VR_WAKE” on
page 3-60.

PHYWE ADI_PWR_VR_PHYWE enumeration value indicating whether the voltage regulator
can be awakened from power down by activity on the Ethernet PHY. See
“ADI_PWR_VR_PHYWE” on page 3-59.

CANWE ADI_PWR_VR_CANWE enumeration value indicating whether the voltage regulator
can be awakened from power down by activity on the CAN bus. See
“ADI_PWR_VR_CANWE” on page 3-57.

CLKBUFOE ADI_PWR_VR_CLKBUFOE enumeration value to govern whether other devices,
most likely the Ethernet PHY, are clocked by the input clock, CLKIN. This bit is
set if the Ethernet PHY is used on the ADSP-BF537 EZ-KIT Lite board. See
“ADI_PWR_VR_CLKBUFOE” on page 3-57.

CKELOW ADI_PWR_VR_CKELOW enumeration value to govern whether to protect against the
default reset state behavior of setting the EBIU pins to their inactive state. This bit
is set if the SDRAM is placed into self-refresh mode while the processor is in
hibernate state. See “ADI_PWR_VR_CKELOW” on page 3-57.

USBWE ADI_PWR_VR_USBWE enumeration value indicating whether the voltage regulator
can be awakened from power-down by activity on the USB interface. See
“ADI_PWR_VR_USBWE” on page 3-59.

SDRAM Initialization Prior to Loading an Executable

3-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

These values are communicated to the adi_pwr_SetVoltageRegulator
function by passing a single command-value pair or a sequence of pairs in
a table terminated with the ADI_PWR_CMD_END command in the same way as
for the adi_pwr_Control function. For more detailed information, refer to
“adi_pwr_Control” on page 3-16.

For example, to bypass the built-in voltage regulator, the following code
could be used.

adi_pwr_SetVoltageRegulator(ADI_PWR_SET_VR_FREQ,

(void*) ADI_PWR_VR_FREQ_POWERDOWN);

Table 3-6 defines the command-value pairs that can be used with the
adi_pwr_SetVoltageRegulator function. Use of any other pairs is invalid.

Table 3-6. Command-Value Pairs for adi_pwr_SetVoltageRegulator
Function

Command Associated Data Value

ADI_PWR_CMD_END Data value is ignored as the command simply marks the
end of a table of command pairs.

ADI_PWR_CMD_PAIR Used to tell adi_pwr_SetVoltageRegulator that a
single command pair is being passed.

ADI_PWR_CMD_TABLE Used to tell adi_pwr_SetVoltageRegulator that a table
of command pairs is being passed.

ADI_PWR_CMD_SET_VR_VLEV ADI_PWR_VLEV value specifying the voltage level required
of the voltage regulator. See “ADI_PWR_VLEV” on
page 3-56.

ADI_PWR_CMD_SET_VR_FREQ ADI_PWR_VR_FREQ value specifying the required voltage
regulator switching oscillator frequency. See
“ADI_PWR_VR_FREQ” on page 3-58. Use the
ADI_PWR_VR_FREQ_POWERDOWN value to bypass the
on-board voltage regulator.

ADI_PWR_CMD_SET_VR_GAIN ADI_PWR_VR_GAIN value specifying the internal loop gain
of the switching regulator loop. See
“ADI_PWR_VR_GAIN” on page 3-58.

VisualDSP++ 5.0 Device Drivers and System 3-39
Services Manual for Blackfin Processors

Power Management Module

The processor’s CCLK and SCLK frequencies are not adjusted. When neces-
sary, the processor is idled to effect the changes. If the requested voltage
level is insufficient to sustain the current frequency values, the function
returns an error without amending any settings.

Prototype

ADI_PWR_RESULT adi_pwr_SetVoltageRegulator(

ADI_PWR_COMMAND Command,

void *Value

);

ADI_PWR_CMD_SET_VR_WAKE ADI_PWR_VR_WAKE value indicating whether to
enable/disable the WAKE bit. See
“ADI_PWR_VR_WAKE” on page 3-60.

ADI_PWR_CMD_SET_VR_PHYWE ADI_PWR_VR_PHYWE enumeration value indicating
whether to enable/disable the PHYWE bit. See
“ADI_PWR_VR_PHYWE” on page 3-59.

ADI_PWR_CMD_SET_VR_CANWE ADI_PWR_VR_CANWE enumeration value indicating
whether to enable/disable the CANWE bit. See
“ADI_PWR_VR_CANWE” on page 3-57.

ADI_PWR_CMD_SET_VR_CLKBUFOE ADI_PWR_VR_CLKBUFOE enumeration value indicating to
enable/disable the CLKBUFOE bit. See
“ADI_PWR_VR_CLKBUFOE” on page 3-57.

ADI_PWR_CMD_SET_VR_CKELOW ADI_PWR_VR_CKELOW enumeration value indicating
whether to enable/disable the CKELOW bit. See
“ADI_PWR_VR_CKELOW” on page 3-57.

ADI_PWR_CMD_SET_VR_USBWE ADI_PWR_VR_USBWE enumeration value indicating
whether to enable/disable the USB wakeup bit. See
“ADI_PWR_VR_USBWE” on page 3-59.

Table 3-6. Command-Value Pairs for adi_pwr_SetVoltageRegulator
Function (Cont’d)

Command Associated Data Value

SDRAM Initialization Prior to Loading an Executable

3-40 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

Command ADI_PWR_COMMAND enumeration value specifies the meaning
of the associated value argument

Value This is the required value. See
“adi_pwr_SetVoltageRegulator” on page 3-37.

ADI_PWR_RESULT_SUCCESS Function completed successfully.

ADI_PWR_RESULT_INVALID_VLEV VLEV argument is invalid or insufficient to sustain
the current core and system clock frequencies.

ADI_PWR_RESULT__INVALID_VR_FREQ FREQ value is invalid.

ADI_PWR_RESULT__INVALID_VR_GAIN GAIN value is invalid.

ADI_PWR_RESULT__INVALID_VR_WAKE WAKE value is invalid.

ADI_PWR_RESULT_INVALID_VR_PHYWE PHYWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CANWE CANWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CLKBUFOE CLKBUFOE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CKELOW CKELOW value is invalid.

ADI_PWR_RESULT_INVALID_VR_USBWE USB wakeup value is invalid.

ADI_PWR_RESULT_BAD_COMMAND Command argument is unrecognized.

ADI_PWR_RESULT_NOT_INITIALIZED PM module has not been initialized.

VisualDSP++ 5.0 Device Drivers and System 3-41
Services Manual for Blackfin Processors

Power Management Module

adi_pwr_Terminate

Description

The adi_pwr_Terminate() function terminates the power management
module, resets the initialized flag, and unhooks the supplemental inter-
rupt, if dual-core synchronization was used.

Prototype
ADI_PWR_RESULT adi_pwr_Terminate(void);

Arguments

The function takes no arguments.

Return Value

ADI_PWR_RESULT_SUCCESS Function completed successfully.

SDRAM Initialization Prior to Loading an Executable

3-42 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Public Data Types and Enumerations
This section provides descriptions of the PM public data types and
enumerations.

ADI_PWR_COMMAND

The ADI_PWR_COMMAND enumeration type describes the command type in
an ADI_PWR_COMMAND_PAIR structure. Table 3-7 details the available com-
mands, the associated data values, and the valid context for their use.

Table 3-7. ADI_PWR_COMMAND Available Commands

Command Associated Data Value

Commands that can be used with the adi_pwr_Init, adi_pwr_Control, and
adi_pwr_SetVoltageRegulator functions

ADI_PWR_CMD_END Data value is ignored as the command sim-
ply marks the end of a table of command
pairs.

Commands that can be used with either the adi_pwr_Control or adi_pwr_SetVoltageRegulator
functions

ADI_PWR_CMD_PAIR Indicates that a single command pair is
being passed.

ADI_PWR_CMD_TABLE Indicates that a table of command pairs is
being passed.

Commands that can be used with either the adi_pwr_Init or adi_pwr_Control functions

ADI_PWR_CMD_INSTALL_CLK_CLIENT_CALLBACK A value of type
pADI_PWR_CALLBACK_ENTRY pointing to
an ADI_PWR_CALLBACK_ENTRY structure
which contains the callback function to
install, along with the ClientHandle value
that will be passed to the callback.

VisualDSP++ 5.0 Device Drivers and System 3-43
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_CMD_SET_INPUT_DELAY ADI_PWR_INPUT_DELAY value specifying
whether to add approximately 200 ps of
delay to the time when inputs are latched on
the external memory interface. See
“ADI_PWR_INPUT_DELAY” on
page 3-49.

ADI_PWR_CMD_SET_OUTPUT_DELAY ADI_PWR_OUTPUT_DELAY value specifying
whether to add approximately 200 ps of
delay to external memory output signals.
See “ADI_PWR_OUTPUT_DELAY” on
page 3-49.

ADI_PWR_CMD_SET_PLL_LOCKCNT u16 value specifying the number of SCLK
cycles to occur during the IDLE stage of the
PLL programming sequence before the pro-
cessor sets the PLL_LOCKED bit in the
PLL_STAT register. This value is held in the
PLL_LOCKCNT register.

Commands valid only when passed to the adi_pwr_Init function.

ADI_PWR_CMD_SET_PROC_VARIANT ADI_PWR_PROC_KIND value specifying the
processor variant. See
“ADI_PWR_PROC_KIND” on page 3-51.

ADI_PWR_CMD_SET_PACKAGE ADI_PWR_PACKAGE_KIND value describing
the packaging type of the processor. See
“ADI_PWR_PACKAGE_KIND” on
page 3-50.

ADI_PWR_CMD_SET_CLKIN u16 value specifying the external clock fre-
quency, CLKIN, supplied to the processor in
either MHz or Hz.

ADI_PWR_CMD_SET_VDDINT ADI_PWR_VLEV value specifying the core
voltage level provided by an external voltage
regulator. See “ADI_PWR_VLEV” on
page 3-56.

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

SDRAM Initialization Prior to Loading an Executable

3-44 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_CMD_SET_VDDEXT ADI_PWR_VDDEXT value specifying the exter-
nal voltage level applied to the internal volt-
age regulator. See “ADI_PWR_VDDEXT”
on page 3-56.

ADI_PWR_CMD_FORCE_DATASHEET_VALUES Enforces the core clock frequency limits for
each voltage level as defined in the relevant
data sheet (default).

ADI_PWR_CMD_SET_CCLK_TABLE Address of a table containing
ADI_PWR_NUM_VLEVS values of type u16
detailing the max CCLK frequency for each
ADI_PWR_VLEV value. These values are used
instead of the data sheet values.

ADI_PWR_CMD_SET_IVG u16 value specifying the IVG level for the
PLL_WAKEUP event. This defaults to 7.

ADI_PWR_CMD_SET_PC133_COMPLIANCE ADI_PWR_PC133_COMPLIANCE value speci-
fying whether the SDRAM is to comply
with the PC-133 standard. Non-compliance
to the standard is required to enable the pro-
cessor to return from hibernate mode with-
out losing the contents of SDRAM. This
value prevents SDRAM decay during reset,
enabling the contents of SDRAM to be pre-
served through the hibernate reset or deep
sleep reset cycle. (This command does not
apply to all processors).

Commands valid only when passed to the adi_pwr_SetVoltageRegulator function.

ADI_PWR_CMD_SET_VR_VLEV ADI_PWR_VLEV value specifying the voltage
level required of the voltage regulator. See
“ADI_PWR_VLEV” on page 3-56.

ADI_PWR_CMD_SET_VR_FREQ ADI_PWR_VR_FREQ value specifying the
required voltage regulator switching oscilla-
tor frequency. Use the
ADI_PWR_FREQ_POWERDOWN value to bypass
the on-board voltage regulator. See
“ADI_PWR_VR_FREQ” on page 3-58.

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

VisualDSP++ 5.0 Device Drivers and System 3-45
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_CMD_SET_VR_GAIN ADI_PWR_VR_GAIN value specifying the
internal loop gain of the switching regulator
loop. See “ADI_PWR_VR_GAIN” on
page 3-58.

ADI_PWR_CMD_SET_VR_WAKE ADI_PWR_VR_WAKE value specifying if the
voltage regulator is awakened from power-
down upon an interrupt from the RTC or a
low- going edge on the RESET# pin. See
“ADI_PWR_VR_WAKE” on page 3-60.

ADI_PWR_CMD_SET_VR_PHYWE ADI_PWR_VR_PHYWE enumeration value
indicating whether to enable/disable the
PHYWE bit (processors with PHYWE bit only).
See “ADI_PWR_VR_PHYWE” on
page 3-59.

ADI_PWR_CMD_SET_VR_CANWE ADI_PWR_VR_CANWE enumeration value
indicating whether to enable or disable the
CANWE bit (for processors with CAN inter-
face only). See “ADI_PWR_VR_CANWE”
on page 3-57.

ADI_PWR_CMD_SET_VR_CLKBUFOE ADI_PWR_VR_CLKBUFOE enumeration value
indicating whether to enable or disable the
CLKBUFOE bit (processors with CLKBUFOE
bit only). See
“ADI_PWR_VR_CLKBUFOE” on
page 3-57.

ADI_PWR_CMD_SET_VR_CKELOW ADI_PWR_VR_CKELOW enumeration value
indicating whether to enable or disable the
CKELOW bit (processors with CKELOW bit
only). See “ADI_PWR_VR_CKELOW” on
page 3-57.

ADI_PWR_CMD_SET_VR_USBWE ADI_PWR_VR_USBWE enumeration value
indicating whether to enable/disable the USB
wakeup bit. See “ADI_PWR_VR_USBWE”
on page 3-59.

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

SDRAM Initialization Prior to Loading an Executable

3-46 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_CMD_SET_VR_GPWE_MXVRWE ADI_PWR_VR_GPWE_MXVRWE enumeration
value indicating whether to enable or dis-
able the GPWE (MXVRWE) bit (processors with
general-purpose or MXVR wakeup bit only).
See “ADI_PWR_VR_GPWE_MXVRWE”
on page 3-59.

Commands valid only when passed to the adi_pwr_Control function.

ADI_PWR_CMD_GET_VDDINT ADI_PWR_VLEV value containing the maxi-
mum core voltage level. See
“ADI_PWR_VLEV” on page 3-56.

ADI_PWR_CMD_GET_VR_VLEV ADI_PWR_VLEV value containing the current
voltage level of the internal voltage regula-
tor. Not applicable when the internal regula-
tor is bypassed. See “ADI_PWR_VLEV” on
page 3-56.

ADI_PWR_CMD_GET_VR_FREQ ADI_PWR_FREQ value containing the current
voltage regulator switching oscillator fre-
quency.
See “ADI_PWR_VR_FREQ” on page 3-58.

ADI_PWR_CMD_GET_VR_GAIN ADI_PWR_GAIN value containing the inter-
nal loop gain of the switching regulator
loop. See “ADI_PWR_VR_GAIN” on
page 3-58.

ADI_PWR_CMD_GET_VR_WAKE ADI_PWR_VR_WAKE value specifying if the
voltage can be awakened from power-down
upon an interrupt from the RTC or a
low-going edge on the RESET# pin. See
“ADI_PWR_VR_WAKE” on page 3-60.

ADI_PWR_CMD_GET_VR_PHYWE ADI_PWR_VR_PHYWE enumeration value
indicating if the PHYWE bit has been
enabled/disabled (processors with PHYWE bit
only). See “ADI_PWR_VR_PHYWE” on
page 3-59.

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

VisualDSP++ 5.0 Device Drivers and System 3-47
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_CMD_GET_VR_CANWE ADI_PWR_VR_CANWE enumeration value
indicating if the CAN wakeup bit has been
enabled/disabled (processors with CAN
interface only). See
“ADI_PWR_VR_CANWE” on page 3-57.

ADI_PWR_CMD_GET_VR_USBWE ADI_PWR_VR_USBWE enumeration value
indicating if the USB wakeup bit has been
enabled/disabled (processors with USB
interface only). See
“ADI_PWR_VR_USBWE” on page 3-59.

ADI_PWR_CMD_GET_VR_GPWE_MXVRWE ADI_PWR_VR_GPWE_MXVRWE enumeration
value indicating whether if the GPWE
(MXVRWE) bit has been enabled/disabled
(processors with general-purpose or MXVR
wakeup bit only). See
“ADI_PWR_VR_GPWE_MXVRWE” on
page 3-59.

ADI_PWR_CMD_GET_VR_CLKBUFOE ADI_PWR_VR_CLKBUFOE enumeration value
indicating if the CLKBUFOE bit has been
enabled or disabled (processors with CLKBU-
FOE bit only). See
“ADI_PWR_VR_CLKBUFOE” on
page 3-57.

ADI_PWR_CMD_GET_VR_CKELOW ADI_PWR_VR_CKELOW enumeration value
indicating if the CKELOW bit has been
enabled or disabled (processors with CKELOW
bit only). See “ADI_PWR_VR_CKELOW”
on page 3-57.

ADI_PWR_CMD_GET_PLL_LOCKCNT u16 value containing the value in the
PLL_LOCKCNT register.

ADI_PWR_CMD_REMOVE_CLK_CLIENT_CALLBACK A value of type ADI_PWR_CALLBACK_FN
specifying the callback function to remove.

Table 3-7. ADI_PWR_COMMAND Available Commands (Cont’d)

Command Associated Data Value

SDRAM Initialization Prior to Loading an Executable

3-48 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_COMMAND_PAIR

This data type is used to generate a table of control commands. These
commands are sent to the power management module via the
adi_pwr_Init, adi_pwr_SetVoltageRegulator, and adi_pwr_Control
functions:

typedef struct _ADI_PWR_COMMAND_PAIR {

ADI_PWR_COMMAND kind;

void *value;

} ADI_PWR_COMMAND_PAIR;

Refer to “ADI_PWR_COMMAND” on page 3-42 for valid values of the
kind field.

ADI_PWR_CSEL

This data type defines the core clock divider bit field in the PLL_DIV regis-
ter. Valid values are:

ADI_PWR_CSEL_1 Divides voltage core oscillator frequency by 1.

ADI_PWR_CSEL_2 Divides voltage core oscillator frequency by 2.

ADI_PWR_CSEL_4 Divides voltage core oscillator frequency by 4.

ADI_PWR_CSEL_8 Divides voltage core oscillator frequency by 4.

VisualDSP++ 5.0 Device Drivers and System 3-49
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_DF

This data type defines the values for the DF bit in the PLL control register.
A value of ADI_PWR_DF_ON causes the value of CLKIN/2 to be passed to the
PLL module. According to the ADSP-BF533 Blackfin Processor Hardware
Reference, this leads to lower power dissipation1.

ADI_PWR_INPUT_DELAY

This data type defines the values that the input delay bit can take in the
PLL control register.

ADI_PWR_OUTPUT_DELAY

This data type defines the values that the output delay bit can take in the
PLL control register.

ADI_PWR_DF_NONE Indicates that no PLL input divider value is to be set.

ADI_PWR_DF_OFF Pass CLKIN to the PLL.

ADI_PWR_DF_ON Pass CLKIN/2 to the PLL.

1 See ADSP-BF533 Blackfin Processor Hardware Reference, Revision 3.4, April 2009, page 8-4.

ADI_PWR_INPUT_DELAY_DISABLE Do not add input delay.

ADI_PWR_INPUT_DELAY_ENABLE Add approximately 200 ps of delay to the time when
inputs are latched on the external memory interface.

ADI_PWR_OUTPUT_DELAY_DISABLE Do not add output delay.

ADI_PWR_OUTPUT_DELAY_ENABLE Add approximately 200 ps of delay to external
memory output signals.

SDRAM Initialization Prior to Loading an Executable

3-50 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_MODE

This data type defines the power mode of the processor. Valid power
mode values are:

ADI_PWR_PACKAGE_KIND

This data type defines the package type of the processor. Along with the
external voltage (“ADI_PWR_VDDEXT” on page 3-56). This value
determines the heat dissipation of the part.

ADI_PWR_MODE_FULL_ON Processor is in full-on mode; clock speeds are as pro-
grammed.

ADI_PWR_MODE_ACTIVE Processor is in active mode with only L1 DMA access
allowed. CCLK and SCLK are pegged to CLKIN as the
PLL controller is bypassed, providing medium power
saving.

ADI_PWR_MODE_ACTIVE_PLLDISABLED Processor is in active mode with only L1 DMA access
allowed. CCLK and SCLK are pegged to CLKIN as the
PLL controller is bypassed and disabled, providing
medium power saving.

ADI_PWR_MODE_SLEEP Processor is in sleep mode. It can be woken up with
any interrupt appropriately masked in the SIC_IWR
register, providing high power saving.

ADI_PWR_MODE_DEEP_SLEEP Processor is in deep sleep mode. It can only be woken
up with an appropriately-masked RTC interrupt or
reset, providing high power saving.

ADI_PWR_MODE_HIBERNATE Processor is in hibernate mode. It can only be awak-
ened on system reset, providing maximum power sav-
ing.

ADI_PWR_PACKAGE_MBGA MBGA - identified by the hemispherical contacts on
the under surface of the processor.

ADI_PWR_PACKAGE_LQFP LQFP - identified by the leg contacts around the
edges of the processor.

VisualDSP++ 5.0 Device Drivers and System 3-51
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_PCC133_COMPLIANCE

This data type defines the valid values for setting PC-133 compliance or
otherwise. This value governs whether the SCKE pin on the processor is
asserted on reset.

ADI_PWR_PROC_KIND

This data type defines the processor variant, which governs the appropri-
ate limits for speed selection. It is passed to the adi_pwr_Init() function,
along with the command ADI_PWR_CMD_SET_PROC_VARIANT.

The current list of processor variants is shown in Table 3-8. New proces-
sors are introduced frequently, so the most accurate information is found
in the ADI_PWR_PROC_KIND enumeration itself, grouped by processor fam-
ily, inside the Power Management Service API header file, adi_pwr.h.
Processor variants which are not found there may be defined as “equiva-
lents” by the macros in the ‘equivalent values’ section of adi_pwr.h. Refer
to the data sheet for the specific part number for a complete description of
the clock and power capabilities.

ADI_PWR_PC133_COMPLIANCE_DISABLED SCKE is asserted on reset; SDRAM contents are
invalidated.

ADI_PWR_PC133_COMPLIANCE_ENABLED SCKE is not asserted on reset; SDRAM contents
are maintained.

Table 3-8. Processor Variants

Enumeration Name Corresponding Processor

ADI_PWR_PROC_BF561SKBCZ_6A The ADSP-BF561SKBCZ-6A 600 MHz processor

ADI_PWR_PROC_BF561SKBCZ500X The ADSP-BF561SKBCZ500X 500 MHz processor

ADI_PWR_PROC_BF561SKBCZ600X The ADSP-BF561SKBCZ600X 600 MHz processor

ADI_PWR_PROC_BF561SBB600 The ADSP-BF561SBB600 600 MHz processor

ADI_PWR_PROC_BF533SKBC750 The ADSP-BF533SKBC750 750 MHz processor

SDRAM Initialization Prior to Loading an Executable

3-52 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_PROC_BF533SKBC600 The ADSP-BF533SKBC600 600 MHz processor

ADI_PWR_PROC_BF533SBBC500 The ADSP-BF533SBBC500 500 MHz processor

ADI_PWR_PROC_BF531_OR_BF532 All package types and speed grades of the ADSP-BF531
and ADSP-BF532 processors

ADI_PWR_PROC_BF533SKBC600_6V The ADSP-BF533SKBC600-6V 600 MHz processor

ADI_PWR_PROC_BF537SKBC1600 The ADSP-BF537SKBC1600 600 MHz processor

ADI_PWR_PROC_BF537SBBC1500 The ADSP-BF537SBBC1500 500 MHz processor

ADI_PWR_PROC_BF536SBBC1400 The ADSP-BF536SBBC1400 400 MHz processor

ADI_PWR_PROC_BF536SBBC1300 The ADSP-BF536SBBC1300 300 MHz processor

ADI_PWR_PROC_BF537BBCZ_5AV The ADSP-BF537BBCZ-5AV 500 MHz processor

ADI_PWR_PROC_BF548SKBC1600 The ADSP-BF548SKBC1600 600 MHz processor

ADI_PWR_PROC_BF548SBBC1533 The ADSP-BF548SBBC1533 533 MHz processor

ADI_PWR_PROC_BF548SBBC1400 The ADSP-BF548SBBC1400 400 MHz processor

ADI_PWR_PROC_BF538BBCZ500 The ADSP-BF538BBCZ500 500 MHz processor

ADI_PWR_PROC_BF538BBCZ400 The ADSP-BF538BBCZ400 400 MHz processor

ADI_PWR_PROC_BF539BBCZ500 The ADSP-BF539BBCZ500 500 MHz processor

ADI_PWR_PROC_BF539BBCZ400 The ADSP-BF539BBCZ400 400 MHz processor

ADI_PWR_PROC_BF527SBBC1600 The ADSP-BF527SBBC1600 600 MHz processor

ADI_PWR_PROC_BF527SBBC1533 The ADSP-BF527SBBC1533 533 MHz processor

ADI_PWR_PROC_BF526SBBC1400 The ADSP-BF526SBBC1400 400 MHz processor

ADI_PWR_PROC_BF512SBBC1300 The ADSP-BF512SBBC1300 300 MHz processor

ADI_PWR_PROC_BF512SBBC1400 The ADSP-BF512SBBC1400 400 MHz processor

Table 3-8. Processor Variants (Cont’d)

Enumeration Name Corresponding Processor

VisualDSP++ 5.0 Device Drivers and System 3-53
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_RESULT

The power management module functions return a result code of the
enumeration type, ADI_PWR_RESULT. Table 3-9 lists and describes the PM
module return values.

Table 3-9. PM Module Return Values

Return Value Explanation

ADI_PWR_RESULT_SUCCESS Routine completed successfully.

ADI_PWR_RESULT_FAILED Generic failure was encountered.

ADI_PWR_RESULT_NO_MEMORY Insufficient memory for configuration val-
ues to be stored.

ADI_PWR_RESULT_BAD_COMMAND Command is not recognized.

ADI_PWR_RESULT_NOT_INITIALIZED Function call has been ignored with no
action taken, due to the PM module not
being initialized.

ADI_PWR_RESULT_ALREADY_INITIALIZED A call to adi_pwr_Init has been ignored
with no action taken, due to the PM mod-
ule having already been initialized.

ADI_PWR_RESULT_INVALID_VDDEXT Invalid external voltage level has been
specified.

ADI_PWR_RESULT_VDDINT_MUST_BE_SUPPLIED When using external voltage regulation,
the externally-supplied VDDINT must be
passed to adi_pwr_Init.

ADI_PWR_RESULT_INVALID_PROCESSOR Processor type specified is invalid.

ADI_PWR_RESULT_INVALID_IVG IVG level supplied for PLL wakeup is
invalid.

ADI_PWR_RESULT_INVALID_INPUT_DELAY Input delay value is invalid.

ADI_PWR_RESULT_INVALID_OUTPUT_DELAY Output delay value is invalid.

ADI_PWR_RESULT_INVALID_LOCKCNT PLL lock count value is invalid.

ADI_PWR_RESULT_INVALID_MODE Invalid operating mode has been specified.

ADI_PWR_RESULT_INVALID_CSEL Invalid value for CSEL has been specified.

ADI_PWR_RESULT_INVALID_SSEL Invalid value for SSEL has been specified.

SDRAM Initialization Prior to Loading an Executable

3-54 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_INVALID_CSEL_SSEL_COMBINATION Core clock divider is greater that the sys-
tem clock divider value, or both
ADI_PWR_CSEL_NONE and
ADI_PWR_SSEL_NONE are specified.

ADI_PWR_RESULT_VOLTAGE_REGULATOR_BYPASSED Voltage regulator cannot be set since it is
in bypass mode.

ADI_PWR_RESULT_INVALID_VLEV VLEV argument is invalid or insufficient to
sustain the current core and system clock
frequencies.

ADI_PWR_RESULT_INVALID_VR_FREQ FREQ value is invalid.

ADI_PWR_RESULT_INVALID_VR_GAIN GAIN value is invalid.

ADI_PWR_RESULT_INVALID_VR_WAKE WAKE value is invalid.

ADI_PWR_RESULT_INVALID_VR_PHYWE PHYWE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CANWE CAN wakeup value is invalid.

ADI_PWR_RESULT_INVALID_VR_USBWE USBE wakeup value is invalid.

ADI_PWR_RESULT_INVALID_VR_GPWE_MXVRWE General-purpose or MXVR wakeup value is
invalid.

ADI_PWR_RESULT_INVALID_VR_CLKBUFOE CLKBUFOE value is invalid.

ADI_PWR_RESULT_INVALID_VR_CKELOW CKELOW value is invalid.

ADI_PWR_RESULT_CANT_HOOK_SUPPLEMENTAL_
INTERRUPT

Unable to hook supplemental interrupt,
for halting other core (dual-core only)

ADI_PWR_RESULT_NO_CALLBACK_INSTALLED Tried to remove a callback that was not
installed

ADI_PWR_RESULT_EXCEEDED_MAX_CALLBACKS Could not install a callback. Maximum
number of callbacks have been installed.

Table 3-9. PM Module Return Values (Cont’d)

Return Value Explanation

VisualDSP++ 5.0 Device Drivers and System 3-55
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_SSEL

This data type defines the system clock divider bit field in the PLL_DIV
register. Valid values are:

ADI_PWR_SSEL_1 Divides voltage core oscillator frequency by 1.

ADI_PWR_SSEL_2 Divides voltage core oscillator frequency by 2.

ADI_PWR_SSEL_3 Divides voltage core oscillator frequency by 3.

ADI_PWR_SSEL_4 Divides voltage core oscillator frequency by 4.

ADI_PWR_SSEL_5 Divides voltage core oscillator frequency by 5.

ADI_PWR_SSEL_6 Divides voltage core oscillator frequency by 6.

ADI_PWR_SSEL_7 Divides voltage core oscillator frequency by 7.

ADI_PWR_SSEL_8 Divides voltage core oscillator frequency by 8.

ADI_PWR_SSEL_9 Divides voltage core oscillator frequency by 9.

ADI_PWR_SSEL_10 Divides voltage core oscillator frequency by 10.

ADI_PWR_SSEL_11 Divides voltage core oscillator frequency by 11.

ADI_PWR_SSEL_12 Divides voltage core oscillator frequency by 12.

ADI_PWR_SSEL_13 Divides voltage core oscillator frequency by 13.

ADI_PWR_SSEL_14 Divides voltage core oscillator frequency by 14.

ADI_PWR_SSEL_15 Divides voltage core oscillator frequency by 15.

SDRAM Initialization Prior to Loading an Executable

3-56 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VDDEXT

This data type defines the external voltage (VDDEXT) supplied to the voltage
regulator.

ADI_PWR_VLEV

This data type defines the acceptable voltage levels for the voltage regula-
tor. The values for ADSP-BF533 and ADSP-BF561 processors are:

ADI_PWR_VDDEXT_330 3.3 V

ADI_PWR_VDDEXT_250 2.5 V

ADI_PWR_VLEV_085 0.85 V

ADI_PWR_VLEV_090 0.90 V

ADI_PWR_VLEV_095 0.95 V

ADI_PWR_VLEV_100 1.00 V

ADI_PWR_VLEV_105 1.05 V

ADI_PWR_VLEV_110 1.10 V

ADI_PWR_VLEV_115 1.15 V

ADI_PWR_VLEV_120 1.20 V (default)

ADI_PWR_VLEV_125 1.25 V

ADI_PWR_VLEV_130 1.30 V

ADI_PWR_VLEV_135 1.35 V

ADI_PWR_VLEV_140 1.40 V

VisualDSP++ 5.0 Device Drivers and System 3-57
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VR_CANWE

This data type defines the valid values for the CANWE bit in the voltage
regulator control register. If enabled, the voltage regulator can be awak-
ened from power-down by activity on the controller area network (CAN)
interface.

ADI_PWR_VR_CKELOW

This data type defines the valid values for the CKELOW bit in the voltage
regulator control register. If enabled, the SCKE pin is driven low on system
reset to enable the SDRAM to remain in self-refresh mode.

ADI_PWR_VR_CLKBUFOE

This data type defines the valid values for the CLKBUFOE bit in the voltage
regulator control register. If enabled, the CLKIN signal can be shared with
peripheral devices, especially the Ethernet PHY.

ADI_PWR_VR_CANWE_DISABLED Disable wakeup by CAN activity.

ADI_PWR_VR_CANWE_ENABLED Enable wakeup by CAN activity.

ADI_PWR_VR_PHYWE_DISABLED Drive SCKE high on reset; SDRAM contents are
invalidated.

ADI_PWR_VR_PHYWE_ENABLED Drive SCKE low on reset; SDRAM contents are
maintained.

ADI_PWR_VR_CLKBUFOE_DISABLED Disable CLKIN sharing.

ADI_PWR_VR_CLKBUFOE_ENABLED Enable CLKIN sharing.

SDRAM Initialization Prior to Loading an Executable

3-58 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VR_FREQ

This data type defines the acceptable switching frequency values for the
voltage regulator. Its value is linked to the switching capacitor and induc-
tor values. The higher the frequency setting, the smaller the capacitor and
inductor values. The valid values for all Blackfin processors are:

ADI_PWR_VR_GAIN

This data type defines the acceptable values for the internal loop gain of
the switching regulator loop. The gain controls how quickly the voltage
output settles on its final value. The higher the gain, the quicker the set-
tling time. High gain settings cause greater overshoot in the process.

ADI_PWR_VR_FREQ_POWERDOWN Power-down/bypass on-board regulation

ADI_PWR_VR_FREQ_333KHZ 333 kHz

ADI_PWR_VR_FREQ_667KHZ 667 kHz

ADI_PWR_VR_FREQ_1MHZ 1 MHz (default)

ADI_PWR_VR_GAIN_5 5

ADI_PWR_VR_GAIN_110 10

ADI_PWR_VR_GAIN_20 20 (default)

ADI_PWR_VR_GAIN_50 50

VisualDSP++ 5.0 Device Drivers and System 3-59
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VR_GPWE_MXVRWE

This data type defines the values for the GPWE general-purpose wakeup or
MXVR bit, in the voltage regulator control register for some processors. If
enabled (ADI_PWR_VR_GPWE_MXVRWE_ENABLED), the voltage regulator can be
awakened from hibernate upon an interrupt from a general-purpose
wakeup or MXVR.

ADI_PWR_VR_PHYWE

This data type defines the values for the PHYWE bit in the voltage regulator
control register. If enabled, the voltage regulator can be awakened from
power-down by activity on the PHY interface.

ADI_PWR_VR_USBWE

This data type defines the valid values for the USBWE bit in the voltage
regulator control register. If enabled, the voltage regulator can be awak-
ened from power-down by activity on the universal serial bus (USB)
interface.

ADI_PWR_VR_GPWE_MXVRWE_DISABLED Disables general-purpose wakeup.

ADI_PWR_VR_GPWE_MXVRWE_ENABLED Enables general-purpose wakeup.

ADI_PWR_VR_PHYWE_DISABLED Disable wakeup by PHY activity.

ADI_PWR_VR_PHYWE_ENABLED Enable wakeup by PHY activity.

ADI_PWR_VR_USBWE_DISABLED Disable wakeup by USB activity.

ADI_PWR_VR_USBWE_ENABLED Enable wakeup by USB activity.

PM Module Macros

3-60 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_VR_WAKE

This data type defines the values for the WAKE bit in the voltage regulator
control register. If enabled (ADI_PWR_VR_WAKE_ENABLED), the voltage regu-
lator can be awakened from power-down (ADI_PWR_VR_FREQ_POWERDOWN)
upon an RTC interrupt or a low-going edge on the RESET pin.

PM Module Macros
Table 3-10 lists and describes PM (power management) module macros.

Not shown here is the list of processor variants which are functionally
“equivalent” to those in the ADI_PWR_PROC_KIND enumeration list. New
processors are introduced frequently, so please refer to the macros in the
‘equivalent values’ section of the Power Management Service API header
file, adi_pwr.h, for the complete list of processor variant “equivalents”.

ADI_PWR_VR_WAKE_DISABLED Disables wakeup by RTC and RESET.

ADI_PWR_VR_WAKE_ENABLED Enables wakeup by RTC and RESET.

Table 3-10. PM Module Macros

Macro Explanation

ADI_PWR_VLEV_DEFAULT Default/reset voltage level ADI_PWR_VLEV_130

ADI_PWR_VLEV_MIN Minimum voltage level ADI_PWR_VLEV_085

ADI_PWR_VLEV_MAX Maximum voltage level ADI_PWR_VLEV_120

ADI_PWR_VOLTS(V) Returns the voltage in volts as a float for the given level.

ADI_PWR_MILLIVOLTS(V) Returns an integer value of the voltage in millivolts for the
given level.

ADI_PWR_VR_FREQ_DEFAULT Default/reset switching frequency value, ADI_PWR_FREQ_1MHZ

ADI_PWR_VR_FREQ_MIN Minimum switching frequency value,
ADI_PWR_FREQ_POWERDOWN

ADI_PWR_VR_FREQ_MAX Maximum switching frequency value, ADI_PWR_FREQ_1MHZ

VisualDSP++ 5.0 Device Drivers and System 3-61
Services Manual for Blackfin Processors

Power Management Module

ADI_PWR_VR_GAIN_DEFAULT Default/reset voltage regulator gain value, ADI_PWR_GAIN_20

ADI_PWR_VR_GAIN_MIN Minimum voltage regulator gain value, ADI_PWR_GAIN_5

ADI_PWR_VR_GAIN_MAX Default/reset voltage regulator gain value, ADI_PWR_GAIN_20

ADI_PWR_PACKAGE_PBGA Equivalent package type to ADI_PWR_PACKAGE_MBGA

Table 3-10. PM Module Macros (Cont’d)

Macro Explanation

PM Module Macros

3-62 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 4-1
Services Manual for Blackfin Processors

4 EXTERNAL BUS INTERFACE
UNIT MODULE

This chapter describes the external bus interface unit (EBIU) module. The
EBIU enables the configuration of the asynchronous memory controller
and the SDRAM or DDR interface. It also allows the DDR or SDRAM to
be automatically adjusted in response to changes in the system clock
frequency.

This chapter contains:

• “Introduction” on page 4-2

• “Using the EBIU Module” on page 4-3

• “EBIU API Reference” on page 4-9

• “Public Data Types and Enumerations” on page 4-25

• “Setting Control Values in the EBIU Module” on page 4-32

Introduction

4-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The initial goal of the external bus interface unit (EBIU) module is to
enable the power management module to adjust the SDRAM or DDR
controller (SDC) in accordance with changes made to the system clock
(SCLK) frequency. Calls to both adi_pwr_SetFreq and
adi_pwr_SetMaxFreqForVolt adjust the SDC settings to the SCLK fre-
quency selected, provided the EBIU module has been initialized. For more
information, see “Power Management Module” on page 3-1.

Using the module is straightforward. The adi_ebiu_Init function is
called to set up the relevant values listed in the appropriate data sheet for
the external memory device. Thereafter, the refresh rate for SDRAM or
DDR is adjusted automatically each time the power management module
changes SCLK. The asynchronous memory controller is not automatically
adjusted but can be explicitly reconfigured via a call to adi_ebiu_Control.
The “Using the EBIU Module” section provides a step-by-step description
of how to work with the EBIU module. Sample code is also included.

The EBIU module uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by Analog Devices
or other companies. All enumeration values and typedef statements use
the ADI_EBIU_ prefix, and functions and global variables use the lowercase
equivalent, adi_ebiu_.

Two versions of the library are available for each processor, corresponding
to the debug and release configurations in VisualDSP++. In addition to
the usual defaults for the debug configuration, the API functions perform
checks on the passed arguments and report appropriate error codes, as
required. In the release version of the library, most functions return one of
two result codes: ADI_EBIU_RESULT_SUCCESS on successful completion, or
ADI_EBIU_RESULT_NOT_INITIALIZED when the EBIU module has not been
initialized prior to the function call.

VisualDSP++ 5.0 Device Drivers and System 4-3
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Using the EBIU Module
The first step to using the EBIU module involves setting up the necessary
parameters for the external memory interfaces that are used. In this step, a
table of command-value pairs is passed to the adi_ebiu_Init function.
The information required is described in detail in adi_ebiu_Init in the
Description section (on page 4-15). The amount and the type of informa-
tion that must be passed depends on the individual board configuration.

In the following example, assume that the ADSP-BF533 EZ-KIT Lite
(Rev 2.1) is configured. Specify the command-pair table as follows:

/* Asynch global control register field - clkout enable */

ADI_EBIU_ASYNCH_CLKOUT clkout_enable =

ADI_EBIU_ASYNCH_CLKOUT_ENABLE;

/* Asynch global control register field - select which banks to

enable */

ADI_EBIU_ASYNCH_BANK_ENABLE banks_enable =

ADI_EBIU_ASYNCH_BANK0_1_2_3;

/* Asynch bank timing parameters, using same value for all 4

banks - specified in either cycles or timing units, but NOT BOTH,

*/

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_trans_time =

{ADI_EBIU_BANK_ALL, { ADI_EBIU_ASYNCH_TT_4_CYCLES, { 0,

ADI_EBIU_TIMING_UNIT_NANOSEC } }

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_setup_time =

{ADI_EBIU_BANK_ALL, { ADI_EBIU_ASYNCH_ST_3_CYCLES, { 0,

ADI_EBIU_TIMING_UNIT_NANOSEC } } };

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_hold_time =

{ADI_EBIU_BANK_ALL, { ADI_EBIU_ASYNCH_HT_2_CYCLES, { 0,

ADI_EBIU_TIMING_UNIT_NANOSEC } } };

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_read_access_time =

{ADI_EBIU_BANK_ALL, { 0xB, { 0, ADI_EBIU_TIMING_UNIT_NANOSEC } }

};

Using the EBIU Module

4-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_ASYNCH_BANK_TIMING asynch_bank_write_access_time =

{ADI_EBIU_BANK_ALL, { 7, { 0, ADI_EBIU_TIMING_UNIT_NANOSEC } } };

ADI_EBIU_ASYNCH_BANK_VALUE asynch_bank_ardy_enable = {

ADI_EBIU_BANK_ALL, { ardy_enable: ADI_EBIU_ASYNCH_ARDY_DISABLE }

};

ADI_EBIU_ASYNCH_BANK_VALUE asynch_bank_ardy_polarity = {

ADI_EBIU_BANK_ALL, { ardy_polarity:

ADI_EBIU_ASYNCH_ARDY_POLARITY_LOW } };

/* SDRAM timing parameters, specified according to data sheet */

ADI_EBIU_TIMING_VALUE twrmin = {1,{7500,

ADI_EBIU_TIMING_UNIT_PICOSEC}}; /* set min TWR to 1 SCLK cycle +

7.5ns */

ADI_EBIU_TIMING_VALUE refresh = {8192,{64,

ADI_EBIU_TIMING_UNIT_MILLISEC}}; /* set refresh period to 8192

cycles in 64ms */

ADI_EBIU_TIME trasmin = {44, ADI_EBIU_TIMING_UNIT_NANOSEC}; /*

set min TRAS to 44ns */

ADI_EBIU_TIME trpmin = {20, ADI_EBIU_TIMING_UNIT_NANOSEC};

/* set min TRP to 20ns */

ADI_EBIU_TIME trcdmin = {20, ADI_EBIU_TIMING_UNIT_NANOSEC};

/* set min TRCD to 20ns */

u32 cl_threshold = 100; /* set cl threshold to 100 Mhz */

ADI_EBIU_SDRAM_BANK_VALUE bank_size = { 0, { size:

ADI_EBIU_SDRAM_BANK_64MB }}; /* bank size is 64MB */

ADI_EBIU_SDRAM_BANK_VALUE bank_width = { 0, {

width: ADI_EBIU_SDRAM_BANK_COL_10BIT }}; /* column address width

is 10-Bit */

/* set up the command pair table using the above definitions */

ADI_EBIU_COMMAND_PAIR ebiu_init_table[] = {

 { ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size },

 { ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH, (void*)&bank_width },

 { ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD, (void*)cl_threshold },

 { ADI_EBIU_CMD_SET_SDRAM_TRASMIN, (void*)&trasmin },

 { ADI_EBIU_CMD_SET_SDRAM_TRPMIN, (void*)&trpmin },

VisualDSP++ 5.0 Device Drivers and System 4-5
Services Manual for Blackfin Processors

External Bus Interface Unit Module

 { ADI_EBIU_CMD_SET_SDRAM_TRCDMIN, (void*)&trcdmin },

 { ADI_EBIU_CMD_SET_SDRAM_TWRMIN, (void*)&twrmin },

 { ADI_EBIU_CMD_SET_SDRAM_REFRESH, (void*)&refresh },

 { ADI_EBIU_CMD_SET_ASYNCH_CLKOUT_ENABLE, (void*)&clkout_enable

},

 { ADI_EBIU_CMD_SET_ASYNCH_BANK_ENABLE, (void*)&banks_enable },

 { ADI_EBIU_CMD_SET_ASYNCH_BANK_TRANSITION_TIME,

(void*)&asynch_bank_trans_time },

 { ADI_EBIU_CMD_SET_ASYNCH_BANK_READ_ACCESS_TIME,

(void*)&asynch_bank_read_access_time },

 { ADI_EBIU_CMD_SET_ASYNCH_BANK_WRITE_ACCESS_TIME,

(void*)&asynch_bank_write_access_time },

 { ADI_EBIU_CMD_SET_ASYNCH_BANK_SETUP_TIME,

(void*)&asynch_bank_setup_time },

 { ADI_EBIU_CMD_SET_ASYNCH_BANK_HOLD_TIME,

(void*)&asynch_bank_hold_time },

 { ADI_EBIU_CMD_SET_ASYNCH_BANK_ARDY_ENABLE,

(void*)&asynch_bank_ardy_enable },

 { ADI_EBIU_CMD_SET_ASYNCH_BANK_ARDY_POLARITY,

(void*)&asynch_bank_ardy_polarity },

 { ADI_EBIU_CMD_END, 0 }

};

The second argument in the call to adi_ebiu_Init is reserved and should
be set to zero. The EBIU module should be initialized prior to initializing
the power management module, so that subsequent calls to
adi_pwr_SetFreq or adi_pwr_SetMaxFreqForVolt in the power manage-
ment module will automatically adjust the SDRAM or DDR.

Using the EBIU Module

4-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

To illustrate what is required for Blackfin processors that support DDR
memory, a command table is shown below. Replace the SDRAM parame-
ters, above, with the DDR parameters shown below, and add the
asynchronous memory controller commands shown in the above example.

ADI_EBIU_TIMING_VALUE RC { 8, {60,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles between one

active command and the next */

ADI_EBIU_TIMING_VALUE RAS = { 6, {42,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles between active

command and precharge command */

ADI_EBIU_TIMING_VALUE RP = { 2, {15,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles between

precharge command and active command */

ADI_EBIU_TIMING_VALUE RFC = { 10,{72,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles for SDRAM to

recover from REFRESH signal */

ADI_EBIU_TIMING_VALUE WTR = { 2,

{7500,ADI_EBIU_TIMING_UNIT_PICOSEC }}; /* cycles from last write

data until next read command */

ADI_EBIU_TIMING_VALUE tWR = { 2, {15,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* write recovery time is

2 or 3 cycles */

ADI_EBIU_TIMING_VALUE tMRD = { 2, {15,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles from setting of

mode */

ADI_EBIU_TIMING_VALUE RCD = { 2, {15,

ADI_EBIU_TIMING_UNIT_NANOSEC }}; /* cycles from active

command to next R/W */

ADI_EBIU_TIMING_VALUE REFI = { 1037,{7777,

ADI_EBIU_TIMING_UNIT_NANOSEC}}; /* cycles from one REFRESH

signal to the next */

ADI_EBIU_COMMAND_PAIR ebiu_init_table[] = {

VisualDSP++ 5.0 Device Drivers and System 4-7
Services Manual for Blackfin Processors

External Bus Interface Unit Module

{ ADI_EBIU_CMD_SET_DDR_REFI, (void*)&REFI }, /* command

to set refresh interval */

{ ADI_EBIU_CMD_SET_DDR_RFC, (void*)&RFC }, /* command

to set auto refresh period */

{ ADI_EBIU_CMD_SET_DDR_RP, (void*)&RP }, /* command

to set precharge to active time */

{ ADI_EBIU_CMD_SET_DDR_RAS, (void*)&RAS } /* command

to set active to precharge time */

{ ADI_EBIU_CMD_SET_DDR_RC, (void*)&RC }, /* command

to set active to active time */

{ ADI_EBIU_CMD_SET_DDR_WTR, (void*)&WTR }, /* command

to set write to read time */

{ ADI_EBIU_CMD_SET_DDR_DEVICE_SIZE, (void*)0 }, /* command

to set size of device */

{ ADI_EBIU_CMD_SET_DDR_CAS, (void*)2 }, /* command

to set cycles from assertion of R/W until first valid data */

{ ADI_EBIU_CMD_SET_DDR_DEVICE_WIDTH, (void*)2 }, /* command

to set width of device */

{ ADI_EBIU_CMD_SET_DDR_EXTERNAL_BANKS,(void*)0 }, /* command

to set number of external banks */

{ ADI_EBIU_CMD_SET_DDR_DATA_WIDTH, (void*)2 }, /* command

to set data width */

{ ADI_EBIU_CMD_SET_DDR_WR, (void*)&tWR }, /* command

to set write recovery time */

{ ADI_EBIU_CMD_SET_DDR_MRD, (void*)&tMRD },/* command

to set cycles from setting mode reg until next command */

{ ADI_EBIU_CMD_SET_DDR_RCD, (void*)&RCD }, /* command

to set cycles from active command to a read-write assertion */

{ ADI_EBIU_CMD_END, 0 } /* indicate

the last command of the table */

};

Using the EBIU Module

4-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

In the sample code above, note that the SDRAM minimum TWR value is
defined as a structure called ADI_EBIU_TIMING_VALUE which consists of two
main parts: a number of cycles, and a number of timing units, in this case,
picoseconds. This representation reflects the definition found in the
appropriate SDRAM data sheet where the value is expressed as one cycle
of SCLK plus 7.5 ns. For the SDRAM refresh period, this structure
expresses the time taken for the given number of refresh cycles. The sam-
ple code shows that the refresh period is 64 milliseconds, which takes
8192 cycles.

For hardware that uses a Micron SDRAM module, the command-pair
table can be abbreviated to just specify the type of the module and the size
of the bank, as shown below, adding asynchronous memory controller
commands, as needed:

ADI_EBIU_SDRAM_BANK_VALUE bank_size;

// set bank size to 32MB

bank_size.value.size = ADI_EBIU_SDRAM_BANK_32MB;

ADI_EBIU_COMMAND_PAIR ebiu_init_table[] = {

// MT48LC16M16-75 module

{ ADI_EBIU_CMD_SET_SDRAM_MODULE,

(void*)ADI_EBIU_SDRAM_MODULE_MT48LC16M16A2_75 },

{ ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE, (void*)&bank_size },

{ ADI_EBIU_CMD_END, 0 }

};

adi_ebiu_Init(ebiu_init_table, 0);

Further changes can be made at any time by passing command-value pairs
or tables of pairs to adi_ebiu_Control. For example, to pass a single com-
mand-value pair to enable the SDRAM to self-refresh during inactivity,
the following code could be used:

adi_ebiu_Control(

 ADI_EBIU_CMD_SET_SDRAM_SRFS,

(void*)ADI_EBIU_SDRAM_SRFS_ENABLE

);

VisualDSP++ 5.0 Device Drivers and System 4-9
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Since the SDRAM settings are closely tied to the system clock (SCLK) fre-
quency, the direct use of the adi_ebiu_AdjustSDRAM function from within
a client application is not required since it is called automatically by the
appropriate functions in the power management module when SCLK
changes.

EBIU API Reference
This section provides descriptions of the EBIU module’s API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Using the EBIU Module

4-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_AdjustSDRAM

Description

For the passed system clock (SCLK) frequency, the adi_ebiu_AdjustSDRAM
function calculates and sets the following values for SDRAM: the TRAS,
TRP, TRCD, and TWR values in the EBIU_SDGCTL register and the RDIV value in
the EBIU_SDRRC register. The function calculates and sets the following
values for DDR: the RAS, RP, RFC, REFI, and RC values in the DDRCTL0 regis-
ter and the RCD, MRD, and WR values in the DDRCTL1 register.

This function is primarily used by the power management module to
ensure that SDRAM settings are optimal for the processor’s current SCLK
frequency.

The adi_ebiu_AdjustSDRAM function returns without making any changes
if the SDRAM has not been successfully initialized with a call to
adi_ebiu_Init.

Prototype

ADI_EBIU_RESULT adi_ebiu_AdjustSDRAM(

u32 fsclk

);

Arguments

Return Value

fsclk System clock (SCLK) frequency in MHz

ADI_EBIU_RESULT_SUCCESS Process completed successfully.

ADI_EBIU_RESULT_NOT_INITIALIZED SDRAM has not been successfully initialized, or
SDRAM had not been enabled.

VisualDSP++ 5.0 Device Drivers and System 4-11
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_Control

Description

The adi_ebiu_Control() function enables the EBIU SDRAM and EBIU
DDR registers to be configured according to command-value pairs using
one of the following options. (See “ADI_EBIU_COMMAND_PAIR” on
page 4-39.)

• A single command-value pair is passed.

adi_ebiu_Control(

ADI_EBIU_CMD_SET_SDRAM_SRFS,

(void*)ADI_EBIU_SDRAM_SRFS_ENABLE

);

• A single command-value pair structure is passed.

ADI_EBIU_COMMAND_PAIR cmd = {

ADI_EBIU_CMD_SET_SDRAM_SRFS,

(void*)ADI_EBIU_SDRAM_SRFS_ENABLE

};

adi_ebiu_Control(ADI_EBIU_CMD_PAIR, (void*)&cmd);

• A table of ADI_EBIU_COMMAND_PAIR structures is passed. The last
command-value entry in the table must be {ADI_EBIU_CMD_END,
0}.

ADI_EBIU_COMMAND_PAIR table[] = {

{ ADI_EBIU_CMD_SET_SDRAM_FBBRW,

(void*)ADI_EBIU_SDRAM_FBBRW_ENABLE },

{ ADI_EBIU_CMD_SET_SDRAM_CDDBG,

(void*)ADI_EBIU_CDDBG_ENABLE },

{ ADI_EBIU_CMD_END, 0 }

};

Using the EBIU Module

4-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_Control(

ADI_EBIU_CMD_TABLE,

(void*)table

);

Refer to “ADI_EBIU_COMMAND” on page 4-32 and “Command
Value Enumerations” on page 4-39 for the complete list of commands and
associated values for both the SDRAM and DDR interfaces and the asyn-
chronous memory interface.

Prototype

ADI_EBIU_RESULT adi_ebiu_Control(

ADI_EBIU_COMMAND Command,

void *Value

);

Arguments

Return Value

Command ADI_EBIU_COMMAND enumeration value specifying the mean-
ing of the associated value argument

Value Required value. (See Description above.)

ADI_EBIU_RESULT_BAD_COMMAND Command is not recognized.

ADI_EBIU_RESULT_SUCCESS Function completed successfully.

ADI_EBIU_RESULT_NOT_INITIALIZED EBIU module is not initialized.

ADI_EBIU_RESULT_INVALID_SDRAM_SRFS Invalid self-refresh value is specified. See
“ADI_EBIU_SDRAM_TCSR” on page 4-43.

ADI_EBIU_RESULT_INVALID_SDRAM_PUPSD Invalid power-up start delay bit value is specified.
See “ADI_EBIU_SDRAM_EBUFE” on
page 4-44.

VisualDSP++ 5.0 Device Drivers and System 4-13
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_RESULT_INVALID_SDRAM_PSM Invalid SDRAM power-up sequence bit value is
specified. See “ADI_EBIU_SDRAM_PUPSD”
on page 4-44.

ADI_EBIU_RESULT_INVALID_SDRAM_EBUFE Invalid external buffering bit value is specified.
See “ADI_EBIU_SDRAM_SRFS” on page 4-43.

ADI_EBIU_RESULT_INVALID_SDRAM_FBBRW Invalid fast back-to-back, read-to-write bit value
is specified. See “ADI_EBIU_SDRAM_FBBRW”
on page 4-45.

ADI_EBIU_RESULT_INVALID_SDRAM_CDDBG Invalid control disable during bus grant bit value
is specified. See
“ADI_EBIU_SDRAM_CDDBG” on page 4-46.

ADI_EBIU_RESULT_INVALID_SDRAM_EBE Invalid SDRAM enable selection. See
“ADI_EBIU_SDRAM_ENABLE” on page 4-40.

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_
READ_ACCESS_TIME

Invalid asynchronous memory read access time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_
WRITE_ACCESS_TIME

Invalid asynchronous memory write access time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_
SETUP_TIME

Invalid asynchronous memory bank setup time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_
HOLD_TIME

Invalid asynchronous memory bank hold time

Using the EBIU Module

4-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_GetConfigSize

Description

The adi_ebiu_GetConfigSize() function returns the number of bytes
required to save the current configuration data. This value is also available
via the ADI_EBIU_SIZEOF_CONFIG macro.

Prototype

size_t adi_ebiu_GetConfigSize(void);

Return Value

The size of the configuration structure.

VisualDSP++ 5.0 Device Drivers and System 4-15
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_Init

Description

The adi_ebiu_Init function initializes the EBIU module. Currently, the
module is configured to handle either a DDR or a SDRAM controller,
plus an asynchronous memory controller. For the EBIU service which
supports SRDRAM, the adi_ebiu_Init function sets up the EBIU_SDGCTL,
EBIU_SDBCTL, and EBIU_SDRRC registers to reflect the correct SDRAM con-
figuration attached to the processor. For the EBIU service that supports
DDR, the adi_ebiu_Init function sets up the DDR control registers,
DDRCTL0, DDRCTL1, and DDRCTL2. For successful initialization of the
SDRAM or the DDR controller, certain values must be passed to
adi_ebiu_Init, as outlined in Table 4-1 and Table 4-2—one for SDRAM
and one for DDR. Table 4-1 shows the values that must be passed to
adi_ebiu_Init to initialize SDRAM.

Table 4-1. Values for Initialization of SDRAM

Description Command Value Type

Bank size ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE ADI_EBIU_SDRAM_BANK_VALUE

Bank column
address width

ADI_EBIU_CMD_SET_SDRAM_BANK_COLUMN_WIDTH ADI_EBIU_SDRAM_BANK_VALUE

CAS1 latency
threshold (MHz)

ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD u32

Minimum TRAS2
(ns)

ADI_EBIU_CMD_SET_SDRAM_TRASMIN ADI_EBIU_TIME

Min. TRP3 (ns) ADI_EBIU_EBIU_CMD_SET_SDRAM_TRPMIN ADI_EBIU_TIME

Min. TRCD4 (ns) ADI_EBIU_CMD_SET_SDRAM_TRCDMIN ADI_EBIU_TIME

Min. TWR5
(cycles, ns)

ADI_EBIU_CMD_SET_SDRAM_TWRMIN ADI_EBIU_TIMING_VALUE

Refresh period
(cycles, ms)

ADI_EBIU_CMD_SET_SDRAM_REFRESH ADI_EBIU_TIMING_VALUE

Using the EBIU Module

4-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Table 4-2 shows the values that must be passed to adi_ebiu_Init to ini-
tialize DDR.

1 Column address strobe
2 Required delay between issuing a Bank Activate command and a Precharge command,

and between the Self-Refresh command and the exit from self-refresh.
3 Required delay between issuing a Precharge command and the Bank Activate,

Auto-Refresh, or Self-Refresh commands.
4 Required delay between issuing a Bank Activate command and the start of the first

read/write command.
5 Required delay between a Write command and a Precharge command.

Table 4-2. Values for Initialization of DDR

Description Command Value Type

Width of data ADI_EBIU_CMD_SET_DDR_DATA_WIDTH u32

Number of external
banks

ADI_EBIU_CMD_SET_DDR_EXTERNAL_BANKS u32

Width of device ADI_EBIU_CMD_SET_DDR_DEVICE_WIDTH u32

Size of device ADI_EBIU_CMD_SET_DDR_DEVICE_SIZE u32

Auto-refresh interval ADI_EBIU_CMD_SET_DDR_REFI ADI_EBIU_TIMING_VALUE

Auto-refresh command
period

ADI_EBIU_CMD_SET_DDR_RFC ADI_EBIU_TIMING_VALUE

Interval between R/W
command and valid
data

ADI_EBIU_CMD_SET_DDR_CAS u32

Interval between active
and R/W command

ADI_EBIU_CMD_SET_DDR_RCD ADI_EBIU_TIMING_VALUE

Active to active interval ADI_EBIU_CMD_SET_DDR_RC ADI_EBIU_TIMING_VALUE

Active to precharge
time

ADI_EBIU_CMD_SET_DDR_RAS ADI_EBIU_TIMING_VALUE

Precharge to active time ADI_EBIU_CMD_SET_DDR_RP ADI_EBIU_TIMING_VALUE

VisualDSP++ 5.0 Device Drivers and System 4-17
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Upon successful initialization of the module, subsequent calls to
adi_ebiu_AdjustSDRAM adjust the SDRAM refresh rate in the EBIU_SDRRC
or DDRCTL0 register to correspond with the given system clock frequency.

When multiple banks are used, the ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE
and ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH command-value pairs
must be specified for each bank.

If the system configuration makes use of low power (2.5 V) SDRAM, the
following values also need to be initialized.

Additional command-value pairs can be passed to the adi_ebiu_Init
function, which can also be passed to adi_ebiu_Control. See
adi_ebiu_Control for a description of those additional command-value
pairs.

Interval between set-
ting of mode register
and next command

ADI_EBIU_CMD_SET_DDR_MRD ADI_EBIU_TIMING_VALUE

Write to read interval ADI_EBIU_CMD_SET_DDR_WTR ADI_EBIU_TIMING_VALUE

Write recovery time ADI_EBIU_CMD_SET_DDR_WR ADI_EBIU_TIMING_VALUE

Description Command Value Type

Extended mode
register enable

ADI_EBIU_CMD_SET_SDRAM_EMREN ADI_EBIU_SDRAM_EMREN

Partial array
self-refresh

ADI_EBIU_CMD_SET_SDRAM_PASR ADI_EBIU_PASR

Temperature
compensated
self-refresh

ADI_EBIU_CMD_SET_SDRAM_TCSR ADI_EBIU_SDRAM_TCSR

Table 4-2. Values for Initialization of DDR (Cont’d)

Description Command Value Type

Using the EBIU Module

4-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The adi_ebiu_Init function should be called only once, prior to
adjusting the power management settings, so that the SDRAM is adjusted
according to changes in SCLK. Subsequent calls to the function are
ignored.

Prototype

ADI_EBIU_RESULT adi_ebiu_Init(

const ADI_EBIU_COMMAND_PAIR *ConfigData,

const u16 Reserved

);

Arguments

Return Value

In debug mode, the returned values from calling adi_ebiu_Init to initial-
ize SDRAM are:

ConfigData Address of a table of command-value pairs as defined by
“ADI_EBIU_COMMAND” on page 4-32 and “Command
Value Enumerations” on page 4-39. The last command in
the table must be the ADI_EBIU_CMD_END command.

Reserved u16 value reserved for future use

ADI_EBIU_RESULT_BAD_COMMAND Command-value pair is invalid.

ADI_EBIU_RESULT_FAILED Not all required items are initialized.

ADI_EBIU_RESULT_ALREADY_INITIALIZED EBIU module is already initialized.

ADI_EBIU_RESULT_INVALID_SDRAM_SCTLE Invalid SCTLE value specified.

ADI_EBIU_RESULT_INVALID_SDRAM_MODULE Invalid memory module type is speci-
fied.

ADI_EBIU_RESULT_INVALID_SDRAM_BANK_SIZE Invalid bank size is specified.

VisualDSP++ 5.0 Device Drivers and System 4-19
Services Manual for Blackfin Processors

External Bus Interface Unit Module

In debug mode, the returned values from calling adi_ebiu_Init to initial-
ize DDR are:

ADI_EBIU_RESULT_INVALID_SDRAM_COL_WIDTH Invalid column address width is speci-
fied.

ADI_EBIU_RESULT_INVALID_SDRAM_TWRMIN Invalid TWRMIN value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_EMREN Invalid EMREN value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PASR Invalid PASR value is specified.

ADI_EBIU_RESULT_INVALID_SDRAM_TCSR Invalid TCSR value is specified.

ADI_EBIU_RESULT_SUCCESS Generic success

ADI_EBIU_RESULT_FAILED Generic failure

ADI_EBIU_RESULT_BAD_COMMAND Invalid control command

ADI_EBIU_RESULT_INVALID_DDR_MODULE Invalid SDRAM module type

ADI_EBIU_RESULT_INVALID_DDR_REFI Invalid auto-refresh interval

ADI_EBIU_RESULT_INVALID_DDR_RFC Invalid auto-refresh command
period

ADI_EBIU_RESULT_INVALID_DDR_RP Invalid precharge to active
interval

ADI_EBIU_RESULT_INVALID_DDR_RAS Invalid active to precharge
interval

ADI_EBIU_RESULT_INVALID_DDR_RC Invalid active to active interval

ADI_EBIU_RESULT_INVALID_DDR_WTR Invalid write to read interval

ADI_EBIU_RESULT_INVALID_DDR_DEVICE_SIZE Invalid device size

ADI_EBIU_RESULT_INVALID_DDR_DEVICE_WIDTH Invalid device width

ADI_EBIU_RESULT_INVALID_DDR_EXTERNAL_BANKS Invalid number of external
banks

ADI_EBIU_RESULT_INVALID_DDR_DATA_WIDTH Invalid data width

ADI_EBIU_RESULT_INVALID_DDR_WR Invalid write recovery time

Using the EBIU Module

4-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

In debug mode, the returned values from calling adi_ebiu_Init to initial-
ize the asynchronous memory controller are:

ADI_EBIU_RESULT_INVALID_DDR_MRD Invalid mode register selection

ADI_EBIU_RESULT_INVALID_DDR_RCD Invalid active to R/W interval

ADI_EBIU_RESULT_INVALID_DDR_CAS Invalid delay R/W to valid data

ADI_EBIU_RESULT_INVALID_DDR_PASR Invalid partial array self-refresh
request

ADI_EBIU_RESULT_INVALID_DDR_SOFT_RESET Invalid soft reset request

ADI_EBIU_RESULT_INVALID_DDR_SELF_REFRESH_REQUEST Invalid self-refresh request

ADI_EBIU_RESULT_INVALID_DDR_MOBILE_DDR_ENABLE Invalid mobile DDR enable
request

ADI_EBIU_RESULT_ALREADY_INITIALIZED EBIU service already initialized

ADI_EBIU_RESULT_SUCCESS Generic success

ADI_EBIU_RESULT_FAILED Generic failure

ADI_EBIU_RESULT_INVALID_ASYNCH_CLKOUT_ENABLE Invalid selection for CLKOUT
enable

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_ENABLE Invalid selection for bank
enable

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_NUMBER Invalid bank number specified
in command argument

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_16_BIT_
PACKING_ENABLE

For ADSP-BF561 only. Invalid
specification for 16-bit packing
enable

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_TRANSITION_
TIME

Invalid transition time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_READ_ACCESS_
TIME

Invalid read access time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_WRITE_ACCESS_
TIME

Invalid write access time

VisualDSP++ 5.0 Device Drivers and System 4-21
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_SETUP_TIME Invalid setup time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_HOLD_TIME Invalid hold time

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_ARDY_ENABLE Invalid selection for ARDY
enable

ADI_EBIU_RESULT_INVALID_ASYNCH_BANK_ARDY_
POLARITY

Invalid selection for ARDY
polarity

ADI_EBIU_RESULT_ALREADY_INITIALIZED EBIU service already initialized

Using the EBIU Module

4-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_LoadConfig

Description

The adi_ebiu_LoadConfig function restores the current configuration
values from the memory location pointed to by the hConfig argument.
The SDRAM controller is reset.

Prototype

ADI_EBIU_RESULT adi_ebiu_LoadConfig(

ADI_EBIU_CONFIG_HANDLE hConfig,

size_t szConfig

);

Argument

Return Value

hConfig Address of the memory area where the current configuration is
stored

szConfig Number of bytes available at the given address. Must be
greater than or equal to the adi_ebiu_GetConfigSize()
return value.

ADI_EBIU_RESULT_SUCCESS Process completed successfully.

ADI_EBIU_RESULT_NO_MEMORY Value szConfig is too small.

ADI_EBIU_RESULT_NOT_INITIALIZED SDRAM has not been successfully initialized.

VisualDSP++ 5.0 Device Drivers and System 4-23
Services Manual for Blackfin Processors

External Bus Interface Unit Module

adi_ebiu_SaveConfig

Description

The adi_ebiu_SaveConfig() function stores the current settings into the
memory area pointed to by the hConfig argument. Currently, only the
SDRAM configuration is saved.

Prototype

ADI_EBIU_RESULT adi_ebiu_SaveConfig(

ADI_EBIU_CONFIG_HANDLE hConfig,

size_t szConfig

);

Argument

Return Value

hConfig Address of the memory location where the current configura-
tion is stored

szConfig Number of bytes available at the given address. Must be
greater than or equal to the adi_ebiu_GetConfigSize()
return value.

ADI_EBIU_RESULT_SUCCESS Process completed successfully.

ADI_EBIU_RESULT_NO_MEMORY Value szConfig is too small.

ADI_EBIU_RESULT_NOT_INITIALIZED SDRAM has not been successfully initialized.

Using the EBIU Module

4-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ebiu_Terminate

Description

The adi_ebiu_Terminate() function terminates the use of the EBIU
module.

Prototype

ADI_EBIU_RESULT adi_ebiu_Terminate(void);

Argument

The function takes no arguments.

Return Value

ADI_EBIU_RESULT_SUCCESS Process completed successfully.

VisualDSP++ 5.0 Device Drivers and System 4-25
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Public Data Types and Enumerations
This section provides descriptions of the public data types and
enumerations.

ADI_EBIU_RESULT

All public EBIU module functions return a result code of the enumeration
type, ADI_EBIU_RESULT. Note that SDRAM-related result codes typically
begin with the text ADI_EBIU_RESULT_INVALID_SDRAM while DDR-related
result codes typically begin with the text ADI_EBIU_RESULT_INVALID_DDR.
Table 4-3 lists possible values.

Table 4-3. EBIU Module Function Result Codes

Result Code Explanation

ADI_EBIU_RESULT_SUCCESS Generic success

ADI_EBIU_RESULT_FAILED Generic failure

ADI_EBIU_RESULT_BAD_COMMAND Invalid control command is
specified.

ADI_EBIU_RESULT_NOT_INITIALIZED Function call ignored with no
action taken, as the module has
not been initialized.

ADI_EBIU_RESULT_INVALID_SDRAM_EBE Invalid value for the EBE field of
the EBIU_SDBCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_BANK_SIZE Invalid value for the EBSZ field
of the EBIU_SDBCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_COL_WIDTH Invalid value for the EBCAW field
of the EBIU_SDBCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_CDDBG Invalid value for the CDDBG field
of the EBIU_SDGCTL register is
specified.

Using the EBIU Module

4-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_RESULT_INVALID_SDRAM_EBUFE Invalid value for the EBUFE field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_EMREN Invalid value for the EMREN field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_FBBRW Invalid value for the FBBRW field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PASR Invalid value for the PASR field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PSM Invalid value for the PSM field of
the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_PUPSD Invalid value for the PUPSD field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_SRFS Invalid value for the SRFS field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_TCSR Invalid value for the TCSR field
of the EBIU_SDGCTL register is
specified.

ADI_EBIU_RESULT_INVALID_SDRAM_TWRMIN Invalid value for TWRMIN is speci-
fied and causes TWR to be greater
than 3.

ADI_EBIU_RESULT_NO_MEMORY Insufficient memory to load/save
configuration.

ADI_EBIU_RESULT_INVALID_EZKIT Invalid EZ-KIT revision

ADI_EBIU_RESULT_INVALID_SDRAM_SCTLE Invalid SCTLE value

ADI_EBIU_RESULT_INVALID_SDRAM_MODULE Invalid SDRAM module type

Table 4-3. EBIU Module Function Result Codes (Cont’d)

Result Code Explanation

VisualDSP++ 5.0 Device Drivers and System 4-27
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_RESULT_INVALID_IVG Invalid IVG level supplemental
interrupt (for dual-core
processors only

ADI_EBIU_RESULT_INVALID_SDRAM_BANK Invalid bank number given

ADI_EBIU_RESULT_INVALID_SDRAM_SCK1E Invalid SCK1E value

ADI_EBIU_RESULT_INVALID_DDR_MODULE Invalid SDRAM (DDR) module
type

ADI_EBIU_RESULT_INVALID_DDR_REFI Invalid refresh interval

ADI_EBIU_RESULT_INVALID_DDR_RFC Invalid auto-refresh command

ADI_EBIU_RESULT_INVALID_DDR_RP Invalid precharge to active inter-
val

ADI_EBIU_RESULT_INVALID_DDR_RAS Invalid active to precharge inter-
val

ADI_EBIU_RESULT_INVALID_DDR_RC Invalid active to active interval

ADI_EBIU_RESULT_INVALID_DDR_WTR Invalid write to read interval

ADI_EBIU_RESULT_INVALID_DDR_DEVICE_SIZE Invalid device size

ADI_EBIU_RESULT_INVALID_DDR_DEVICE_WIDTH Invalid device width

ADI_EBIU_RESULT_INVALID_DDR_EXTERNAL_BANKS Invalid number of external banks

ADI_EBIU_RESULT_INVALID_DDR_DATA_WIDTH Invalid data width

ADI_EBIU_RESULT_INVALID_DDR_WR Invalid write recovery time

ADI_EBIU_RESULT_INVALID_DDR_MRD Invalid mode register selection

ADI_EBIU_RESULT_INVALID_DDR_RCD Invalid active to R/W interval

ADI_EBIU_RESULT_INVALID_DDR_CAS Invalid R/W to valid data
interval

ADI_EBIU_RESULT_INVALID_DDR_PASR Invalid partial array self-refresh
request

ADI_EBIU_RESULT_INVALID_DDR_SOFT_RESET Invalid soft reset request

Table 4-3. EBIU Module Function Result Codes (Cont’d)

Result Code Explanation

Using the EBIU Module

4-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_BANK_VALUE

The ADI_EBIU_SDRAM_BANK_VALUE structure specifies the settings that are
applied to a specific bank.

typedef struct ADI_EBIU_SDRAM_BANK_VALUE(

u16 bank;

Union {

ADI_EBIU_SDRAM_BANK_SIZE size;

ADI_EBIU_SDRAM_BANK_COL_WIDTH width;

} value;

} ADI_EBIU_SDRAM_BANK_VALUE;

See “ADI_EBIU_SDRAM_BANK_SIZE” on page 4-40 and
“ADI_EBIU_SDRAM_BANK_COL_WIDTH” on page 4-41 for details
of the size and width fields.

 The bank field is intended for use only with Blackfin processors
that have multiple SDRAM banks.

ADI_EBIU_RESULT_INVALID_DDR_MOBILE_ENABLE Invalid mobile DDR enable
request

ADI_EBIU_RESULT_INVALID_DDR_SELF_REFRESH_REQUEST Invalid self refresh request

Table 4-3. EBIU Module Function Result Codes (Cont’d)

Result Code Explanation

VisualDSP++ 5.0 Device Drivers and System 4-29
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_TIME

The ADI_EBIU_TIME structure enables users to specify a timing value as an
integral number of a given unit. It is defined as:

typedef struct ADI_EBIU_TIME {

u32 value;

ADI_EBIU_TIMING_UNIT units;

} ADI_EBIU_TIME;

where ADI_EBIU_TIMING_UNIT is an enumeration type defined as follows.

The actual values of the enumeration fields are used as factors in the inte-
ger arithmetic within the module. The millisecond value, which is used as
a logic control value, is an exception, since it is not used as a factor.

Developers can use the complete range of units to enable timing values to
be expressed as an unsigned 32-bit integer. For example, the SDRAM on
the ADSP-BF533 EZ-KIT Lite board has a minimum TWR value of one
SCLK cycle and 7.5 ns. The time value must be passed as 7500 ps. Thus,
the ADI_EBIU_TIME value must be specified as:

ADI_EBIU_TIME time = {7500, ADI_EBIU_TIMING_UNIT_PICOSEC};

ADI_EBIU_TIMING_UNIT_MILLISEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in milliseconds (ms)

ADI_EBIU_TIMING_UNIT_MICROSEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in microseconds (ms)

ADI_EBIU_TIMING_UNIT_NANOSEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in nanoseconds (ns)

ADI_EBIU_TIMING_UNIT_PICOSEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in picoseconds (ps)

ADI_EBIU_TIMING_UNIT_FEMTOSEC Time value specified by the associated value in the
ADI_EBIU_TIME structure is in femtoseconds (fs)

Using the EBIU Module

4-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_TIMING_VALUE

Certain timing values required to correctly set the SDRAM control
registers are specified on the appropriate processor’s data sheet as a
number of SCLK cycles combined with a value expressed in one of several
units (for example, nanoseconds or milliseconds).

To facilitate the passing of such values to the adi_ebiu_Init function, the
ADI_EBIU_TIMING_VALUE structure is defined as:

typedef struct ADI_EBIU_TIMING_VALUE {

u32 cycles;

ADI_EBIU_TIME time;

} ADI_EBIU_TIMING_VALUE;

where ADI_EBIU_TIME is defined in “ADI_EBIU_TIME” on page 4-29.

For example, the SDRAM on the ADSP-BF533 EZ-KIT Lite board has a
minimum TWR value of one SCLK cycle and 7.5 ns. Using the above struc-
ture, this value is expressed as:

ADI_EBIU_TIMING_VALUE twrmin

= { 1, {7500, ADI_EBIU_TIMING_UNIT_PICOSEC}};

ADI_EBIU_ASYNCH_BANK_TIMING

The asynchronous memory controller supports a number of different
interfaces, therefore a structure is provided which allows the bank specific
timing parameters to be specified either in cycles, or in timing units, but
not both.

If the parameter is specified in cycles, the value is written directly to the
register. If the value is specified in timing units, it is converted to cycles
based on the presence of a 133 MHz system clock, and the converted
value is written to the register.

VisualDSP++ 5.0 Device Drivers and System 4-31
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Timing values used to set the asynchronous memory control registers
should be derived from the appropriate data sheet for the type of memory
device used.

The structure used to specify the timing parameters for the asynchronous
memory interface is shown below. It contains two other structures: the
enumeration “ADI_EBIU_BANK_NUMBER” on page 4-46 and the
structure “ADI_EBIU_TIMING_VALUE” on page 4-30.

typedef struct ADI_EBIU_ASYNCH_BANK_TIMING

{

ADI_EBIU_BANK_NUMBER bank_number;

ADI_EBIU_TIMING_VALUE bank_time;

} ADI_EBIU_ASYNCH_BANK_TIMING;

ADI_EBIU_ASYNCH_BANK_VALUE

Because many of the EBIU parameters are bank specific, and specify a
binary value such as enabled and disabled, a structure is provided which
contains a bank number along with a union of three different enumera-
tions that have two possible values.

The ADI_EBIU_ASYNCH_BANK_VALUE structure, shown below, is used for the
ARDY polarity, which is either low or high. (See
“ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY” on page 4-48.) It is
used for the ARDY enable, which is either enabled or disabled. (See
“ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE” on page 4-48.) It is
also used for the 16-bit packing enable field (for the ADSP-BF561 only),
which is either 16-bit packing enabled or 32-bit packing disabled. (See
“ADI_EBIU_ASYNCH_BANK_DATA_PATH” on page 4-47.)

typedef struct ADI_EBIU_ASYNCH_BANK_VALUE

{

u32 bank_number;

union

Setting Control Values in the EBIU Module

4-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

{

ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY ardy_polarity;

ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE ardy_enable;

#if defined(__ADSP_TETON__)

ADI_EBIU_ASYNCH_BANK_DATA_PATH data_path;

#endif

} value;

} ADI_EBIU_ASYNCH_BANK_VALUE;

Setting Control Values in the EBIU
Module

To set control values in the EBIU module, the user passes command-value
pairs (of the type ADI_EBIU_COMMAND_PAIR) to the adi_ebiu_Init and
adi_ebiu_Control functions (either individually or as a table). Note that
adi_ebiu_Init only allows a table to be supplied. This section describes
the command-value pair structure and valid commands.

ADI_EBIU_COMMAND
The ADI_EBIU_COMMAND is used to control/access the configuration of the
EBIU module. It is used in an ADI_EBIU_COMMAND_PAIR couplet to set a
configuration value in calls to adi_ebiu_Init and adi_ebiu_Control.
Note that SDRAM-related commands typically begin with the text
ADI_EBIU_CMD_SET_SDRAM while DDR-related commands typically begin
with the text ADI_EBIU_CMD_SET_DDR.

VisualDSP++ 5.0 Device Drivers and System 4-33
Services Manual for Blackfin Processors

External Bus Interface Unit Module

Table 4-4. ADI_EBIU_COMMAND Data Values

Command Associated Data Value

General commands used with both the adi_ebiu_Control and adi_ebiu_Init functions.

ADI_EBIU_CMD_END Defines the end of a table of command pairs.

ADI_EBIU_CMD_SET_SDRAM_EBUFE ADI_EBIU_SDRAM_EBUFE value specifying
whether external buffers are used when several
SDRAM devices are used. See
“ADI_EBIU_SDRAM_EBUFE” on page 4-44.

ADI_EBIU_CMD_SET_SDRAM_FBBRW ADI_EBIU_SDRAM_FBBRW value specifying
whether to enable/disable fast back-to-back
read/write operations. See
“ADI_EBIU_SDRAM_FBBRW” on page 4-45.

ADI_EBIU_CMD_SET_SDRAM_CDDBG ADI_EBIU_SDRAM_CDDBG value specifying
whether to enable/disable SDRAM control sig-
nals when the external memory interface is
granted to an external controller. See
“ADI_EBIU_SDRAM_CDDBG” on page 4-46.

ADI_EBIU_CMD_SET_SDRAM_PUPSD ADI_EBIU_SDRAM_PUPSD value specifying
whether the power-up start sequence is delayed
by 15 SCLK cycles. See
“ADI_EBIU_SDRAM_PUPSD” on page 4-44.

ADI_EBIU_CMD_SET_SDRAM_PSM ADI_EBIU_SDRAM_PSM value specifying the order
of events in the power-up start sequence. See
“ADI_EBIU_SDRAM_PSM” on page 4-45.

ADI_EBIU_CMD_SET_ASYNCH_BANK_
TRANSITION_TIME

ADI_EBIU_ASYNCH_BANK_TIMING value specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the
transition time in either cycles or timing units.
See “ADI_EBIU_ASYNCH_BANK_TIMING”
on page 4-30.

ADI_EBIU_CMD_SET_ASYNCH_BANK_READ_
ACCESS_TIME

ADI_EBIU_ASYNCH_BANK_TIMING value specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the read
access time in either cycles or timing units. See
“ADI_EBIU_ASYNCH_BANK_TIMING” on
page 4-30.

Setting Control Values in the EBIU Module

4-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_CMD_SET_ASYNCH_BANK_WRITE_
ACCESS_TIME

ADI_EBIU_ASYNCH_BANK_TIMING value specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the
write access time in either cycles or timing units.
See “ADI_EBIU_ASYNCH_BANK_TIMING”
on page 4-30.

ADI_EBIU_CMD_SET_ASYNCH_BANK_SETUP_
TIME

ADI_EBIU_ASYNCH_BANK_TIMING value specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the
setup time in either cycles or timing units. See
“ADI_EBIU_ASYNCH_BANK_TIMING” on
page 4-30.

ADI_EBIU_CMD_SET_ASYNCH_BANK_HOLD_
TIME

ADI_EBIU_ASYNCH_BANK_TIMING value specify-
ing an ADI_EBIU_BANK_NUMBER and an
ADI_EBIU_TIMING_VALUE that specifies the hold
time in either cycles or timing units. See
“ADI_EBIU_ASYNCH_BANK_TIMING” on
page 4-30.

Commands valid only when passed to the adi_ebiu_Init function.

ADI_EBIU_CMD_SET_SDRAM_MODULE ADI_EBIU_SDRAM_MODULE_TYPE value contain-
ing the configured Micron memory module. This
value applies to all banks in use. See
“ADI_EBIU_SDRAM_MODULE_TYPE” on
page 4-41.

ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE Address of an ADI_EBIU_SDRAM_BANK_VALUE
structure containing the bank number and the
external bank size. Refer to
“ADI_EBIU_SDRAM_BANK_VALUE” on
page 4-28 and
“ADI_EBIU_SDRAM_BANK_SIZE” on
page 4-40.

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated Data Value

VisualDSP++ 5.0 Device Drivers and System 4-35
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_CMD_SET_SDRAM_BANK_COL_WIDTH Address of an ADI_EBIU_SDRAM_BANK_VALUE
structure containing the bank number and the
external bank column address width. See
“ADI_EBIU_SDRAM_BANK_VALUE” on
page 4-28 and
“ADI_EBIU_SDRAM_BANK_COL_WIDTH”
on page 4-41.

ADI_EBIU_CMD_SET_SDRAM_CL_THRESHOLD u32 value specifying the SCLK frequency thresh-
old, which determines the CAS latency value to
use.

ADI_EBIU_CMD_SET_SDRAM_TRASMIN ADI_EBIU_TIME value setting the minimum
TRAS value described in the appropriate Blackfin
processor data sheet of the appropriate SDRAM.
See “ADI_EBIU_TIME” on page 4-29.

ADI_EBIU_CMD_SET_SDRAM_TRPMIN ADI_EBIU_TIME value setting the minimum TRP
value as described in the appropriate Blackfin
processor data sheet of the appropriate SDRAM.
See “ADI_EBIU_TIME” on page 4-29.

ADI_EBIU_CMD_SET_SDRAM_TRCDMIN ADI_EBIU_TIME value setting the minimum
TRCD value as described in the appropriate Black-
fin processor data sheet of the appropriate
SDRAM. See “ADI_EBIU_TIME” on
page 4-29.

ADI_EBIU_CMD_SET_SDRAM_TWRMIN Address of an ADI_EBIU_TIMING_VALUE struc-
ture containing the minimum TWR value as
described in the appropriate Blackfin processor
data sheet of the appropriate SDRAM. See
“ADI_EBIU_TIMING_VALUE” on page 4-30.

ADI_EBIU_CMD_SET_SDRAM_REFRESH Address of an ADI_EBIU_TIMING_VALUE struc-
ture containing the maximum tREF value

described in the appropriate Blackfin processor
data sheet of the appropriate SDRAM.
See “ADI_EBIU_TIME” on page 4-29.

ADI_EBIU_CMD_SET_SDGCTL_REG u32 word containing the entire contents of the
EBIU_SDGCTL register

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated Data Value

Setting Control Values in the EBIU Module

4-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_CMD_SET_SDBCTL_REG u16 word containing the entire contents of the
EBIU_SDBCTL register

ADI_EBIU_CMD_SET_SDRAM_EMREN ADI_EBIU_SDRAM_EMREN value specifying
whether low power (2.5 V) SDRAM is used. See
“ADI_EBIU_SDRAM_MODULE_TYPE” on
page 4-41.

ADI_EBIU_CMD_SET_SDRAM_PASR ADI_EBIU_SDRAM_PASR value specifying which
banks are refreshed. Applicable only to low power
SDRAM. See
“ADI_EBIU_CMD_SET_SDRAM_SCTLE” on
page 4-41.

ADI_EBIU_CMD_SET_SDRAM_TCSR ADI_EBIU_SDRAM_TCSR value specifying the
temperature-compensated, self-refresh value.
This command can only be used for low power
SDRAM. See “ADI_EBIU_SDRAM_PASR” on
page 4-42.

ADI_EBIU_CMD_SET_SDRAM_SCTLE ADI_EBIU_SDRAM_SCTLE value specifying
whether the SDC is enabled. See
“ADI_EBIU_CMD_SET_SDRAM_SCTLE” on
page 4-41.

ADI_EBIU_CMD_SET_DDR_DATA_WIDTH Set DDR width of data

ADI_EBIU_CMD_SET_DDR_EXTERNAL_BANKS Set number of DDR external banks

ADI_EBIU_CMD_SET_DDR_DEVICE_WIDTH Set DDR width of device

ADI_EBIU_CMD_SET_DDR_DEVICE_SIZE Set size of device

ADI_EBIU_CMD_SET_DDR_REFI Set DDR auto-refresh interval

ADI_EBIU_CMD_SET_DDR_RFC Set auto-refresh command period

ADI_EBIU_CMD_SET_DDR_CAS Set DDR CAS latency: cycles from R/W to first
valid data

ADI_EBIU_CMD_SET_DDR_RCD Set interval between active command and R/W
assertion

ADI_EBIU_CMD_SET_DDR_RC Set interval between successive DDR activate
commands

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated Data Value

VisualDSP++ 5.0 Device Drivers and System 4-37
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_CMD_SET_DDR_RAS Set DDR active to precharge interval

ADI_EBIU_CMD_SET_DDR_RP Set DDR precharge to active interval

ADI_EBIU_CMD_SET_DDR_MRD Set DDR interval between setting of mode
register and next command

ADI_EBIU_CMD_SET_DDR_WTR Set DDR interval between write and read
command

ADI_EBIU_CMD_SET_DDR_WR Set DDR write recovery time

ADI_EBIU_CMD_SET_DDR_PASR Set DDR partial array self-refresh for mobile
DDR only. See “ADI_EBIU_DDR_PASR” on
page 4-51.

ADI_EBIU_CMD_SET_DDR_SOFT_RESET Issue DDR soft reset

ADI_EBIU_CMD_MOBILE_DDR_ENABLE Enable mobile DDR

ADI_EBIU_CMD_SET_FREQ_AS_MHZ Sets DDR frequency units to megahertz

ADI_EBIU_CMD_SET_ASYNCH_BANK_ARDY_
ENABLE

ADI_EBIU_ASYNCH_BANK_VALUE specifying a
bank number and an
ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE that
specifies whether the ARDY input will be sampled
for this bank. See
“ADI_EBIU_ASYNCH_BANK_ARDY_ENAB
LE” on page 4-48.

ADI_EBIU_CMD_SET_ASYNCH_BANK_ARDY_
POLARITY

ADI_EBIU_ASYNCH_BANK_VALUE specifying a
bank number and an
ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY that
specifies the polarity of the ARDY input sample
that indicates the completion of the access time.
See
“ADI_EBIU_ASYNCH_BANK_ARDY_POLA
RITY” on page 4-48.

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated Data Value

Setting Control Values in the EBIU Module

4-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_CMD_SET_ASYNCH_BANK_16_BIT_
PACKING_ENABLE

For ADSP-BF561 processors only
ADI_EBIU_ASYNCH_BANK_VALUE specifying a
bank number and an
ADI_EBIU_ASYNCH_BANK_DATA_PATH that speci-
fies whether or not 16-bit packing is enabled. See
“ADI_EBIU_ASYNCH_BANK_DATA_PATH”
on page 4-47.

ADI_EBIU_CMD_SET_ASYNCH_BANK_ENABLE ADI_EBIU_ASYNCH_BANK_ENABLE value specify-
ing which banks to enable. See
“ADI_EBIU_ASYNCH_BANK_ENABLE” on
page 4-47.

ADI_EBIU_CMD_SET_ASYNCH_CLKOUT_
ENABLE

ADI_EBIU_ASYNCH_CLKOUT value specifying
whether to enable or disable CLKOUT in the asyn-
chronous global control register. See
“ADI_EBIU_ASYNCH_CLKOUT” on
page 4-47.

ADI_EBIU_CMD_SET_ASYNCH_AMGCTL 16-bit numeric value used to simultaneously set
all the fields of the asynchronous memory global
control register

ADI_EBIU_CMD_SET_ASYNCH_AMBCTL0 32-bit numeric value used to simultaneously set
all the fields of the asynchronous memory bank
control register 0 at once

ADI_EBIU_CMD_SET_ASYNCH_AMBCTL1 32-bit numeric value used to simultaneously set
all the fields of the asynchronous memory bank
control register 1 at once

Commands valid only when passed to the adi_ebiu_Control function.

ADI_EBIU_CMD_PAIR Used to tell adi_ebiu_control that a single
command pair is being passed.

ADI_EBIU_CMD_TABLE Used to tell adi_ebiu_control that a table of
command pairs is being passed.

ADI_EBIU_CMD_SET_SDRAM_ENABLE ADI_EBIU_SDRAM_ENABLE value enabling/dis-
abling external SDRAM. Automatically set upon
initialization. See
“ADI_EBIU_SDRAM_ENABLE” on page 4-40.

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated Data Value

VisualDSP++ 5.0 Device Drivers and System 4-39
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_COMMAND_PAIR
The ADI_EBIU_COMMAND_PAIR data type enables developers to generate a
table of control commands to pass to the EBIU via the adi_ebiu_Init and
adi_ebiu_Control functions:

typedef struct ADI_EBIU_COMMAND_PAIR (

ADI_EBIU_COMMAND kind;

void *value;

} ADI_EBIU_COMMAND_PAIR;

Command Value Enumerations
The following enumerations are used to specify the required information
to set up the SDRAM controller. For further information on the values
required, refer to Engineer-to-Engineer Note EE-2101.

ADI_EBIU_CMD_SET_SDRAM_SRFS ADI_EBIU_SDRAM_SRFS value enabling/dis-
abling self-refresh of SDRAM during inactivity.
See “ADI_EBIU_SDRAM_TCSR” on
page 4-43.

ADI_EBIU_CMD_DDR_SELF_REFRESH_REQUEST Request DDR self-refresh

1 Refer to SDRAM Selection Guidelines and Configuration for ADI Processors, EE-210, Rev 2, August
2004.

Table 4-4. ADI_EBIU_COMMAND Data Values (Cont’d)

Command Associated Data Value

Setting Control Values in the EBIU Module

4-40 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_ENABLE

This enumeration specifies if SDRAM is enabled or disabled. This enu-
meration corresponds to the EBE bit in the EBIU_SDBCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_EBE_DEFAULT ADI_EBIU_SDRAM_EBE_DISABLE

ADI_EBIU_SDRAM_BANK_SIZE

This enumeration specifies the SDRAM external bank size. This enumera-
tion corresponds to the EBSZ bits in the EBIU_SDBCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_BANK_SIZE_DEFAULT

ADI_EBIU_SDRAM_BANK_32MB

ADI_EBIU_SDRAM_EBE_DISABLE Disables SDRAM.

ADI_EBIU_SDRAM_EBE_ENABLE Enables SDRAM.

ADI_EBIU_SDRAM_BANK_16MB 16MB external SDRAM

ADI_EBIU_SDRAM_BANK_32MB 32MB external SDRAM

ADI_EBIU_SDRAM_BANK_64MB 6 4MB external SDRAM

ADI_EBIU_SDRAM_BANK_128MB 128MB external SDRAM

VisualDSP++ 5.0 Device Drivers and System 4-41
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_SDRAM_BANK_COL_WIDTH

This enumeration specifies the SDRAM external bank column address
width and corresponds to the EBCAW bits in the EBIU_SDBCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_BANK_COL_WIDTH_DEFAULT

ADI_EBIU_SDRAM_BANK_COL_9BIT

ADI_EBIU_SDRAM_MODULE_TYPE

This enumeration specifies an SDRAM module type when the command
ADI_EBIU_CMD_SET_SDRAM_MODULE is used to initialize the SDRAM con-
troller. The enumerator values contain relevant module information such
as the speed grade and configuration settings. The external memory bank
size must also be specified using the ADI_EBIU_CMD_SET_SDRAM_BANK_SIZE
command. Because Analog Devices EZ-KIT Lite boards include SDRAM
supplied by Micron, this information applies only to Micron parts. The
list of valid enumeration values are found in the API header file,
adi_pwr.h.

ADI_EBIU_CMD_SET_SDRAM_SCTLE

This enumeration specifies if the SDRAM controller is enabled or disabled
and corresponds to the SCTLE bit in the EBIU_SDGCTL register.

ADI_EBIU_SDRAM_BANK_COL_8BIT 8-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_9BIT 9-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_10BIT 10-bit external bank column address width

ADI_EBIU_SDRAM_BANK_COL_11BIT 11-bit external bank column address width

ADI_EBIU_SDRAM_SCTLE_DISABLE Disable SDRAM controller.

ADI_EBIU_SDRAM_SCTLE_ENABLE Enable SDRAM controller.

Setting Control Values in the EBIU Module

4-42 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_EMREN

This enumeration specifies that low power (2.5 V) SDRAM is used and
corresponds to the EMREN bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_EMREN_DEFAULT

ADI_EBIU_SDRAM_EMREN_DISABLE

ADI_EBIU_SDRAM_PASR

When low power (2.5 V) SDRAM is used, this enumeration specifies the
banks to refresh. This enumeration corresponds to the PASR bits in the
EBIU_SDGCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_PASR_DEFAULT ADI_EBIU_SDRAM_PASR_ALL

ADI_EBIU_SDRAM_EMREN_DISABLE Mobile low power SDRAM is not present.

ADI_EBIU_SDRAM_EMREN_ENABLE Mobile low power SDRAM is present.

ADI_EBIU_SDRAM_PASR_ALL All four SDRAM banks are refreshed.

ADI_EBIU_SDRAM_PASR_INT01 Internal SDRAM banks 0 and 1 are refreshed.

ADI_EBIU_PASR_INT0_ONLY Only internal bank 0 is refreshed.

VisualDSP++ 5.0 Device Drivers and System 4-43
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_SDRAM_TCSR

When low power (2.5 V) SDRAM is used, this enumeration specifies the
temperature-compensated, self-refresh value and corresponds to the TCSR
bits in the EBIU_SDGCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_TCSR_DEFAULT ADI_EBIU_SDRAM_TCSR_45DEG

ADI_EBIU_SDRAM_SRFS

This enumeration specifies whether the EBIU is to enable/disable
SDRAM self-refresh during periods of inactivity. This enumeration
corresponds to the SRFS bit in the EBIU_SDGCTL register.

For example, SDRAM self-refresh is enabled when the processor mode is
put into “deep sleep” via the power management module. For more infor-
mation, see “Power Management Module” on page 3-1.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_SRFS_DEFAULT

ADI_EBIU_SDRAM_SRFS_DISABLE

ADI_EBIU_SDRAM_TCSR_45DEG SDRAM banks are refreshed if the temperature
exceeds 45° C.

ADI_EBIU_SDRAM_TCSR_85DEG SDRAM banks are refreshed if the temperature
exceeds 85° C.

ADI_EBIU_SDRAM_SRFS_DISABLE Disables SDRAM self-refresh on inactivity.

ADI_EBIU_SDRAM_SRFS_ENABLE Enables SDRAM self-refresh on inactivity.

Setting Control Values in the EBIU Module

4-44 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_EBUFE

This enumeration specifies whether the EBIU uses external buffers when
several SDRAM devices are used in parallel. This enumeration corre-
sponds to the EBUFE bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_EBUFE_DEFAULT

ADI_EBIU_SDRAM_EBUFE_DISABLE

ADI_EBIU_SDRAM_PUPSD

This enumeration specifies whether the power-up start sequence is delayed
by 15 SCLK cycles. This enumeration corresponds to the PUPSD bit in the
EBIU_SDGCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_PUPSD_DEFAULT

ADI_EBIU_SDRAM_PUPSD_NODELAY

ADI_EBIU_SDRAM_EBUFE_DISABLE Disables the use of external buffers when several
SDRAM devices are used in parallel.

ADI_EBIU_SDRAM_EBUFE_ENABLE Enables the use of external buffers when several
SDRAM devices are used in parallel.

ADI_EBIU_SDRAM_PUPSD_NODELAY No delay to the power-up start sequence.

ADI_EBIU_SDRAM_PUPSD_15CYCLES Power-up start sequence is delayed by 15 SCLK cycles.

VisualDSP++ 5.0 Device Drivers and System 4-45
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_SDRAM_PSM

This enumeration specifies the SDRAM power-up sequence. This enu-
meration corresponds to the PSM bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_PSM_DEFAULT

ADI_EBIU_SDRAM_PSM_REFRESH_FIRST

ADI_EBIU_SDRAM_FBBRW

This enumeration specifies whether the EBIU uses fast back-to-back,
read-write access to allow SDRAM read and write operations on
consecutive cycles. This enumeration corresponds to the FBBRW bit in the
EBIU_SDGCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_FBBRW_DEFAULT

ADI_EBIU_SDRAM_FBBRW_DISABLE

ADI_EBIU_SDRAM_PSM_REFRESH_FIRST SDC performs a Precharge All command, fol-
lowed by eight auto-refresh cycles, and then a Load
Mode Register command.

ADI_EBIU_SDRAM_PSM_REFRESH_LAST SDC performs a Precharge All command, fol-
lowed by a Load Mode Register command, and
then completes eight auto-refresh cycles.

ADI_EBIU_SDRAM_FBBRW_DISABLE Fast back-to-back, read-write access disabled.

ADI_EBIU_SDRAM_FBBRW_ENABLE SDRAM read and write operations occur on
consecutive cycles.

Setting Control Values in the EBIU Module

4-46 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_SDRAM_CDDBG

This enumeration enables or disables the SDRAM control signals when
the external memory interface is granted to an external controller. This
enumeration corresponds to the CDDBG bit in the EBIU_SDGCTL register.

The default value is specified by the following macro:

#define ADI_EBIU_SDRAM_CDDBG_DEFAULT

ADI_EBIU_SDRAM_CDDBG_DISABLE

ADI_EBIU_BANK_NUMBER

This enumeration is used to specify the bank number 0, 1, 2, or 3, for
which the associated command applies. It can also be used to specify all
banks.

ADI_EBIU_SDRAM_CDDBG_DISABLE Disables the SDRAM control signals when the
external memory interface is granted to an external
controller.

ADI_EBIU_SDRAM_CDDBG_ENABLE Enables the SDRAM control signals when the
external memory interface is granted to an external
controller.

ADI_EBIU_BANK_0 Command is for bank 0.

ADI_EBIU_BANK_1 Command is for bank 1.

ADI_EBIU_BANK_2 Command is for bank 2.

ADI_EBIU_BANK_3 Command is for bank 3.

ADI_EBIU_BANK_ALL Command is for ALL four banks.

VisualDSP++ 5.0 Device Drivers and System 4-47
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_ASYNCH_BANK_ENABLE

This enumeration specifies which banks are being enabled. It corresponds
to the AMBEN bits in the asynchronous memory global control register.

ADI_EBIU_ASYNCH_CLKOUT

This enumeration specifies whether CLKOUT is enabled for external memory
access. It corresponds to the AMCKEN bits in the asynchronous memory glo-
bal control register.

ADI_EBIU_ASYNCH_BANK_DATA_PATH

This enumeration is for the ADSP-BF561 only. It specifies whether 16-bit
packing is enabled on the asynchronous memory bus. It corresponds to
the BXPEN bits in the asynchronous memory global control register, where
X is the bank number.

ADI_EBIU_ASYNCH_DISBALE_ALL Disables all banks.

ADI_EBIU_ASYNCH_BANK0 Enables bank 0.

ADI_EBIU_ASYNCH_BANK0_1 Enables banks 0 and 1.

ADI_EBIU_ASYNCH_BANK0_1_2 Enables banks 0, 1, and 2.

ADI_EBIU_ASYNCH_BANK0_1_2_3 Enables all banks.

ADI_EBIU_ASYNCH_CLKOUT_DISABLE CLKOUT is disabled.

ADI_EBIU_ASYNCH_CLKOUT_ENABLE CLKOUT is enabled.

ADI_EBIU_ASYNCH_BANK_DATA_PATH_32 16-bit packing in NOT enabled.

ADI_EBIU_ASYNCH_BANK_DATA_PATH_16 16-bit packing is enabled.

Setting Control Values in the EBIU Module

4-48 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE

Each asynchronous bank can be programmed to sample the ARDY input,
which allows the bank access time to be extended. Sampling the ARDY pin
determines how long to extend the access time. This enumeration specifies
whether or not the ARDY signal will be sampled. It corresponds to the
BXRDYEN bit (where X is the bank number) in the asynchronous memory
bank control 0 register (for banks 0 and 1) or the asynchronous memory
bank control 1 register (for banks 2 and 3).

ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY

This enumeration specifies, if ARDY is enabled, whether the access time is
complete when the ARDY signal is low or high. It corresponds to the
BXRDYPOL bit (where X is the bank number) in the asynchronous memory
bank control 0 register (for banks 0 and 1) or the asynchronous memory
bank control 1 register (for banks 2 and 3).

ADI_EBIU_ASYNCH_HOLD_TIME

The hold time for the asynchronous memory controller is specified in the
bank_time field of an “ADI_EBIU_ASYNCH_BANK_TIMING” struc-
ture. That field is of type “ADI_EBIU_TIMING_VALUE”, which in this
case can either specify a number of cycles or an “ADI_EBIU_TIME”
value, but not both.

When cycles are used, the ADI_EBIU_ASYNCH_HOLD_TIME enumeration spec-
ifies the number of cycles of hold time. It corresponds to the BXHT bit

ADI_EBIU_ASYNCH_ARDY_DISABLE Sampling of ARDY is disabled.

ADI_EBIU_ASYNCH_ARDY_ENABLE Sampling of ARDY is enabled.

ADI_EBIU_ASYNCH_ARDY_POLARITY_LOW Transaction is complete if ARDY is low.

ADI_EBIU_ASYNCH_ARDY_POLARITY_HIGH Transaction is complete if ARDY is high.

VisualDSP++ 5.0 Device Drivers and System 4-49
Services Manual for Blackfin Processors

External Bus Interface Unit Module

(where X is the bank number) in the asynchronous memory bank control 0
register (for banks 0 and 1) or the asynchronous memory bank control 1
register (for banks 2 and 3).

ADI_EBIU_ASYNCH_SETUP_TIME

The setup time for the asynchronous memory controller is specified in the
bank_time field of an “ADI_EBIU_ASYNCH_BANK_TIMING” struc-
ture. That field is of type “ADI_EBIU_TIMING_VALUE”, which in this
case can either specify a number of cycles or an “ADI_EBIU_TIME”
value, but not both.

When cycles are used, the ADI_EBIU_ASYNCH_SETUP_TIME enumeration
specifies the number of cycles of setup time. It corresponds to the BXST bit
(where X is the bank number) in the asynchronous memory bank control 0
register (for banks 0 and 1) or the asynchronous memory bank control 1
register (for banks 2 and 3).

ADI_EBIU_ASYNCH_HT_0_CYCLES 0 cycles hold time

ADI_EBIU_ASYNCH_HT_1_CYCLES 1 cycles hold time

ADI_EBIU_ASYNCH_HT_2_CYCLES 2 cycles hold time

ADI_EBIU_ASYNCH_HT_3_CYCLES 3 cycles hold time

ADI_EBIU_ASYNCH_ST_4_CYCLES 4 cycles setup time

ADI_EBIU_ASYNCH_ST_1_CYCLES 1 cycles setup time

ADI_EBIU_ASYNCH_ST_2_CYCLES 2 cycles setup time

ADI_EBIU_ASYNCH_ST_3_CYCLES 3 cycles setup time

Setting Control Values in the EBIU Module

4-50 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_ASYNCH_TRANSITION_TIME

The transition time for the asynchronous memory controller is specified
in the bank_time field of an “ADI_EBIU_ASYNCH_BANK_TIMING”
structure. That field is of type “ADI_EBIU_TIMING_VALUE”, which
in this case can either specify a number of cycles or an
“ADI_EBIU_TIME” value, but not both. When cycles are used, the
ADI_EBIU_ASYNCH_TRANSITION_TIME enumeration specifies the number of
cycles of transition time. It corresponds to the BXHT bit (where X is the
bank number) in the asynchronous memory bank control 0 register (for
banks 0 and 1) or the asynchronous memory bank control 1 register (for
banks 2 and 3).

ADI_EBIU_DDR_MOBILE_DS

This enumeration specifies the drive strength for the memory device. The
value is written to the DS field of the EBIU_DDRCTL3 register. This enumer-
ation is used for mobile DDR products only. For non-mobile DDR
products, see “ADI_EBIU_DDR_DS”. The possible enumeration values
are shown below.

ADI_EBIU_ASYNCH_TT_4_CYCLES 4 cycles transition time

ADI_EBIU_ASYNCH_TT_1_CYCLES 1 cycles transition time

ADI_EBIU_ASYNCH_TT_2_CYCLES 2 cycles transition time

ADI_EBIU_ASYNCH_TT_3_CYCLES 3 cycles transition time

ADI_EBIU_DDR_DS_1 00: Full strength drive

ADI_EBIU_DDR_DS_2 01: Half strength drive

ADI_EBIU_DDR_DS_4 10: Quarter strength drive

ADI_EBIU_DDR_DS_8 11: One-eighth strength drive

VisualDSP++ 5.0 Device Drivers and System 4-51
Services Manual for Blackfin Processors

External Bus Interface Unit Module

ADI_EBIU_DDR_DS

This enumeration specifies the drive strength for the memory device. The
value is written to the DS field of the EBIU_DDRCTL3 register. This enumer-
ation is used for non-mobile DDR products only. For mobile DDR
products, see “ADI_EBIU_DDR_MOBILE_DS”. The possible enumera-
tion values are shown below.

ADI_EBIU_DDR_PASR

This enumeration specifies the partial array self-refresh value written to
the PASR field of the EBIU_DDRCTL3 register. This field is available only on
mobile DDR products. The possible enumeration values are shown below.

ADI_EBIU_DDR_DS_FULL 00: Full strength drive

ADI_EBIU_DDR_DS_REDUCED 01: Reduced strength drive (default)

ADI_EBIU_DDR_PASR_1 0: Full array (all banks)

ADI_EBIU_DDR_PASR_2 1: Half array

ADI_EBIU_DDR_PASR_4 2: Quarter array

ADI_EBIU_DDR_PASR_RESERVED3 3: (Reserved value)

ADI_EBIU_DDR_PASR_RESERVED4 4: (Reserved value)

ADI_EBIU_DDR_PASR_8 5: Eighth array

ADI_EBIU_DDR_PASR_16 6: Sixteenth array

Setting Control Values in the EBIU Module

4-52 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 5-1
Services Manual for Blackfin Processors

5 DEFERRED CALLBACK
MANAGER

This chapter describes the deferred callback (DCB) manager used by the
application developer to manage the deferred execution of function calls.
A detailed description of the application programming interface (API)
provided by the deferred callback manager is included.

This chapter contains:

• “Introduction” on page 5-2

• “Using the Deferred Callback Manager” on page 5-3

• “Interoperability With an RTOS” on page 5-7

• “DCB Manager API Reference” on page 5-10

• “Public Data Types and Macros” on page 5-22

Introduction

5-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
Callback functions are commonly used in event-driven applications where
the client application requests that a service manager (such as the system
services library’s (SSL) DMA manager) notifies it upon completion of a
requested task, for example the completion of DMA transfer, by means of
a client callback function specified by the client application upon initializa-
tion of the required service.

The need to execute a client callback function normally occurs while exe-
cuting an interrupt service routine (ISR) at relatively high priority. The
general rule for such ISRs is to keep the amount of time spent in them as
deterministic as possible and to a minimum. Callbacks, on the other hand,
may be lengthy and non-deterministic. In most cases, users may prefer to
defer the execution of such callbacks to a scheduler running at a lower pri-
ority, which can be preempted by higher priority interrupts. In doing so,
the requesting ISR can complete with minimal delay.

The system services library’s deferred callback manager provides this
service by managing one or more queues of deferred callbacks, such that
their invocation typically occurs within a dispatch function operating at a
lower-interrupt priority than the rest of the application’s interrupt ser-
vices. Each callback entry posted to a queue comprises the address of the
required callback function along with three values (two pointers and one
32-bit unsigned integer), which are passed to the callback function upon
its (deferred) execution.

The deferred callback (DCB) manager is designed to operate as a
standalone module or in conjunction with a real-time operating system
(RTOS). Implementations of the module exist for Express Logic’s
ThreadX, Green Hills Software’ INTEGRITY, as well as Analog Devices
VDK.

The number of queues available and their length is determined by the cli-
ent application upon module and queue initialization. Whether the DCB
manager is implemented in standalone mode or in conjunction with one

VisualDSP++ 5.0 Device Drivers and System 5-3
Services Manual for Blackfin Processors

Deferred Callback Manager

of the above RTOSs also impacts the number and size of queues. When
implemented in conjunction with VDK, the DCB manager can support
only one queue at a fixed-priority level of IVG 14.

While only one queue is permitted per IVG level, engineers can set priori-
ties for individual callback entries by supplying a software priority level
upon posting. There is no limit to the number of software priority levels
that can be used (except for practical implications within the limits of
unsigned short values) The dispatch function attempts to execute all
higher-priority callbacks before those with lower priorities at the same
IVG level.

A detailed description of how the DCB manager operates is provided in
“Using the Deferred Callback Manager”, along with code segments illus-
trating its use in standalone mode.Implications for its use in conjunction
with an RTOS are given in “Interoperability With an RTOS” on
page 5-7.

The DCB manager uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by ADI or other
companies. As a result, all enumeration values and typedef statements use
the ADI_DCB_ prefix, and functions and global variables use the lowercase
adi_dcb_ equivalent.

Using the Deferred Callback Manager
The operation of the DCB manager comprises the following functions.

• Setting up the DCB manager

• Initializing the DCB manager

• Opening a queue

Using the Deferred Callback Manager

5-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• Managing the queue

• Posting callbacks to the required queue

• Dispatching callbacks according to the priority level deter-
mined upon posting

• Performing housekeeping functions

• Closing the queue

• Terminating the DCB manager

How this is implemented depends on whether the DCB manager is used
in standalone mode or in conjunction with the deferred calling mecha-
nism supplied by an RTOS. In all cases, API calls to the DCB manager are
the same: a queue is initialized with a call to adi_dcb_Open, and callbacks
are added to the queue via a call to the adi_dcb_Post function.

The deferred execution of the callbacks is scheduled according to software
priority by the adi_dcb_Dispatch_Callbacks function. In a standalone
environment, the DCB manager registers this function as an interrupt
handler routine against the desired IVG level, using the system services
library’s interrupt manager module, when the queue is initialized, and an
interrupt raised each time a callback is posted. Since the standalone ver-
sion uses the interrupt manager, the interrupt manager must be initialized
before the DCB manager is initialized.

The following code sample demonstrates the standalone use of one queue
initialized at IVG level 14, which is the lowest IVG level available at appli-
cation level.

As mentioned above, standalone operation requires the initialization of
the interrupt manager prior to initializing the DCB manager. On the
assumption that the sample application requires that only one interrupt

VisualDSP++ 5.0 Device Drivers and System 5-5
Services Manual for Blackfin Processors

Deferred Callback Manager

handler be defined per IVG level, initialize the interrupt manager with the
following code:

u32 ne;

adi_int_Init(NULL,0,&ne,NULL);

Initialize the DCB manager with sufficient memory for one queue as
follows:

static char mjk_dcb_Data[ADI_DCB_QUEUE_SIZE];

:

u32 ns;

:

adi_dcb_Init(

(void*)mjk_dcb_Data, // Address of memory to be used

ADI_DCB_QUEUE_SIZE, // Number of bytes required for the

// required number of queue servers.

&ns // on return this should be the same

// as the required number of queues.

NULL // No special data area for critical

// region required

);

Next, open the queue server for use by passing sufficient memory for the
length of queue required (in this case, five entries) and the desired IVG
level at which the queue operates. This level is ignored when used in a
VDK-based application. A handle, p_DCB_handle, to the queue server is
returned:

static char mjk_dcb_QueueData[5*ADI_DCB_ENTRY_SIZE];

ADI_DCB_HANDLE p_DCB_handle;

:

u32 nqe;

:

adi_dcb_Open(

14, // required IVG level

Using the Deferred Callback Manager

5-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

(void*) mjk_dcb_QueueData, // Address of memory to be used

5*ADI_DCB_ENTRY_SIZE, // for a queue 5 deep.

&nqe; // on return this should be the

// same as the required number of

// entries (5 in this case).

&p_DCB_handle // returned handle to queue server

);

The DCB manager is now ready to accept callback postings to the queue
server. Note that this function is normally performed in an ISR of another
service. The DCB manager passes the address of the client callback func-
tion and its associated argument values to the queue server identified by
the handle obtained:

adi_dcb_Post(

p_DCB_handle, // handle to required queue server.

0, // Priority level.

ClientCallback, // Address of callback function.

pService, // Address of the service instance

// that is posting the callback.

event, // Flag identifying the event that

// has precipitated the interrupt.

(void*)data // Address of data relevant to the

// callback.

);

In the example above, event typically defines an event (for example, DMA
completion) and data typically points to an appropriate location in mem-
ory that is meaningful within the context of the callback function. Within
the DMA manager context, this argument is the address of an appropriate
descriptor or data buffer.

For any reason, flushing the queue of entries for the above callback can be
achieved in one of two ways: by calling the adi_dcb_Remove function
directly or by calling it indirectly using the adi_dcb_Control function.
See “adi_dcb_Terminate” for further details and an example of its use

VisualDSP++ 5.0 Device Drivers and System 5-7
Services Manual for Blackfin Processors

Deferred Callback Manager

along with any other requests. The following code describes the direct
approach:

adi_dcb_Remove(

p_DCB_handle, // handle to required queue server

ClientCallback // Address of callback function to

// flush

);

Finally, if required, the queue can be closed and the DCB manager
terminated:

adi_dcb_Close(

p_DCB_handle, // handle to required queue server

);

adi_dcb_Terminate();

Interoperability With an RTOS
The DCB manager employs two functions, adi_dcb_RegisterISR and
adi_dcb_Forward, to interface with the different RTOS environments,
including standalone mode.

These functions are supplied in a separate source file, adi_dcb_xxxx.c,
for each implementation where xxxx describes the required RTOS
(for example, threadx for Express Logic’s ThreadX, and integrity for
Green Hill Software’s INTEGRITY), or standalone for standalone use.
VDK support is achieved with the functions (described above) supplied
directly by VDK. As a result, there is no equivalent adi_dcb_vdk.c file.

The relevant adi_dcb_xxxx.c file is incorporated (or not) into the main
adi_dcb.c source file via conditional compilation governed by a macro,
ADI_SSL_XXXX, where XXXX is STANDALONE, THREADX, INTEGRITY, or VDK.

Currently, implementations of the DCB manager are provided only for
the environments previously described. To implement these functions

Interoperability With an RTOS

5-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

under an alternative RTOS (for example, Linux), developers must provide
replacement definitions in equivalent files.

These functions are described in this section in more detail.

adi_dcb_Forward
The adi_dcb_Forward function takes two arguments. The first is a pointer
to the DCB entry header structure, ADI_DCB_ENTRY_HDR, and the second is
to the IVG level of the appropriate queue.

The adi_dcb_Forward function is invoked from within the adi_dcb_Post
function and has the following prototype:

void adi_dcb_Forward(

ADI_DCB_ENTRY_HDR *Entry,

u16 IvgLevel

);

The arguments are as follows.

The ADI_DCB_ENTRY_HDR structure used to pass information to the under-
lying RTOS is defined as:

typedef struct ADI_DCB_ENTRY_HDR {

struct ADI_DCB_ENTRY_HDR *pNext;

ADI_DCB_DEFERRED_FNpDeferredFunction;

} ADI_DCB_ENTRY_HDR;

Entry Pointer to the ADI_DCB_ENTRY_HDR structure. This coincides with
the address of the queue server structure to which the callback is
posted. This is ignored in standalone mode.

IvgLevel IVG level of the appropriate queue. This argument is ignored by
VDK.

VisualDSP++ 5.0 Device Drivers and System 5-9
Services Manual for Blackfin Processors

Deferred Callback Manager

The first word in this structure, pNext, is NULL on entry to the
adi_dcb_Forward function. While this value is typically used to point to
the next item in the queue, its interpretation within the adi_dcb_Forward
function depends on the specific RTOS implementation required. The
second word, pDeferredFunction, is set to point to the
adi_dcb_DispatchCallbacks function when the queue is initialized. The
deferred procedure call server within the appropriate RTOS must pass the
pointer to the adi_dcb_DispatchCallbacks function upon its deferred
execution.

adi_dcb_RegisterISR
The adi_dcb_RegisterISR function is invoked from within the
adi_dcb_Open function and has the following prototype:

void adi_dcb_RegisterISR(

u16 IvgLevel,

ADI_INT_HANDLER_FN Dispatcher,

ADI_DCB_HANDLE *hServer

);

The data types are defined in the <services/services.h> header file and
the arguments are as follows.

In the standalone implementation, this function registers the
adi_dcb_DispatchCallbacks function with the interrupt manager at the
specified interrupt level. In the VDK implementation, it returns with no
effect.

IvgLevel Interrupt level at which callbacks are dispatched

Dispatcher Mandatory address of the adi_dcb_DispatchCallbacks function

hServer Address of the queue server structure

Interoperability With an RTOS

5-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Handling Critical Regions Within Callbacks
If critical regions are required within a callback function, you must be
aware of any restrictions imposed by the underlying RTOS. For example,
VDK-based applications are prohibited from calling
PushCriticalRegion/PopCriticalRegion functions from within the
interrupt level.

If the VDK version of the DCB manager is used, these kinds of calls can
be used, as the callback is executed at the kernel level. However, if the
standalone version of the library is used to run a DCB queue at a higher
priority than the VDK DPC queue, such calls are illegal since the callback
executes at the interrupt level. In these cases, they effect critical regions
directly by using the cli() and sti() built-in functions.

DCB Manager API Reference
This section provides descriptions of the DCB manager API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 5-11
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Close

Description

The adi_dcb_Close() function closes the DCB queue server identified by
the single handle argument, freeing up the slot for subsequent use.
In standalone mode, the DCB manager’s adi_dcb_DispatchCallbacks
function is unhooked from the interrupt handler chain for the given IVG
level.

Prototype

ADI_DCB_RESULT adi_dcb_Close(

ADI_DCB_HANDLE hServer

);

Arguments

Return Value

hServer Handle of the required queue server to close

ADI_DCB_RESULT_SUCCESS Queue successfully closed.

ADI_DCB_RESULT_NO_SUCH_QUEUE Handle provided does not represent a valid queue
server.

ADI_DCB_RESULT_QUEUE_IN_USE Callbacks are on the queue awaiting dispatch. If this
does not matter, then flush the queue first before clos-
ing.

Interoperability With an RTOS

5-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_Control

Description

The adi_dcb_Control() function is used to configure/control a deferred
callback queue server according to command-value pairs. For more infor-
mation, see “ADI_DCB_COMMAND_PAIR” on page 5-22.

Currently, only one command is relevant, ADI_DCB_CMD_FLUSH_QUEUE,
though others may be added in the future. The command-value pairs can
be specified in one of three ways:

• A single command-value pair is passed.

adi_dcb_Control(

hServer,

ADI_DCB_CMD_FLUSH_QUEUE,

(void*)ClientCallback

);

• A single command-value pair structure is passed.

ADI_DCB_COMMAND_PAIR cmd=

{ADI_DCB_CMD_FLUSH_QUEUE, (void *)ClientCallback};

adi_dcb_Control(

hServer,

ADI_DCB_CMD_PAIR,

(void*)&cmd);

• A table of ADI_DCB_COMMAND_PAIR structures is passed. The last
entry in the table must be ADI_DCB_CMD_END.

ADI_DCB_COMMAND_PAIR table[2] = {

{ADI_DCB_CMD_FLUSH_QUEUE, (void*)ClientCallback,

{ADI_DCB_CMD_END, O}

);

VisualDSP++ 5.0 Device Drivers and System 5-13
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Control(

hServer,

ADI_DCB_CMD_TABLE,

(void*)table);

Refer to “ADI_DCB_COMMAND” on page 5-23 for the complete list of
commands and associated values.

Prototype

ADI_DCB_RESULT adi_dcb_Control(

ADI_DCB_HANDLE hServer,

ADI_DCB_COMMAND Command,

void *Value

);

Arguments

Return Value

hServer Handle of the required queue server to close.

Command ADI_DCB_COMMAND enumeration value specifying the meaning of the
associated value argument. See “ADI_DCB_COMMAND” on
page 5-23.

Value Required value, a single value, a command-value pair, or a table of com-
mand-value pairs

ADI_DCB_RESULT_SUCCESS Function completed successfully.

ADI_DCB_RESULT_NO_SUCH_QUEUE Handle of the required queue server is invalid.

ADI_DCB_RESULT_BAD_COMMAND Either the command kind or the value specified is
invalid.

Interoperability With an RTOS

5-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_Init

Description

The adi_dcb_Init function initializes the DCB manager with sufficient
memory for the required number of deferred callback queues (referred to
as queue servers).

This function can be called once per processor core.

Prototype

ADI_DCB_RESULT adi_dcb_Init(

void *ServerMemData,

size_t szServer,

u32 *NumServers

void *hCriticalRegionData

);

Arguments

ServerMemData Pointer to an area of memory used to hold the data associated
with each registered queue server

szServer Length in bytes of memory supplied for the queue server
data.

NumServers On return, this argument holds the maximum number of
simultaneously open queue servers that the supplied memory
can support.

hCriticalRegionData Handle to data area containing critical region data. This is
passed to adi_int_EnterCriticalRegion where it is used
internally by the module. See “Interrupt Manager” for fur-
ther details.

VisualDSP++ 5.0 Device Drivers and System 5-15
Services Manual for Blackfin Processors

Deferred Callback Manager

Return Value

ADI_DCB_RESULT_SUCCESS Successfully initialized the queue server.

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was encoun-
tered.

ADI_DCB_RESULT_CALL_IGNORED DCB manager has already been initialized for this pro-
cessor core.

Interoperability With an RTOS

5-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_Open

Description

The adi_dcb_Open function opens a queue server for use by assigning
memory for its callback queue. Additionally, in standalone mode, the
queue is assigned to the requested IVG priority level and the DCB man-
ager’s adi_dcb_DispatchCallbacks function is hooked to the interrupt
handler chain with the interrupt manager for the given IVG level.

 The interrupt manager must be initialized prior to opening a queue
server.

Prototype

ADI_DCB_RESULT adi_dcb_Open(

u32 IvgLevel,

void *QueueMemData,

size_t szQueue,

u32 *NumEntries,

ADI_DCB_HANDLE *hServer

);

VisualDSP++ 5.0 Device Drivers and System 5-17
Services Manual for Blackfin Processors

Deferred Callback Manager

Arguments

Return Value

IvgLevel IVG level at which the DCB manager’s dispatcher function
operates. This value is ignored in the VDK version of the
library.

QueueMemData Pointer to an area of memory used to hold the data associated
with the server’s entry queue

szQueue Length in bytes of memory supplied for the queue

NumEntries On return, this argument holds the maximum number of
queue entries that the supplied memory can support.

hServer On return, this argument contains a handle to the queue
server opened. This is used to uniquely identify the queue
server in calls to other API functions within the SSL.

ADI_DCB_RESULT_SUCCESS Queue server was successfully initialized.

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was encoun-
tered.

ADI_DCB_RESULT_QUEUE_IN_USE Queue server has already been opened for use by the
specified IVG.

Interoperability With an RTOS

5-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_Post

Description

The adi_dcb_Post() function posts a callback function and associated
argument values to the queue server, identified by the handle argument for
further processing.

A callback is associated with a priority level such that higher-priority
callbacks run before lower-priority callbacks. To run all callbacks at the
same priority level, assign the same priority to each callback posted.

Prototype

ADI_DCB_RESULT adi_dcb_Post(

ADI_DCB_HANDLE *hServer,

u32 Priority;

ADI_DCB_CALLBACK_FN Callback,

void *pHandle,

u32 u32Arg,

void *pArg

);

VisualDSP++ 5.0 Device Drivers and System 5-19
Services Manual for Blackfin Processors

Deferred Callback Manager

Arguments

Return Value

Table 5-1. adi_dcb_Post Arguments

Argument Explanation

hServer Handle of the required queue server

Priority Priority level at which the callback runs; the lower the number, the higher the
priority. There is no real limit on the value supplied.

Callback Address of the client callback function queued

pHandle void* address passed as the first argument to the callback function upon its
deferred execution. Typically it is a handle address that is meaningful within
the context of the callback function. For example, when used within the inter-
rupt handler of the DMA manager, this argument is the ClientHandle value
defined when the DMA channel was opened.

u32Arg u32 value passed as the second argument to the callback function upon its
deferred execution. (See “ADI_DCB_CALLBACK_FN” on page 5-22.) Typi-
cally, it is a value that is meaningful within the context of the callback func-
tion. For example, when used within the interrupt handler of the DMA
manager, this argument describes the nature of the event that has occurred.

pArg void* value passed as the third argument to the callback function upon its
deferred execution. (See “ADI_DCB_CALLBACK_FN” on page 5-22.) Typi-
cally, it is an address of a block of data. For example, when called within the
interrupt handler of the DMA manager, this argument points to the start of
the buffer for which the DMA transfer has completed.

ADI_DCB_RESULT_SUCCESS Entry was successfully queued.

ADI_DCB_RESULT_NO_MEMORY No vacant queue entry available.

ADI_DCB_RESULT_NO_SUCH_QUEUE Handle provided does not represent a valid queue
server.

Interoperability With an RTOS

5-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dcb_Remove

Description

The adi_dcb_Remove() function removes entries in the given queue that
match the address of the given callback function. Alternatively, passing a
NULL value for the callback function address instructs the callback man-
ager to remove all entries in the queue.

Prototype

ADI_DCB_RESULT adi_dcb_Remove(

ADI_DCB_HANDLE hServer,

ADI_DCB_CALLBACK_FN Callback

);

Arguments

Return Value

hServer Handle of the required queue server

Callback Address of the client callback function removed. If NULL,
then all entries in the queue are removed, otherwise all
entries matching the given callback function address are
removed.

ADI_DCB_RESULT_FLUSHED_OK Entries were successfully removed.

ADI_DCB_RESULT_NONE_FLUSHED Routine found no entries to be removed.

ADI_DCB_RESULT_NO_SUCH_QUEUE Handle provided does not represent a valid queue
server.

VisualDSP++ 5.0 Device Drivers and System 5-21
Services Manual for Blackfin Processors

Deferred Callback Manager

adi_dcb_Terminate

Description

The adi_dcb_Terminate() function terminates the DCB manager by
dissociating the supplied memory (see “adi_dcb_Init” on page 5-14) and
critical region data.

Prototype
ADI_DCB_RESULT adi_dcb_Terminate (void);

Return Value

ADI_DCB_RESULT_SUCCESS Function completed successfully.

Interoperability With an RTOS

5-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Public Data Types and Macros
This section provides descriptions of the public data types and macros.

ADI_DCB_CALLBACK_FN

The ADI_DCB_CALLBACK_FN data type defines the prototype for the callback
functions to be posted:

typedef void (*ADI_DCB_CALLBACK_FN)

 (void* pHandle, u32 u32Arg, void* pArg);

where the values of the arguments are those passed to the adi_dcb_Post
function when the callback is queued for deferred execution.

ADI_DCB_COMMAND_PAIR

The ADI_DCB_COMMAND_PAIR data type is used to enable the generation of a
table of control commands to be sent to the DCB manager via the
adi_dcb_Control function.

typedef struct ADI_DCB_COMMAND_PAIR {

ADI_DCB_COMMAND kind;

void *value;

} ADI_DCB_COMMAND_PAIR;

For valid values for the kind field, refer to “ADI_DCB_COMMAND” on
page 5-23.

For example, the following command could be sent to the DCB manager
to flush all callbacks in the queue:

ADI_DCB_COMMAND_PAIR CMD = { ADI_DCB_CMD_FLUSH_QUEUE, NULL };

VisualDSP++ 5.0 Device Drivers and System 5-23
Services Manual for Blackfin Processors

Deferred Callback Manager

ADI_DCB_COMMAND

The ADI_DCB_COMMAND is used to control the DCB manager’s queue server.
This data type is used in an ADI_DCB_COMMAND_PAIR couplet to change a
configuration value in calls to adi_dcb_Control.

ADI_DCB_ENTRY_HDR

The ADI_DCB_ENTRY_HDR structure is provided to interface with the
underlying RTOS through the adi_dcb_Forward function (refer to
“adi_dcb_Forward” on page 5-8):

typedef struct ADI_DCB_ENTRY_HDR (

struct ADI_DCB_ENTRY *pNext; // Next item in queue

ADI_DCB_DEFERRED_FN pDeferredFunction; // Deferred Callback

// Function pointer,

} ADI_DCB_ENTRY_HDR;

where pNext points to the next item in the queue and pDeferredFunction
is the address of the deferred function, which is always the address of
adi_dcb_DispatchCallbacks.

The ADI_DCB_DEFERRED_FN typedef defines the prototype for this
function:

typedef void (*ADI_DCB_DEFERRED_FN) (ADI_DCB_ENTRY *);

ADI_DCB_CMD_END Defines the end of a table of command pairs.

ADI_DCB_CMD_PAIR Tells adi_dcb_Control that a single command pair is being
passed.

ADI_DCB_CMD_TABLE Tells adi_dcb_Control that a table of command pairs is
being passed.

ADI_DCB_CMD_FLUSH_QUEUE Address of the callback function for which all matching queue
entries are cleared from the queue, regardless of priority.

Interoperability With an RTOS

5-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DCB_RESULT

All public DCB manager functions return a result code of the
ADI_DCB_RESULT data type. Possible values include the following.

ADI_DCB_RESULT_SUCCESS Queue server was successfully initialized.

ADI_DCB_RESULT_NO_MEMORY Insufficient memory for one queue entry was present.

ADI_DCB_RESULT_QUEUE_IN_USE Queue server has already been opened for use by the
specified IVG. See “ADI_DCB_COMMAND” on
page 5-23.

ADI_DCB_RESULT_CALL_IGNORED DCB manager has already been initialized for this pro-
cessor core. See “ADI_DCB_COMMAND” on
page 5-23.

ADI_DCB_RESULT_NO_SUCH_QUEUE Handle provided does not represent a valid queue
server registered with the DCB manager.

ADI_DCB_RESULT_BAD_COMMAND Either the command kind or the value specified is
invalid.

VisualDSP++ 5.0 Device Drivers and System 6-1
Services Manual for Blackfin Processors

6 DMA MANAGER

This chapter describes features of the direct memory access (DMA) man-
ager and its application programming interface (API).

This chapter contains:

• “Introduction” on page 6-2

• “Theory of Operation” on page 6-3

• “DMA Manager API Reference” on page 6-31

• “Public Data Structures, Enumerations, and Macros” on page 6-62

Introduction

6-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The DMA manager provides the application developer with the means
to manage DMA traffic on as many channels as required across the
spectrum—from setting up the DMA channels for their intended purpose,
to providing callbacks to the client application on transfer completion.

As part of the system services, the DMA manager provides a complete and
easy-to-use interface to the DMA controller. To this end, the DMA man-
ager is designed to:

• Remove the need for direct client access to memory-mapped regis-
ters (MMRs) through the implementation of application
programming interface (API) function calls.

• Place no limitations on the type of data transfer. All descriptor
types are supported as well as single and circular buffers. Both
one-dimensional (1-D) and two-dimensional (2-D) DMA can be
used.

• Provide a simple interface to perform block copies of data between
different memory locations using both 1-D and 2-D memory
DMA, such that blocks of data can be copied between internal and
external memory with one function call in an equivalent manner to
the C library memcpy function.

• Interpret interrupts raised on DMA transfer completion and pass
higher-level event information to user-supplied callback functions.
For example, if an interrupt is raised on each inner loop of a
circular 2-D DMA transfer, an event can be passed to the callback
function at the completion of each inner loop.

VisualDSP++ 5.0 Device Drivers and System 6-3
Services Manual for Blackfin Processors

DMA Manager

• Minimize the memory used by the module. No static memory
space is set aside within the API framework to hold the configura-
tion details for each channel. Instead, a mechanism is provided to
enable client applications to set aside sufficient memory for as
many DMA channels as application requires.

• Be as portable as possible by providing a consistent interface across
all processor families and variants. Additionally, the DMA manager
uses an unambiguous naming convention to safeguard against con-
flicts with other software libraries provided by Analog Devices or
elsewhere.

To this end, all enumeration values and typedef statements use
the ADI_DMA_ prefix, and functions and global variables use the
lowercase adi_dma_ equivalent.

Theory of Operation
This section describes the internal operation of the DMA manager.

Overview
The DMA manager is used to control the Blackfin processor’s DMA con-
troller. The DMA manager supports peripheral DMA to move data to and
from the various on-board peripherals and uses memory DMA to move
data between the various memory spaces of the Blackfin processor.

The DMA manager is capable of controlling any number of DMA chan-
nels. You specify which channels the DMA manager controls. The
application can use the remaining channels (those channels not under
control of the DMA manager) for any purpose; that is, the channels are
controlled independently of the DMA manager.

Theory of Operation

6-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Various data transfer modes of the Blackfin processor’s DMA controller
are supported, including descriptor chains, circular buffers (utilizing the
autobuffer capability of the Blackfin processor), and one-shot transfers.
One-dimensional (linear) transfers and two-dimensional (matrix) transfers
are supported.

The DMA manager can be directed to notify the client (through the cli-
ent’s callback function) when data transfers complete. Additionally, the
client’s callback function is invoked when an unexpected event, such as a
DMA error, occur. As with all system services, the DMA manager allows
the client to specify callbacks to be “live”, meaning the client’s callback
function is invoked at hardware interrupt time, or “deferred”, meaning the
client’s callback function is invoked outside the context of the hardware
interrupt.

 DMA Manager Initialization
In order to use the DMA manager, the client must first initialize it. The
DMA manager does not use static data, so the initialization step is used to
give the DMA manager memory for use in managing the DMA controller.

The DMA manager requires a small, fixed amount of base memory and a
variable amount of memory, depending the number of simultaneously
open DMA channels the system requires. Note that memory DMA
requires two DMA channels—one channel for the source and another
channel for the destination for each memory DMA stream. Macros are
provided to define the amount of memory (in bytes) required for the base
and channel memory. These macros are ADI_DMA_BASE_MEMORY and
ADI_DMA_CHANNEL_MEMORY.

For example, if the client wants to initialize the DMA manager and has at
most four DMA channels and one memory DMA stream open simulta-
neously, the amount of required memory is:

(ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY * 6)).

VisualDSP++ 5.0 Device Drivers and System 6-5
Services Manual for Blackfin Processors

DMA Manager

When called, the initialization function, adi_dma_Init(), initializes the
memory that was passed in. Like all functions within the DMA manager,
the initialization function returns a return code that indicates success or
the specific error that occurred during the function call. All DMA API
functions return the ADI_DMA_RESULT_SUCCESS value to indicate success.
All error codes are of the form ADI_DMA_RESULT_XXXX.

In addition to the return code, the adi_dma_Init() function returns a
count of the number of channels it can manage simultaneously and a
handle to the DMA manager. The channel count can be tested to ensure
that the DMA manager can control the requested number of channels.
The DMA manager handle value that is returned is later passed into the
adi_dma_Open and adi_dma_MemoryOpen functions which use the manager
handle to identify the DMA manager that is to control the channel.
Passing in this handle allows these functions to quickly identify the mem-
ory that is used to manage the open channel(s). After the DMA manager is
initialized, DMA channels and memory streams can be opened for use.

Although it is possible to create multiple DMA managers in a single-core
Blackfin system, there is no practical advantage in doing so.

 DMA Manager Termination
When the DMA manager is no longer needed, the client can terminate the
DMA manager with the adi_dma_Terminate function. This function is
passed the DMA manager handle given to the client in the adi_dma_Init
function. The DMA manager closes any open channels and streams and
then returns to the caller. After the return from the adi_dma_Terminate()
function, the memory that was supplied to the DMA manager via the
adi_dma_Init() function can be reused by the client.

 In many embedded systems, the DMA manager is never
terminated.

Theory of Operation

6-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Memory DMA and Peripheral DMA
As described in the Blackfin processor’s Hardware Reference, the Blackfin
processor’s DMA controller supports both peripheral DMA and memory
DMA. Regardless of whether peripheral DMA or memory DMA is being
used, the client schedules DMA manager activity on a block-by-block
basis, rather than a sample-by-sample basis. Though a block of data can be
defined to be a single sample of data, this is seldom the case. Most often,
data is blocked in quantities relevant to the processing to be performed.
The term buffer is used throughout this document to represent the block
of data.

Peripheral DMA moves blocks of data between on-chip peripherals and
one of the memory spaces of the Blackfin processor (most commonly
within the context of a device driver). For example, an on-chip peripheral
such as a PPI uses DMA to move blocks of data into (or out of) the PPI
device. As such, the device driver for the PPI typically uses the DMA
manager to control dataflow through the PPI.

Memory DMA describes the movement of data between any of the various
Blackfin processor’s memory spaces. For example, due to the large
amounts of data used for video processing, video frames may be stored in
external SDRAM and then “DMA-ed” piecemeal into internal L1 memory
for processing.

The DMA manager fully supports peripheral DMA and memory DMA.
When using peripheral DMA, clients leverage the capabilities of the DMA
manager on a channel-by-channel basis. When using memory DMA,
clients can choose to control memory streams as individual source and
destination channels using the same techniques and functions provided for
peripheral DMA, or alternatively can control memory DMA as a single
memory stream using the higher-level adi_dma_MemoryXXXX() functions.

VisualDSP++ 5.0 Device Drivers and System 6-7
Services Manual for Blackfin Processors

DMA Manager

Controlling Memory Streams
When memory DMA is needed, controlling and scheduling memory
DMA is accomplished most easily using higher level memory streams.
The adi_dma_MemoryXXXX() functions provide a simple, efficient method
of transferring data between the various memory spaces by the Blackfin
processor’s DMA controller.

The overall sequence for using memory streams is to open the memory
stream, schedule transfers as needed, and then close the memory stream
when it is no longer needed. In many embedded systems, the memory
stream is never closed, but remains open at all times.

Opening Memory Streams

To open the memory stream, the client calls the adi_dma_MemoryOpen
function. The client passes the following parameters into the function:

• A handle to the DMA manager that controls the stream

• The stream ID (of type ADI_DMA_STREAM_ID) that identifies the
memory DMA stream to use

• A client handle that is passed back to the client’s callback function.
This is a client-supplied value, supposedly of some meaning to the
client, which is passed back to the client’s callback function so that
the client can associate this value with the stream that is causing
the callback.

• A pointer to a location into which the DMA manager stores the
stream handle. The stream handle is a DMA manager-defined value
that uniquely identifies the stream to the DMA manager.

• A handle to a deferred callback service (typically from the deferred
callback service) or a NULL value. If a NULL value is supplied, the
DMA manager makes live callbacks to the application. Live call-
backs are made during hardware interrupt time. If a deferred

Theory of Operation

6-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

callback service handle is provided, all callbacks for the stream use
the deferred callback service to defer callback processing until after
hardware interrupt time.

Memory Transfers

Once a memory stream has been opened, the client can submit jobs to the
stream using the adi_dma_MemoryCopy and/or adi_dma_MemoryCopy2D
functions. Linear (one-dimensional) memory transfers use the former
function; two-dimensional transfers use the latter function. The same
stream can be used for one-dimensional and two-dimensional transfers, so
a client can schedule a one-dimensional transfer on a given stream, and
can then schedule a two-dimensional transfer on that same stream.

Note that a memory stream supports only one transfer at a time. If one
transfer is in progress and another transfer is requested, these functions
return an error code indicating the stream is in use. If queuing of memory
transfers is required, this can be accomplished by using the channel-based
method of controlling DMA.

One-Dimensional Transfers (Linear Transfers)

One-dimensional (linear) transfers are handled by calling the
adi_dma_MemoryCopy() function. When calling the adi_dma_MemoryCopy()
function, the client provides the following parameters:

• The stream handle. This is the value provided to the client during
the adi_dma_MemoryOpen() function.

• The destination starting address into which data is copied

• The source starting address from which data is copied

• The width of each element (in bytes) to be copied. The DMA
manager uses this value to schedule 8-, 16-, or 32-bit transfers.

VisualDSP++ 5.0 Device Drivers and System 6-9
Services Manual for Blackfin Processors

DMA Manager

• A count of the number of elements copied

• The address of the callback function to be called when the transfer
is complete. The invocation of the callback function depends on
the callback service handle value that was supplied to the stream
when it was opened, either deferred or live.

If the adi_dma_MemoryCopy() function is passed a NULL value for
the callback function address, the transfer occurs synchronously
and the adi_dma_MemoryCopy() function does not return to the
client until the transfer is complete. No callbacks are made in this
case.

Two-Dimensional Transfers

Two-dimensional (matrix) memory transfers are handled by calling the
adi_dma_MemoryCopy2D() function. When calling this function, the client
provides the following parameters:

• The stream handle. This is the value provided to the client during
the adi_dma_MemoryOpen() function.

• A pointer to a data structure (of type ADI_DMA_2D_TRANSFER) that
defines how data is stored into the destination memory

• A pointer to a data structure (of type ADI_DMA_2D_TRANSFER) that
defines how data is read from the source memory

• The width of each element (in bytes) copied. The DMA manager
uses this value to schedule 8-, 16-, or 32-bit transfers.

Theory of Operation

6-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• The address of the callback function that is called when the transfer
is complete. The invocation of the callback function depends on
the callback service handle value supplied to the stream when it was
opened (either deferred or live).

If the adi_dma_MemoryCopy() function is passed a NULL value for
the callback function address, the transfer occurs synchronously
and the adi_dma_MemoryCopy() function does not return to the
client until the transfer is complete. No callbacks are made in this
case.

The ADI_DMA_2D_TRANSFER data type structure holds the necessary values
to specify a two-dimensional transfer. This data type contains the starting
address in memory, an XCount value that defines the number of columns,
a YCount value that defines the number of rows, and XModify and YModify
values to describe the stride for each.

Closing Memory Streams

When a memory stream is no longer needed, the adi_dma_MemoryClose
function is called to close the stream. Once closed, a stream must be
reopened before it can perform additional transfers. The client passes the
following parameters into the function:

• The stream handle. This is the value provided to the client during
the adi_dma_MemoryOpen function.

• A flag to indicate whether the DMA manager should wait for the
completion of any ongoing transfers on the stream before closing
the channel

Controlling DMA Channels
Controlling DMA on a channel-by-channel basis allows for the tightest
control of DMA scheduling. Before a channel can be used, it must be
opened first and then configured.

VisualDSP++ 5.0 Device Drivers and System 6-11
Services Manual for Blackfin Processors

DMA Manager

Opening DMA Channels

To open a DMA channel, the client calls the adi_dma_Open() function.
The client passes into the function the following parameters:

• A handle to the DMA manager that controls the channel

• The channel ID (of type ADI_DMA_CHANNEL_ID) that identifies the
DMA channel to open

• A client handle that is passed back to the client’s callback function.
This is a client-supplied value, providing some meaning to the
client, which is passed back to the client’s callback function so the
client can associate this value with the stream causing the callback.

• A pointer to a location into which the DMA manager stores the
channel handle. The channel handle is a DMA manager-defined
value that uniquely identifies the channel to the DMA manager.

• The operating mode that defines how the channel moves data.
Refer to the sections starting with “Single Transfers” on page 6-12.

• A handle to a deferred callback service (typically from the deferred
callback service) or a NULL value. If a NULL value is supplied, the
DMA manager makes live callbacks to the application. Live call-
backs are made during hardware interrupt time. If a deferred
callback service handle is provided, all callbacks for the stream use
the deferred callback service to make callbacks occur at non-hard-
ware interrupt time.

• The address of the callback function that is called to notify the cli-
ent of events. Events may be expected events (such as requests for
notification when a transfer is complete) to unexpected events
(such as a DMA error). When the callback function is actually
invoked, deferred or live, depends on the callback service handle
value that is supplied.

Theory of Operation

6-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

After the channel has been successfully opened, the channel can be
configured, buffers can be supplied to the channel, and so on. Note that
the actual transfer of data does not begin with the adi_dma_MemoryOpen
function. Dataflow must be enabled specifically via the adi_dma_Control
function.

The DMA manager supports the following operational modes of the
Blackfin processor’s DMA controller:

• “Single Transfers”

• “Circular Transfers” on page 6-14

• “Large Descriptor Chaining Model” on page 6-16

• “Small Descriptor Chaining Model” on page 6-20

Single Transfers

The single transfer operating mode (ADI_DMA_MODE_SINGLE) transfers
individual, single buffers of data. When using the single transfer mode,
the client calls the adi_dma_Buffer() function to schedule a transfer. The
client passes the following parameters to the function:

• The channel handle. This is the value provided to the client during
the adi_dma_Open() function.

• The starting address of the buffer. This value is the address in
memory where data is initially read (for outbound data) or the
address in memory where data is initially stored (when the transfer
is for inbound data).

• The configuration word for the transfer. This is a 16-bit value that
represents the DMA configuration control register for the channel.
The DMA manager include file provides macros, that allow the
client to quickly and easily create a configuration word. The fol-
lowing fields within the configuration word are the only fields for
which values must be provided.

VisualDSP++ 5.0 Device Drivers and System 6-13
Services Manual for Blackfin Processors

DMA Manager

• The XCount value. For one-dimensional transfers, this value defines
the number of elements to transfer. For two-dimensional transfers,
this value defines the inner loop count (number of columns).

• The XModify value. For one-dimensional transfers, this value
defines the address increment/decrement (stride) for each succes-
sive element. For two-dimensional transfers, this value defines the
inner loop address increment/decrement (stride) for each successive
element up to but not including the last element in each inner
loop. After the last element in each inner loop, the YModify value is
applied instead, except on the very last element of the transfer.

WNR

(Transfer Direction)

ADI_DMA_WNR_READ Transfer is for outbound data.

ADI_DMA_WNR_WRITE Transfer is for inbound data.

WDSIZE
(Transfer Element Size)

ADI_DMA_WD_SIZE_8BIT Elements are 1 byte wide (8 bits).

ADI_DMA_WD_SIZE_16BIT Elements are 2 bytes wide (16 bits).

ADI_DMA_WD_SIZE_32BIT Elements are 4 bytes wide (32 bits).

DMA2D
(Dimension Select)

ADI_DMA_DMA2D_LINEAR One-dimensional (linear) transfer

ADI_DMA_DMA2D_2D Two-dimensional transfer

DI_SEL
(Data Interrupt Timing
Select)
Applies only when
DMA2D = 1

ADI_DMA_DI_SEL_OUTER_LOOP A callback is generated when the
entire transfer has completed (outer
loop).

ADI_DMA_DI_SEL_INNER_LOOP A callback is generated on each inner
loop completion.

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback is generated.

ADI_DMA_DI_EN_ENABLE The DMA manager generates a call-
back to the client when the transfer
completes.

Theory of Operation

6-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• The YCount value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, the value represents the
outer loop count (number of rows).

• The YModify value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, this value defines the
outer loop address increment/decrement (stride) that is applied
after each inner loop completion. This value is the offset between
the last element of one row and the first element of the next row.

Regardless of whether dataflow on the channel is enabled, the
adi_dma_Buffer() function returns immediately to the caller. If dataflow
is already enabled on the channel, the DMA manager begins executing the
transfer; otherwise, the transfer does not begin until the dataflow is
enabled via the adi_dma_Control() function. When using the
single-transfer mode, the adi_dma_Buffer() function can be called at any
time, as long as a transfer on the channel is not already in progress.

Circular Transfers

The circular transfer mode (ADI_DMA_MODE_CIRCULAR) leverages the auto-
buffer capability of the DMA controller. Using the circular transfer mode,
the client provides the DMA manager with a single contiguous buffer
comprising n sub-buffers, as shown in Figure 6-1 on page 6-16.

When dataflow is enabled, the DMA manager begins transferring data at
the start of the buffer, continuing on throughout the entire buffer, and
then automatically looping back to the top of the buffer again, repeating
indefinitely. Optionally, the client can direct the DMA manager to
generate callbacks at the completion of each sub-buffer, to generate call-
backs at the completion of the entire buffer, or not to generate callbacks.

VisualDSP++ 5.0 Device Drivers and System 6-15
Services Manual for Blackfin Processors

DMA Manager

When using circular transfer mode, the client calls the adi_dma_Buffer()
function with the following parameters:

• The channel handle. This is the value provided to the client during
the adi_dma_Open() function.

• The starting address of the buffer. This value is the address in
memory where data is initially read from (when the transfer is for
outbound data), or the address in memory where data is initially
stored (when the transfer is for inbound data).

• The configuration word for the transfer. This 16-bit value
represents the DMA configuration register for the channel. The
DMA manager include file provides macros that allow the client to
quickly and easily create a configuration word. The client provides
values for the following fields within the configuration word.

• The XCount value. Set this parameter to the number of elements in
a single sub-buffer.

• The XModify value. The width (in bytes) of an element. Allowed
values are 1, 2, and 4 only.

WNR

(Transfer Direction)

ADI_DMA_WNR_READ A transfer is for outbound data.

ADI_DMA_WNR_WRITE A transfer is for inbound data.

DI_SEL
(Data Interrupt Timing
Select)

ADI_DMA_DI_SEL_OUTER_LOOP A callback is generated on
completion of whole buffer only.

ADI_DMA_DI_SEL_INNER_LOOP A callback is generated on each
inner loop completion.

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback will be generated.

ADI_DMA_DI_EN_ENABLE Callbacks are generated according
the setting of DI_SEL.

Theory of Operation

6-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• The YCount value. Set this parameter to the number of sub-buffers
contained within the whole buffer.

• The YModify value. This parameter is ignored.

When using the circular mode, the adi_dma_Buffer() function must be
called prior to enabling dataflow on the channel. After enabling dataflow,
if the client wants to change to a different circular buffer, the client must
first disable dataflow on the channel, call the adi_dma_Buffer() function
with the new buffer data, and then re-enable dataflow on the appropriate
channel.

Large Descriptor Chaining Model

The large descriptor chaining model (ADI_DMA_MODE_DESCRIPTOR_LARGE)
allows the client to create chains of descriptors, residing anywhere in
memory, where each descriptor describes a specific work unit.

Using the large descriptor chaining mode, the client provides the DMA
manager with one or more descriptor chains, as shown in Figure 6-2.

Figure 6-1. Circular Buffer Usage in a Circular Transfer

. . .

SUB-BUFFER 0

SUB-BUFFER 1

SUB-BUFFER N

CALLBACK ON SUB-BUFFER COMPLETE

CALLBACK ON ENTIRE BUFFER COMPLETE

ONE
CONTIGUOUS

BUFFER

VisualDSP++ 5.0 Device Drivers and System 6-17
Services Manual for Blackfin Processors

DMA Manager

Descriptors can be submitted at any time, regardless of the dataflow state.
The DMA manager maintains independent queues of descriptors for each
channel, keeping the DMA controller busy with transfers until all queued
descriptors are processed.

Both one-dimensional and two-dimensional transfers can be intermixed
on the same channel. Each transfer can define a different transfer type,
length, and so on. Additionally, callbacks to the client’s callback function
can be made upon completion of every descriptor, any individual descrip-
tor, or configured to never call back.

When the large descriptor chaining mode is used, descriptor chains are
submitted to the channel using the adi_dma_Queue() function with the
following parameters:

• The channel handle. This is the value provided to the client during
the adi_dma_Open() function.

• A handle of the type ADI_DMA_DESCRIPTOR_HANDLE to a descriptor.
Because the same adi_dma_Queue() function is used for all
descriptor-based operating modes (including large descriptors,
small descriptors, and arrays of descriptors), the
ADI_DMA_DESCRIPTOR_HANDLE data type acts as a container that
conveniently represents each of the descriptor types.

For the large descriptor chaining mode, descriptors are of the type
ADI_DMA_DESCRIPTOR_LARGE, which is a data type that defines a large
model descriptor. When calling the adi_dma_Queue() function, the client

Figure 6-2. Descriptor Chain

. . .DESCRIPTOR
0

DESCRIPTOR
1

DESCRIPTOR
N

Theory of Operation

6-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

can pass in the address of the descriptor union
(ADI_DMA_DESCRIPTOR_UNION) or alternatively, the address of the descriptor
itself (ADI_DMA_DESCRIPTOR_LARGE) to the ADI_DMA_DESCRIPTOR_HANDLE
data type. This descriptor can be a single descriptor or the first descriptor
in a chain of descriptors.

Large model descriptors contain all the information necessary for the
DMA manager to control the operation of the DMA controller. This
information includes:

• A pointer to the next large descriptor in the chain. If this field is
NULL, the given descriptor is the only descriptor the client is
submitting to the channel.

• The starting address of the buffer. This value is the address in
memory where data is initially read from (when the transfer is for
outbound data), or the address in memory where data is initially
stored (when the transfer is for inbound data).

• The configuration word for the transfer. This 16-bit value
represents the DMA configuration register for the channel. The
DMA manager include file provides macros that allow the client to
quickly and easily create a configuration word. The client provides
the following values to fields within the configuration word.

WNR

(Transfer Direction)

ADI_DMA_WNR_READ Transfer is for outbound data.

ADI_DMA_WNR_WRITE Transfer is for inbound data.

WDSIZE
(Transfer Element Size)

ADI_DMA_WD_SIZE_8BIT Elements are 1 byte wide (8 bits).

ADI_DMA_WD_SIZE_16BIT Elements are 2 bytes wide (16 bits).

ADI_DMA_WD_SIZE_32BIT Elements are 4 bytes wide (32 bits).

DMA2D
(Dimension Select)

ADI_DMA_DMA2D_LINEAR One-dimensional (linear) transfer

ADI_DMA_DMA2D_2D Two-dimensional transfer

VisualDSP++ 5.0 Device Drivers and System 6-19
Services Manual for Blackfin Processors

DMA Manager

• The XCount value. For one-dimensional transfers, this value defines
the number of elements to be transferred. For two-dimensional
transfers, this value defines the inner loop count (number of
columns).

• The XModify value. For one-dimensional transfers, this value
defines the address increment/decrement (stride) for each succes-
sive element. For two-dimensional transfers, this value defines the
inner loop address increment/decrement (stride) for each successive
element up to but not including the last element in each inner
loop. After the last element in each inner loop, the YModify value is
applied instead, except on the very last element of the transfer.

• The YCount value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, the value represents the
outer loop count (number of rows).

• The YModify value. This parameter is ignored for one-dimensional
transfers. For two-dimensional transfers, this value defines the
outer loop address increment/decrement (stride) that is applied
after each inner loop completion. This value is the offset between
the last element of one row and the first element of the next row.

The DMA manager does not constrain when descriptors can be provided
to a channel. For DMA channels that process inbound data, it is best prac-
tice to provide descriptors to the channel via the adi_dma_Queue()
function before enabling dataflow. By doing this, the DMA controller uses
a space where data can be stored. If dataflow is enabled on an inbound
channel prior to providing descriptors, it is possible for data to be received
by the DMA channel but not have anywhere to store it.

DI_EN
(Data Interrupt Enable)

ADI_DMA_DI_EN_DISABLE No callback is generated.

ADI_DMA_DI_EN_ENABLE The DMA manager generates a
callback to the client when the
transfer completes.

Theory of Operation

6-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Small Descriptor Chaining Model

The small descriptor chaining model (ADI_DMA_MODE_DESCRIPTOR_SMALL)
is similar to the large descriptor chaining model. The only material differ-
ence between the two models is that in the small descriptor model, the
pointer to the next descriptor in a chain of descriptors consists of only the
lower 16 bits of address, rather than a full 32-bit address. This means that
all descriptors on a channel that use the small descriptor model must have
the same upper 16 bits of address. In other words, all small model descrip-
tors for a channel must be located within the same 64KB segment.

This difference is encapsulated in the ADI_DMA_DESCRIPTOR_SMALL data
type. In order to avoid data alignment issues, a consequence of having the
next descriptor pointer exist as a 16-bit entry rather than a 32-bit entry,
the starting address of the data within the descriptor is declared as two
16-bit entries, rather than a single 32-bit entry. Performing two 16-bit
accesses, rather than a single 32-bit access, avoids alignment exceptions.

Other than these differences, the small descriptor chaining model is func-
tionally identical to the large descriptor chaining model.

Arrays of Descriptors

The descriptor array mode (ADI_DMA_MODE_DESCRIPTOR_ARRAY) is not yet
supported in the device manager.

Configuring a DMA Channel

Once a DMA channel has been opened, the client can detect and modify
the configuration of the channel via the adi_dma_Control function. The
complete list of configuration control commands are provided in

VisualDSP++ 5.0 Device Drivers and System 6-21
Services Manual for Blackfin Processors

DMA Manager

Table 6-6 on page 6-73. In most cases, the client passes the following
parameters to the adi_dma_Control() function:

• The channel handle. This is the value provided to the client during
the adi_dma_Open function.

• The command ID. This ADI_DMA_CMD data type identifies the
controllable item that is configured.

• A command-specific value. The semantics of this parameter are
defined by the command ID. For example, given a command ID of
ADI_DMA_CMD_SET_DATAFLOW, the command-specific value is either
TRUE or FALSE, to enable or disable dataflow on the channel. The
command-specific value is always cast to (void*).

Closing a DMA Channel

To close a DMA channel, the client calls the adi_dma_Close() function.
The client passes the following parameters into the function:

• The channel handle. This is the value provided to the client during
the adi_dma_Open() function.

• A flag indicating whether the DMA manager should wait for any
DMA activity on the channel to complete before closing the
channel.

Once a channel has been closed, the channel must be reopened with the
adi_dma_Open() function before it can be used again.

Transfer Completions
Client applications can use two different mechanisms to determine when
transfers complete. One method is by polling the channel, and the other
method is through callbacks.

Theory of Operation

6-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

In addition to polling and callbacks, the memory stream functions offer a
synchronous capability. When used synchronously, the
adi_dma_MemoryCopy() and adi_dma_MemoryCopy2D() functions return to
the client only when the transfer is complete.

Polling

Clients can use the adi_dma_Control() function to interrogate a specific
channel to determine whether a transfer is in progress by using the
ADI_DMA_CMD_GET_TRANSFER_STATUS command.

When given this command, the DMA manager examines the status of the
individual DMA channel. The function provides a response of TRUE, if a
transfer is in progress, and a response of FALSE, if no transfer is currently
in progress.

Note that memory streams can also be interrogated for transfer status.
Instead of passing the channel handle (ADI_DMA_CHANNEL_HANDLE) parame-
ter to the adi_dma_Control() function, the client passes the stream handle
(ADI_DMA_STREAM_HANDLE) parameter (casted to the
ADI_DMA_CHANNEL_HANDLE data type) to the adi_dma_Control() function.

Callbacks

Callbacks are the more commonly used mechanism that clients use to
determine when a transfer has completed. Callbacks are either live (mean-
ing they are made at interrupt time) or deferred (meaning they are made
after the hardware interrupt has completed processing using a callback
service).

Memory Stream Callbacks

When using memory streams, if the client provided a callback function as
a parameter to the adi_dma_MemoryCopy() or adi_dma_MemoryCopy2D()
functions, the callback function is invoked by the DMA manager when
the transfer is complete.

VisualDSP++ 5.0 Device Drivers and System 6-23
Services Manual for Blackfin Processors

DMA Manager

When using memory streams, the following arguments are passed to client
callback functions:

• The client handle. This is the client-supplied value provided in the
adi_dma_MemoryOpen() function.

• Event ID. This value is ADI_DMA_EVENT_DESCRIPTOR_PROCESSED.

• Starting destination address of the transfer

Circular Transfer Callbacks

When using the circular transfer method (ADI_DMA_MODE_CIRCULAR), the
client uses the configuration word to specify the frequency of callbacks.
When directed to callback the client on each sub-buffer completion, the
DMA manager invokes the client’s callback function after each sub-buffer
completes. This is useful in double-buffering schemes, where two
sub-buffers (ping/pong) are used.

When using circular transfers, the following arguments are passed to client
callback functions:

• The client handle. This is the client-supplied value provided in the
adi_dma_Open() function.

• Event ID. This value is ADI_DMA_EVENT_INNER_LOOP_PROCESSED
when a sub-buffer has completed processing or
ADI_DMA_EVENT_OUTER_LOOP_PROCESSED when the entire buffer has
completed processing.

• Starting address of the data buffer

Descriptor Callbacks

When using any of the descriptor-based transfer methods
(ADI_DMA_MODE_DESCRIPTOR_LARGE, ADI_DMA_MODE_DESCRIPTOR_SMALL, or
ADI_DMA_DESCRIPTOR_ARRAY), the client uses the configuration word of the
descriptor to define whether a callback is generated following processing

Theory of Operation

6-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

of a descriptor. When directed to callback the client upon completion of
the descriptor, the client callback function is passed the following
arguments:

• The client handle. This is the client-supplied value provided in the
adi_dma_Open() function.

• Event ID. This value is ADI_DMA_EVENT_DESCRIPTOR_PROCESSED.

• Starting address of the data

Descriptor-Based Sub-Modes
When using the small or large model descriptor-based transfers, two
sub-modes (loopback and streaming) allow the client application greater
flexibility in processing descriptors. Each of these sub-modes can be used
independently or in combination. Each sub-mode is enabled or disabled
via the adi_dma_Control() function. Clients that want to use these
sub-modes must enable them prior to enabling dataflow on the channel.
By default, both sub-modes are disabled.

Loopback Sub-Mode

The loopback sub-mode is controlled by the ADI_DMA_CMD_SET_LOOPBACK
command.

When loopback sub-mode is enabled (after the DMA manager has pro-
cessed the last descriptor in the chain of descriptors provided to a
channel), it automatically loops back to the first descriptor provided to the
channel. This effectively creates an infinite loop of descriptors as
illustrated in Figure 6-3. For example, with loopback sub-mode, the client
can provide the descriptors at initialization time, allow the DMA manager
to process the descriptors, and never need to resupply the DMA manager
with additional descriptors.

VisualDSP++ 5.0 Device Drivers and System 6-25
Services Manual for Blackfin Processors

DMA Manager

As in the non-loopback case, each descriptor, any one, none, or all
descriptors can be tagged to generate a callback to the client after
processing.

Streaming Sub-Mode

The streaming sub-mode is controlled by the ADI_DMA_CMD_SET_STREAMING
command.

When not using streaming sub-mode, the DMA manager pauses the DMA
controller after processing a descriptor that has been tagged to generate a
callback has been processed. The DMA manager does this because the
Blackfin processor’s DMA controller does not provide any status informa-
tion indicating that a specific descriptor has been processed. If the DMA
manager did not pause the controller, it is possible that before the DMA
manager can recognize and process the callback interrupt for a given
descriptor, the DMA controller may have completed processing of yet
another descriptor. Unless the DMA controller pauses until the DMA
manager processes the interrupt, the DMA manager cannot definitively
determine which callback interrupt is associated with which descriptor.

When not streaming, the DMA manager also pauses the DMA controller
when a channel has exhausted its supply of descriptors.

The streaming sub-mode allows the client to alter this behavior. When the
streaming sub-mode is enabled, the DMA manager never pauses the DMA

Figure 6-3. Descriptor Chain With Loopback

. . .DESCRIPTOR
0

DESCRIPTOR
1

DESCRIPTOR
N

Theory of Operation

6-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

controller; this allows the DMA transfers to occur at the maximum
throughput rate.

When streaming, the client is required to ensure the following conditions:

• The channel always has descriptors to process and never runs out of
descriptors.

• The system timing is such that the DMA manager can service the
callback interrupt for any descriptor tagged for a callback, before
another descriptor on the same channel that is tagged for callback
is processed.

These conditions can be met fairly easily in most systems.

DMA Channel to Peripheral Mapping
The Blackfin processor allows the user to change the default mapping of
the various DMA-supported peripherals to the various DMA channels.
Typically, however, the mappings for the memory DMA channels are
fixed and cannot be changed.

The DMA manager provides two functions, adi_dma_GetMapping() and
adi_dma_SetMapping(), that allow the client to easily detect and change
the mapping of DMA channels to peripherals. These functions can be
called at any time after the DMA manager is initialized, but they must be
processed before the channel is opened.

VisualDSP++ 5.0 Device Drivers and System 6-27
Services Manual for Blackfin Processors

DMA Manager

Sensing a Mapping

The client calls the adi_dma_GetMapping() function to detect the DMA
channel ID to which a peripheral is mapped. The adi_dma_GetMapping()
function takes the following parameters:

• The peripheral ID. This value, an ADI_DMA_PMAP type, enumerates
the peripheral whose mapping is detected.

• Pointer to an ADI_DMA_CHANNEL_ID value. This value is the address
of a location in memory into which the function stores the channel
ID to which the given peripheral is mapped.

Setting a Mapping

The client calls the adi_dma_SetMapping() function to set the mapping of
a given channel ID to a given peripheral. The client should take care to
ensure that a one-to-one mapping exists between peripherals and channel
IDs. The adi_dma_SetMapping() function takes the following parameters:

• The peripheral ID. This value, an ADI_DMA_PMAP type, enumerates
the peripheral whose mapping is set.

• The channel ID. This value, an ADI_DMA_CHANNEL_ID value,
enumerates the DMA channel to which the given peripheral is
mapped.

Interrupts
The DMA manager uses the services of the interrupt manager to configure
all DMA-related interrupts. All hooking of interrupts is isolated into the
adi_dma_Open() and adi_dma_MemoryOpen() functions, and all unhooking
of interrupts occurs in the adi_dma_Close() and adi_dma_MemoryClose()
functions.

By default, the DMA manager uses the interrupt vector group (IVG)
settings as set up by the interrupt manager. The client can alter the

Theory of Operation

6-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

mapping of DMA channels to IVG levels via calls into the interrupt man-
ager. See “Interrupt Manager” on page 2-1 for more information on
altering mapping of DMA channels to IVGs.

Hooking Interrupts

When the client opens the first DMA channel, the adi_dma_Open()
function hooks into the appropriate IVG chain for the DMA error
interrupt. The handler for DMA errors does nothing other than clear the
appropriate DMA error and notify the client’s callback function that a
DMA error occurred.

In addition to the DMA error interrupt, the adi_dma_Open() function
hooks the DMA data interrupt handler into the appropriate IVG level for
the given channel. The data interrupt handler is used to post callbacks
resulting from the completion of DMA transfers. In addition to posting
the notification callbacks, the data handler ensures that the channel is
refreshed and restarted (if necessary) with any new pending transfers.

Unhooking Interrupts

When the last remaining open DMA channel is closed, the
adi_dma_Close() function unhooks the DMA error handler from the
appropriate IVG handler chain. In addition, if no other open channels are
mapped to the same IVG as the channel being closed, the
adi_dma_Close() function unhooks the DMA data handler from the chain
of handlers for that IVG.

Two-Dimensional DMA
When using linear DMA, data is moved in a one-dimensional (linear)
fashion. This is the most common type of transfer, where n elements of
“w” width are moved from one location, or taken in through a device
to another memory location, or out through a device.

VisualDSP++ 5.0 Device Drivers and System 6-29
Services Manual for Blackfin Processors

DMA Manager

Two-dimensional DMA is a convenient feature that allows data to be
transferred in a non-linear fashion. This is especially useful in video
applications. Two-dimensional DMA supports arbitrary row (YCount) and
column (XCount) sizes up to 64K x 64K elements, as well as row modify
values (YModify) and column modify values up to +/- 32K bytes.

When using channel DMA, descriptors are used to define the parameters
for the transfer. When using memory streams, the ADI_DMA_2D_TRANSFER
data type is used to define the parameters for the transfer.

For example, suppose you want to retrieve a 16 x 8 block of bytes (data)
from a video frame buffer (frame) of size N x M pixels at location
frame[6][6] and store it in a separate memory area (data) for processing.
After the data has been processed, the values are then copied back to the
original location.

Figure 6-4 illustrates the area of the frame to process.

Figure 6-4. Selecting a 16 x 8 Block of Data From a Video Frame of
Size N x M

N6

6

M

16

8

B

A

frame

data

Theory of Operation

6-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

To select each row of the 16 x 8 block, the inner loop of the required 2-D
DMA configuration has 16 values (XCOUNT=16) and a stride (XMODIFY) of 1.
The outer loop comprises 8 values (YCOUNT=8) and a stride (YMODIFY) of
N-15 (A + B in Figure 6-4) chosen to instruct the DMA controller to
jump from the end of one row to the start of the next.

It is also possible to extract interleaved data (for example, RGB values for
a video frame) by modifying both the x and y modify values. For example,
to receive a stream of R,G,B,R,G,B,… values from an N x M frame,
consider Figure 6-5.

In this case, the inner loop of the required 2-D DMA configuration has
three values (XCOUNT=3) and a stride (XMODIFY) of N*M, chosen such that
successive elements in each row (or RGB tuple) are 1 - 2 - 3, 4 - 5 - 6,
and so on (see Figure 6-5).

The outer loop of the 2-D DMA configuration has N*M values
(YCOUNT=N*M) and a negative stride (YMODIFY) of 1-2*N*M chosen to instruct
the DMA controller to jump from element 3 to 4, 6 to 7, and so on at the
end of each inner loop.

Figure 6-5. Capturing a Video Data Stream of (R,G,B Pixels) x
(N x M Image Size)

3 6

2 5

N

M

1 4

VisualDSP++ 5.0 Device Drivers and System 6-31
Services Manual for Blackfin Processors

DMA Manager

 DMA Traffic Control
The traffic control period registers and the traffic control count registers
can be controlled using a command to set a value and a command to sense
a value.

A data structure called ADI_DMA_TC_SET is defined for setting a DMA traf-
fic control parameter. It contains fields to specify which DMA controller
the command is being issued for, which of the traffic control parameters
to set (DEB, DCB, DAB), and the value to set it to.

A similar data structure called ADI_DMA_TC_GET is defined for sensing a
DMA traffic control parameter.

Two commands called ADI_DMA_CMD_GET_TC and ADI_DMA_CMD_SET_TC are
used to set and sense the traffic control parameters. For more details on
setting and sensing traffic control parameters, see “Data Structures” on
page 6-64 and Table 6-6 on page 6-73.

DMA Manager API Reference
This section provides descriptions of the DMA manager API functions.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Theory of Operation

6-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The DMA manager API supports the functions listed in Table 6-1.

Table 6-1. DMA Manager API Functions

Function Description

Primary Functions

adi_dma_Buffer Provides a single or circular buffer.
See “adi_dma_Buffer” on page 6-34.

adi_dma_Close Closes a DMA channel.
See “adi_dma_Close” on page 6-36.

adi_dma_Control Controls/queries the operation of a DMA channel.
See “adi_dma_Control” on page 6-37.

adi_dma_Init Initializes a DMA manager.
See “adi_dma_Init” on page 6-42.

adi_dma_Open Opens a DMA channel for use.
See “adi_dma_Open” on page 6-56.

adi_dma_Queue Queues a descriptor chain.
See “adi_dma_Queue” on page 6-58.

adi_dma_Terminate Shuts down and terminates a DMA manager.
See “adi_dma_Terminate” on page 6-61.

Helper Functions

adi_dma_GetMapping Gets the DMA Channel ID to which a peripheral is
mapped. See “adi_dma_GetMapping” on page 6-40.

adi_dma_GetPeripheralInterruptID Gets the peripheral interrupt ID for a given DMA
channel ID.
See “adi_dma_GetPeripheralInterruptID” on
page 6-41.

adi_dma_SetConfigWord Sets the bits in the configuration word for a chain of
descriptors. See “adi_dma_SetConfigWord” on
page 6-59.

adi_dma_SetMapping Sets the DMA Channel ID to which a peripheral is
mapped. See “adi_dma_SetMapping” on page 6-60.

VisualDSP++ 5.0 Device Drivers and System 6-33
Services Manual for Blackfin Processors

DMA Manager

Memory DMA Functions

adi_dma_MemoryOpen Opens a memory DMA stream for use.
See “adi_dma_MemoryOpen” on page 6-48.

adi_dma_MemoryClose Closes a memory DMA stream.
See “adi_dma_MemoryClose” on page 6-43.

adi_dma_MemoryCopy Copies memory in a linear, one-dimensional fashion.
See “adi_dma_MemoryCopy” on page 6-44.

adi_dma_MemoryCopy2D Copies memory in a two-dimensional fashion.
See “adi_dma_MemoryCopy2D” on page 6-46.

Memory DMA Queue Functions

adi_dma_MemoryQueueControl Controls or configures a memory DMA stream. See
“adi_dma_MemoryQueueControl” on page 6-53.

adi_dma_MemoryQueueOpen Opens a memory DMA stream for queueing. See
“adi_dma_MemoryQueueOpen” on page 6-54.

adi_dma_MemoryQueueClose Closes a memory DMA stream that was opened for
queueing. See “adi_dma_MemoryQueueClose” on
page 6-52.

adi_dma_MemoryQueue Queues memory DMA descriptor(s) to a stream. See
“adi_dma_MemoryQueue” on page 6-50.

Table 6-1. DMA Manager API Functions (Cont’d)

Function Description

Theory of Operation

6-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Buffer

Description

The adi_dma_Buffer() function assigns a one-shot or a circular buffer to a
DMA channel and configures the DMA channel according to the parame-
ters supplied.

Prototype

ADI_DMA_RESULT adi_dma_Buffer(

ADI_DMA_CHANNEL_HANDLE ChannelHandle,

void *StartAddress,

ADI_DMA_CONFIG_REG Config,

u16 XCount,

s16 XModify,

u16 YCount,

s16 YModify

);

VisualDSP++ 5.0 Device Drivers and System 6-35
Services Manual for Blackfin Processors

DMA Manager

Arguments

Return Value

ChannelHandle Uniquely identifies the DMA channel the buffer is assigned to
and is the value returned when the DMA channel is opened

StartAddress Location of the start of the filled or transmitted buffer

Config DMA configuration control register for the transfer

XCount Total number of words transferred in a one-dimensional
buffer or the number of data elements per row in a
two-dimensional buffer

XModify Offset in bytes between each word transferred (1-D) or the
offset in bytes between each row element (2-D)

YCount Number of rows transferred

YModify Offset in bytes between the last data element of one row and
the first element of the next

ADI_DMA_RESULT_SUCCESS Buffer was assigned successfully.

ADI_DMA_RESULT_BAD_HANDLE ChannelHandle does not contain a valid chan-
nel handle.

ADI_DMA_RESULT_BAD_MODE DMA channel has not been opened for either
single or circular buffer operation.

ADI_DMA_RESULT_ALREADY_RUNNING DMA operation is in progress.

Theory of Operation

6-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Close

Description

The adi_dma_Close() function closes a DMA channel and releases the
configuration memory for further use. Depending on the value of the
WaitFlag argument, the channel is closed immediately or is closed after
ongoing transfers have completed.

Prototype

ADI_DMA_RESULT adi_dma_Close(

ADI_DMA_CHANNEL_HANDLE ChannelHandle,

u32 WaitFlag

);

Arguments

Return Value

ChannelHandle Uniquely identifies the DMA channel to close and is the
value returned when the DMA channel is opened

WaitFlag If set to TRUE(1), instructs the DMA manager to wait for
ongoing transfers to complete before closing the channel;
otherwise, if set to FALSE(0), the channel is closed immedi-
ately, terminating any ongoing transfers.

ADI_DMA_RESULT_SUCCESS DMA channel successfully closed.

ADI_DMA_RESULT_BAD_HANDLE ChannelHandle does not point to a
valid channel.

ADI_DMA_RESULT_CANT_UNHOOK_INTERRUPT Data handler and/or error handler can-
not be unhooked.

VisualDSP++ 5.0 Device Drivers and System 6-37
Services Manual for Blackfin Processors

DMA Manager

adi_dma_Control

Description

The adi_dma_Control() function controls/queries the operation of the
specified DMA channel.

The function can be used in several ways:

• A single command is passed.

adi_dma_Control(

ChannelHandle, ADI_DMA_CMD_SET_LOOPBACK, (void*)

TRUE);

• A single command-value pair is passed.

ADI_DMA_CMD_VALUE_PAIR cmd = {

ADI_DMA_CMD_SET_WORD_SIZE, (void*)

ADI_DMA_WDSIZE_32BIT};

adi_dma_Control(ChannelHandle, cmd.CommandID ,cmd.Value);

• A single ADI_DMA_CMD_VALUE_PAIR structure is passed (by
reference).

adi_dma_Control(ChannelHan-

dle,ADI_DMA_CMD_VALUE_PAIR,&cmd);

• A table of ADI_COMMAND_PAIR structures is passed. The table must
have the following terminator entry to signify the end of the table
of commands: { ADI_DMA_CMD_END, 0 }. For example,

ADI_DMA_CMD_VALUE_PAIR table = {

{ADI_DMA_CMD_SET_LOOPBACK, (void*)LoopbackFlag},

{ADI_DMA_CMD_SET_DATAFLOW, (void*)TRUE},

{ ADI_DMA_CMD_END, NULL };

adi_dma_Control(ChannelHandle,ADI_DMA_CMD_TABLE,&table);

Theory of Operation

6-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The set of commands that can be issued using the adi_dma_Control
function is defined in “DMA Commands” on page 6-73.

Prototype

ADI_DMA_RESULT adi_dma_Control(

ADI_DMA_CHANNEL_HANDLE ChannelHandle,

ADI_DMA_CM Command,

void *Value

);

Arguments

ChannelHandle Uniquely identifies the DMA channel the buffer is assigned to and is the
value returned when the DMA channel is opened.

Command ADI_DMA_CMD enumeration value. See “DMA Commands” on page 6-73 for
a full list of commands.

Value Depending on the value for Command, this parameter is one of the following:
• If Command has the value ADI_DMA_CM_VALUE_PAIR,

the system issues the address of a single
ADI_DMA_CMD_VALUE_PAIR element specifying the command.

• If Command has the value ADI_DMA_CMD_TABLE, the system issues the
address of an array of ADI_DMA_CMD_VALUE_PAIR elements specifying
one or more commands. The last entry in the table must be
{ADI_DMA_CMD_END,NULL}.

• For any other value, Command specifies the command to be processed and
Value is the associated value for the command. In the case of a command
that queries a value, the value of the setting is stored at the location
pointed to by the pointer Value.

VisualDSP++ 5.0 Device Drivers and System 6-39
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_COMMAND Command is invalid. Either a bad command or a spe-
cific command is not allowed in this context.

ADI_DMA_RESULT_ALREADY_RUNNING Commands could not be performed as the channel is
currently transferring data.

Theory of Operation

6-40 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_GetMapping

Description

The adi_dma_GetMapping() function is used to identify the DMA channel
ID to which a DMA- compatible peripheral is mapped.

Prototype

ADI_DMA_RESULT adi_dma_GetMapping(

ADI_DMA_PMAP pmap,

ADI_DMA_CHANNEL_ID *pChannelID

);

Arguments

Return Value

pmap Peripheral ID is queried.

pChannelID Location where the DMA manager stores the channel ID to
which the peripheral is mapped.

ADI_DMA_RESULT_SUCCESS Device is identified and DMA information is returned.

ADI_DMA_RESULT_BAD_PERIPHERAL Bad peripheral value was encountered.

ADI_DMA_RESULT_NOT_MAPPED No mapping was found for the device.

VisualDSP++ 5.0 Device Drivers and System 6-41
Services Manual for Blackfin Processors

DMA Manager

adi_dma_GetPeripheralInterruptID

Description

The adi_dma_GetPeripheralInterruptID function gets the peripheral
interrupt ID for a given DMA channel ID.

Prototype

ADI_DMA_RESULT adi_dma_GetPeripheralInterruptID(

ADI_DMA_CHANNEL_ID ChannelID,

ADI_INT_PERIPHERAL_ID *pPeripheralID

);

Arguments

Return Value

ChannelID DMA channel ID

pPeripheralID ADI_INT_PERIPHERAL_ID structure in which the peripheral
ID will be stored.

ADI_DMA_RESULT_SUCCESS No errors encountered

ADI_DMA_RESULT_BAD_CHANNEL_ID Invalid channel ID

Theory of Operation

6-42 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Init

Description

The adi_dma_Init() function initializes a DMA manager.

Prototype

ADI_DMA_RESULT adi_dma_Init(

void *pMemory,

const size_t MemorySize,

u32 *pMaxChannels

ADI_DMA_MANAGER_HANDLE *pManagerHandle,

void *pCriticalRegionArg

);

Arguments

Return Value

pMemory Pointer to memory that the DMA can use

MemorySize Size, in bytes, of the memory provided

pMaxChannels Location in memory where the DMA manager stores the num-
ber of simultaneously open channels that can be supported
given the memory provided

pManagerHandle Location in memory where the DMA manager stores the han-
dle to the DMA manager

pCriticalRegionArg Parameter that the DMA manager passes to the
adi_int_EnterCriticalRegion() function

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_NOMEMORY Insufficient memory is available to initialize the DMA
manager.

VisualDSP++ 5.0 Device Drivers and System 6-43
Services Manual for Blackfin Processors

DMA Manager

adi_dma_MemoryClose

Description

The adi_dma_MemoryClose() function closes down a memory DMA
stream, freeing up all resources used by the memory stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryClose(

ADI_DMA_STREAM_HANDLE StreamHandle,

u32 WaitFlag

);

Arguments

Return Value

StreamHandle Handle to the DMA memory stream

WaitFlag If set to TRUE(1), instructs the DMA manager to wait for
ongoing transfers to complete before closing down the
memory stream; otherwise, if set to FALSE(0), the channel
is closed immediately, terminating any transfers in progress.

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE StreamHandle parameter does not point to a valid mem-
ory stream.

Theory of Operation

6-44 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryCopy

Description

The adi_dma_MemoryCopy() function performs a one-dimensional (linear)
memory copy.

Prototype

ADI_DMA_RESULT adi_dma_MemoryCopy(

ADI_DMA_STREAM_HANDLE StreamHandle,

void *pDest,

void *pSrc,

u16 ElementWidth,

u16 ElementCount,

ADI_DCB_CALLBACK_FN ClientCallback

);

Arguments

StreamHandle Handle to the DMA memory stream

pDest Starting address into which memory is copied

pSrc Starting address from which memory is copied

ElementCount Number of elements to transfer

ElementWidth Width of an element (in bytes); allowed values are 1, 2, and 4.

ClientCallback Callback function called when the transfer completes. If NULL, the
call to the adi_dma_MemoryCopy() function is considered syn-
chronous and does not return to the client until the transfer has
completed.

VisualDSP++ 5.0 Device Drivers and System 6-45
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE StreamHandle parameter does not point to a valid mem-
ory stream.

ADI_DMA_RESULT_IN_USE Memory stream already has a transfer in progress.

Theory of Operation

6-46 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryCopy2D

Description

The adi_dma_MemoryCopy2D() function performs a two-dimensional mem-
ory copy.

Prototype

ADI_DMA_RESULT adi_dma_MemoryCopy2D(

ADI_DMA_STREAM_HANDLE StreamHandle,

ADI_DMA_2D_TRANSFER *pDest,

ADI_DMA_2D_TRANSFER *pSrc,

u32 ElementWidth,

ADI_DCB_CALLBACK_FN ClientCallback

);

Arguments

StreamHandle Handle to the DMA memory stream

pDest Pointer to the structure that describes how and where the data is
copied into memory

pSrc Pointer to the structure that describes how and where the data is
copied from memory

ElementWidth Width of an element (in bytes); allowed values are 1, 2, and 4.

ClientCallback Callback function called when the transfer completes. If NULL,
the call to the adi_dma_MemoryCopy() function is considered syn-
chronous and does not return to the client until the transfer has
completed.

VisualDSP++ 5.0 Device Drivers and System 6-47
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE StreamHandle parameter does not point to a valid mem-
ory stream.

ADI_DMA_RESULT_IN_USE Memory stream already has a transfer in progress.

Theory of Operation

6-48 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryOpen

Description

The adi_dma_MemoryOpen() function opens a memory DMA stream for
use. Once it is opened, memory DMA transfers can be scheduled on the
stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryOpen(

ADI_DMA_MANAGER_HANDLE ManagerHandle,

ADI_DMA_STREAM_ID StreamID,

void *ClientHandle,

ADI_DMA_STREAM_HANDLE *pStreamHandle,

void *DCBHandle

);

Arguments

ManagerHandle Handle to the DMA manager

StreamID Memory stream ID that is opened.

ClientHandle Identifier defined by the client. The DMA manager
includes this identifier in all DMA manager-initiated com-
munication with the client, specifically in calls to the call-
back function.

pStreamHandle Pointer to a client-provided location where the DMA man-
ager stores an identifier defined by the DMA manager. All
subsequent communication initiated by the client to the
DMA manager for this memory stream includes this handle.

DCBServiceHandle Handle to the deferred callback service used for any mem-
ory stream events. A value of NULL means that deferred
callbacks are not used and all callbacks occur at DMA inter-
rupt time.

VisualDSP++ 5.0 Device Drivers and System 6-49
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_INTERRUPT System cannot hook a DMA data or error inter-
rupt.

Theory of Operation

6-50 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryQueue

Description

The adi_dma_MemoryQueue() function queues memory DMA descrip-
tors(s) to a stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryQueue(

ADI_DMA_STREAM_HANDLE StreamHandle,

ADI_DMA_DESCRIPTOR_LARGE *pSourceDescriptor,

ADI_DMA_DESCRIPTOR_LARGE *pDestinationDescriptor

);

Arguments

StreamHandle Handle to the DMA memory stream

pSourceDescriptor Source descriptor handle

pDestinationDescriptor Destination descriptor handle

VisualDSP++ 5.0 Device Drivers and System 6-51
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE Invalid stream handle was passed.

ADI_DMA_RESULT_BAD_DESCRIPTOR Invalid descriptor was passed.

ADI_DMA_RESULT_ALIGNMENT_ERROR Parameters will cause an alignment error.

ADI_DMA_RESULT_BAD_XCOUNT Invalid XCount value was supplied.

ADI_DMA_RESULT_NULL_DESCRIPTOR A NULL descriptor was passed.

ADI_DMA_RESULT_INCOMPATIBLE_TRANSFER_SIZE Source and destination have different
transfer sizes.

ADI_DMA_RESULT_INCOMPATIBLE_WDSIZE Source and destination have different
WDSIZE values.

ADI_DMA_RESULT_INCOMPATIBLE_CALLBACK Destination descriptor callback is not
compatible with source descriptors.

ADI_DMA_RESULT_NO_BUFFER Channel has no buffer.

Theory of Operation

6-52 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryQueueClose

Description

The adi_dma_MemoryQueueClose() function closes a memory DMA stream
that was opened for queueing.

Prototype

ADI_DMA_RESULT adi_dma_MemoryQueueClose(

ADI_DMA_STREAM_HANDLE StreamHandle,

u32 WaitFlag

);

Arguments

Return Value

StreamHandle Handle to the DMA memory stream

WaitFlag Wait for transfers to complete flag (TRUE/FALSE)

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE Invalid stream handle was passed.

VisualDSP++ 5.0 Device Drivers and System 6-53
Services Manual for Blackfin Processors

DMA Manager

adi_dma_MemoryQueueControl

Description

The adi_dma_MemoryQueueControl() function controls or configures a
memory DMA stream.

Prototype

ADI_DMA_RESULT adi_dma_MemoryQueueControl(

ADI_DMA_STREAM_HANDLE StreamHandle,

ADI_DMA_CMD Command,

void *Value

);

Arguments

Return Value

StreamHandle Handle to the DMA memory stream

Command Command ID

Value Command-specific value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_COMMAND Invalid command item was passed.

ADI_DMA_RESULT_ALREADY_RUNNING Commands could not be performed as the chan-
nel is currently transferring data.

ADI_DMA_RESULT_BAD_HANDLE Invalid stream handle was passed.

Theory of Operation

6-54 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_MemoryQueueOpen

Description

The adi_dma_MemoryQueueOpen() function opens a memory DMA stream
for queueing.

Prototype

ADI_DMA_RESULT adi_dma_MemoryQueueOpen(

ADI_DMA_MANAGER_HANDLE ManagerHandle,

ADI_DMA_STREAM_ID StreamID,

void *ClientHandle

ADI_DMA_STREAM_HANDLE *pStreamHandle,

void *DCBHandle,
ADI_DCB_CALLBACK_FN ClientCallback

);

Arguments

ManagerHandle Handle to the DMA manager

StreamID Open memory stream ID

ClientHandle ClientHandle argument passed in callbacks

pStreamHandle Location where DMA StreamHandle is stored

DCBHandle Deferred callback service handle

ClientCallback Client callback function

VisualDSP++ 5.0 Device Drivers and System 6-55
Services Manual for Blackfin Processors

DMA Manager

Return Value

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_BAD_HANDLE Invalid stream handle or manager handle was
passed.

ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_INTERRUPT System cannot hook a DMA data or error inter-
rupt.

Theory of Operation

6-56 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Open

Description

The adi_dma_Open() function opens a DMA channel for use. The DMA
manager ensures the channel is not already opened and then initializes any
appropriate data structures.

Prototype

ADI_DMA_RESULT adi_dma_Open(

ADI_DMA_MANAGER_HANDLE ManagerHandle

ADI_DMA_CHANNEL_ID ChannelID

void *ClientHandle,

ADI_DMA_CHANNEL_HANDLE *pChannelHandle,

ADI_DMA_MODE Mode,

ADI_DCB_HANDLE DCBHandle,

ADI_DCB_CALLBACK_FN ClientCallback

);

VisualDSP++ 5.0 Device Drivers and System 6-57
Services Manual for Blackfin Processors

DMA Manager

Arguments

Return Value

Argument Explanation

ManagerHandle Handle to the DMA manager

ChannelID ADI_DMA_CHANNEL_ID enumeration value. See
“ADI_DMA_CHANNEL_ID” on page 6-67.

ClientHandle Identifier defined by the client. The DMA manager includes this identi-
fier in all DMA manager-initiated communication with the client, spe-
cifically in calls to the callback function.

pChannelHandle Pointer to a client-provided location where the DMA manager stores an
identifier defined by the DMA manager. All subsequent communication
initiated by the client to the DMA manager for this channel includes the
handle to specify the channel to which it is referring.

Mode ADI_DMA_MODE enumeration value specifying the data transfer mode
used by the opened DMA channel. See “ADI_DMA_MODE” on
page 6-68.

DCBServiceHandle Handle to the deferred callback service used for the given channel. A
value of NULL means that deferred callbacks are not used and all call-
backs occur at DMA interrupt time.

ClientCallback Address of a callback function defined by the application. The value
passed for the ClientHandle parameter is the value supplied by the
application when the channel was opened.

ADI_DMA_RESULT_SUCCESS Function completed successfully.

ADI_DMA_RESULT_ALL_IN_USE All channel memory is in use.

ADI_DMA_RESULT_CANT_HOOK_INTERRUPT System cannot hook a DMA data or error
interrupt.

Theory of Operation

6-58 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_Queue

Description

The adi_dma_Queue() function queues a descriptor or chain of descriptors
to the specified DMA channel.

When using descriptor chains, the descriptor is added to the end of the list
of descriptors already queued to the channel, if any. The last descriptor in
the chain must have its pNext pointer set to NULL.

Prototype

ADI_DMA_RESULT adi_dma_Queue(

ADI_DMA_CHANNEL_HANDLE ChannelHandle,

ADI_DMA_DESCRIPTOR_HANDLE DescriptorHandle

);

Arguments

Return Value

ChannelHandle Uniquely identifies the DMA channel that the descrip-
tor is queued on and is the value returned when the
DMA channel is opened

DescriptorHandle Pointer to the first descriptor in the chain

ADI_DMA_RESULT_SUCCESS Descriptor was queued successfully.

ADI_DMA_RESULT_BAD_HANDLE ChannelHandle does not contain a valid channel han-
dle.

ADI_DMA_RESULT_BAD_DESCRIPTOR Descriptor handle is NULL.

ADI_DMA_RESULT_ALREADY_RUNNING Cannot submit additional descriptors to a channel
configured for a loopback with dataflow enabled.

V is u a lD S P + + 5 .0 D e v ic e D r iv e r s a n d S y s t e m 6-59
Services Manual for Blackfin Processors

DMA Manager

adi_dma_SetConfigWord

Description

The adi_dma_SetConfigWord() function sets the bits in the configuration
word for a chain of descriptors.

Prototype

ADI_DMA_RESULT adi_dma_SetConfigWord(

ADI_DMA_CHANNEL_HANDLE ChannelHandle,

ADI_DMA_DESCRIPTOR_HANDLE DescriptorHandle

);

Arguments

Return Value

ChannelHandle Channel handle

DescriptorHandle Descriptor chain

ADI_DMA_RESULT_SUCCESS No errors encountered

ADI_DMA_RESULT_BAD_HANDLE Channel handle is NULL.

ADI_DMA_RESULT_BAD_DESCRIPTOR Descriptor chain is NULL.

ADI_DMA_RESULT_NON_TERMINATED_CHAIN Chain is not NULL terminated.

ADI_DMA_RESULT_BAD_DIRECTION The WNR bit is wrong.

ADI_DMA_RESULT_CALLBACKS_DISALLOWED_ON_SOURCE No callbacks allowed

Theory of Operation

6-60 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dma_SetMapping

Description

The adi_dma_SetMapping() function maps the DMA channel ID to the
given peripheral.

Prototype

ADI_DMA_RESULT adi_dma_SetMapping(

ADI_DMA_PMAP pmap,

ADI_DMA_CHANNEL_ID ChannelID

);

Arguments

Return Value

pmap Peripheral ID to which the DMA channel is mapped.

ChannelID Channel ID that is mapped to the peripheral.

ADI_DMA_RESULT_SUCCESS Channel was successfully mapped.

ADI_DMA_RESULT_BAD_PERIPHERAL Bad peripheral value was encountered.

ADI_DMA_RESULT_ALREADY_RUNNING Mapping could not be performed as the channel is
currently transferring data.

VisualDSP++ 5.0 Device Drivers and System 6-61
Services Manual for Blackfin Processors

DMA Manager

adi_dma_Terminate

Description

The adi_dma_Terminate() function closes down all DMA activity and ter-
minates the DMA manager.

Prototype

ADI_DMA_RESULT adi_dma_Terminate(

ADI_DMA_MANAGER_HANDLE ManagerHandle

);

Arguments

Return Value

ManagerHandle Handle to the DMA manager

ADI_DMA_RESULT_SUCCESS Process completed successfully.

Public Data Structures, Enumerations, and Macros

6-62 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Public Data Structures, Enumerations,
and Macros

This section defines the public data structures and enumerations used by
the DMA manager. These data structures are made available to client
applications or device driver libraries via the adi_dma.h header file. All
types have the ADI_DMA_ prefix to avoid ambiguity with client developer’s
data types.

This section contains:

• “Data Types”

• “Data Structures” on page 6-64

• “General Enumerations” on page 6-67

• “ADI_DMA_CONFIG_REG Field Values” on page 6-72

• “DMA Commands” on page 6-73

Data Types
Several data types that shield the client developer from the internal imple-
mentation of the library and the details of DMA programming are used.
These data types also provide an interface that is partially decoupled from
the functionality offered by individual processors.

ADI_DMA_CHANNEL_HANDLE

The ADI_DMA_CHANNEL_HANDLE data type identifies each separate DMA
channel to the DMA manager. When passed to the DMA manager func-
tion, it uniquely identifies the channel function to which it needs to refer
or upon which it must operate. The DMA manager returns this handle to
the application when a DMA channel is opened. All other DMA manager

VisualDSP++ 5.0 Device Drivers and System 6-63
Services Manual for Blackfin Processors

DMA Manager

functions that need to identify a channel require this parameter to be
passed.

ADI_DMA_DESCRIPTOR_UNION and
ADI_DMA_DESCRIPTOR_HANDLE

The ADI_DMA_DESCRIPTOR_UNION data structure represents a union of the
small descriptor, large descriptor, and descriptor array data types. The
ADI_DMA_DESCRIPTOR_HANDLE is then a typedef that describes a pointer to
the union. The ADI_DMA_DESCRIPTOR_HANDLE is passed into the
adi_dma_Queue() function as a means to provide the function with
a) a small descriptor chain, b) a large descriptor chain, or c) an array of
descriptors. By using the handle/union, a single adi_dma_Queue() func-
tion is needed, instead of separate functions for each of the descriptor data
types.

typedef union ADI_DMA_DESCRIPTOR_UNION {

ADI_DMA_DESCRIPTOR_SMALL Small;

ADI_DMA_DESCRIPTOR_LARGE Large;

ADI_DMA_DESCRIPTOR_ARRAY Array;

} ADI_DMA_DESCRIPTOR_UNION;

typedef ADI_DMA_DESCRIPTOR_UNION *ADI_DMA_DESCRIPTOR_HANDLE;

ADI_DMA_STREAM_HANDLE

The ADI_DMA_STREAM_HANDLE data type identifies a memory stream to the
DMA manager. When passed to the adi_dma_MemoryXXX functions, the
handle uniquely identifies the memory stream onto which the DMA man-
ager operates. The DMA manager returns this handle to the application
when a DMA memory stream is opened. All other memory stream func-
tions require this parameter to be passed.

Public Data Structures, Enumerations, and Macros

6-64 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Data Structures
The structures that define each type of descriptor and the DMA
configuration control register are available in the public adi_dma.h header
file. The field names follow the convention used in the Hardware Reference
for the appropriate processor.

ADI_DMA_2D_TRANSFER

The ADI_DMA_2D_TRANSFER data structure defines the characteristics of the
source or destination component of a two-dimensional memory copy.

typedef struct ADI_DMA_2D_TRANSFER {

void *StartAddress;

u16 XCount;

s16 XModify;

u16 YCount;

s16 YModify;

} ADI_DMA_2D_TRANSFER;

ADI_DMA_CONFIG_REG

The ADI_DMA_CONFIG_REG type defines the structure for the DMA
configuration control word. In addition, macros are provided to allow the
client to set individual fields within the word.

ADI_DMA_DESCRIPTOR_ARRAY

The ADI_DMA_DESCRIPTOR_ARRAY structure defines the contents of a
descriptor array element.

typedef struct ADI_DMA_DESCRIPTOR_ARRAY {

void *StartAddress;

ADI_DMA_CONFIG_REG Config;

u16 XCount;

s16 XModify;

VisualDSP++ 5.0 Device Drivers and System 6-65
Services Manual for Blackfin Processors

DMA Manager

u16 YCount;

s16 YModify;

u16 CallbackFlag;

} ADI_DMA_DESCRIPTOR_ARRAY;

 Descriptor element CallbackFlag is defined as u16, but it should
take only values 0 or 1 (FALSE or TRUE, respectively). Passing a value
greater than 1 causes unpredictable results.

ADI_DMA_DESCRIPTOR_LARGE

The ADI_DMA_DESCRIPTOR_LARGE structure defines the contents of a large
descriptor.

typedef struct ADI_DMA_DESCRIPTOR_LARGE {

struct ADI_DMA_DESCRIPTOR_LARGE *pNext;

void *StartAddress;

ADI_DMA_CONFIG_REG Config;

u16 XCount;

s16 XModify;

u16 YCount;

s16 YModify;

u16 CallbackFlag;

} ADI_DMA_DESCRIPTOR_LARGE;

 Descriptor element CallbackFlag is defined as u16, but it should
take only values 0 or 1 (FALSE or TRUE, respectively). Passing a value
greater than 1 causes unpredictable results.

Public Data Structures, Enumerations, and Macros

6-66 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_DESCRIPTOR_SMALL

The ADI_DMA_DESCRIPTOR_SMALL structure defines the contents of a small
descriptor.

typedef struct ADI_DMA_DESCRIPTOR_SMALL {

u16 *pNext;

u16 StartAddressLow;

u16 StartAddressHigh;

ADI_DMA_CONFIG_REG Config;

u16 XCount;

s16 XModify;

u16 YCount;

s16 YModify;

u16 CallbackFlag;

} ADI_DMA_DESCRIPTOR_SMALL;

 Descriptor element CallbackFlag is defined as u16, but it should
take only values 0 or 1 (FALSE or TRUE, respectively). Passing a value
greater than 1 causes unpredictable results.

ADI_DMA_TC_SET

The ADI_DMA_TC_SET structure is used for setting a DMA traffic control
parameter. The ParameterID field specifies what type of parameter to set
and is defined using the ADI_DMA_TC_PARAMETER enumeration. The
ControllerID specifies which DMA controller to set, where multiple con-
trollers are available, the first controller starting at 0. The Value field
specifies the value to write.

typedef struct ADI_DMA_TC_SET {

ADI_DMA_TC_PARAMETER ParameterID;

u16 ControllerID;

u16 Value;

} ADI_DMA_TC_SET;

VisualDSP++ 5.0 Device Drivers and System 6-67
Services Manual for Blackfin Processors

DMA Manager

ADI_DMA_TC_GET

The ADI_DMA_TC_GET structure is used for sensing or getting a DMA traffic
control parameter. The ParameterID field specifies what type of parameter
to sense and is defined using the ADI_DMA_TC_PARAMETER enumeration. The
ControllerID specifies which DMA controller to sense, where multiple
controllers are available, the first controller starting at 0. The Value field
specifies the location where the parameter value is stored.

typedef struct ADI_DMA_TC_GET {

ADI_DMA_TC_PARAMETER ParameterID;

u16 ControllerID;

u16 *pValue;

} ADI_DMA_TC_GET;

General Enumerations
Enumerations control and provide feedback for the operation of the DMA
manager.

ADI_DMA_CHANNEL_ID

The ADI_DMA_CHANNEL_ID enumeration contains values for every DMA
channel of the processor. This value is used in the adi_dma_Open() func-
tion to identify the channel to open. The specific enumeration values
depend on the specific processor being targeted.

ADI_DMA_EVENT

The ADI_DMA_EVENT enumeration describes the types of events that can be
reported to the client’s callback function (Table 6-2). Associated with the
ADI_DMA_EVENT parameter is another parameter that points to the
companion argument, pArg, for the event.

Public Data Structures, Enumerations, and Macros

6-68 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_MODE

The ADI_DMA_MODE enumeration defines how a channel is to process the
data to be transferred. This enumeration takes the values shown in
Table 6-3.

Table 6-2. ADI_DMA_EVENT

Value Event Companion Argument

ADI_DMA_EVENT_DESCRIPTOR_PROCESSED Descriptor has com-
pleted processing or
a memory stream has
completed a memory
copy operation.

The address of the
descriptor just pro-
cessed, or NULL when
the event is a memory
stream completion
event

ADI_DMA_EVENT_INNER_LOOP_PROCESSED A sub-buffer has
completed process-
ing.

ADI_DMA_EVENT_OUTER_LOOP_PROCESSED The entire circular
buffer has com-
pleted processing.

The start address of the
circular buffer

ADI_DMA_EVENT_ERROR_INTERRUPT DMA error interrupt
has been generated.

NULL

Table 6-3. ADI_DMA_MODE

ADI_DMA_DATA_MODE_UNDEFINED Undefined

ADI_DMA_DATA_MODE_SINGLE Single one-shot buffer

ADI_DMA_DATA_MODE_CIRCULAR Single circular buffer

ADI_DMA_DATA_MODE_DESCRIPTOR_ARRAY Array of descriptors

ADI_DMA_DATA_MODE_DESCRIPTOR_SMALL Chain of small descriptors

ADI_DMA_DATA_MODE_DESCRIPTOR_LARGE Chain of large descriptors

VisualDSP++ 5.0 Device Drivers and System 6-69
Services Manual for Blackfin Processors

DMA Manager

ADI_DMA_PMAP

The ADI_DMA_PMAP enumeration defines each of the processor’s DMA-sup-
ported on-chip peripherals. This value is used to detect and set the
mappings of on-chip peripherals to DMA channels using the
adi_dma_GetMapping() and adi_dma_SetMapping() functions. The specific
enumeration values are dependent on the specific processor being
targeted.

ADI_DMA_RESULT

All public DMA manager functions return a result code of the enumera-
tion type, ADI_DMA_RESULT. Possible values are shown in Table 6-4.

Table 6-4. ADI_DMA_RESULT

ADI_DMA_RESULT_SUCCESS Generic success

ADI_DMA_RESULT_FAILED Generic failure

ADI_DMA_RESULT_NOT_SUPPORTED Function not supported

ADI_DMA_RESULT_IN_USE Resource is already in use.

ADI_DMA_RESULT_ALREADY_RUNNING DMA is already running.

ADI_DMA_RESULT_NOT_MAPPED Peripheral is not mapped to a channel.

ADI_DMA_RESULT_BAD_HANDLE Invalid channel handle

ADI_DMA_RESULT_BAD_DESCRIPTOR Invalid descriptor

ADI_DMA_RESULT_BAD_MODE Invalid channel mode

ADI_DMA_RESULT_BAD_CHANNEL_ID No such channel ID

ADI_DMA_RESULT_BAD_MEMORY_STREAM_ID No such memory stream ID

ADI_DMA_RESULT_BAD_PERIPHERAL Invalid peripheral value

ADI_DMA_RESULT_NO_BUFFER Channel has no buffer

ADI_DMA_RESULT_ALL_IN_USE No free channel memory structures are
available.

Public Data Structures, Enumerations, and Macros

6-70 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_RESULT_BAD_COMMAND Invalid command item

ADI_DMA_RESULT_BAD_DATA_SIZE Memory DMA source and destination
conflict

ADI_DMA_RESULT_BAD_DATA_WIDTH Data element width is not valid.

ADI_DMA_RESULT_NO_MEMORY Cannot allocate memory to channel object

ADI_DMA_RESULT_CANT_HOOK_INTERRUPT Cannot hook an interrupt

ADI_DMA_RESULT_CANT_UNHOOK_INTERRUPT Cannot unhook an interrupt

ADI_DMA_RESULT_BAD_SEQUENCE Invalid programming sequence

ADI_DMA_RESULT_BAD_CONFIG_REG Invalid configuration register value

ADI_DMA_RESULT_BAD_ALIGNMENT_ERROR Parameters will cause an alignment error.

ADI_DMA_RESULT_BAD_XCOUNT Invalid XCount value was supplied.

ADI_DMA_RESULT_NON_TERMINATED_CHAIN Descriptor chain is not NULL terminated.

ADI_DMA_RESULT_NO_CALLBACK_FUNCTION_
SUPPLIED

No callback function was provided to the
open function.

ADI_DMA_RESULT_BAD_CONTROLLER_ID Invalid controller ID specified

ADI_DMA_RESULT_BAD_TC_PARAMETER Invalid traffic control parameter

ADI_DMA_RESULT_BAD_DIRECTION Invalid XCount value was supplied.

ADI_DMA_RESULT_INCOMPATIBLE_WDSIZE Source and destination have different
WDSIZE values.

ADI_DMA_RESULT_INCOMPATIBLE_TRANSFER_
SIZE

Source and destination have different
transfer sizes.

ADI_DMA_RESULT_NULL_DESCRIPTOR NULL descriptor passed

ADI_DMA_RESULT_CALLBACKS_DISALLOWED_ON_
SOURCE

Callbacks are not allowed on source mem-
ory DMA descriptors.

ADI_DMA_RESULT_INCOMPATIBLE_CALLBACK Destination descriptor callback incompati-
ble with source descriptors

Table 6-4. ADI_DMA_RESULT (Cont’d)

VisualDSP++ 5.0 Device Drivers and System 6-71
Services Manual for Blackfin Processors

DMA Manager

ADI_DMA_STREAM_ID

The ADI_DMA_STREAM_ID enumeration contains values for every DMA
channel of the processor. This value is used in the adi_dma_MemoryOpen()
function to identify which stream to open. The specific enumeration val-
ues are dependent on the specific processor being targeted.

ADI_DMA_TC_PARAMETER

The ADI_DMA_TC_PARAMETER enumeration defines the DMA traffic control
parameters that can be used in the ParameterID field of an
ADI_DMA_TC_SET or ADI_DMA_TC_GET data structure when passing the
ADI_DMA_CMD_GET_TC and ADI_DMA_CMD_SET_TC commands to the DMA
manager. Possible values are shown in Table 6-5.

ADI_DMA_RESULT_BAD_CHANNEL_MEMORY_
SIZE

ADI_DMA_CHANNEL_MEMORY macro is
invalid (internal error).

ADI_DMA_RESULT_INCOMPATIBLE_IVG_LEVEL Function cannot be called from the current
IVG level.

Table 6-5. ADI_DMA_TC_PARAMETER

ADI_DMA_TC_DCB DMA core bus

ADI_DMA_TC_DEB DMA access bus

ADI_DMA_TC_DAB DMA external bus

ADI_DMA_TC_MDMA MDMA round robin

Table 6-4. ADI_DMA_RESULT (Cont’d)

Public Data Structures, Enumerations, and Macros

6-72 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_CONFIG_REG Field Values
These values are to be used to set the relevant bits in the DMA
configuration word.

ADI_DMA_DMA2D

ADI_DMA_DI_EN

ADI_DMA_DI_SEL

ADI_DMA_EN

ADI_DMA_WDSIZE

ADI_DMA_LINEAR Linear buffer

ADI_DMA_2D 2-D DMA operation

ADI_DMA_DI_EN_DISABLE Disables callbacks on completion.

ADI_DMA_DI_EN_ENABLE Enables callbacks on completion.

ADI_DMA_DI_SEL_OUTER_LOOP Callback after completing whole buffer (default)

ADI_DMA_DI_SEL_INNER_LOOP Callback after completing each inner loop

ADI_DMA_DISABLE Disables DMA transfer on the channel.

ADI_DMA_ENABLE Enables DMA transfer on the channel.

ADI_DMA_8BIT 8-bit words

ADI_DMA_16BIT 16-bit words

ADI_DMA_32BIT 32-bit words

VisualDSP++ 5.0 Device Drivers and System 6-73
Services Manual for Blackfin Processors

DMA Manager

ADI_DMA_WNR

DMA Commands
DMA channels and memory streams can be controlled via calls to the
adi_dma_Command() function.

Table 6-6 describes the commands and values that can be issued via this
function.

ADI_DMA_READ Transfer from memory to peripheral

ADI_DMA_WRITE Transfer from peripheral to memory

Table 6-6. DMA Commands

Command ID Value Description

ADI_DMA_CMD_TABLE ADI_DMA_CMD_VALUE_PAIR * Pointer to a table of
commands

ADI_DMA_CMD_PAIR ADI_DMA_CMD_VALUE_PAIR * Pointer to a single
command pair

ADI_DMA_CMD_END NULL Signifies end of table.

ADI_DMA_CMD_SET_LOOPBACK TRUE/FALSE Enables/disables loop-
back.

ADI_DMA_CMD_SET_STREAMING TRUE/FALSE Enables/disables
streaming.

ADI_DMA_CMD_SET_DATAFLOW TRUE/FALSE Enables/disables data-
flow.

ADI_DMA_CMD_FLUSH n/a Flushes all buffers and
descriptors on a chan-
nel.

ADI_DMA_CMD_GET_TRANSFER_STATUS u32 * Provides the transfer
status, TRUE - in
progress, FALSE - not
in progress.

Public Data Structures, Enumerations, and Macros

6-74 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DMA_CMD_SET_TC ADI_DMA_TC_SET * Sets a traffic control
(period) parameter.

ADI_DMA_CMD_GET_TC ADI_DMA_TC_GET * Senses a traffic control
(count) parameter.

Table 6-6. DMA Commands (Cont’d)

Command ID Value Description

VisualDSP++ 5.0 Device Drivers and System 7-1
Services Manual for Blackfin Processors

7 PROGRAMMABLE FLAG
SERVICE

The programmable flag service within the system services library provides
the application with an easy-to-use interface into the programmable flag
(sometimes called general-purpose I/O, or GPIO) subsystem of the Black-
fin processor.

This chapter contains the following sections:

• “Introduction” on page 7-2

• “Operation” on page 7-3

• “Flag Service API Reference” on page 7-14

• “Public Data Types, Enumerations, and Macros” on page 7-31

Introduction

7-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
Using the capabilities of other system services, the flag service allows the
client control over the direction of flags, values placed on or sensed from a
flag pin, and notification of the client upon flag pin changes, via live or
deferred callbacks.

The use of the flag service is dependent on the use of both the interrupt
manager and the deferred callback (DCB) manager for its full operation.
If callbacks are not deferred, but rather are live, the DCB manager is not
required. If callbacks are not required, neither the interrupt manager nor
DCB manager is required.

In order to reduce the pin count of devices, flag pins are sometimes muxed
onto the same pins as other peripherals. The flag service does not provide
arbitration functionality to control pin muxing. It is the responsibility of
the client program to ensure that peripherals and the flag service do not
use the same pin simultaneously. For the ADSP-BF531/532/533 and
ADSP-BF561 processors, this entails ensuring that the relevant peripheral
control registers are correctly set. For ADSP-BF534/536/537 (and future)
processors, the flag service automatically invokes the port control service
to effect any pin multiplexer changes. No user intervention is required.

For ADSP-BF531/532/533 and ADSP-BF561 processor cores, this entails
ensuring that the relevant peripheral control registers are correctly set. For
ADSP-BF534/536/537 (and future) processor cores, the port control reg-
isters are required to be set accordingly. The latter can be managed via the
port control service within the system services library. (Note that device
drivers for ADSP-BF534/536/537 (and future) processors automatically
make the appropriate calls into the port control service without any user
intervention.)

The flag service uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by ADI or else-
where. To this end, all enumeration values and typedef statements use the

VisualDSP++ 5.0 Device Drivers and System 7-3
Services Manual for Blackfin Processors

Programmable Flag Service

ADI_FLAG_ prefix, and functions and global variables use the lowercase
adi_flag_ equivalent.

Each function within the flag service application program interface (API)
returns an error code of the type ADI_FLAG_RESULT. Like all system ser-
vices, a return value of 0 (ADI_FLAG_RESULT_SUCCESS) indicates no errors.
A nonzero value indicates an error. Like all system services, flag service
error codes are unique from all other system services. The adi_flag.h
include file lists all error codes that the flag service returns.

Parameter checking in the debug versions of the system services library
provides a more complete test of API function parameters and for condi-
tions that may cause errors. ADI strongly recommends that development
work be done using the debug versions of the system service library, and
final test and deployment be done with the release version of the library.

Operation
This section describes the overall operation of the flag service. Details on
the application program interface (API) can be found later in this chapter.

Initialization
Prior to using the flag service, the client must first initialize the service.
In order to initialize the service, the client passes to the initialization func-
tion, adi_flag_Init, a parameter that is passed to the critical region
function should the flag service need to protect a critical region of code,
and optionally a contiguous piece of memory that the service can use for
flag callbacks.

The flag service provides a facility whereby, if so directed by the client, a
callback function supplied by the client can be invoked should conditions
on a flag cause an interrupt event. See “Callbacks” on page 7-6 for more
information on how callbacks operate.

Operation

7-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

In order to control and manage callbacks, the flag service needs a small
amount of memory to store the necessary information about each callback.
The exact amount of memory is defined by a macro,
ADI_FLAG_CALLBACK_MEMORY. The client provides an amount of memory
equal to ADI_FLAG_CALLBACK_MEMORY times the number of callbacks that
are simultaneously installed at any point in time.

For example, if the client has simultaneously installed callbacks for two
flags, the client provides ADI_FLAG_CALLBACK_MEMORY * 2 bytes of mem-
ory. If flag callbacks are not used, no memory need be provided by the
client.

Termination
When the client no longer requires the functionality of the flag service,
the termination function, adi_flag_Terminate, is called. This function
uninstalls any flag callbacks and returns any memory provided to the flag
initialization function back to the client.

Flag IDs
All API functions within the flag service, other than the initialize and ter-
minate functions, are passed a parameter that identifies the controlled
flag. This parameter is of the type ADI_FLAG_ID. The include file for the
flag service, adi_flag.h, defines flag IDs for each flag supported by the
processor. Flag IDs are of the form ADI_FLAG_x, where x uniquely identi-
fies the specific flag.

Flag Control Functions
The functions described in this section control operation of each flag.

VisualDSP++ 5.0 Device Drivers and System 7-5
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Open

The adi_flag_Open() function is called prior to any of the individual flag
control functions. Depending on the specific Blackfin device, this func-
tion initializes any hardware necessary for the operation of the flag. For
example, on ADSP-BF534/536/537 (and future) processors, this function
configures the port control logic, via the port control system service, for
the flag used as a general-purpose I/O pin. On ADSP-BF561 and
ADSP-BF531/532/533 processors, this function does nothing and simply
returns to the caller. Refer also to “adi_flag_Open” on page 7-19.

adi_flag_Close

When a flag is no longer needed, the adi_flag_Close() function is called
to close and shut down the flag. At present, for all Blackfin processors, this
function does nothing but returns immediately to the caller. Future Black-
fin devices may require this function to manipulate the hardware in some
way when closing a flag. Refer also to “adi_flag_Close” on page 7-16.

adi_flag_SetDirection

Flags can be configured as inputs or outputs. The
adi_flag_SetDirection() function is used to set the direction of a flag as
either an input or an output. This function does not change the value of a
flag. Refer also to “adi_flag_SetDirection” on page 7-24.

adi_flag_Set

When configured as an output, the adi_flag_Set() function sets the
value of the flag to a logical 1, driving high. Refer also to “adi_flag_Set”
on page 7-23.

Operation

7-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_Clear

When configured as an output, the adi_flag_Clear() function sets the
value of the flag to a logical 0, driving low. Refer also to “adi_flag_Clear”
on page 7-15.

adi_flag_Toggle

When configured as an output, the adi_flag_Toggle() function inverts
the current value of the flag. If the flag was clear/low, this function
changes the flag to set/high. If the flag was set/high, this function changes
the flag to clear/low. Refer also to “adi_flag_Toggle” on page 7-21.

adi_flag_Sense

When configured as an input, the adi_flag_Sense() function senses
the value of the flag and stores that value in the location provided by the
client. If the flag is clear/low, then a value of FALSE is stored in the
location. If the flag is set/high, then a value of TRUE is stored in the
location. Refer also to “adi_flag_Sense” on page 7-20.

Callbacks
Like other system services, the flag service uses a callback mechanism in
order to notify the client of, typically, asynchronous events.

The Blackfin processor’s programmable flags can be configured to gener-
ate interrupts. The flag service provides an internal interrupt handler that
is used to process interrupts from the flag hardware. This interrupt han-
dler makes the appropriate callbacks into the client’s application. When a
client installs a flag callback, a parameter to the function dictates whether
the callback should be made live or deferred. Live callbacks mean that the
client’s callback function is called at interrupt time. Deferred callbacks
mean that callbacks are not made at interrupt time but rather deferred to a
lower-priority using a specified deferred callback service.

VisualDSP++ 5.0 Device Drivers and System 7-7
Services Manual for Blackfin Processors

Programmable Flag Service

When using the callback capability of the flag service, the client does not
need to take any other action outside the flag service API. No calls to the
interrupt manager or deferred callback service, other than initialization of
those services, are required.

It is possible for clients to use all capabilities of the flag service and not use
any of the callback capabilities. If callbacks are not used by the client,
no memory need be provided to the flag service’s initialization function.

adi_flag_InstallCallback

The adi_flag_InstallCallback() function is used to install a callback to
a specified flag. In addition to the flag ID, the client provides the inter-
rupt ID that the flag should generate, a wakeup flag, the type of trigger
that generates the callback, the callback function address, a client handle,
and deferred callback service handle. Refer also to
“adi_flag_InstallCallback” on page 7-26.

Depending on the specific Blackfin processor, programmable flags can
generate any one of several interrupts. (Sometimes the processor has con-
straints as to which flag can generate which interrupt. See the appropriate
Blackfin processor Hardware Reference for details.) The peripheral ID enu-
merates which interrupt the flag generates.

The wakeup flag indicates whether the processor is woken up from a low
power state should the flag event occur.

The trigger type describes the event that causes the callback to occur.
The following trigger types (all enumerated in the adi_flag.h include
file) are supported:

• Level high – callback generated when the level is high

• Level low – callback generated when the level is low

• Rising edge – callback generated on the rising edge

Operation

7-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• Falling edge – callback generated on the falling edge

• Both edges – callback generated on both the rising and falling edge

The callback function address specifies a callback function of the type
ADI_DCB_CALLBACK_FN (see the deferred callback service for more informa-
tion on this data type). When invoked, the callback function is passed
three parameters:

• ClientHandle – a value provided by the client when the callback
was installed

• ADI_FLAG_EVENT_CALLBACK – indicates a flag callback event

• FlagID – the flag ID of the flag that generated the callback

When the deferred callback service handle parameter passed to the
adi_flag_InstallCallback function is NULL, the callback is executed
live, meaning it is invoked at interrupt time. If the deferred callback
service handle parameter is non-NULL, the flag service uses the specified
deferred callback service to invoke the callback.

A single callback function can be used and installed for any number of
flags; the callback function can use the FlagID parameter to determine
which flag generated the callback. Note, however, that only one callback
should be installed for a given flag.

This function does not alter flag control, such as direction.

adi_flag_RemoveCallback

The adi_flag_RemoveCallback() function is used to remove a callback
from a specified flag. This function disables interrupt generation for the
flag and removes the callback from its internal tables. Unless reinstalled,
no further callbacks occur for the specified flag. After calling this function,
the memory freed by removing the callback is available for the flag service
to use for the next callback that is installed. This function does not alter

VisualDSP++ 5.0 Device Drivers and System 7-9
Services Manual for Blackfin Processors

Programmable Flag Service

flag control, such as direction. Refer also to “adi_flag_RemoveCallback”
on page 7-28.

adi_flag_SuspendCallbacks

The adi_flag_SuspendCallbacks() function is used to temporarily
suspend callbacks for a given flag but does not uninstall the callback.
This function is typically used in conjunction with the
adi_flag_ResumeCallbacks function. Refer also to
“adi_flag_SuspendCallbacks” on page 7-30.

adi_flag_ResumeCallbacks

The adi_flag_ResumeCallbacks() function is used to re-enable callbacks
that were suspended by the adi_flag_SuspendCallbacks function. Refer
also to “adi_flag_ResumeCallbacks” on page 7-29.

adi_flag_SetTrigger

The adi_flag_SetTrigger() function sets the condition on a flag that
triggers a callback. This function is not typically called by clients as setting
the trigger condition is taken care of automatically by the
adi_flag_InstallCallback function. This function is provided as a con-
venience for users who want an extra measure of control on callbacks.
Refer also to “adi_flag_SetTrigger” on page 7-25.

Coding Example
This section describes the code required to implement a simple example
using the flag service. This example initializes the flag service, configures
one flag for input, and configures another flag for output. The example
illustrates how the output flag is controlled and then illustrates how a call-
back function is used to sense changes on a flag. All flag service functions
return an error code. In practice, this error code should be checked to

Operation

7-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ensure the function completed successfully. For the purposes of this exam-
ple only, the return value is not checked.

Initialization

Prior to using the flag service, it must be initialized. The following
fragment initializes the service and provides the service with memory for
one callback function.

static u8 FlagServiceData[ADI_FLAG_CALLBACK_MEMORY * 1];

// memory for service

ADI_FLAG_RESULT Result; // return value

u32 ResponseCount; // number of callbacks supported

Result = adi_flag_Init(FlagServiceData, sizeof(FlagServiceData),

&ResponseCount, NULL);

Upon completing this function, the flag service is initialized and is ready
for use.

Opening a Flag

After the service is initialized, any flags used can be opened. In this exam-
ple, two flags are used.

Result = adi_flag_Open(ADI_FLAG_PF0);

Result = adi_flag_Open(ADI_FLAG_PF1);

The adi_flag_Open function takes any action necessary to configure the
processor hardware for use as a programmable flag.

VisualDSP++ 5.0 Device Drivers and System 7-11
Services Manual for Blackfin Processors

Programmable Flag Service

Setting Flag Direction

After the flags are opened, they must be set to the proper direction. In this
example, one flag is configured for input and one for output.

Result = adi_flag_SetDirection(ADI_FLAG_PF0,

ADI_FLAG_DIRECTION_INPUT);

Result = adi_flag_SetDirection(ADI_FLAG_PF1,

ADI_FLAG_DIRECTION_OUTPUT);

Once the flag direction has been established, the flag can be controlled.

Controlling an Output Flag

After a flag is configured for the output direction, its value can be set with
any of the following functions.

Result = adi_flag_Set(ADI_FLAG_PF0);

// sets output value to logical high (1)

Result = adi_flag_Clear(ADI_FLAG_PF0);

// sets output value to logical low (0)

Result = adi_flag_Toggle(ADI_FLAG_PF0);

// toggles from current value

The first call sets the value of the flag to a logical high, and the second call
sets the flag to a logical low. The third call toggles the current value of the
flag—if logical low, it changes to a logical high value; if logical high, it
changes to a logical low value.

Operation

7-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Sensing the Value of a Flag

The application can sense the value of a flag, regardless of whether the flag
has been configured as an input or an output. The following fragment
illustrates how a flag value is sensed.

u32 Value; // location where flag value is stored

Result = adi_flag_Sense(ADI_FLAG_PF0, &Value);

// senses the flag value

if (Value == TRUE) {

// flag is set to logical high

} else {

// flag is set to logical low }

The above fragment illustrates how a flag value can be sensed in a polled
type method. Alternatively, a callback function can be used to alert the
application when an event, such as a flag changing value, has occurred.

Installing a Callback Function

To avoid polling and instead invoke a callback function when a pin state
changes, the application should install a callback function. The following
fragment illustrates how to install a callback function and the actual call-
back function.

...

Result = adi_flag_InstallCallback(ADI_FLAG_PF1, ADI_INT_PFA,

ADI_FLAG_TRIGGER_LEVEL_HIGH,

TRUE, (void *)0x12345678, NULL, Callback);

...

void Callback(void *ClientHandle, u32 Event, void *pArg) {

// ClientHandle = 0x12345678

// Event = ADI_FLAG_EVENT_CALLBACK

switch ((ADI_FLAG_ID)pArg) {

VisualDSP++ 5.0 Device Drivers and System 7-13
Services Manual for Blackfin Processors

Programmable Flag Service

case ADI_FLAG_PF1:

// do processing when PF1 changes state break;

}

}

When the callback function is invoked, the ClientHandle parameter is the
value that is given when the callback is installed (in this case, 0x12345678),
the Event is the ADI_FLAG_EVENT_CALLBACK value, and the pArg parameter
contains the flag ID that triggered the callback.

Suspending and Resuming Callbacks

If the application needs to temporarily suspend callback processing, the
following fragment illustrates how to do it.

Result = adi_flag_SuspendCallbacks(ADI_FLAG_PF1);

The callback function for that flag is no longer called when the trigger
condition occurs. The following fragment illustrates how to resume call-
back processing.

Result = adi_flag_ResumeCallbacks(ADI_FLAG_PF1);

Now the callback function will again be invoked when the trigger condi-
tion occurs.

Removing Callbacks

If an application no longer needs the callback, it removes the callback with
the following call.

Result = adi_flag_RemoveCallback(ADI_FLAG_PF1);

The callback function is no longer invoked, and the callback function
itself is removed from the flag service. The memory used to manage that
callback is now available to the flag service to use for another callback
function should another callback be installed.

Operation

7-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Termination

When the functionality provided by the flag service is no longer required,
the application terminates the service. The following fragment terminates
the flag service.

ADI_FLAG_RESULT Result; // return value

Result = adi_flag_Terminate();

After termination, any memory provided to the flag service during instal-
lation is freed up for reuse by the application.

Flag Service API Reference
This section provides the flag service API.

 The information in this section was accurate at the time this docu-
ment was created. However, always check the include file for the
flag service, adi_flag.h, for the most up-to-date information.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 7-15
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Clear

Description

The adi_flag_Clear function sets the value of the flag to a logical 0, driv-
ing low.

Prototype

ADI_FLAG_RESULT adi_flag_Clear(

ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag to close

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a list of
return codes.

Operation

7-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_Close

Description

The adi_flag_Close function is called when a particular flag is no longer
needed by the application. At present, this function does nothing but
returns immediately to the caller. Future Blackfin devices may require this
function manipulate the hardware in some way when closing a flag.

Prototype

ADI_FLAG_RESULT adi_flag_Close(

ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag to close

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a list of
return codes.

VisualDSP++ 5.0 Device Drivers and System 7-17
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Init

Description

The adi_flag_Init function provides and initializes memory for the flag
service. This function should only be called once per core. If called by
more than one core, provide separate memory areas.

Prototype

ADI_FLAG_RESULT adi_flag_Init(

void *pMemory,

const size_t MemorySize,

u32 *pMaxEntries,

void *pEnterCriticalArg

);

Arguments

pMemory Pointer to an area of memory used to hold the data required
by the flag service

MemorySize Size, in bytes, of memory supplied for the flag service data

pMaxEntries On return, holds the maximum number of simultaneously
active callback functions that can be supported using the sup-
plied memory

pEnterCriticalArg Handle to data area containing critical region data. This is
passed to adi_int_EnterCriticalRegion where it is used
internally of the module. See “Interrupt Manager” on
page 2-1 for further details.

Operation

7-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_FLAG_RESULT_SUCCESS Flag service was successfully initialized.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a list of return
codes.

VisualDSP++ 5.0 Device Drivers and System 7-19
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Open

Description

The adi_flag_Open function configures any hardware necessary for the
specified flag to operate as a general-purpose I/O pin. Depending on the
specific Blackfin device, this function initializes any hardware necessary
for the operation of the flag. For example, on ADSP-BF534/536/537 (and
future) processors, this function configures the port control logic, via the
port control system service, for the flag to be used as a general-purpose
I/O pin. On ADSP-BF531/532/533 and ADSP-BF561 processors, this
function does nothing and simply returns to the caller.

Prototype

ADI_FLAG_RESULT adi_flag_Open(

ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag to open

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a list of
return codes.

Operation

7-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_Sense

Description

The adi_flag_Sense function senses the value of a flag. The function
stores the value TRUE in the provided location if the flag is a logical 1.
Otherwise, the function stores the value FALSE in the provided location.

Prototype

ADI_FLAG_RESULT adi_flag_Sense(

ADI_FLAG_ID FlagID,

u32 *pValue

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
to control

pValue Pointer to location where the value of the flag is
stored

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

VisualDSP++ 5.0 Device Drivers and System 7-21
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Toggle

Description

The adi_flag_Toggle function inverts the current value of the flag. If the
flag is a logical 1 (driving high), this function makes the flag a logical 0
(driving low). If the flag is a logical (0 driving low), this function makes
the flag a logical 1 (driving high).

Prototype

ADI_FLAG_RESULT adi_flag_Toggle(

ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
to control

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

Operation

7-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_Terminate

Description

The adi_flag_Terminate function closes the flag service. Any installed
callbacks are removed, and all memory provided at initialization is
returned. Once terminated, the initialization function must be called
again before using any of the flag service functions.

Prototype
ADI_FLAG_RESULT adi_flag_Terminate(void);

Arguments

The function takes no arguments.

Return Value

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

VisualDSP++ 5.0 Device Drivers and System 7-23
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_Set

Description

The adi_flag_Set function sets the value of the flag to a logical 1, driving
high.

Prototype

ADI_FLAG_RESULT adi_flag_Set(

ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
to control

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

Operation

7-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_SetDirection

Description

The adi_flag_SetDirection function sets the flag direction as an input or
an output. If set as an input, any on-chip input buffer for the flag is also
enabled. If set as an output, any on-chip input buffer for the flag is
disabled.

Prototype

ADI_FLAG_RESULT adi_flag_SetDirection(

ADI_FLAG_ID FlagID,

ADI_FLAG_DIRECTION Direction

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
to control

Direction Direction to which the flag is configured

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

VisualDSP++ 5.0 Device Drivers and System 7-25
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_SetTrigger

Description

The adi_flag_SetTrigger function sets the trigger condition that gener-
ates a callback. This function is not typically called by clients, as setting
the trigger condition is taken care of automatically by the
adi_flag_InstallCallback function.

This function is provided as a convenience for users who want an extra
measure of control on callbacks. The function can also be used to change
the trigger conditions for a callback without removing and then reinstall-
ing the callback.

Prototype

ADI_FLAG_RESULT adi_flag_SetTrigger(

ADI_FLAG_ID FlagID,

ADI_FLAG_TRIGGER Trigger

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
whose callbacks are resumed

Trigger Trigger condition that generates the callback

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

Operation

7-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_InstallCallback

Description

The adi_flag_InstallCallback function installs a callback function that
is invoked should the specified trigger condition for the given flag occur.
Note that the function provided by the caller is a callback function, not an
interrupt handler. This function does not alter the flag values, direction,
and so on.

Prototype

ADI_FLAG_RESULT adi_flag_InstallCallback(

ADI_FLAG_ID FlagID,

ADI_INT_PERIPHERAL_ID PeripheralID,

ADI_FLAG_TRIGGER Trigger,

u32 WakeupFlag,

void *ClientHandle,

ADI_DCB_HANDLE DCBHandle,

ADI_DCB_CALLBACK_FN ClientCallback

);

VisualDSP++ 5.0 Device Drivers and System 7-27
Services Manual for Blackfin Processors

Programmable Flag Service

Arguments

Return Value

FlagID Enumerator value that uniquely identifies which flag the call-
back is assigned

PeripheralID Peripheral ID that specifies the system interrupt for the flag
to use (see interrupt manager and adi_int.h.)

Trigger Trigger condition that generates the callback

WakeupFlag Flag indicating if the processor has woken up from a low
power state if the trigger occurs

ClientHandle Identifier defined and supplied by the client. This value is
passed to the callback function.

DCBHandle Either NULL if using live callbacks or the handle to the
deferred callback service that is used for callbacks

ClientCallback Address of the client’s callback function

ADI_FLAG_RESULT_SUCCESS Flag service was successfully initialized.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a list of return
codes.

Operation

7-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_RemoveCallback

Description

The adi_flag_RemoveCallback function removes the callback from the
specified flag and disables the generation of the interrupt that triggers the
callback. This function does not alter the flag values, direction, and so on.

 Calling adi_flag_RemoveCallback from within a callback routine
is not supported and will result in undefined behavior.

Prototype

ADI_FLAG_RESULT adi_flag_RemoveCallback(

ADI_FLAG_ID FlagID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
whose callback is removed

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

VisualDSP++ 5.0 Device Drivers and System 7-29
Services Manual for Blackfin Processors

Programmable Flag Service

adi_flag_ResumeCallbacks

Description

The adi_flag_ResumeCallbacks function resumes callback generation
that was temporarily suspended by the adi_flag_SuspendCallbacks func-
tion. This function simply re-enables the interrupt that causes the callback
to occur.

Prototype

ADI_FLAG_RESULT adi_flag_ResumeCallbacks(

ADI_FLAG_ID FlagID,

ADI_INT_PERIPHERAL_ID PeripheralID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
whose callbacks are resumed

PeripheralID Peripheral ID that specifies the system interrupt for
the flag to use (see interrupt manager and
adi_int.h.)

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

Operation

7-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_flag_SuspendCallbacks

Description

The adi_flag_SuspendCallbacks function temporarily suspends callbacks
for a given flag but does not uninstall the callback. This function is typi-
cally used in conjunction with the adi_flag_ResumeCallbacks function.
This function simply disables the interrupt that causes the callback to
occur.

Prototype

ADI_FLAG_RESULT adi_flag_SuspendCallbacks(

ADI_FLAG_ID FlagID,

ADI_INT_PERIPHERAL_ID PeripheralID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the flag
whose callbacks are suspended

PeripheralID Peripheral ID that specifies the system interrupt for
the flag to use (see interrupt manager and
adi_int.h.)

ADI_FLAG_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_FLAG_RESULT” on page 7-33 for a
list of return codes.

VisualDSP++ 5.0 Device Drivers and System 7-31
Services Manual for Blackfin Processors

Programmable Flag Service

Public Data Types, Enumerations, and
Macros

This section defines the public data structures and enumerations used by
the flag service.

 Always check the include file for the flag service, adi_flag.h,
for the most up-to-date information.

ADI_FLAG_ID
The ADI_FLAG_ID enumeration type uniquely defines each flag in the pro-
cessor being targeted. To the client application, flag IDs are simply values
that identify a specific flag; however, each flag ID actually consists of two
pieces of information.

The upper 16 bits of the enumeration is the bit position within the port
that corresponds to that flag. The lower 16 bits is the offset to the flags
system registers that control the flag. A macro is provided that creates a
flag ID, given a bit position and register offset. Macros are also provided
to extract the bit position and register offset when given a flag ID.

Applications rarely, if ever, need access to these macros; however, they are
provided in the adi_flag.h file for reference. Applications typically use
only the completed flag ID value. The preset enumeration values are too
numerous to list here, but take the form ADI_FLAG_Pxy, where “x” is the
port ID and “y” is the index into the port for the flag. Refer to adi_flag.h
for further details.

Public Data Types, Enumerations, and Macros

7-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Associated Macros

These macros are defined for internal use by the flag service.

ADI_FLAG_DIRECTION
The ADI_FLAG_DIRECTION enumeration defines the direction (input or
output) for a flag pin.

ADI_FLAG_EVENT
The ADI_FLAG_EVENT enumeration defines the type of callback event that
occurred. There is only one value, ADI_FLAG_EVENT_CALLBACK. This enu-
meration type is different from all other event types for system services—a
single callback function can be used for any service, regardless of the event
it processes. Event codes for the flag service begin with the value
ADI_FLAG_ENUMERATION_START, for easy identification.

ADI_FLAG_CREATE_FLAG_ID Creates a flag ID given a bit position and register
offset

ADI_FLAG_GET_BIT Gets the bit position given a flag ID

ADI_FLAG_GET_OFFSET Gets the register offset given a flag ID

ADI_FLAG_GET_MASK Creates a mask for a given flag ID that can be used
to manipulate hardware control registers for the
given flag.

ADI_FLAG_DIRECTION_INPUT Flag is configured as an input.

ADI_FLAG_DIRECTION_OUTPUT Flag is configured as an output.

ADI_FLAG_EVENT_CALLBACK The trigger condition for the specified flag
occurred.

VisualDSP++ 5.0 Device Drivers and System 7-33
Services Manual for Blackfin Processors

Programmable Flag Service

ADI_FLAG_RESULT
Each API function of the flag service returns an ADI_FLAG_RESULT
enumeration as a return code. As with all system services, generic success is
defined as 0 and generic failure is defined as 1. This allows the calling
function to quickly evaluate the return code for a zero or nonzero value.
All detailed result codes for the flag service begin with the value
ADI_FLAG_ENUMERATION_START for easy identification.

ADI_FLAG_RESULT_SUCCESS=0 Generic success = 0

ADI_FLAG_RESULT_FAILED=1 Generic failure = 1

ADI_FLAG_RESULT_INVALID_FLAG_ID (0x80001) invalid flag ID

ADI_FLAG_RESULT_INTERRUPT_MANAGER_ERROR (0x80002) error returned from inter-
rupt manager

ADI_FLAG_RESULT_ERROR_REMOVING_CALLBACK (0x80003) no callback installed for
given ID

ADI_FLAG_RESULT_ALL_IN_USE (0x80004) all flag slots in use

ADI_FLAG_RESULT_PORT_CONTROL_ERROR (0x80005) error within port control

ADI_FLAG_RESULT_NOT_CAPABLE (0x80006) given flag not capable of
function requested

ADI_FLAG_RESULT_TRIGGER_TYPE_NOT_SUPPORTED (0x80007) trigger type is not sup-
ported

ADI_FLAG_RESULT_CANT_MAP_FLAG_TO_INTERRUPT (0x80008) cannot map flag to given
interrupt peripheral ID

ADI_FLAG_RESULT_NOT_MAPPED_TO_INTERRUPT (0x80009) flag not mapped to inter-
rupt

ADI_FLAG_RESULT_CALLBACK_NOT_INSTALLED (0x8000a) no callback is installed for
given flag

ADI_FLAG_RESULT_BAD_CALLBACK_MEMORY_SIZE (0x8000b)
ADI_FLAG_CALLBACK_MEMORY macro
is invalid (internal error)

Public Data Types, Enumerations, and Macros

7-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_FLAG_TRIGGER
The ADI_FLAG_TRIGGER enumeration type is used to specify the condition
that, when triggered, causes the application’s callback function to be
invoked.

ADI_FLAG_TRIGGER_LEVEL_HIGH Flag set when voltage on pin is at recognized
‘digital’ high level

ADI_FLAG_TRIGGER_LEVEL_LOW Flag set when voltage on pin is at recognized
‘digital’ low level

ADI_FLAG_TRIGGER_RISING_EDGE Flag set when voltage on pin rises from low to
high level (rising edge)

ADI_FLAG_TRIGGER_FALLING_EDGE Flag set when voltage on pin falls from high to
low level (falling edge)

ADI_FLAG_TRIGGER_BOTH_EDGE Flag set on both rising and falling edges

VisualDSP++ 5.0 Device Drivers and System 8-1
Services Manual for Blackfin Processors

8 TIMER SERVICE

The timer service, within the system services library, provides the
application with an easy-to-use interface into the core timers, watchdog
timers, and general-purpose timers of the Blackfin processor.

This chapter contains the following sections:

• “Introduction” on page 8-2

• “Operation” on page 8-3

• “Timer Service API Reference” on page 8-15

• “Public Data Types, Enumerations, and Macros” on page 8-30

Introduction

8-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
Using the capabilities of other system services, the timer service allows the
client to control and coordinate the all timers in a consistent fashion,
regardless of processor derivative. The service also provides the means for
clients to install callback functions that are notified upon timer
expirations.

Use of the timer service is dependent on the use of both the interrupt
manager and the deferred callback (DCB) manager for its full operation.
If callbacks are not deferred, but rather are live, the DCB manager is not
required. If callbacks are not required, neither the interrupt manager nor
DCB manager is required.

In order to reduce the pin count of devices, timer pins are sometimes
muxed onto the same pins as other peripherals. The timer service does not
provide arbitration functionality to control pin muxing. It is the responsi-
bility of the client program to ensure that peripherals and the timer service
do not use the same pin simultaneously. For ADSP-BF531/532/533 and
ADSP-BF561 processors, this entails ensuring that the relevant peripheral
control registers are correctly set. For ADSP-BF534/536/537 (and future)
processors, the timer service automatically invokes the port control service
to affect any pin multiplexer changes. No user intervention is required.

The timer service uses an unambiguous naming convention to safeguard
against conflicts with other software libraries provided by Analog Devices
or elsewhere. All enumeration values and typedef statements use the
ADI_TMR_ prefix, and functions and global variables use the lowercase
adi_tmr_ equivalent.

Each function within the timer service application program interface
(API) returns an error code of the type ADI_TMR_RESULT. Like all system
services, a return value of 0 (ADI_TMR_RESULT_SUCCESS) indicates no errors.
A nonzero value indicates an error. Like all system services, timer service
error codes are unique from all other system services. The adi_tmr.h
include file lists all error codes that the timer service returns.

VisualDSP++ 5.0 Device Drivers and System 8-3
Services Manual for Blackfin Processors

Timer Service

Parameter checking in the debug versions of the system services library
provides a more complete test of API function parameters and for condi-
tions that may cause errors. Analog Devices strongly recommends that
development work be done using the debug versions of the system service
library, while final test and deployment be done with the release version of
the library.

Operation
This section describes the overall operation of the timer service. Details on
the application programming interface (API) can be found later in this
chapter.

Initialization
Prior to using the timer service, the client must first initialize the service.
In order to initialize the service, the client passes to the initialization func-
tion, adi_tmr_Init(), a parameter is passed to the critical region function
should the timer service need to protect a critical region of code, and
optionally a contiguous piece of memory that the service can use for flag
callbacks.

The timer service provides a facility where, if so directed by the client, a
callback function supplied by the client can be invoked should a timer
expire. See the “Callbacks” on page 8-7 for more information on how call-
backs operate. Unlike some other services in which the client provides
memory to the service for use by the service, the timer service requires no
additional memory.

Termination
When the client no longer requires the functionality of the timer service,
the termination function, adi_tmr_Terminate(), is called. This function
uninstalls any installed timer callbacks and closes any open timers.

Operation

8-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Timer IDs
All API functions within the timer service, other than the initialize and
terminate functions, are passed a parameter that identifies the timer(s)
to be controlled. The include file for the timer service, adi_tmr.h, defines
the timer IDs for each timer supported by the processor. The timer ID
parameter is defined as a u32 type, but it is not a simple enumeration
value. The timer ID is actually a complex value that contains information
specific to the timer and also allows them to be OR’ed together so that
multiple timers can be enabled and disabled simultaneously.

Basic Timer Functions
The functions described in this section are common to all types of timers:
general-purpose timers, core timers, and watchdog timers. Any individual
timer ID, regardless whether it is a general-purpose timer ID, core timer
ID, or watchdog timer ID, can be passed to these functions.

adi_tmr_Open

The adi_tmr_Open() function is called to open the timer. Depending on
the specific Blackfin device, this function initializes the hardware neces-
sary for the operation of the timer. This function also resets the timer to
its default settings. Refer also to “adi_tmr_Open” on page 8-17.

adi_tmr_Close

When a timer is no longer needed, the adi_tmr_Close() function is called
to close and shut down the timer. Presently for all Blackfin processors, this
function does nothing but returns immediately to the caller. Future Black-
fin processors may require this function to manipulate the hardware in
some way when closing a timer. Refer also to “adi_tmr_Close” on
page 8-19.

VisualDSP++ 5.0 Device Drivers and System 8-5
Services Manual for Blackfin Processors

Timer Service

adi_tmr_Reset

Should an application need to reset the timer to the default settings at a
time other than when it is opened, use the adi_tmr_Reset() function. The
configuration register for the timer is reset to its power-up value, the error
status is cleared, and so on. Refer also to “adi_tmr_Reset” on page 8-20.

General-Purpose Timer Functions
The functions described in this section are for general-purpose timers
only. These functions return an error if they are passed other types of
timer IDs, such as core timer IDs or watchdog timer IDs.

adi_tmr_GPControl

The adi_tmr_GPControl() function configures a general-purpose timer.
This function is passed the timer ID of the timer being controlled, a com-
mand ID specifying the parameter of the function being addressed, and a
command-specific parameter. The list of command IDs applicable to gen-
eral-purpose timers and the corresponding command-specific parameters
are described in “ADI_TMR_GP_CMD” on page 8-36. Refer also to
“adi_tmr_GPControl” on page 8-23.

adi_tmr_GPGroupEnable

The adi_tmr_GPGroupEnable() function enables or disables a single
general-purpose timer or a group of general-purpose timers. This function
is passed a parameter that is either a single general-purpose timer ID or an
OR’ing of any number of general-purpose timer IDs, and a flag that
indicates whether the group of timers is enabled (a value of TRUE) or dis-
abled (a value of FALSE).

The function uses best efforts to simultaneously enable or disable the
group of timers. If the underlying hardware of the specific Blackfin device
allows the timers to be controlled simultaneously, the function takes the

Operation

8-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

necessary action to simultaneously enable or disable the timers. If the
underlying hardware does not allow the specified timers to be controlled
simultaneously, the function uses best efforts to enable or disable the tim-
ers as quickly as possible. Refer also to “adi_tmr_GPGroupEnable” on
page 8-24.

Core Timer Functions
The functions described in this section are used for the core timer only.

adi_tmr_CoreControl

The adi_tmr_CoreControl() function is used to configure the core timer.
Analogous to the general-purpose timer control function, this function is
passed a command ID specifying the parameter of the function that is
being addressed, and a command-specific parameter. The list of command
IDs applicable to the core timer and the corresponding command-specific
parameters are described in “ADI_TMR_CORE_CMD” on page 8-33.
Refer also to “adi_tmr_CoreControl” on page 8-21.

Watchdog Timer Functions
The functions described in this section are used for the watchdog timer
only.

adi_tmr_WatchdogControl

The adi_tmr_WatchdogControl() function configures the watchdog timer.
Analogous to the general-purpose timer and core timer control functions,
this function is passed a command ID specifying the parameter of the
function being addressed, and a command-specific parameter. Refer also
to “adi_tmr_WatchdogControl” on page 8-22.

VisualDSP++ 5.0 Device Drivers and System 8-7
Services Manual for Blackfin Processors

Timer Service

The list of command IDs applicable to the watchdog timer and the
corresponding command-specific parameters are described in
“ADI_TMR_WDOG_CMD” on page 8-34.

Peripheral Timer Functions
The functions described in this section are used for the general-purpose
timers and watchdog timers only. Passing a core timer ID to these func-
tions results in an error being returned to the caller.

adi_tmr_GetPeripheralID

The adi_tmr_GetPeripheralID() function can be called to identify the
peripheral ID for the specified timer. While not normally required, this
function may be useful if finer granularity of interrupt control logic than
what is provided by the timer service is required. The peripheral ID value
can be passed to functions in the interrupt service. Note that the core
timer does not have an associated peripheral ID because the core timer
mapping to an IVG level is fixed. Regardless, the core timer ID may still
be passed to this function, and the function does not return an error.
Refer also to “adi_tmr_GetPeripheralID” on page 8-29.

Callbacks
Like other system services, the timer service uses a callback mechanism in
order to notify the client of asynchronous events, such as a timer expiring.
Callbacks can be used on all types of timers: general-purpose timers, core
timers, and watchdog timers.

The Blackfin processor’s timers can be configured to generate interrupts.
The timer service provides an internal interrupt handler that processes
interrupts from the timer hardware. This interrupt handler makes the
appropriate callbacks into the client’s application. When a client installs a
timer callback, a parameter to the function dictates if the callback is live or
deferred. Live callbacks mean that the client’s callback function is called at

Operation

8-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

interrupt time. Deferred callbacks mean that callbacks are not made at
interrupt time but rather deferred to a lower priority using a specified
deferred callback service.

When using the callback capability of the timer service, the client does not
need to take any other action outside the timer service API. No calls to the
interrupt manager or deferred callback service, other than initialization of
those services, are required.

Note that it is possible for clients to use all capabilities of the timer service
and not use any of the callback capabilities.

adi_tmr_InstallCallback

The adi_tmr_InstallCallback() function is used to install a callback to a
specified timer. In addition to the timer ID, the client provides a wakeup
flag, the callback function address, a client handle, and a deferred callback
service handle.

The wakeup flag indicates whether the processor is awake from a
low-power state, should the timer event occur.

The callback function address specifies a callback function of the type
ADI_DCB_CALLBACK_FN (see “Deferred Callback Manager” for more infor-
mation). When invoked, the callback function is passed the following
three parameters:

• ClientHandle – a value provided by the client when the callback is
installed

• ADI_TMR_EVENT_TIMER_EXPIRED – indicates a timer callback event

• TimerID – the timer ID of the timer that generates the callback

When the deferred callback service handle parameter passed to the
adi_tmr_InstallCallback function is NULL, the callback is executed
live, meaning it is invoked at interrupt time. If the deferred callback

VisualDSP++ 5.0 Device Drivers and System 8-9
Services Manual for Blackfin Processors

Timer Service

service handle parameter is non-NULL, the timer service uses the specified
deferred callback service to invoke the callback.

A single callback function can be used and installed for any number of
timers; the callback function can use the TimerID parameter to determine
which timer generated the callback. Note, however, that only one callback
should be installed for a given timer.

This function does not alter timer control (such as direction) at all. Refer
also to “adi_tmr_InstallCallback” on page 8-26.

adi_tmr_RemoveCallback

The adi_tmr_RemoveCallback() function is used to remove a callback
from a specified timer. This function disables interrupt generation for the
timer and removes the callback from its internal tables. Unless reinstalled,
no further callbacks occur for the specified timer. This function does not
alter timer control in any way. Refer also to “adi_tmr_RemoveCallback”
on page 8-28.

Coding Example
This section provides code samples, illustrating how to access and use the
functionality provided by the timer service. This example initializes the
timer service, configures a couple of general-purpose timers, the core
timer, and the watchdog timer. The use of callbacks is also illustrated. All
timer service functions return an error code. In practice, check this error
code to ensure the function completed successfully. For the purposes of
this example only, the return value is not checked.

Operation

8-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Initialization

Prior to using the timer service, it must be initialized. The following frag-
ment initializes the service.

ADI_TMR_RESULT Result; // return value

Result = adi_tmr_Init(NULL);

Upon completion of this function, the timer service is initialized and
ready for use. This function does not alter the timers in any way but sim-
ply initialized internal data structures.

Opening a Timer

After the service is initialized, any timers that you need to use can be
opened. In this example, two general-purpose timers, the core timer, and
watchdog timer are opened

Result = adi_tmr_Open(ADI_TMR_GP_TIMER_0);

Result = adi_tmr_Open(ADI_TMR_GP_TIMER_1);

Result = adi_tmr_Open(ADI_TMR_CORE_TIMER);

Result = adi_tmr_Open(ADI_TMR_WDOG_TIMER);

The open function opens the timer for use and resets the timer to its
power-up values, clearing any pending status, and so on.

Configuring a Timer

After the timer is opened, the timer can be configured. The
adi_tmr_GPControl(), adi_tmr_CoreControl() and
adi_tmr_WatchdogControl() functions are used to configure
general-purpose timers, core timers, and the watchdog timers,
respectively.

VisualDSP++ 5.0 Device Drivers and System 8-11
Services Manual for Blackfin Processors

Timer Service

Each of these functions are provided with a command ID, typically
specifying the parameter to control and a value for the parameter. (Note
that the general-purpose control function also is passed a timer ID specify-
ing the timer being controlled.) Commands to timers can be given
individually or collectively as a table.

The following fragment illustrates both methods.

ADI_TMR_CORE_CMD_VALUE_PAIR CoreTable [] = {

{ADI_TMR_CORE_CMD_SET_COUNT, (void *)0x12345678 },

{ ADI_TMR_CORE_CMD_SET_PERIOD, (void *)0xabcdef },

{ ADI_TMR_CORE_CMD_SET_SCALE, (void *)0x10 },

{ ADI_TMR_CORE_CMD_SET_ACTIVE_MODE, (void *)TRUE },

{ ADI_TMR_CORE_CMD_END, NULL },

};

Result = adi_tmr_CoreControl(ADI_TMR_CORE_CMD_TABLE, CoreTable);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_0,

ADI_TMR_GP_CMD_SET_PERIOD, (void *)0x800000);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_0,

ADI_TMR_GP_CMD_SET_WIDTH, (void *)0x400000);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_0,

ADI_TMR_GP_CMD_SET_TIMER_MODE, (void *)0x1);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_1,

ADI_TMR_GP_CMD_SET_PERIOD, (void *)0x800000);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_1,

ADI_TMR_GP_CMD_SET_WIDTH, (void *)0x400000);

Result = adi_tmr_GPControl(ADI_TMR_GP_TIMER_1,

ADI_TMR_GP_CMD_SET_TIMER_MODE, (void *)0x1);

Result = adi_tmr_WatchdogControl

(ADI_TMR_WDOG_CMD_EVENT_SELECT, (void *)0x0);

Result = adi_tmr_WatchdogControl

(ADI_TMR_WDOG_CMD_SET_COUNT, (void *)0x12345678);

Operation

8-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Note in the above fragment that the core timer was enabled immediately
after being configured and the watchdog and general-purpose timers were
not enabled. Any timer can be enabled via a command table, typically the
last entry in the table. For illustrative purposes, enabling the watchdog
and general-purpose timers is shown separately in “Enabling and Dis-
abling Timers”.

Enabling and Disabling Timers

After the timer is configured, it can be enabled. When using a command
table, the timer can be enabled as a command in the table as shown in
“Configuring a Timer” on page 8-10. Typically, the command to enable
the timer is the last entry in the table. Alternatively, timers can be enabled
by a separate call to the appropriate control function. Further, gen-
eral-purpose timers can be simultaneously enabled and disabled as a
group.

The following fragment illustrates how to enable the watchdog timer and
then simultaneously enable general-purpose timers 0 and 1.

Result = adi_tmr_WatchdogControl

(ADI_TMR_WDOG_CMD_ENABLE_TIMER, (void *)TRUE);

Result = adi_tmr_GPGroupEnable

(ADI_TMR_GP_TIMER_0 | ADI_TMR_GP_TIMER_1, TRUE);

When a timer is disabled, it can be disabled as part of a command table
(though this is unlikely). More often, timers are disabled via a single con-
trol function call. As with the enabling of general-purpose timers, timers
can be disabled simultaneously. The following code fragment illustrates
how to disable the watchdog timer and simultaneously disable gen-
eral-purpose timers 0 and 1.

VisualDSP++ 5.0 Device Drivers and System 8-13
Services Manual for Blackfin Processors

Timer Service

Result = adi_tmr_WatchdogControl

(ADI_TMR_WDOG_CMD_ENABLE_TIMER, (void *)FALSE);

Result = adi_tmr_GPGroupEnable

(ADI_TMR_GP_TIMER_0 | ADI_TMR_GP_TIMER_1, FALSE);

Installing a Callback Function

While applications can install hardware interrupt service routines (ISRs)
directly to process interrupts from timers (see “Interrupt Manager”), the
timer service provides a simple, easy-to-use callback mechanism that
provides equivalent functionality.

The following code fragment illustrates how to install a callback function.
Different callback functions can be used for each timer, or a single call-
back function can be used for any number of timers. The fragment shows
installation of a single callback function for two general-purpose timers,
the core timer, and a watchdog timer. The switch statement within the
callback function identifies which timer generated the callback.

...

Result = adi_tmr_InstallCallback

(ADI_TMR_GP_TIMER_0, TRUE, (void *)0x00000000, NULL, Callback);

Result = adi_tmr_InstallCallback

(ADI_TMR_GP_TIMER_1, TRUE, (void *)0x11111111, NULL, Callback);

Result = adi_tmr_InstallCallback

(ADI_TMR_CORE_TIMER, TRUE, (void *)0x22222222, NULL, Callback);

Result = adi_tmr_InstallCallback

(ADI_TMR_WDOG_TIMER, TRUE, (void *)0x33333333, NULL, Callback);

...

void Callback(void *ClientHandle, u32 Event, void *pArg) {

// Event = ADI_TMR_EVENT_TIMER_EXPIRED

switch ((u32)pArg) {

case ADI_TMR_GP_TIMER_0:

// do processing when gp timer 0 expires

// ClientHandle = 0x00000000

Operation

8-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

break;

case ADI_TMR_GP_TIMER_1:

// do processing when gp timer 1 expires

// ClientHandle = 0x11111111

break;

case ADI_TMR_CORE_TIMER:

// do processing when core timer expires

// ClientHandle = 0x22222222

break;

case ADI_TMR_WDOG_TIMER:

// do processing when watchdog timer expires

// ClientHandle = 0x33333333

break;

}

}

When the callback function is invoked, the ClientHandle parameter is the
value given when the callback was installed, the Event is the
ADI_TMR_EVENT_TIMER_EXPIRED value, and the pArg parameter contains the
timer ID that triggered the callback. This example passes in a NULL for
the deferred callback service handle, so callbacks are live.

Removing Callbacks

Should an application no longer need the callback, it can remove the
callback without affecting the other timer settings. The following frag-
ment illustrates how to remove the callbacks.

Result = adi_tmr_RemoveCallback(ADI_TMR_GP_TIMER_0);

Result = adi_tmr_RemoveCallback(ADI_TMR_GP_TIMER_1);

Result = adi_tmr_RemoveCallback(ADI_TMR_CORE_TIMER);

Result = adi_tmr_RemoveCallback(ADI_TMR_WDOG_TIMER);

VisualDSP++ 5.0 Device Drivers and System 8-15
Services Manual for Blackfin Processors

Timer Service

The callback functions are no longer invoked and the callback functions
themselves are removed from the timer service.

Termination

When the functionality provided by the timer service is no longer
required, the application terminates the service. The following fragment
terminates the timer service.

Result = adi_tmr_Terminate();

After termination, the timer service must be reinitialized before using any
of the timer service function.

Timer Service API Reference
This section provides the timer service application programming interface
(API).

 The information in this section was accurate at the time this docu-
ment was created. However, the include file for the timer service,
adi_tmr.h, should be checked for current information.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Operation

8-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_Init

Description

The adi_tmr_Init() function initializes internal data structures of the
timer service. This function should be called only once per core.

Prototype

ADI_TMR_RESULT adi_tmr_Init(

void *pCriticalRegionArg

);

Arguments

Return Value

pCriticalRegionArg Handle to data area containing critical region data. This is
passed to adi_int_EnterCriticalRegion where it is used
internally of the module. See “Interrupt Manager” on
page 2-1 for further details.

ADI_TMR_RESULT_SUCCESS Timer service was successfully initialized.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of return
codes.

VisualDSP++ 5.0 Device Drivers and System 8-17
Services Manual for Blackfin Processors

Timer Service

adi_tmr_Open

Description

The adi_tmr_Open() function opens a timer. The timer’s registers are reset
to the power-up values, status conditions are cleared, and so on. Future
Blackfin devices may require this function take additional action to
manipulate the hardware in some way when opening a timer.

 On multi-core Blackfin devices, each core has its own core timer.
However, the watchdog timers and general-purpose timers are
shared between the cores. When running the timer service on
multi-core devices, ensure that multiple cores do not attempt to
simultaneously use the same watchdog and general-purpose timers.

Prototype

ADI_TMR_RESULT adi_tmr_Open(

u32 TimerID

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer to
open

ADI_TMR_RESULT_SUCCESS Operation was successful.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of
return codes.

Operation

8-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_Terminate

Description

The adi_tmr_Terminate() function closes the timer service. Any installed
callbacks are removed. Once terminated, the initialization function must
be called again before using any of the timer service functions.

Prototype
ADI_TMR_RESULT adi_tmr_Terminate(void);

Arguments

The function takes no arguments.

Return Value

ADI_TMR_RESULT_SUCCESS Operation was successful.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of
return codes.

VisualDSP++ 5.0 Device Drivers and System 8-19
Services Manual for Blackfin Processors

Timer Service

adi_tmr_Close

Description

The adi_tmr_Close() function is called when the application no longer
requires the service of a timer. At present, this function does nothing but
returns immediately to the caller. Future Blackfin devices may require that
this function manipulate the hardware in some way when closing a timer.

Prototype

ADI_TMR_RESULT adi_tmr_Close(

u32 TimerID

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer to
close

ADI_TMR_RESULT_SUCCESS Operation was successful.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of
return codes.

Operation

8-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_Reset

Description

The adi_tmr_Reset() function resets the timer’s registers to the power-up
values. Any pending status indications (interrupts, and so on) are cleared.
As this function is called from within the adi_tmr_Open function, there is
rarely a need for an application to call this function.

Prototype

ADI_TMR_RESULT adi_tmr_Reset(

u32 TimerID

);

Arguments

Return Value

FlagID Enumerator value that uniquely identifies the timer
to reset

ADI_TMR_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

VisualDSP++ 5.0 Device Drivers and System 8-21
Services Manual for Blackfin Processors

Timer Service

adi_tmr_CoreControl

Description

The adi_tmr_CoreControl() function inverts the current value of the flag.
If the flag is a logical 1 (driving high), this function makes the flag a logi-
cal 0 (driving low). If the flag is a logical 0 (driving low), this function
makes the flag a logical 1 (driving high).

Prototype

ADI_TMR_RESULT adi_tmr_CoreControl(

ADI_TMR_CORE_CMD Command,

void *Value

);

Arguments

Return Value

Command Identifier specifying the timer parameter that is
addressed. See “ADI_TMR_CORE_CMD” on
page 8-33 for a list of all core timer command
identifiers.

Value A command-specific value that is typically the
value of the parameter being set or a location into
which a value read from the timer is stored

ADI_TMR_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

Operation

8-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_WatchdogControl

Description

The adi_tmr_WatchdogControl() function configures and controls the
settings of the watchdog timer.

Prototype

ADI_TMR_RESULT adi_tmr_WatchdogControl(

ADI_TMR_WDOG_CMD Command,

void *Value

);

Arguments

Return Value

Command Identifier specifying the timer parameter that is
addressed. See “ADI_TMR_WDOG_CMD” on
page 8-34 for a list of all watchdog timer command
identifiers.

Value A command-specific value that is typically the
value of the parameter being set or a location into
which a value read from the timer is stored

ADI_TMR_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

VisualDSP++ 5.0 Device Drivers and System 8-23
Services Manual for Blackfin Processors

Timer Service

adi_tmr_GPControl

Description

The adi_tmr_GPControl() function configures and controls the settings of
general-purpose timers.

Prototype

ADI_TMR_RESULT adi_tmr_GPControl(

u32 TimerID,

ADI_TMR_GP_CMD Command,

void *Value

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer
to control

Command Identifier specifying the timer parameter that is
addressed. See “ADI_TMR_GP_CMD” on
page 8-36 for a list of all general-purpose timer
command identifiers.

Value A command-specific value that is typically the
value of the parameter being set or a location into
which a value read from the timer is stored

ADI_TMR_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

Operation

8-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_GPGroupEnable

Description

The adi_tmr_GPGroupEnable() function simultaneously enables or dis-
ables a group of general-purpose timers. The function uses best efforts to
simultaneously enable or disable the group of timers. If the underlying
hardware of the specific Blackfin device allows the specified timers to be
controlled simultaneously, the function takes the necessary action to
simultaneously enable or disable the timers. If the underlying hardware
does not allow the specified timers to be controlled simultaneously, the
function uses best efforts to enable or disable the timers as quickly as
possible.

Note that depending on the specific Blackfin device, when enabling the
timer(s), this function may additionally configure the port muxing, based
on the configuration settings for the timer.

For example, on ADSP-BF534/536/537 (and future) processors, if a gen-
eral-purpose timer is configured as a PWM timer with the output pin
active, when the timer is enabled, this function configures the port control
logic, via the port control system service, to enable the TMRx pin. On
ADSP-BF531/532/533 and ADSP-BF561 processors, no port control
logic is necessary. No further user action with the port control service is
required.

Prototype

ADI_TMR_RESULT adi_tmr_GPGroupEnable(

u32 TimerID,

u32 EnableFlag

);

VisualDSP++ 5.0 Device Drivers and System 8-25
Services Manual for Blackfin Processors

Timer Service

Arguments

Return Value

TimerIDs OR’ing of all general-purpose timer IDs that are
simultaneously controlled

EnableFlag A value of TRUE indicates the timers are enabled. A
value of FALSE indicates the timers are disabled.

ADI_TMR_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

Operation

8-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_InstallCallback

Description

The adi_tmr_InstallCallback() function installs a callback function that
is invoked when a timer expires. Note that the function provided by the
caller is a callback function, not an interrupt handler. This function does
not alter timer configurations, values, or other settings in any way.

Prototype

ADI_TMR_RESULT adi_tmr_InstallCallback(

u32 TimerID,

u32 WakeupFlag,

void *ClientHandle,

ADI_DCB_HANDLE DCBHandle,

ADI_DCB_CALLBACK_FN ClientCallback

);

Arguments

TimerID Enumerator value that uniquely identifies the timer to which
the callback is assigned

WakeupFlag If the trigger occurs, flag indicating the processor is awake
from a low-power state

ClientHandle Identifier defined and supplied by the client. This value is
passed to the callback function.

DCBHandle Either NULL if using live callbacks or the handle to the
deferred callback service that is used for callbacks

ClientCallback Address of the client’s callback function

VisualDSP++ 5.0 Device Drivers and System 8-27
Services Manual for Blackfin Processors

Timer Service

Return Value

ADI_TMR_RESULT_SUCCESS Flag service was successfully initialized.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list of return
codes.

Operation

8-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_tmr_RemoveCallback

Description

The adi_tmr_RemoveCallback() function removes the callback from the
specified timer. This function does not alter timer configurations, values,
or other settings in any way.

 Calling adi_tmr_RemoveCallback from within a callback routine is
not supported and will result in undefined behavior.

Prototype

ADI_TMR_RESULT adi_tmr_RemoveCallback(

u32 TimerID

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer
whose callback is removed

ADI_TMR_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

VisualDSP++ 5.0 Device Drivers and System 8-29
Services Manual for Blackfin Processors

Timer Service

adi_tmr_GetPeripheralID

Description

The adi_tmr_GetPeripheralID() function can be called to identify the
peripheral ID for the specified timer. Though not normally required, this
function may be useful should finer granularity of interrupt control logic
than what is provided by the timer service be required. The peripheral ID
value can be passed to functions in the interrupt service. Note that the
core timer does not have a peripheral ID associated with it as the core
timer mapping to an IVG level is fixed. Regardless, the core timer ID may
still be passed to this function and the function will not return an error.

Prototype

ADI_TMR_RESULT adi_tmr_GetPeripheralID(

u32 TimerID,

ADI_INT_PERIPHERAL_ID *pPeripheralID

);

Arguments

Return Value

TimerID Enumerator value that uniquely identifies the timer
to control

pPeripheralID Pointer to location where the peripheral ID for the
specified timer is stored

ADI_TMR_RESULT_SUCCESS Function completed successfully.

Any other value Error has occurred.
See “ADI_TMR_RESULT” on page 8-32 for a list
of return codes.

Public Data Types, Enumerations, and Macros

8-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Public Data Types, Enumerations, and
Macros

This section defines the public data structures and enumerations used by
the timer service.

 Always check the include file for the timer service, adi_tmr.h, for
the most up-to-date information.

Timer IDs
The timer service provides a unique identifier for each timer. Timer IDs,
which are 32-bit values, are not a simple index; instead, they are a
combination of two pieces of information. Bits 27 through 31 of the timer
ID are an index that enumerates each timer in the system, including
general-purpose, core, and watchdog timers. Bits 0 through 26, which are
used for general-purpose timers only, form a mask used by the timer
service to enable and disable multiple general-purpose timers
simultaneously.

Macros are provided in the adi_tmr.h file to create timer IDs, to access
the values held in bits 0 through 26, and to access the values in bits 27
through 31. These macros are used internally by the timer service and are
not typically used by applications. However, should the application need
to iterate through all general-purpose timers, the timer IDs can be created
by the ADI_TMR_CREATE_GP_TIMER_ID(x) macro, where “x” is in the range
of 0 to (but not including) the value ADI_TMR_GP_TIMER_COUNT.

VisualDSP++ 5.0 Device Drivers and System 8-31
Services Manual for Blackfin Processors

Timer Service

For example, the following code fragment illustrates how to open all
general-purpose timers.

u32 i, TimerID;

ADI_TMR_RESULT Result;

for (i = 0; i < ADI_TMR_GP_TIMER_COUNT; i++) {

TimerID = ADI_TMR_CREATE_GP_TIMER_ID(i);

Result = adi_tmr_Open(TimerID); }

For most functions in the timer service API, a single timer ID value is
passed to the function to identify the timer being addressed. However, the
adi_tmr_GPGroupEnable() function can take a single timer ID value or a
logical OR’ing of multiple timer ID values as a parameter. The structure
of the timer ID value allows the single passed-in parameter to identify
multiple general-purpose timers to the function.

Associated Macros

These macros are defined for internal use by the timer service.

ADI_TMR_CREATE_GP_TIMER_ID Creates a timer ID given a general-purpose timer
index.

ADI_TMR_CREATE_CORE_TIMER_ID Creates a timer ID given a core timer index.

ADI_TMR_CREATE_WDOG_TIMER_ID Creates a timer ID given a watchdog timer index.

ADI_TMR_GET_TIMER_INDEX Gets the timer index given a timer ID.

ADI_TMR_GET_GP_TIMER_MASK Gets the mask for a general-purpose timer(s) given
a single timer ID or logical OR’ing of multiple
timer IDs.

Public Data Types, Enumerations, and Macros

8-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_TMR_RESULT
Each API function of the timer service returns an ADI_TMR_RESULT
enumeration as a return code. Similar to all system services, generic
success is defined as 0 and generic failure is defined as 1. This allows the
calling function to quickly evaluate the return code for a zero or nonzero
value.

All detailed result codes for the timer service begin with the value
ADI_TMR_ENUMERATION_START, for easy identification.

Result Code Description

ADI_TMR_RESULT_SUCCESS Function executed correctly.

ADI_TMR_RESULT_FAILED Function execution not completed.

ADI_TMR_RESULT_NOT_SUPPORTED Operation is not supported.

ADI_TMR_RESULT_BAD_TIMER_ID (0x70002) TimerID value is invalid.

ADI_TMR_RESULT_BAD_TIMER_IDS (0x70003) Timer ID values are
invalid.

ADI_TMR_RESULT_BAD_TIMER_TYPE Operation is not appropriate to the
timer ID supplied.

ADI_TMR_RESULT_BAD_COMMAND Invalid command.

ADI_FLAG_RESULT_INTERRUPT_MANAGER_ERROR Interrupt manager service returned
an error.

ADI_TMR_RESULT_CALLBACK_ALREADY_INSTALLED Callback is already installed on the
given timer.

VisualDSP++ 5.0 Device Drivers and System 8-33
Services Manual for Blackfin Processors

Timer Service

ADI_TMR_EVENT
The ADI_TMR_EVENT enumeration defines the type of callback event that
occurred. There is only one value, ADI_TMR_EVENT_TIMER_EXPIRED. This
enumeration type is different from all other event types for system ser-
vices—a single callback function can be used for any service, regardless of
the events it processes. Event codes for the timer service begin with the
value ADI_TMR_ENUMERATION_START for easy identification.

ADI_TMR_CORE_CMD
Table 8-1 lists the commands that can be executed for the core timer.
These command IDs are passed as a parameter to the
adi_tmr_CoreCommand() function. In addition to the command ID, the
Value parameter (a void * type) is also passed to the function. The mean-
ing of the Value parameter depends on the command ID being passed.
Table 8-1 also describes the Value parameter for each command ID.

Event Code Description

ADI_TMR_EVENT_TIMER_EXPIRED Given timer expired.

Table 8-1. Commands Executed for Core Timer

Command ID Value Description

ADI_TMR_CORE_CMD_TABLE ADI_TMR_CORE_CMD_
VALUE_PAIR *

Start of command
table

ADI_TMR_CORE_CMD_END Ignored End of command
table

ADI_TMR_CORE_CMD_PAIR ADI_TMR_CORE_CMD_
VALUE_PAIR *

Command pair

ADI_TMR_CORE_CMD_SET_ACTIVE_MODE TRUE – active mode
FALSE – low power

Sets active or low
power mode of
timer.

Public Data Types, Enumerations, and Macros

8-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_TMR_WDOG_CMD
Table 8-2 lists the commands that can be executed for the watchdog
timer. These command IDs are passed as a parameter to the
adi_tmr_WatchdogCommand() function. In addition to the command ID,
the Value parameter (a void * type) is also passed to the function. The
meaning of the Value parameter depends on the command ID being
passed. Table 8-2 also describes the Value parameter for each command
ID.

ADI_TMR_CORE_CMD_ENABLE_TIMER TRUE – enabled
FALSE – disabled

Enables or disables
the timer.

ADI_TMR_CORE_CMD_SET_AUTO_RELOAD TRUE – auto reload
FALSE – no reload

Enables or disables
automatic reload-
ing of timer.

ADI_TMR_CORE_CMD_HAS_INTERRUPT_OCCURRED u32 *
TRUE – enabled
FALSE – disabled

Indicates if the
timer interrupt has
occurred.

ADI_TMR_CORE_CMD_RESET_INTERRUPT_OCCURRED Ignored Clears the indica-
tion that the timer
interrupt has
occurred.

ADI_TMR_CORE_CMD_SET_COUNT u32 Sets the count
value for the timer.

ADI_TMR_CORE_CMD_SET_PERIOD u32 Sets the period
value for the timer.

ADI_TMR_CORE_CMD_SET_SCALE u32 Sets the scale value
for the timer.

Table 8-1. Commands Executed for Core Timer (Cont’d)

Command ID Value Description

VisualDSP++ 5.0 Device Drivers and System 8-35
Services Manual for Blackfin Processors

Timer Service

Table 8-2. Commands Executed for Watchdog Timer

Command ID Value Description

ADI_TMR_WDOG_CMD_TABLE ADI_TMR_WDOG_CMD_
VALUE_PAIR *

Start of command table

ADI_TMR_WDOG_CMD_END Ignored End of command table

ADI_TMR_WDOG_CMD_PAIR ADI_TMR_WDOG_CMD_
VALUE_PAIR *

Command pair

ADI_TMR_WDOG_CMD_EVENT_SELECT 0 – reset
1 – NMI
2 – GP interrupt
3 – no event

Sets the event type that
occurs upon expiration of
the watchdog timer.

ADI_TMR_WDOG_CMD_ENABLE_TIMER TRUE – enabled
FALSE – disabled

Enables or disables the
timer.

ADI_TMR_WDOG_CMD_HAS_EXPIRED u32 *
TRUE – enabled
FALSE – disabled

Indicates if the timer has
expired.

ADI_TMR_WDOG_CMD_RESET_EXPIRED Ignored Clears the indication that
the timer has expired.

ADI_TMR_WDOG_CMD_GET_STATUS u32 * Stores the current count
value into the specified
location.

ADI_TMR_WDOG_CMD_SET_COUNT u32 Sets the current count
value.

ADI_TMR_WDOG_CMD_RELOAD_STATUS u32 * Reloads the status register
from the count register.

Public Data Types, Enumerations, and Macros

8-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_TMR_GP_CMD
Table 8-3 lists the commands that can be executed for general-purpose
timers. These command IDs are passed as a parameter to the
adi_tmr_GPCommand() function. In addition to the command ID, the
Value parameter (a void * type) is also passed to the function. The mean-
ing of the Value parameter depends on the command ID being passed.
Table 8-3 also describes the Value parameter for each command ID.

Table 8-3. Commands Executed for General-Purpose Timers

Command ID Value Description

ADI_TMR_GP_CMD_TABLE ADI_TMR_GP_CMD_
VALUE_PAIR *

Start of command table

ADI_TMR_GP_CMD_END Ignored End of command table

ADI_TMR_GP_CMD_PAIR ADI_TMR_GP_CMD_
VALUE_PAIR *

Command pair

ADI_TMR_GP_CMD_SET_PERIOD u32 Sets the period value
for the timer.

ADI_TMR_GP_CMD_GET_PERIOD u32 * Stores the current
period value for the
timer in the specified
location.

ADI_TMR_GP_CMD_SET_WIDTH u32 Sets the width value for
the timer.

ADI_TMR_GP_CMD_GET_WIDTH u32 * Stores the current
width value for the
timer in the specified
location.

ADI_TMR_GP_CMD_GET_COUNTER u32 * Stores the counter value
for the timer in the
specified location.

ADI_TMR_GP_CMD_SET_TIMER_MODE 0 – reserved
1 – PWM
2 – WDTH_CAP
3 – EXT_CLK

Sets the operating
mode of the timer.

VisualDSP++ 5.0 Device Drivers and System 8-37
Services Manual for Blackfin Processors

Timer Service

ADI_TMR_GP_CMD_SET_PULSE_HI TRUE – positive action
pulse
FALSE – negative
action pulse

Sets the pulse action of
the timer.

ADI_TMR_GP_CMD_SET_COUNT_METHOD TRUE – count to end of
period
FALSE – count to end
of width

Sets the count method.

ADI_TMR_GP_CMD_SET_INTERRUPT_ENABLE TRUE – enables inter-
rupt generation
FALSE – disables inter-
rupt generation

Enables or disables
interrupt generation for
the timer.

ADI_TMR_GP_CMD_SET_INPUT_SELECT TRUE – UART_RX or
PPI_CLK
FALSE – TMRx or
PF1

Selects the timer input.

ADI_TMR_GP_CMD_SET_OUTPUT_PAD_DISABLE TRUE – output pad dis-
abled
FALSE – output pad
enabled

Enables or disables the
TMRx pin.

ADI_TMR_GP_CMD_SET_CLOCK_SELECT TRUE – PWM_CLK
FALSE – SCLK

Selects the input clock
for the timer.

ADI_TMR_GP_CMD_SET_TOGGLE_HI TRUE – PULSE_HI
alternated each period
FALSE – use pro-
grammed state

Sets the toggle mode.

ADI_TMR_GP_CMD_RUN_DURING_EMULATION TRUE – run during
emulation
FALSE – do not run
during emulation

Enables or disables the
timer when the device
is servicing emulator
interrupts.

Table 8-3. Commands Executed for General-Purpose Timers (Cont’d)

Command ID Value Description

Public Data Types, Enumerations, and Macros

8-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_TMR_GP_CMD_GET_ERROR_TYPE u32 *
0 – no error
1 – counter overflow
2 – period register
error
3 – width register error

Stores the error type in
the specified location.

ADI_TMR_GP_CMD_IS_INTERRUPT_ASSERTED u32 *
TRUE – asserted
FALSE – not asserted

Stores the interrupt
assertion status in the
specified location.

ADI_TMR_GP_CMD_CLEAR_INTERRUPT Ignored Clears the timer’s inter-
rupt.

ADI_TMR_GP_CMD_IS_ERROR u32 *
TRUE – error
FALSE – no error

Stores the error status
in the specified loca-
tion.

ADI_TMR_GP_CMD_CLEAR_ERROR Ignored Clears the error status
of the timer.

ADI_TMR_GP_CMD_IS_SLAVE_ENABLED u32 *
TRUE – enabled
FALSE – disabled

Stores the slave enable
status in the specified
location.

ADI_TMR_GP_CMD_IMMEDIATE_HALT Ignored Immediately stops
timer in PWM mode.

ADI_TMR_GP_CMD_ENABLE_TIMER TRUE – enabled
FALSE – disabled

Enables or disables the
timer.

ADI_TMR_GP_CMD_SET_ENABLE_DELAY u32 Number of SCLK
cycles to delay between
the enabling of each
timer

Table 8-3. Commands Executed for General-Purpose Timers (Cont’d)

Command ID Value Description

VisualDSP++ 5.0 Device Drivers and System 9-1
Services Manual for Blackfin Processors

9 PORT CONTROL SERVICE

This chapter describes the port control manager service. This service is
available for all Blackfin processors with general-purpose ports starting
with the ADSP-BF534/6/7 processors.

This chapter contains the following sections:

• “Introduction” on page 9-2

• “Using the Port Control Manager” on page 9-3

• “Virtual Devices and Device Indexing” on page 9-8

• “Port Control Manager API Reference” on page 9-9

• “Public Data Types, Enumerations, and Macros” on page 9-24

Introduction

9-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The port control manager service, within the system services library,
provides the client applications’ developer with a means of assigning the
general-purpose input/output (GPIO) pins to various functions. For
instance, the various data, clock, and framing signals required for SPORT0
usage can be set up with a single call to the adi_ports_EnableSPORT
function.

Where necessary, the memory-mapped registers for the appropriate
peripherals are queried to determine behavior. For example, the port
control manager can interrogate the PPI_CONTROL register to determine
whether two internal frame syncs are required. However, it is the
responsibility of the client program to configure the PPI control registers
prior to enabling the required flag pins. This is the usual practice within
the device driver model, where port control and the setting of flag values
are done at the point of enabling dataflow.

The port control service is applicable on processors that support port con-
trol, which is standard on all Blackfin processors beginning with (and
subsequent to) the ADSP-BF534, ADSP-BF536, and ADSP-BF537
Blackfin processor class.

All supported Blackfin processors share a common basic port control ser-
vice API, including adi_ports_Init() and adi_ports_Terminate().

Initial port control (on the ADSP-BF534/6/7 processors) also included a
dedicated adi_ports_EnableXxx() function call for each of the respective
devices (Xxx being PPI, SPI, SPORT, and so on). These enable functions
operated on a fixed set of resources and are still supported for
compatibility.

As more diverse built-in hardware resources and enhanced port multiplex-
ing capabilities appeared on newer Blackfin architectures, the port control
enable functions (adi_ports_EnableXxx()) were moved into the
respective device driver code as a more generic adi_ports_Configure()

VisualDSP++ 5.0 Device Drivers and System 9-3
Services Manual for Blackfin Processors

Port Control Service

API that supports more robust and dynamic hardware and multiplexing
management.

Whether using the legacy adi_ports_EnableXxx() API (still supported) or
the newer adi_ports_Configure() API, the port control manager uses an
unambiguous naming convention to safeguard against conflicts with other
software libraries provided by Analog Devices or elsewhere. All enumera-
tion values and typedef statements use the ADI_PORTS_ prefix, and
functions and global variables use the lowercase adi_ports_ equivalent.

Both APIs are described in the “Port Control Manager API Reference”
section of this chapter. Example usages are provided in the “Using the
Port Control Manager” section.

Using the Port Control Manager
Depending on the processor family, one or the other API is used to man-
age the device and port configurations: adi_ports_EnableXxx() for legacy
parts (ADSP-BF534/6/7) or adi_ports_Configure() for more recent
parts. One example for each is illustrated in this section.

Legacy adi_ports_EnableXxx() API Usage
To demonstrate the use of the port control manager, an example is
presented that configures the PPI for use with two internal frame syncs.

The port control manager is initialized as follows.

adi_ports_Init(// Initialize Port Control Manager

NULL // No special data area for critical

// regions required

);

Using the Port Control Manager

9-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

To enable the flag pins for the required PPI use, the adi_ports_EnablePPI
function is called with an array of directives that determine how to config-
ure the register.

// Configure the PPI_CONTROL register

ADI_PPI_CONTROL_REG ppi_control;

ppi_control.port_en = 0; // Disable until ready

ppi_control.port_dir = 0; // Receive mode

ppi_control.xfr_type = 3; // Non ITU-R 656 mode

ppi_control.port_cfg = 1; // two or three internal frame syncs

ppi_control.dlen = 7; // 16 Bits data length

ppi_control.polc = 0; // Do not invert PPI_CLK

ppi_control.pols = 0; // Do not invert PPI_FS1 & PPI_FS2

// set PPI_COUNT to 1 to sample 2 16-bit words.

u16 ppi_count = 1;

u16 ppi_frame = 1;

ADI_DEV_CMD_VALUE_PAIR PPI_config[] = {

{ ADI_PPI_CMD_SET_CONTROL_REG, (void*)(*(u16*)&ppi_control) },

{ ADI_PPI_CMD_SET_TRANSFER_COUNT_REG, (void*)(*(u16*)&ppi_count)

},

{ ADI_PPI_CMD_SET_LINES_PER_FRAME_REG,

(void*)(*(u16*)&ppi_frame)},

{ ADI_DEV_CMD_END, 0 }

};

// Program PPI peripheral

adi_dev_Control(

ppiHandle,

ADI_DEV_CMD_TABLE,

(void*)PPI_config);

// other configuration code for PPI, eg Timers, etc :

// The following would be elsewhere in the client code

VisualDSP++ 5.0 Device Drivers and System 9-5
Services Manual for Blackfin Processors

Port Control Service

// Configure pins for PPI use

u32 ppi_config[] = { ADI_PORTS_DIR_PPI_BASE };

adi_ports_EnablePPI(

ppi_config, // Array of directives

sizeof(ppi_config)/sizeof(u32), // Number of directives

1 // Enable

);

// Enable Data Flow

adi_dev_Control(ppiHandle, ADI_DEV_CMD_SET_DATAFLOW, 1);

Finally, when the port control manager is no longer required, the service is
terminated with a call to adi_ports_Terminate3:

adi_ports_Terminate();

Newer adi_ports_Configure() API Usage
The common adi_ports_Init() and adi_ports_Terminate() calls are still
used. Within this context, the following example illustrates configuration
of a similar PPI setup using adi_ports_Configure(). (This particular
code snippet is from the PPI driver implementation for the ADSP-BF518
Blackfin processor.)

static u32 ppiSetPortControl(

ADI_PPI *pDevice,

u32 OpenFlag

)

{

/* Number of directives to be passed */

u32 nDirectives;

/* Return code */

u32 eResult;

Using the Port Control Manager

9-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

/* Directives to enable PPI Clock and Data ports */

ADI_PORTS_DIRECTIVE aePpiClkDataDirectives [] =

{

ADI_PORTS_DIRECTIVE_PPI_CLK_MUX2,

ADI_PORTS_DIRECTIVE_PPI_D0,

ADI_PORTS_DIRECTIVE_PPI_D1,

ADI_PORTS_DIRECTIVE_PPI_D2,

ADI_PORTS_DIRECTIVE_PPI_D3,

ADI_PORTS_DIRECTIVE_PPI_D4,

ADI_PORTS_DIRECTIVE_PPI_D5,

ADI_PORTS_DIRECTIVE_PPI_D6,

ADI_PORTS_DIRECTIVE_PPI_D7,

ADI_PORTS_DIRECTIVE_PPI_D8,

ADI_PORTS_DIRECTIVE_PPI_D9,

ADI_PORTS_DIRECTIVE_PPI_D10,

ADI_PORTS_DIRECTIVE_PPI_D11,

ADI_PORTS_DIRECTIVE_PPI_D12,

ADI_PORTS_DIRECTIVE_PPI_D13,

ADI_PORTS_DIRECTIVE_PPI_D14,

ADI_PORTS_DIRECTIVE_PPI_D15,

};

/* Directives to enable PPI Frame sync ports */

ADI_PORTS_DIRECTIVE aePpiFsDirectives [] =

{

ADI_PORTS_DIRECTIVE_PPI_FS1_MUX2,

ADI_PORTS_DIRECTIVE_PPI_FS2_MUX2,

ADI_PORTS_DIRECTIVE_PPI_FS3

};

/* PPI device needs Clock & Data pins 0 to 7 by default */

 nDirectives = 9;

VisualDSP++ 5.0 Device Drivers and System 9-7
Services Manual for Blackfin Processors

Port Control Service

/* IF (PPI Data length is more than 8 bits) */

if (pDevice->PPIControl->dlen > 0)

{

/* Enable rest of the data pins depending on PPI data

length */

/* PPI does not support 9-bit data length, so increase

directive count by data length + 1 */

nDirectives += (pDevice->PPIControl->dlen + 1);

}

/* Call port control to enable PPI Clock and data pins */

eResult = adi_ports_Configure(aePpiClkDataDirectives,

nDirectives);

/* IF (Successfully enabled PPI Clock and data pins) */

if (eResult == ADI_PORTS_RESULT_SUCCESS)

{

/* IF (PPI configured to use Frame syncs) */

if (pDevice->PPIControl->xfr_type == 3)

{

/* assume no FS directives required to be sent */

nDirectives = 0;

/* IF (PPI configured in transmit mode) */

if (pDevice->PPIControl->port_dir)

{

/* IF (Use 2 or 3 frame syncs) */

if ((pDevice->PPIControl->port_cfg == 1) ||

(pDevice->PPIControl->port_cfg == 3))

{

/* Enable FS2 & FS3 */

nDirectives = 2;

}

}

Virtual Devices and Device Indexing

9-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

/* ELSE (PPI configured in receive mode) */

else

{

/* IF (Use 2 or 3 frame syncs) */

if ((pDevice->PPIControl->port_cfg == 1) ||

(pDevice->PPIControl->port_cfg == 2))

{

/* Enable FS2 & FS3 */

nDirectives = 2;/

}

}

/* Call port control to enable PPI FS pins */

eResult = adi_ports_Configure(aePpiFsDirectives,

nDirectives);

}

}

/* return */

return (eResult);

}

Virtual Devices and Device Indexing
Some processors support mapping the same peripheral device to multiple
ports to maximize the combinations of peripheral mapping and facilitate
system design. When there is more than a one-to-one mapping of periph-
erals-to-ports, the port service employs virtual entries in the device table to
accommodate the extra configurations.

The term “virtual” can also be thought of as “secondary”. But the impor-
tant thing to remember is the device number is a zero-based array index
that spans all “primary” device mappings plus any “virtual” (or secondary)
mappings.

VisualDSP++ 5.0 Device Drivers and System 9-9
Services Manual for Blackfin Processors

Port Control Service

For example, the ADSP-BF526/7 processors have two distinct built-in
SPORT devices (SPORT0 and SPORT1). Physical mapping of the
SPORT to the appropriate port pins is managed in the SPORT driver
code (adi_sport.c) via a set of processor-specific pin-mapping defines
(adi_ports_bf52x.h) such as ADI_PORTS_DIRECTIVE_SPORT0F_DRPRI. The
driver code selects the appropriate pin-mapping based on the device index,
as specified in the adi_dev_open() call DevNumber parameter.

In the case at hand, SPORT0 and SPORT1 have primary mapping to dif-
ferent pins on PORTF, corresponding to device index 0 and 1. But
SPORT0 also offers a secondary mapping via PORTG as device index 2,
implying a third virtual device exists, where in fact, only two physical
SPORTs exist.

Virtual device table entries (and indexing) are used whenever a peripheral
may be mapped to multiple locations. It is an error to map the same phys-
ical device to multiple locations simultaneously; only one physical
mapping is allowed, regardless of whether it’s a primary or a secondary
(virtual) mapping. For the ADSP-BF526/7, only two SPORTS are avail-
able: SPORT0 may be mapped to PORTF (device index 0) or to PORTG
(device index 2), not both, whereas SPORT1 is limited to a singular map-
ping by device index 1.

Port Control Manager API Reference
This section documents the port control manager service application pro-
gramming interface (API).

 Legacy APIs (adi_ports_EnableXxx()) are described in detail in
this section. The newer API (adi_ports_Configure()) is docu-
mented in general in this section, and also in further detail within
the respective device driver documents located in the …/Black-
fin/docs subdirectory.

Virtual Devices and Device Indexing

9-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 9-11
Services Manual for Blackfin Processors

Port Control Service

adi_ports_Init

Description

The adi_ports_Init function initializes the port control manager.

 This API is common to all Blackfin processors, including both
legacy processors and all newer processors.

Prototype

ADI_PORTS_RESULT adi_ports_Init(

void *pCriticalRegionArg

);

Arguments

Return Value

pEnterCriticalArg Handle to a user-defined data area to store critical region
data. This is passed to adi_int_EnterCriticalRegion
where it is used internally by the module to protect against
multiple access during critical port control register manipula-
tions which must be atomic. See “Interrupt Manager” on
page 2-1 for further details.

ADI_PORTS_RESULT_SUCCESS Port control manager was successfully initialized.

Virtual Devices and Device Indexing

9-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_Terminate

Description

The adi_ports_Terminate function terminates the port control manager.

 This API is common to all Blackfin processors, including both
legacy processors and all newer processors.

Prototype
ADI_PORTS_RESULT adi_ports_Terminate(void);

Arguments

None

Return Value

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

VisualDSP++ 5.0 Device Drivers and System 9-13
Services Manual for Blackfin Processors

Port Control Service

adi_ports_Configure

Description

The adi_ports_Configure function is used to perform the appropriate pin
multiplexing to configure the GPIO pins for GPIO or peripheral use. The
function accepts a table of port control directives. Directives are specific to
each processor family and are defined in the include file named for that
processor family, for example, adi_ports_bf2x.h found in the
VisualDSP++ include path \include\services\ports\.

Prototype

ADI_PORTS_RESULT adi_ports_Configure(

ADI_PORTS_DIRECTIVE *pDirectives,

u32 nDirectives,

);

Arguments

Return Value

ADI_PORTS_DIRECTIVE Pointer to an array of directives

u32 Number of directives

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_FAILED Function failed.

ADI_PORTS_RESULT_BAD_DIRECTIVE Invalid directive value has been passed.

ADI_PORTS_RESULT_NULL_ARRAY Address of the Directives array is NULL.

Virtual Devices and Device Indexing

9-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_EnablePPI

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_EnablePPI function configures the port control registers to
enable the use of the required PPI channel.

Prototype

ADI_PORTS_RESULT adi_ports_EnablePPI(

u32 *Directives,

u32 nDirectives,

u32 Enable

);

Arguments

Return Value

Directives Address of an array of directives describing how the
to configure the PPI flags. See “Legacy API Enu-
meration Values” on page 9-25.

nDirectives Number of entries in Directives array

Enable Flag determining whether the functionality is
enabled (1) or disabled (0)

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY Address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE Invalid directive value has been passed.

VisualDSP++ 5.0 Device Drivers and System 9-15
Services Manual for Blackfin Processors

Port Control Service

adi_ports_EnableSPI

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_EnableSPI function configures the port control registers to
enable the use of the required SPI channel.

Prototype

ADI_PORTS_RESULT adi_ports_EnableSPI(

u32 *Directives,

u32 nDirectives,

u32 Enable

);

Arguments

Return Value

Directives Address of an array of directives describing how to
configure the SPI flags. See “Legacy API Enumera-
tion Values” on page 9-25.

nDirectives Number of entries in Directives array

Enable Flag determining whether the functionality is
enabled (1) or disabled (0)

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY Address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE Invalid directive value has been passed.

Virtual Devices and Device Indexing

9-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_EnableSPORT

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_EnableSPORT function configures the port control registers to
enable the use of the required SPORT channel.

Prototype

ADI_PORTS_RESULT adi_ports_EnableSPORT(

u32 *Directives,

u32 nDirectives,

u32 Enable

);

Arguments

Return Value

Directives Address of an array of directives describing how the
to configure the SPORT flags. See “Legacy API
Enumeration Values” on page 9-25.

nDirectives Number of entries in Directives array

Enable Flag determining whether the functionality is
enabled (1) or disabled (0)

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY Address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE Invalid directive value has been passed.

VisualDSP++ 5.0 Device Drivers and System 9-17
Services Manual for Blackfin Processors

Port Control Service

adi_ports_EnableUART

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_EnableUART function configures the port control registers to
enable the use of the required UART channel.

Prototype

ADI_PORTS_RESULT adi_ports_EnableUART(

u32 *Directives,

u32 nDirectives,

u32 Enable

);

Arguments

Return Value

Directives Address of an array of directives describing how the
to configure the UART flags. See “Legacy API Enu-
meration Values” on page 9-25.

nDirectives Number of entries in Directives array

Enable Flag determining whether the functionality is
enabled (1) or disabled (0)

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY Address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE Invalid directive value has been passed.

Virtual Devices and Device Indexing

9-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_EnableCAN

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_EnableCAN function configures the port control registers to
enable the use of the required CAN channel.

Prototype

ADI_PORTS_RESULT adi_ports_EnableCAN(

u32 *Directives,

u32 nDirectives,

u32 Enable

);

Arguments

Return Value

Directives Address of an array of directives describing how the
to configure the CAN flags. See “Legacy API Enu-
meration Values” on page 9-25.

nDirectives Number of entries in Directives array

Enable Flag determining whether the functionality is
enabled (1) or disabled (0)

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY Address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE Invalid directive value has been passed.

VisualDSP++ 5.0 Device Drivers and System 9-19
Services Manual for Blackfin Processors

Port Control Service

adi_ports_EnableTimer

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_EnableTimer function configures the port control registers to
enable the appropriate flag pins for the output of general-purpose (GP)
timer clock signals, the timer clock input (used mainly for PPI clock),
alternate timer clock inputs1, and for bit rate detection on CAN and
UART inputs.2

Any number of pins as required can be assigned in the one call to
adi_ports_EnableTimer.

Prototype

ADI_PORTS_RESULT adi_ports_EnableTimer(

u32 *Directives,

u32 nDirectives,

u32 Enable

);

Arguments

1 Alternatively, the TACLKx flag pins can provide the clock signal to the general-purpose timers in
PWM_OUT mode. For details, see “Timer Service” on page 8-1.

2 Timers must be configured for WDTH_CAP mode. For details, see “Timer Service” on page 8-1.

Directives Address of an array of directives describing the tim-
ers for which the flags are configured. See “Legacy
API Enumeration Values” on page 9-25.

nDirectives Number of entries in Directives array

Enable Flag determining whether the functionality is
enabled (1) or disabled (0)

Virtual Devices and Device Indexing

9-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY Address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE Invalid directive value has been passed.

ADI_PORTS_RESULT_PIN_ALREADY_IN_USE One of the required pins has already been
assigned a different functionality.

VisualDSP++ 5.0 Device Drivers and System 9-21
Services Manual for Blackfin Processors

Port Control Service

adi_ports_EnableGPIO

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_EnableGPIO() function configures the port control registers to
enable any number of flag pins for GPIO use.

 By default, GPIO use is enabled upon system reset.

Prototype

ADI_PORTS_RESULT adi_ports_EnableGPIO(

u32 *Directives,

u32 nDirectives,

u32 Enable

);

Arguments

Return Value

Directives Address of an array of directives describing which pins are configured for
GPIO use. See “Legacy API Enumeration Values” on page 9-25.

nDirectives Number of entries in Directives array

Enable Flag determining whether the functionality is enabled (1) or disabled (0)

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_NULL_ARRAY Address of the Directives array is NULL.

ADI_PORTS_RESULT_BAD_DIRECTIVE Invalid directive value has been passed.

ADI_PORTS_RESULT_PIN_ALREADY_IN_USE One of the required pins has already been
assigned a different functionality.

Virtual Devices and Device Indexing

9-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_ClearProfile

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_ClearProfile() function clears the specified profile structure
passed.

Prototype

ADI_PORTS_RESULT adi_ports_ClearProfile(

ADI_PORTS_PROFILE *profile

);

Arguments

Return Value

Profile Data structure containing the profile to clear

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_FAILED Profile structure is not a valid address.

VisualDSP++ 5.0 Device Drivers and System 9-23
Services Manual for Blackfin Processors

Port Control Service

adi_ports_GetProfile

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_GetProfile() function retrieves the profile information into
the given data structure.

Prototype

ADI_PORTS_RESULT adi_ports_GetProfile(

ADI_PORTS_PROFILE *profile

);

Arguments

Return Value

Profile ADI_PORTS_PROFILE data structure

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_FAILED Profile structure is not a valid address.

Public Data Types, Enumerations, and Macros

9-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_ports_SetProfile

Description

(Legacy function – use on ADSP-BF534/6/7 processors only.) The
adi_ports_SetProfile() function applies the profile specified by the val-
ues in the given data structure.

Prototype

ADI_PORTS_RESULT adi_ports_SetProfile(

ADI_PORTS_PROFILE *profile

);

Arguments

Return Value

Public Data Types, Enumerations, and
Macros

This section defines the legacy public data structures and enumerations
used by the port control manager service adi_ports_EnableXxx() API.

 Always check the include file for the port control manager,
adi_ports.h, or the respective device driver include file (for newer
processors) for the most up-to-date information.

Profile ADI_PORTS_PROFILE data structure containing the given profile

ADI_PORTS_RESULT_SUCCESS Function completed successfully.

ADI_PORTS_RESULT_FAILED Profile structure is not a valid address.

VisualDSP++ 5.0 Device Drivers and System 9-25
Services Manual for Blackfin Processors

Port Control Service

 Newer APIs (adi_ports_Configure()) are documented in the
respective device driver documentation located in the
…/Blackfin/docs subdirectory.

ADI_PORTS_RESULT
These values have been defined in the context of the relevant function call.
The complete list is found in Table 9-1.

Legacy API Enumeration Values
The adi_ports_EnableXxx() legacy API directives are described by anony-
mous enumeration types as shown in Table 9-2.

Table 9-1. ADI_PORTS_RESULT Values

Result Code Numerical Value Description

ADI_PORTS_RESULT_SUCCESS 0 Function executed correctly.

ADI_PORTS_RESULT_FAILED 1 Function execution not completed.

ADI_PORTS_RESULT_BAD_ DIRECTIVE 0x90001 Invalid directive value has been
passed.

ADI_PORTS_RESULT_NULL_ARRAY 0x90002 Address of the Directives array is
NULL.

Table 9-2. Port Control Manager Enumeration Types

Enumeration Type Description

PPI Operation

ADI_PORTS_DIR_PPI_BASE Enables flag pins for basic PPI operation.

ADI_PORTS_DIR_PPI_FS3 Enables flag pin for 3rd PPI frame sync.

SPI Operation

ADI_PORTS_DIR_SPI_BASE Enables flag pins for basic PPI operation.

ADI_PORTS_DIR_SPI_SLAVE_SELECT_1 Enables flag pins for SPI SlaveSelect 1.

Public Data Types, Enumerations, and Macros

9-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PORTS_DIR_SPI_SLAVE_SELECT_2 Enables flag pins for SPI SlaveSelect 2.

ADI_PORTS_DIR_SPI_SLAVE_SELECT_3 Enables flag pins for SPI SlaveSelect 3.

ADI_PORTS_DIR_SPI_SLAVE_SELECT_4 Enables flag pins for SPI SlaveSelect 4.

ADI_PORTS_DIR_SPI_SLAVE_SELECT_5 Enables flag pins for SPI SlaveSelect 5.

ADI_PORTS_DIR_SPI_SLAVE_SELECT_6 Enables flag pins for SPI SlaveSelect 6.

ADI_PORTS_DIR_SPI_SLAVE_SELECT_7 Enables flag pins for SPI SlaveSelect 7.

SPORT Operation

ADI_PORTS_DIR_SPORT0_BASE_RX Enables flag pins for basic SPORT receive operation.

ADI_PORTS_DIR_SPORT0_BASE_TX Enables flag pins for basic SPORT transmit operation.

ADI_PORTS_DIR_SPORT0_RXSE Enables flag pin for SPORT secondary data receive.

ADI_PORTS_DIR_SPORT0_TXSE Enables flag pin for SPORT secondary data transmit.

ADI_PORTS_DIR_SPORT1_BASE_RX Enables flag pins for basic SPORT receive operation.

ADI_PORTS_DIR_SPORT1_BASE_TX Enables flag pins for basic SPORT transmit operation.

ADI_PORTS_DIR_SPORT1_RXSE Enables flag pin for SPORT secondary data receive.

ADI_PORTS_DIR_SPORT1_TXSE Enables flag pin for SPORT secondary data transmit.

Table 9-2. Port Control Manager Enumeration Types (Cont’d)

Enumeration Type Description

VisualDSP++ 5.0 Device Drivers and System 9-27
Services Manual for Blackfin Processors

Port Control Service

UART Operation

ADI_PORTS_DIR_UART0_RX Enables flag pins for basic UART receive operation.

ADI_PORTS_DIR_UART0_TX Enables flag pins for basic UART transmit operation.

ADI_PORTS_DIR_UART1_RX Enables flag pins for basic UART receive operation.

ADI_PORTS_DIR_UART1_TX Enables flag pins for basic UART transmit operation.

CAN Operation

ADI_PORTS_DIR_CAN_RX Enables flag pins for basic CAN receive operation.

ADI_PORTS_DIR_CAN_TX Enables flag pins for basic CAN transmit operation.

Timer Operation

ADI_PORTS_DIR_TMR_CLK Enables flag pin for Timer Input Clock use.

ADI_PORTS_DIR_TMR_0 Enables flag pin for GP Timer 0 use.

ADI_PORTS_DIR_TMR_1 Enables flag pin for GP Timer 1 use.

ADI_PORTS_DIR_TMR_2 Enables flag pin for GP Timer 2 use.

ADI_PORTS_DIR_TMR_3 Enables flag pin for GP Timer 3 use.

ADI_PORTS_DIR_TMR_4 Enables flag pin for GP Timer 4 use.

ADI_PORTS_DIR_TMR_5 Enables flag pin for GP Timer 5 use.

ADI_PORTS_DIR_TMR_6 Enables flag pin for GP Timer 6 use.

ADI_PORTS_DIR_TMR_7 Enables flag pin for GP Timer 7 use.

GPIO Operation

ADI_PORTS_DIR_GPIO_PF0 Enables PF0 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF1 Enables PF1 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF2 Enables PF2 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF3 Enables PF3 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF4 Enables PF4 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF5 Enables PF5 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF6 Enables PF6 pin for GPIO use.

Table 9-2. Port Control Manager Enumeration Types (Cont’d)

Enumeration Type Description

Public Data Types, Enumerations, and Macros

9-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PORTS_DIR_GPIO_PF7 Enables PF7 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF8 Enables PF8 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF9 Enables PF9 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF10 Enables PF10 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF11 Enables PF11 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF12 Enables PF12 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF13 Enables PF13 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF14 Enables PF14 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PF15 Enables PF15 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG0 Enables PG0 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG1 Enables PG1 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG2 Enables PG2 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG3 Enables PG3 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG4 Enables PG4 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG5 Enables PG5 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG6 Enables PG6 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG7 Enables PG7 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG8 Enables PG8 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG9 Enables PG9 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG10 Enables PG10 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG11 Enables PG11 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG12 Enables PG12 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG13 Enables PG13 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG14 Enables PG14 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PG15 Enables PG15 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH0 Enables PH0 pin for GPIO use.

Table 9-2. Port Control Manager Enumeration Types (Cont’d)

Enumeration Type Description

VisualDSP++ 5.0 Device Drivers and System 9-29
Services Manual for Blackfin Processors

Port Control Service

ADI_PORTS_DIR_GPIO_PH1 Enables PH1 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH2 Enables PH2 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH3 Enables PH3 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH4 Enables PH4 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH5 Enables PH5 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH6 Enables PH6 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH7 Enables PH7 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH8 Enables PH8 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH9 Enables PH9 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH10 Enables PH10 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH11 Enables PH11 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH12 Enables PH12 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH13 Enables PH13 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH14 Enables PH14 pin for GPIO use.

ADI_PORTS_DIR_GPIO_PH15 Enables PH15 pin for GPIO use.

Table 9-2. Port Control Manager Enumeration Types (Cont’d)

Enumeration Type Description

Public Data Types, Enumerations, and Macros

9-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 10-1
Services Manual for Blackfin Processors

10 DEVICE DRIVER MANAGER

This chapter describes the Analog Devices device driver model. Use the
device driver model to control devices, both internal and external, to Ana-
log Devices processors. This includes on-board peripherals, such as
SPORTs and parallel peripheral interface (PPI), and off-chip connected
devices such as codecs and converters.

This chapter contains the following sections:

• “Device Driver Model Overview” on page 10-3
Provides a general overview of the functionality provided by the
device driver model and a brief description of the overall device
driver architecture.

• “Using the Device Manager” on page 10-6
Describes how applications invoke and interact with the device
driver model including an explanation of the different dataflow
methods supported in the model.

• “Device Manager Design” on page 10-30
Describes the device driver manager API and inner workings of the
device driver manager. Specifically, this section describes how the
device driver manager operates and what it does in response to API
calls and interaction with physical drivers.

• “Physical Driver Design” on page 10-45
Explains how physical drivers can be written to comply with the
model and describes how physical device drivers interact with the
device driver manager.

10-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• “Device Manager API Reference” on page 10-56
Describes the API functions of the device driver manager.

• “Device Manager Public Data Types and Enumerations” on
page 10-66
Provides tables for all the device manager data structures and
enumerations.

• “Physical Driver API Reference” on page 10-80
Describes the API used between the device driver manager and
each physical driver.

• “Examples” on page 10-87
Provides PPI driver and UART driver code examples.

 For detailed information regarding the use of specific device driv-
ers, including command IDs, event codes, return codes, example
code, and so on, refer to the individual device driver documents
located in the Blackfin/docs/drivers directory of your
VisualDSP++ installation.

The interface from the application to the device driver provides a consis-
tent, simple, and familiar API to most programmers. While there is always
some level of overhead involved in any standardization-type effort, the
benefits of a unified model far outweigh any minor inefficiencies. The
model makes it relatively simple to create a new device driver, allows
applications to largely insulate themselves from any device driver specifics,
and allows the device drivers to maximize use of any hardware features.

It is not expected that this model will be universally acceptable. There will
be devices that do not fit into the model, or applications that want to
work with a device in some unique manner, and so on. The objective of
this model is to provide a simple, efficient framework that works for the
majority of applications.

All sources to the device driver model are included in the various distribu-
tions of the model. While it is not expected that the sources will need to

VisualDSP++ 5.0 Device Drivers and System 10-3
Services Manual for Blackfin Processors

Device Driver Manager

be modified or tailored to any specific application, they are provided in
order for the user to fully understand how the code works.

The terms device manager and physical driver refer to the respective soft-
ware components. The term device driver refers to the combination of the
device driver manager (called device manager in this book) and physical
driver.

Device Driver Model Overview
The device driver model is built using a hierarchical approach.
Figure 10-1 illustrates the various components of the system design.

Figure 10-1. System Design and Hierarchy

APPLICATION

DEVICE MANAGER

RTOS (OPTIONAL)

PHYSICAL
DRIVER

. . . PHYSICAL
DRIVER

SYSTEM SERVICES

Device Driver Model Overview

10-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The components shown in the figure are:

• Application – Though typically the user’s application, this block
can be any software component that can be thought of as a client of
the device manager. Note that the client does not have to be a sin-
gle functional block. The device manager can support any number
of clients. For example, a client may be a single-user application or
the client may be any number of tasks in RTOS-controlled
systems.

• RTOS – Some systems use the services of a real-time operating
system (RTOS). The device driver model is not tailored to a partic-
ular RTOS, nor does it require the presence of an RTOS. The
device driver model does not require any functionality or services
from an RTOS. Some real-time operating systems require that
applications go through the RTOS in order to access device drivers.
In these systems, the RTOS is simply viewed as a client to the
device manager.

• Device Manager – The device manager provides the single point of
access into the device driver model. The device manager provides
the API into the model. All interaction between the client and
device drivers occurs through the device manager. In addition to
providing the API, the device manager ensures that the client
makes calls into the API in the proper sequence, performs synchro-
nization services as needed, and controls all peripheral DMA (via
the system services DMA manager) for devices that are supported
by peripheral DMA.

• Physical Drivers – Physical device drivers provide the functionality
necessary to control a physical device (for example, any configura-
tions register setting, device parameter setting, and so on). Physical
drivers are responsible for hooking into the error interrupts for
their device and processing them accordingly. If a device is not

VisualDSP++ 5.0 Device Drivers and System 10-5
Services Manual for Blackfin Processors

Device Driver Manager

supported by peripheral DMA, the physical driver must provide
the mechanism, a programmed I/O or the like, to move data
through the device.

• System Services – The device driver components rely heavily on
the functionality provided by the system services. For example, the
device manager relies on the interrupt manager and if required, the
DMA manager and deferred callback services. The functionality
provided by the system services is also available to physical drivers
to use. For example, a UART driver may need to know the SCLK
frequency in order to configure the UART to operate at a specific
baud rate. Through the power management service, the UART
physical driver can ascertain the current SCLK frequency.

Both the device driver model and system services are designed as portable
software components. They are mainly written in C, with some assembly
code in critical sections. As such, software that interacts with the device
driver model and system services must adhere to the C run-time model,
calling conventions, passing parameters, and so on. Applications and
physical drivers can be written in C or assembly. Wherever possible, there
are no dependencies on the code generation toolchain. System include
files are not required nor are the services of the toolchain’s run-time librar-
ies. The device driver model and system services can be built and run
under any of the known code generation toolchains.

No dynamic memory allocation is used in the device driver model or
system services. Static memory allocation has been kept to a minimum,
and the vast majority of all data memory required is passed into the device
driver model and system services by the client or application. This allows
the user to determine the amount of memory allocated (and from which
memory space) and the device driver model and system services to use.

Using the Device Manager

10-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Using the Device Manager
The device manager provides the access point into the device driver
model. The device manager presents the device manager API to the
application or client.

Device Manager Overview
The device manager API consists of these functions:

• adi_dev_Init – Provides data and initializes the device manager

• adi_dev_Terminate – Frees data and closes the device manager

• adi_dev_Open – Opens the device for use

• adi_dev_Control – Sets and detects device specific parameters

• adi_dev_Read – Reads data from a device or queues reception buff-
ers to a device

• adi_dev_Write – Writes data to a device or queues transmission
buffers to a device

• adi_dev_Close – Closes the device

In addition to the API functions into the device manager, the application
provides the device manager with a callback function. Often, the device
manager or physical driver encounters an event that needs to be passed to
the user application. The event may be an expected event, such as an indi-
cation that the device driver has completed processing a buffer, or it may
be an unexpected event, such as an error condition generated by the
device. All events are reported back to the application via a callback func-
tion. A callback function is simply a function within the user application
that the device manager calls to pass along event information.

VisualDSP++ 5.0 Device Drivers and System 10-7
Services Manual for Blackfin Processors

Device Driver Manager

Theory of Operation
The device driver model is built around the concept that a device is used
to move data into and/or out of the system. In most systems, a device is
used to move data into the system (where the data is processed) and
another device that moves the processed data out of the system. Often,
multiple devices run simultaneously in the system. The device manager
provides a simple and straightforward interface, regardless of how many
devices are active at any one point in time and the underlying implemen-
tation details of each device.

Data

Data that is moved into or out of the device is encapsulated in a buffer.
The device manager API defines three different types of buffers:

• One-dimensional buffers called ADI_DEV_1D_BUFFER

• Two-dimensional buffers called ADI_DEV_2D_BUFFER

• Circular (autobuffer type) buffers called ADI_DEV_CIRCULAR_
BUFFER

Because the physical movement of data uses valuable computing resources
and has very little benefit, only the pointers to buffers are typically passed
between components. The device manager API defines the ADI_DEV_
BUFFER data type as a pointer to a union of a one-dimensional buffer, a
two-dimensional buffer, and a circular buffer. Though each of these types
of buffers is processed differently, where no significant difference in pro-
cessing exists, they are collectively referred to as simply a buffer within this
text.

In general, applications provide buffers through the device manager API,
where the buffers are processed and then made available again to the appli-
cation. The adi_dev_Write function provides the device with buffers that
contain data sent out through the device. The adi_dev_Read function

Using the Device Manager

10-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

provides the device with buffers, which are filled with data that is inbound
from the device.

Buffers are processed in the order in which they are received. Buffers pro-
vided to a given device need not be a uniform size; each individual buffer
can be any arbitrary size. Further, both one-dimensional and two-dimen-
sional buffers can be provided to a single device. Circular buffers are more
complex (see “Providing Buffers to a Device” on page 10-14).

Initializing the Device Manager

Before using a device, the application or client must first initialize the
device manager. The client initializes the device manager by calling the
adi_dev_Init function and passing a portion of memory to it that the
device manager can use for processing. The client decides how much
memory (and from which memory space) to provide the device manager;
the more memory provided, the more physical devices can be simulta-
neously opened.

The device manager requires a contiguous block of memory that can be
thought of two parts—one part is base memory required for the device
manager to instantiate itself, and the other part is memory that is required
to support n number of simultaneously opened device drivers. Macros
(ADI_DEV_BASE_MEMORY and ADI_DEV_DEVICE_MEMORY) are provided to
define the amount of memory (in bytes) required for the base memory and
incremental device driver memory, respectively.

For example, if the client wants to initialize the device manager and would
have at most four device drivers open simultaneously at any point in time,
the amount of memory required is:

ADI_DEV_BASE_MEMORY+(ADI_DEV_DEVICE_MEMORY*4)).

When called, the initialization function, adi_dev_Init(), initializes the
memory that was passed in. Like all functions within the device manager,
the initialization function returns a return code that indicates success or

VisualDSP++ 5.0 Device Drivers and System 10-9
Services Manual for Blackfin Processors

Device Driver Manager

the specific error that occurred during the function call. All device man-
ager API functions return the ADI_DEV_RESULT_SUCCESS value to indicate
success. All error codes are in the form: ADI_DEV_RESULT_XXXX.

In addition to the return code, the adi_dev_Init() function returns a
count of the number of device drivers it can manage simultaneously, and a
handle into the device manager. The device count can be tested to ensure
the device manager can control the requested number of device drivers.

Another parameter passed to the adi_dev_Init() function is a critical
region parameter. When it is necessary to protect a critical region of code,
the device manager and all physical drivers leverage the interrupt manager
system service to protect the critical code. The critical region parameter
passed into the adi_dev_Init() function is, in turn, passed to the adi_
int_EnterCriticalRegion() function. Refer to “adi_int_Init” on
page 2-19.

Device Manager Termination

When the device manager is no longer needed, the client can terminate it
by means of the adi_dev_Terminate() function. This function is passed
the device manager handle, given to the client in the adi_dev_Init()
function. The device manager closes any open physical devices and then
returns to the caller. After the return from the adi_dev_Terminate()
function, the client can reuse the memory that was supplied to the device
manager via the adi_dev_Init() function. Once terminated, the device
manager must be reinitialized in order to be used again.

 In many embedded systems, the device manager is never
terminated.

Opening a Device

After the device manager has been initialized, in order to use a device, the
client must first open the device with the adi_dev_Open() API function.

Using the Device Manager

10-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The client passes in parameters indicating the device driver it wants to
open (the pEntryPoint parameter), the instance of the device it wants to
open (the DevNumber parameter), the direction it wants data to flow
(inbound, outbound, or both), and so on. The client also passes in the
handle to the DMA service the device manager and physical drivers to use.
This parameter can be NULL if the client knows DMA is not used.

The pDeviceHandle parameter points to a location where the device
manager stores the handle to the device driver that is being opened.
All subsequent API calls for this device that is being opened must include
this handle. The ClientHandle is a parameter that the device manager
passes back to the client with each call to the client’s callback function.

Two other parameters are passed into the adi_dev_Open() function. They
are also callback-related. The DCBHandle parameter is a handle to the
deferred callback service that is used by the device driver to call the client’s
callback function. If DCBHandle is non-NULL, the device driver uses the
specified deferred callback service for all callbacks. If DCBHandle is NULL,
all callbacks are live; meaning they are not deferred and are executed
immediately (typically at interrupt time). The ClientCallback parameter
points to the client’s callback function.

The callback function is called in response to asynchronous events
experienced by the device driver. Some events may be expected, such as
completing the processing of a buffer, and some events may be unex-
pected, such as a device generating an error condition. Regardless of the
type of event, the device manager calls the callback function to notify the
client of the event.

Dataflow through a device does not start with the adi_dev_Open() func-
tion. This function simply opens the device for use; the device may need
to be configured in some way before dataflow is enabled.

VisualDSP++ 5.0 Device Drivers and System 10-11
Services Manual for Blackfin Processors

Device Driver Manager

Configuring a Device

The adi_dev_Control() function is used to configure and enable/disable
dataflow through a device. When opened, most device drivers initialize
with some default settings. If these default settings are sufficient for the
application, little or no application configuration is required. At other
times, the default settings may not be appropriate for an application, so
the device needs some configuration. The adi_dev_Control() function is
used to set and detect device-specific configurations.

When configuration settings need to be set or detected, the client calls the
adi_dev_Control() function to set or detect the parameter. This function
takes as parameters the DeviceHandle (described in “Opening a Device”),
a command ID that identifies the parameter to set or detect, and a pointer
to the memory location that contains the value of the parameter to set (or
where the value of the parameter detected is stored). The device manager
defines some standard parameters; however, physical drivers are free to
add their own command IDs beyond those defined by the device manager.
For example, the physical device driver for a DAC may create a command
ID to set the volume level of the output.

 The application developer should check the physical driver docu-
mentation to determine which parameters are configurable and the
configuration choices.

Regardless of whether the client needs to make configuration changes, the
client must make two calls into the adi_dev_Control() function. These
calls set the dataflow method of the device and enable dataflow for the
device. These are described in the following sections.

Dataflow Method

The device manager supports three dataflow methods: circular, chained,
and chained with loopback. Prior to providing the device manager with
any buffers or enabling dataflow, the application must inform the device
manager of the dataflow method to use by calling the adi_dev_Control()

Using the Device Manager

10-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

function with the ADI_DEV_CMD_SET_DATAFLOW_METHOD command. After
the dataflow method has been defined, the client can provide inbound
buffers (via the adi_dev_Read function) or outbound buffers (via the adi_
devWrite function) to the device.

As shown in Figure 10-2, the circular dataflow method defines the
method whereby a single circular buffer is provided to the device manager,
assuming the device was opened for unidirectional traffic.

When providing the device manager with the circular buffer, the applica-
tion informs the device manager of how many sub-buffers are within the
circular buffer; two sub-buffers are used for a traditional “ping-pong”
scheme, though Blackfin processors support any number of sub-buffers.
The application also tells the device manager when it wants to be called
back during processing of the circular buffer.

Three options are provided: no callback ever, callback after processing
each sub-buffer, and callback after processing the entire buffer. The device
manager begins processing at the start of the buffer. When directed, the
device manager notifies the application via the callback function when

Figure 10-2. Circular Buffer Operation

. . .

SUB-BUFFER 0

SUB-BUFFER 1

SUB-BUFFER N

CALLBACK ON SUB-BUFFER COMPLETE

CALLBACK ON ENTIRE BUFFER COMPLETE

ONE
CONTIGUOUS

BUFFER

VisualDSP++ 5.0 Device Drivers and System 10-13
Services Manual for Blackfin Processors

Device Driver Manager

each sub-buffer completes or when the entire buffer has completed pro-
cessing. After reaching the end of the buffer, the device manager
automatically restarts processing at the top of the buffer and so on.

As shown in Figure 10-3, with the chained dataflow method, one or more
one-dimensional and/or two-dimensional buffers are provided to the
device manager. Any number of buffers can be provided; buffers can be of
different sizes, and both one-dimensional and two-dimensional buffers
can be provided to the same device. Each buffer, any one buffer, none, or
all buffers can be tagged to generate a callback to the application when
they are processed. Additional buffers can be provided at any time before
or after dataflow has been enabled. The device manager guarantees to pro-
cess the buffers in the order they are provided to the device manager.

When using the chained dataflow method, the application can command
the device manager to operate in synchronous mode. Normally, the device
manager operates in asynchronous mode. In asynchronous mode, the adi_
dev_Read and adi_dev_Write function calls return immediately to the
application before all the buffers passed to the adi_dev_Read or adi_dev_
Write function have been processed. In synchronous mode, the adi_dev_
Read and adi_dev_Write functions do not return back to the application
until all buffers provided to the adi_dev_Read or adi_dev_Write function
have been processed. Though seldom used in real-time systems, the device
manager also supports synchronous operation.

Figure 10-3. Chained Buffers

. . .BUFFER 0 BUFFER 1 BUFFER N
START

Using the Device Manager

10-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

As shown in Figure 10-4, the chained with loopback method is similar to
the chained dataflow method except that after processing the last buffer,
the device manager automatically loops back to the first buffer that was
provided to the device. This operation effectively creates an infinite loop
of buffers. With the chained with loopback method, the application can
provide the buffers at initialization time, allow the device manager to pro-
cess the buffers, and never have to resupply the device manager with
additional buffers. As with the chained dataflow method, each buffer, any
one buffer, none, or all buffers can be tagged to generate a callback to the
application when they are processed.

Enabling Dataflow

Once the dataflow method has been defined, and buffers provided to the
device as appropriate (see “Providing Buffers to a Device”), the applica-
tion enables dataflow by calling the adi_dev_Control function with the
ADI_DEV_CMD_SET_DATAFLOW command. Dataflow starts immediately so the
application should ensure that, if not using synchronous mode, devices
that are opened for inbound or bidirectional data are provided with buff-
ers, or else data may be lost.

Providing Buffers to a Device

Buffers are provided to a device via the adi_dev_Read and adi_dev_Write
API function calls. The adi_dev_Read function provides buffers for
inbound data, adi_dev_Write for outbound data. How the client provides

Figure 10-4. Chained Buffers With Loopback

. . .BUFFER 0 BUFFER 1 BUFFER N
START

VisualDSP++ 5.0 Device Drivers and System 10-15
Services Manual for Blackfin Processors

Device Driver Manager

buffers to the device via these API calls is slightly different depending on
the dataflow method chosen.

When a device is configured to use the circular dataflow method, the
application provides the device driver with one and only one buffer for
inbound data and/or one and only one buffer for outbound data. The data
provided buffer points to a contiguous piece of memory corresponding to
however many sub-buffers the application wants to use.

For example, assume the application wants to process data in 512-byte
increments and wants to work in a traditional “ping-pong” type (two
sub-buffer) fashion. The application provides the device driver with a sin-
gle data buffer 1024 bytes in length, consisting of two 512-byte
sub-buffers. By doing this, the device driver can use 512 bytes of the
buffer while the application uses the other 512 bytes simultaneously.

Another example is an application that wants to process a standard NTSC
video frame (525 lines with 1716 bytes per line). The data buffer provided
to the device manager could be a contiguous piece of memory 900900
bytes in size (525 * 1716). The sub-buffer count in this case is 525.
Regardless of how many sub-buffers are provided, with the circular
dataflow method, once the buffer has been provided to the device driver,
the application never needs to give the device another buffer, as the same
one is used indefinitely.

When a device is configured to use the chained dataflow method, any
number of one-dimensional and two-dimensional buffers can be provided
to the device. Buffers can be given to the device one at a time, or multiple
buffers can be provided with a single call to adi_dev_Read and/or adi_
dev_Write. The application can provide the device driver with additional
buffers at any time before (or even after) dataflow is enabled. Assuming
the device driver is running in asynchronous mode, any individual buffer,
no buffers, or all buffers can be flagged to generate a callback when the
device driver has completed processing it. Each buffer can be of a different
size, and both one-dimensional and two-dimensional buffers can be pro-
vided to the same device.

Using the Device Manager

10-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Providing buffers to devices configured with the chained-with-loopback
dataflow method is identical to providing buffers to devices using the
chained dataflow method, except that buffers can only be provided while
dataflow is disabled.

Closing a Device

When the device is no longer needed by the client, the device is closed via
the adi_dev_Close API function call. The adi_dev_Close function termi-
nates dataflow if it is enabled and frees up all resources, including DMA
and others used by the device driver. Should the application need to reuse
the device after it is closed, it can be reopened via the adi_dev_Open
function.

Callbacks

The device manager calls the application’s callback function to notify
the client of occurring events. Events include expected events (such as
completion of buffer processing) or unexpected events (such as an error
occurring on a device). Typically, the client’s callback function
is organized as the equivalent of a C switch statement, invoking the appro-
priate processing as required by the given event type. The device manager
defines several events and physical drivers can add additional events as
required by the device they are controlling.

Initialization Sequence

Because the device manager and physical drivers rely on system services, it
should be initialized prior to opening a device driver. For example, when
opening a device driver, the device manager requires handles to the
deferred callback and DMA services (assuming both are used). As such, it
is good practice to initialize and open the system services before opening
any device drivers. See “Initialization” on page 1-11 and “Termination”
on page 1-27 for more information on initializing and terminating the
device drivers and system services.

VisualDSP++ 5.0 Device Drivers and System 10-17
Services Manual for Blackfin Processors

Device Driver Manager

Stackable Drivers

It is possible to create drivers that call other drivers. For example, the
Blackfin EZ-KIT Lite board contains an AD1836 audio codec. This codec
has a control and status interface that is suitable for connection to an SPI
port, while the AD1836 audio data is provided to/from the device by
using a high-speed serial line (in this case, the SPORT peripheral). If a
system is developed in which the AD1836 codec is the only device that
would ever be connected to the processor, a single physical device driver
could be written to control and manage the SPI and the SPORT.

Alternatively, the SPI port could hierarchically sit above the SPI and
SPORT drivers, making calls into those physical drivers as necessary. It is
especially true if other peripherals are to share the SPI port (for example,
separate SPI and SPORT drivers could be controlled by an AD1836
driver). In this stackable fashion, it is possible to create more complex
drivers such as the AD1836 driver or a TCP/IP stack driver that sit on top
of an Ethernet controller.

Deciding on a Dataflow Method
When using device drivers, you should give thoughtful consideration
when choosing the dataflow method to be used for each device driver.
Some types of data are better suited to one type of dataflow method, and
other types of data may be more suitable for another dataflow method.
As a rough guideline, you may want to consider the following situations
when selecting a dataflow method to use for a device driver.

Chained Without Loopback
The chained-without-loopback dataflow method is suitable for
packet-based data that may be sent and/or received in a non-continuous or
“bursty” manner. For example, UART data from a terminal, Ethernet

Deciding on a Dataflow Method

10-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

data, and USB traffic frequently use the chained-without-loopback data-
flow method.

Chained With Loopback
The chained-with-loopback dataflow method is suitable for steady,
continuous dataflow. For example, streaming audio and video applications
frequently use the chained-with-loopback dataflow method. With this
method, buffers are provided at initialization time. Because loopback is
used, the application never needs to re-supply the driver with additional
buffers, since the driver continually loops through the same set of buffers.

Circular
When using streaming audio or video, the streaming sub-mode is highly
recommended to avoid clicks and pops with audio data and glitches on
video data.

The circular dataflow method is suitable for steady, continuous dataflow,
where the entire data fits in a 64K byte maximum contiguous block of
memory. Streaming audio data, assuming it fits within the 64 K byte
block of memory, is sometimes appropriate for the circular dataflow
method. This saves the overhead of having to create multiple buffers as is
necessary using the chained-with-loopback method. Generally, video data
is not appropriate for the circular dataflow method, since video data is fre-
quently larger than the 64K byte maximum for circular dataflow.

Sequential With and Without Loopback
The sequential dataflow method, with and without loopback, is suitable
only for devices that employ half-duplex, serial type communication
protocols. For example, the two-wire interface (TWI) device driver uses
the sequential dataflow methods to precisely schedule reads and writes in a
specific order.

VisualDSP++ 5.0 Device Drivers and System 10-19
Services Manual for Blackfin Processors

Device Driver Manager

Creating One-Dimensional Buffers
The ADI_DEV_1D_BUFFER data structure is used to describe a linear array of
data that a device driver processes. Applications populate the various fields
of the buffer to completely describe the data to the device driver. For
one-dimensional buffers, applications populate the following fields of the
ADI_DEV_1D_BUFFER structure:

• Data – If the buffer is provided to the adi_dev_Write() function,
this field contains the starting address of the data sent out through
the device. If the buffer is provided to the adi_dev_Read() func-
tion, this field contains the starting address of where the device
driver stores data received in from the device.

• ElementCount – This field indicates the number of elements
pointed to by the data pointer.

• ElementWidth – This field indicates the width (in bytes) of each
element sent out or read in.

• CallbackParameter – If this field is NULL, the device driver does
not call back the application after the device driver processes the
buffer. If non-NULL, the device driver invokes the application’s
callback function after the buffer is processed by the device driver,
passing this value as the third parameter to the callback function.

• pNext – This field points to the next one-dimensional buffer in the
chain, if any. If NULL, the given buffer is the only buffer provided
to the adi_dev_Read() or adi_dev_Write() function.
If non-NULL, this field contains the address of the next
one-dimensional buffer in the chain of buffers passed to the adi_
dev_Read() or adi_dev_Write() function.

Creating One-Dimensional Buffers

10-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• pAdditionalInfo – This field is a device driver-dependent value.
This field is not used for most device drivers. For information
describing whether this field is used by the particular device driver,
refer to the documentation specific to the device driver, located in
the …/Blackfin/docs subdirectory.

• ProcessedFlag – Some device drivers set this value to TRUE after
processing the buffer. For information describing whether this field
is used by the particular device driver, refer to the documentation
specific to the device driver, located in the …/Blackfin/docs
subdirectory.

When buffers are submitted to the device driver via the adi_dev_Read()
or adi_dev_Write() functions, some device drivers do not require the fol-
lowing fields be populated:

• ProcessedFlag – Some device drivers set this value to TRUE after
the device driver processes the buffer. For information describing
whether this field is used by the particular device driver, refer to
the documentation specific to the device driver, located in the
…/Blackfin/docs subdirectory.

• ProcessedElementCount – Some device drivers set this value to the
number of elements processed by the driver for the given buffer.
For example, if a networking driver submitted a buffer describing
100 bytes of data to the adi_dev_Read() function for an incoming
data packet that contains only 75 bytes of data, the driver may set
this value to 75. This would indicate that although 100 bytes was
requested, only 75 bytes were available. For information describing
whether this field is used by the particular device driver, refer to
the documentation specific to the device driver, located in the
…/Blackfin/docs subdirectory.

VisualDSP++ 5.0 Device Drivers and System 10-21
Services Manual for Blackfin Processors

Device Driver Manager

For example, the following code fragment prepares and submits a single
buffer of 128 16-bit elements to the adi_dev_Read() function. The driver
calls back the application when the buffer has been processed, passing the
value 0x12345678 as a parameter to the callback function.

#define SAMPLES_PER_BUFFER (128) // number of samples

// in a data buffer

static u16 Data[SAMPLES_PER_BUFFER]; // storage for data

static ADI_DEV_1D_BUFFER Buffer; // the actual buffer

// create buffer for the driver to process

Buffer.Data = Data;

Buffer.ElementCount = SAMPLES_PER_BUFFER;

Buffer.ElementWidth = 2;

Buffer.CallbackParameter = (void *)0x12345678; // callback,

// pArg = 0x12345678

Buffer.pNext = NULL; // only buffer in the chain

// give the buffer to the driver to fill with data

Result = adi_dev_Read(Handle, ADI_DEV_1D, (ADI_DEV_BUFFER

*)&Buffer);

The following code fragment prepares and submits a chain of four buffers,
each describing 128 elements of 32-bit data, to the adi_dev_Read() func-
tion. The driver calls back the application after each buffer has been
processed, passing the address of the buffer that just completed as a
parameter to the callback function.

#define NUM_BUFFERS (4) // number of buffers to use

#define SAMPLES_PER_BUFFER (128) // # of samples in data buffer

static u32 Data[NUM_BUFFERS*SAMPLES_PER_BUFFER];

// storage for data

static ADI_DEV_1D_BUFFER Buffer[NUM_BUFFERS];

// the actual buffers

Creating Two-Dimensional Buffers

10-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

u32 i; // counter

// create buffers for the driver to process
for (i = 0; i < NUM_BUFFERS; i++) {

Buffer[i].Data = &Data[i * SAMPLES_PER_BUFFER;]
Buffer[i].ElementCoun = SAMPLES_PER_BUFFER;
Buffer[i].ElementWid = 4;

Buffer[i].CallbackParameter = &Buffer[i]; // gen call-

back, pArg = buffer address

Buffer[i].pNext = &Buffer[i+1];

// point to the next in chain

}
Buffer[NUM_BUFFERS - 1].pNext = NULL;

// terminate the chain of buffers

// give the buffers to the driver to fill with data

Result = adi_dev_Read(Handle, ADI_DEV_1D, (ADI_DEV_BUFFER

*)Buffer);

Creating Two-Dimensional Buffers
Use the ADI_DEV_2D_BUFFER data structure to describe a two-dimensional
array of data that a device driver processes. Applications populate the vari-
ous fields of the buffer to completely describe the data to the device driver.
For two-dimensional buffers, applications populate the following fields of
the ADI_DEV_2D_BUFFER structure:

• Data – If the buffer is provided to the adi_dev_Write() function,
this field contains the starting address of the data sent out through
the device. If the buffer is provided to the adi_dev_Read() func-
tion, this field contains the starting address of where the device
driver stores data received from the device.

• ElementWidth – This field indicates the width (in bytes) of each
element sent out or read in.

VisualDSP++ 5.0 Device Drivers and System 10-23
Services Manual for Blackfin Processors

Device Driver Manager

• XCount – This field specifies the number of column elements.

• XModify – This field specifies the byte address increment (stride)
after each column transfer.

• YCount – This field specifies the number of row elements.

• YModify – This field specifies the byte address increment (stride)
after each row transfer.

• CallbackParameter – If this field is NULL, the device driver does
not call back the application after the buffer is processed by the
device driver. If non-NULL, the device driver invokes the
application’s callback function after the buffer is processed by the
device driver, passing this value as the third parameter to the call-
back function.

• pNext – This field points to the next two-dimensional buffer in the
chain, if any. If NULL, the given buffer is the only buffer provided
to the adi_dev_Read() or adi_dev_Write() function.
If non-NULL, this field contains the address of the next
two-dimensional buffer in the chain of buffer passed to the adi_
dev_Read() or adi_dev_Write() function.

• pAdditionalInfo – This field is a device driver-dependent value.
This field is not used for most device drivers. For information
describing whether this field is used by the particular device driver,
refer to the documentation specific to the device driver, located in
the …/Blackfin/docs subdirectory.

Creating Two-Dimensional Buffers

10-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

When buffers are submitted to the device driver via the adi_dev_Read()
or adi_dev_Write() functions, some device drivers do not require the fol-
lowing fields be populated:

• ProcessedFlag – Some device drivers set this value to TRUE after
the device driver processes the buffer. For information describing
whether this field is used by the particular device driver, refer to
the documentation specific to the device driver, located in the
…/Blackfin/docs subdirectory.

• ProcessedElementCount – Some device drivers set this value to the
number of elements processed by the driver for the given buffer.
For example, if a networking driver submitted a buffer describing
100 bytes of data to the adi_dev_Read() function for an incoming
data packet that contains only 75 bytes of data, the driver may set
this value to 75. This would indicate that although 100 bytes was
requested, only 75 bytes were available. For information describing
whether this field is used by the particular device driver, refer to
the documentation specific to the device driver, located in the
…/Blackfin/docs subdirectory.

For example, the following code fragment prepares and submits a pair of
two-dimensional buffers to the adi_dev_Write() function for transmis-
sion out through the driver. Each buffer describes an NTSC ITU-656
frame of data. Each frame consists of 525 rows, each containing 1716
bytes of data. The driver calls back the application when each buffer has
been processed, passing the address of the buffer that just completed as a
parameter to the callback function.

#define NUM_BUFFERS (2)

#define NUM_FRAMES (2)

#define COLUMNS (1716)

#define ROWS (525)

static u8 Frames[NUM_FRAMES][COLUMNS * ROWS];

// storage for data

VisualDSP++ 5.0 Device Drivers and System 10-25
Services Manual for Blackfin Processors

Device Driver Manager

static ADI_DEV_2D_BUFFER Buffer[NUM_BUFFERS];

// the actual buffer

u32 i; // counter

// create buffers for the driver to process

for (i = 0; i < NUM_BUFFERS; i++) {

Buffer[i].Data = &Frames[i][0];

Buffer[i].ElementWidth = 2;

Buffer[i].XCount = (COLUMNS >> 1);

Buffer[i].XModify = 2;

Buffer[i].YCount = ROWS;

Buffer[i].YModify = 2;

Buffer[i].CallbackParameter = &Buffer[i];

// gen callback, pArg = buffer address

Buffer[i].pNext = &Buffer[i+1];

}

Buffer[NUM_BUFFERS - 1].pNext = NULL;

// terminate the chain of buffers

// give the buffers to the driver to send out

Result = adi_dev_Write(Handle, ADI_DEV_2D, (ADI_DEV_BUFFER

*)Buffer);

Creating Circular Buffers
The ADI_DEV_CIRCULAR_BUFFER data structure is used to describe data that
the driver processes in a circular manner. Applications populate the vari-
ous fields of the buffer to completely describe the data to the device driver.

Creating Circular Buffers

10-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

For circular buffers, applications populate the following fields of the ADI_
DEV_CIRCULAR_BUFFER structure:

• Data – If the buffer is provided to the adi_dev_Write() function,
this field contains the starting address of the data sent out through
the device. If the buffer is provided to the adi_dev_Read() func-
tion, this field contains the starting address of where the device
driver stores data received in from the device.

• ElementWidth – This field indicates the width (in bytes) of each
element sent out or read in.

• SubBufferCount – This field specifies the number of sub-buffers
into which the data is divided.

• SubBufferElementCount – This field specifies the number of ele-
ments in each sub-buffer.

• CallbackType – This field specifies the frequency of callbacks that
the application desires and contains one of the following:

• ADI_DEV_CIRC_NO_CALLBACK – No callbacks

• ADI_DEV_CIRC_SUB_BUFFER – Call back after completion of
each sub-buffer

• ADI_DEV_CIRC_FULL_BUFFER – Call back only after comple-
tion of the entire buffer

• pAdditionalInfo – This field is a device driver-dependent value.
This field is not used for most device drivers. For information
describing whether this field is used by the particular device driver,
refer to the documentation specific to the device driver, located in
the …/Blackfin/docs subdirectory.

For example, the following code fragment prepares and submits a circular
buffer for transmission out through the device driver via the adi_dev_
Write() function. The buffer describes a contiguous block of 1024 bytes

VisualDSP++ 5.0 Device Drivers and System 10-27
Services Manual for Blackfin Processors

Device Driver Manager

of memory that is divided into 8 sub-buffers of 128 bytes each. The driver
calls the application back after each sub-buffer is processed. Once data-
flow is enabled, the driver repeatedly processes the circular buffer until
dataflow is terminated.

#define SUB_BUFFERS (8)

#define SUB_BUFFER_ELEMENTS (128)

static u8 Data[SUB_BUFFERS * SUB_BUFFER_ELEMENTS];

// storage for data
static ADI_DEV_CIRCULAR_BUFFER Buffer; // the actual buffer

// create buffer for the driver to process

Buffer.Data = Data;

Buffer.ElementWidth = 1;

Buffer.SubBufferCount = SUB_BUFFERS;

Buffer.SubBufferElementCount = SUB_BUFFER_ELEMENTS;

Buffer.CallbackType = ADI_DEV_CIRC_SUB_BUFFER;

// give the buffer to the driver to send out

Result = adi_dev_Write(Handle, ADI_DEV_CIRC, (ADI_DEV_BUFFER

*)&Buffer);

Creating Sequential One-Dimensional
Buffers

The ADI_DEV_SEQ_1D_BUFFER data structure is used to describe a sequen-
tial, one-dimensional (linear) array of data that a device driver processes.
Similar to the standard one-dimensional buffers, applications populate the
various fields of the buffer to completely describe the data to the device
driver. In fact, a sequential, one-dimensional buffer is a concatenation of a
standard one-dimensional buffer with a direction field appended to the
end of the standard buffer. For sequential, one-dimensional buffers,

Creating Sequential One-Dimensional Buffers

10-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

applications populate the following fields of the ADI_DEV_SEQ_1D_BUFFER
structure:

• Buffer – The buffer entry, which is identical to the standard
one-dimensional buffer, is populated exactly as the standard
one-dimensional buffer. Refer to “Creating One-Dimensional
Buffers” on page 10-19 for information on populating a standard
one-dimensional buffer.

• Direction – This field is populated with one of the following
choices:

• ADI_DEV_DIRECTION_INBOUND – Populate the field with this
value if the buffer is for data received in from the device.

• ADI_DEV_DIRECTION_OUTBOUND – Populate the field with this
value if the buffer is for data that is transmitted out through
the device.

The following code fragment prepares and submits a chain of two
buffers. The first and third buffers describe data sent out through
the device, and the second and fourth buffers describe data that is
read in from the device. The driver calls back the application after
the last buffer in the chain is processed, passing the address of the
buffer that just completed as a parameter to the callback function.

#define ELEMENT_WIDTH (1)

// width of a data element

#define NUM_BUFFERS (2) // number of buffers

#define INBOUND_ELEMENTS (64)

// number of elements to read in

VisualDSP++ 5.0 Device Drivers and System 10-29
Services Manual for Blackfin Processors

Device Driver Manager

#define OUTBOUND_ELEMENTS (2)

// number of elements to write out

static u32 InboundData[INBOUND_ELEMENTS]; // inbound data

static u32 OutboundData[OUTBOUND_ELEMENTS];

// outbound data

// the actual buffers

static ADI_DEV_SEQ_1D_BUFFER SeqBuffer[NUM_BUFFERS];

// create outbound buffer for the driver to process

SeqBuffer[0].Buffer.Data = OutboundData;

SeqBuffer[0].Buffer.ElementCount = OUTBOUND_ELEMENTS;

SeqBuffer[0].Buffer.ElementWidth = ELEMENT_WIDTH;

SeqBuffer[0].Buffer.CallbackParameter = NULL;

// no callback

SeqBuffer[0].Buffer.pNext = (ADI_DEV_1D_BUFFER

*)&SeqBuffer[1];

SeqBuffer[0].Direction = ADI_DEV_DIRECTION_OUTBOUND;

// create inbound buffer for the driver to process

SeqBuffer[1].Buffer.Data = InboundData;

SeqBuffer[1].Buffer.ElementCount = INBOUND_ELEMENTS;

SeqBuffer[1].Buffer.ElementWidth = ELEMENT_WIDTH;

SeqBuffer[1].Buffer.CallbackParameter = &SeqBuffer[1];

// callback

Device Manager Design

10-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

SeqBuffer[1].Buffer.pNext = NULL; // end of chain

SeqBuffer[1].Direction = ADI_DEV_DIRECTION_INBOUND;

// give the buffers to the driver

Result = adi_dev_SequentialIO(Handle, ADI_DEV_SEQ_1D,

(ADI_DEV_BUFFER *)SeqBuffer);

Device Manager Design
The device manager provides the single point of access into the device
driver model. The device manager provides the application with the API
into the device drivers. All interaction between the client and device
drivers occurs through the device manager—applications never commu-
nicate directly with a physical driver. The device manager also provides
all DMA control, sequencing, queuing, and so on, for devices that are
supported by peripheral DMA.

Users typically do not need to understand the design and implementation
details of the device manager. This section is included for those users who
want a deeper understanding of the design. This section is particularly
useful for writers of physical drivers who need this information to aid in
the development of physical drivers.

Device Manager API Description
The macros, definitions, and data structures defined by the device
manager API are key to understanding the design of the device manager.
The device manager API is described in the adi_dev.h file, which is
located in the Blackfin/Include/Drivers directory.

The “Device Manager Public Data Types and Enumerations” section of
this chapter contains tables for all the device manager data structures and
enumerations.

VisualDSP++ 5.0 Device Drivers and System 10-31
Services Manual for Blackfin Processors

Device Driver Manager

Memory Usage Macros

The first section in the adi_dev.h file contains macros that define the
amount of memory usage by the device manager. These macros can be
used by the client to determine how much memory is allocated to the
device manager via the adi_dev_Init function.

The ADI_DEV_BASE_MEMORY macro defines the number of bytes that the
device manager needs. The ADI_DEV_DEVICE_MEMORY macro defines the
number of bytes the device manager needs to control each physical driver.
When providing memory to the device manager, the client provides the
following amount of memory:

ADI_DEV_BASE_MEMORY + (n * ADI_DEV_DEVICE_MEMORY)

where “n” is the maximum number of physical drivers that are opened
simultaneously in the system.

Handles

Next in the adi_dev.h file are typedef statements for the various handle
types used by the device manager. Typically, handles are pointers to data
structures used within the device manager. They are used as a means to
identify the data pertaining to the device being managed quickly.

Dataflow Enumerations

Next in the adi_dev.h file are enumerations for the various dataflow
methods supported by the device manager and enumerations indicating
dataflow direction. These enumerations are not extensible by physical
drivers.

Device Manager Design

10-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Command IDs

The next section in the adi_dev.h file enumerates the command IDs that
are defined by the device manager. These command IDs are passed to the
device manager via the adi_dev_Control function.

Physical drivers can add any number of additional command IDs that are
relevant to their particular device. Physical drivers begin adding their own
command IDs starting with the enumeration start value for the driver.

Also included in this section is a data structure defining a configuration
command pair. This is provided as a convenience—it allows clients to pass
a table of commands into the adi_dev_Control function, rather than
being forced to call the adi_dev_Control function for each command (see
“adi_dev_Control” on page 10-58).

Callback Events

The next section in the adi_dev.h file contains enumerations for callback
events. When an event occurs, the client’s callback function is invoked
and passed the enumeration of the event that occurred.

The device manager defines some common events. Similar to command
IDs, physical drivers can add their own callback events beginning with the
enumeration start value for the driver.

Return Codes

The next section in the adi_dev.h file contains enumerations for return
codes. All API functions within the device manager return a code,
indicating the results of the function call.

The device manager defines some typical return codes. Similar to
command IDs and callback events, physical drivers can add their own
return codes beginning with the enumeration start value for the driver.

VisualDSP++ 5.0 Device Drivers and System 10-33
Services Manual for Blackfin Processors

Device Driver Manager

Circular Buffer Callback Options

The next section in the adi_dev.h file contains enumerations for the type
of callback the client requests when the device manager is using the circu-
lar buffer dataflow method.

Enumerations are provided indicating the device manager should make no
callbacks, make a callback on sub-buffer completions, or make a callback
on whole buffer completions.

Buffer Data Types

The ADI_DEV_1D_BUFFER, ADI_DEV_2D_BUFFER, and ADI_DEV_CIRCULAR_
BUFFER data structures are used to provide data buffers to the driver. At the
top of these data structures is a reserved area that allows the device drivers
access to a small amount of memory attached to each buffer. How (or if)
the device driver uses this reserved area depends on the implementation.

Note that if the physical device driver is supported by peripheral DMA,
the device manager uses this reserved area to create a DMA descriptor
describing the buffer. This descriptor is, in turn, passed to the DMA man-
ager system service in order to use DMA to move the data, as described in
the buffer structure.

If the physical driver is not supported by peripheral DMA, the physical
driver can use this reserved area for any purpose—for example, queue
management or whatever mechanism the physical driver uses to move the
data.

Also included in this section is a ADI_DEV_BUFFER data structure, which
represents a union of one-dimensional, two-dimensional, and circular
buffers. This data type is used as a convenient method to refer to a buffer
in a generic fashion, without knowing the specific type of buffer. The adi_
dev_Read and adi_dev_Write API functions use the ADI_DEV_BUFFER data
type when passing buffers to these functions.

Device Manager Design

10-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Physical Driver Entry Point

The next section in the adi_dev.h file contains a data structure that
describes the entry point into a physical driver. The structure ADI_DEV_
PDD_ENTRY_POINT is simply a data type that points to the functions within
the physical driver that are called by the device manager.

API Function Definitions

The last section in the adi_dev.h file describes the API calls into the
device manager. Each function is declared here with the appropriate
parameters for each call. Each function is described in detail in “Device
Manager API Reference” on page 10-56.

Device Manager Code
All code for the device manager is kept in the adi_dev.c file. This section
describes the code of the device manager. This file is located in the Black-
fin/Lib/Src/Drivers directory.

Data Structures

The only additional data structures that are defined are the ADI_DEV_MAN-
AGER and ADI_DEV_DEVICE structures. These structures contain all the data
necessary for operation of the device manager itself and for management
and control of the physical driver.

Static Data

The device manager uses a single piece of static data. The InitialDevice-
Settings item is copied into an ADI_DEV_DEVICE structure when a device is
opened. This provides a quick and efficient means to initialize an ADI_
DEV_DEVICE structure without having to populate each item individually.

VisualDSP++ 5.0 Device Drivers and System 10-35
Services Manual for Blackfin Processors

Device Driver Manager

Static Function Declarations

This section declares static functions that are used within the device
manager. Each of these functions is described in detail in sections that fol-
low. Only the API functions are declared to be global; all other functions
are static to the device manager.

API Functional Description

This section describes the functionality that is performed for each of the
API functions in the device manager. The API functions include:

• adi_dev_Init

• adi_dev_Open

• adi_dev_Close

• adi_dev_Read

• adi_dev_Write

• adi_dev_Control

Refer to “Device Manager API Reference” on page 10-56 for more API
information.

adi_dev_Init Functional Description

The adi_dev_Init function is used to initialize the device manager. For
detailed reference information, see “adi_dev_Init” on page 10-59.

Processing begins by checking to ensure enough memory is provided to
operate the device manager. The function then determines how many
physical devices can be controlled with the remaining memory provided.

The critical region pointers are then stored, and the data structure for each
device that can be supported is marked as available for use. The function
then returns to the caller.

Device Manager Design

10-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dev_Open Functional Description

The adi_dev_Open function is used to open a device for use. For detailed
reference information, see “adi_dev_Open” on page 10-61.

Processing begins by finding a free ADI_DEV_DEVICE data structure used to
control the device. The address of that data structure is stored in the cli-
ent-provided location as the handle to the device.

The ADI_DEV_DEVICE structure is initialized and populated with the infor-
mation describing the device.

Once the ADI_DEV_DEVICE structure is initialized, the device manager calls
the adi_pdd_Open function of the physical driver. The physical driver then
executes, doing whatever it needs to do to open the device it controls. If
the physical driver fails to open the device, the device manager frees up the
ADI_DEV_DEVICE structure and returns the return code from the physical
device back to the application. Note that because the return code values
can be extended by the physical device, the return code can be as specific
as possible as to why the device failed to open.

If the physical device opens correctly, the device manager interrogates the
physical device to determine whether it is supported by peripheral DMA.
The device manager saves this information in the ADI_DEV_DEVICE
structure.

adi_dev_Close Functional Description

The adi_dev_Close function is called by the application when the device
is no longer needed. For detailed reference information, see “adi_dev_
Close” on page 10-57.

After the device handle is validated, assuming error checking is enabled,
the function calls the adi_pdd_Control function of the physical driver to
terminate dataflow. Once dataflow is terminated, any DMA channels that
were opened for the device are closed. The adi_pdd_Close function of the
physical driver is then called to shut down the device and to free up any

VisualDSP++ 5.0 Device Drivers and System 10-37
Services Manual for Blackfin Processors

Device Driver Manager

resources used by the physical device. Lastly, the ADI_DEV_DEVICE struc-
ture is flagged as closed so that it may be reused later.

adi_dev_Read Functional Description

The adi_dev_Read function is called by the application to provide the
device with buffers into which inbound data is stored. Assuming error
checking is enabled, processing begins in this function by validating the
device handle and ensuring that the device is open for inbound (or bidi-
rectional) traffic and that the dataflow method is defined. If the dataflow
method is not yet defined, the device manager does not have enough
information to know what to do with the buffer. For detailed reference
information, see “adi_dev_Read” on page 10-63.

The pBuffer parameter passed into the function can point to a single
buffer or a chain of buffers. Furthermore, if the device is supported by
peripheral DMA, the reserved area within the buffer data structure must
be configured appropriately. All of these details are taken care of in the
PrepareBufferList static function (see “PrepareBufferList” on page 10-43
for more information on this function).

Once the buffer list is prepared, a check is made to see whether the device
is supported by peripheral DMA. If so, the DMA manager is called to
queue the buffers on the proper DMA channel using the appropriate data-
flow method—chained descriptors are passed to the DMA manager via the
adi_dma_Queue function, and circular buffers passed via the adi_dma_
Buffer function. If peripheral DMA is not supported, the buffers are
passed directly to the physical driver using the adi_pdd_Read function.
Note that when a device is supported by peripheral DMA, the physical
driver is extremely simple because the device manager handles all data
buffers for the physical device.

Lastly, a check is made to see if the device is operating in synchronous or
asynchronous mode. If it is operating in asynchronous mode, the adi_
dev_Read function returns to the application immediately. If it is
operating in synchronous mode, the adi_dev_Read function waits in a

Device Manager Design

10-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

loop until the buffer (or the last buffer within the list of buffers, if multi-
ple buffers were provided as a parameter) is processed before returning to
the application. Again, the physical driver has no knowledge of (nor the
need for) the synchronous/asynchronous mode information.

adi_dev_Write Functional Description

The adi_dev_Write function operates virtually identically to the adi_dev_
Read function, except the data is destined for the outbound rather than
inbound direction. For detailed reference information, see “adi_dev_
Write” on page 10-65.

adi_dev_Control Functional Description

The adi_dev_Control function is used to process configuration-type
commands from the application. Like all the API functions, if error check-
ing is enabled, the device handle is validated upon entry into the function.
For detailed reference information, see “adi_dev_Control” on page 10-58.

Processing within the adi_dev_Control function is based upon the com-
mand ID passed in as a parameter. Some commands can be processed
entirely by the device manager, some commands are processed by the
physical driver only, and other commands need to be processed by both
the device manager and the physical driver. In order to accomplish this,
the bulk of this function is designed as a C switch statement. Each com-
mand that the device manager cares about has an entry in the statement.

When a command is passed that the device manager needs to process, the
device manager processes the command and then sets a flag, stating
whether the command needs to pass down to the physical driver. When
processing gets to the bottom of the function, if the command needs to be
passed to the physical driver, the adi_pdd_Control function of the physi-
cal driver is called and the return code from the physical driver is passed
back to the application. This allows each physical driver to extend the
command IDs and allows them to create their own unique command IDs
that the application can control.

VisualDSP++ 5.0 Device Drivers and System 10-39
Services Manual for Blackfin Processors

Device Driver Manager

The device manager processes the following commands:

• ADI_DEV_CMD_GET_2D_SUPPORT – This command is used to
determine if the device supports two-dimensional data movement.
On Blackfin processors, if a device is supported by peripheral
DMA, two-dimensional data movement is provided. If the device
is not supported by peripheral DMA, the command is passed to the
physical driver for determining if the physical driver can support
two-dimensional data.

• ADI_DEV_CMD_SET_SYNCHRONOUS – This command is used to put the
device manager in synchronous mode for the given device. The
only processing here is to set the flag in the ADI_DEV_DEVICE struc-
ture. This command is never passed to the physical driver, as all
synchronous activity is controlled by the device manager. Hiding
this from the physical driver has the added benefit of physical driv-
ers not caring (nor having to take special processing) to
accommodate synchronous or asynchronous modes. The physical
driver can operate in whatever manner is best suited to the device.

• ADI_DEV_CMD_SET_DATAFLOW_METHOD – This command is used to set
the dataflow method for the given device. If the device is not sup-
ported by peripheral DMA, the device manager takes no action
other than noting the dataflow method and passing the command
along to the physical driver via the adi_pdd_Control function. If
the device is supported by peripheral DMA, the default value used
for the DMA configuration control register is updated with settings
appropriate for the dataflow method. Further, once the dataflow
method is defined by the application, the device manager then has
enough information to open whatever DMA channels are necessary
in support of the device. The physical driver is interrogated via the
adi_pdd_Control function as to which DMA controller and
channel number the device has been assigned for inbound and/or
outbound data. The DMA manager is then accessed to open the
appropriate channels with the appropriate modes, such as circular

Device Manager Design

10-40 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

or chained descriptors. If the device is opened with the ADI_DEV_
MODE_CHAINED_LOOPBACK dataflow method, the DMA manager is so
configured. Note that the ADI_DEV_DEVICE structure is kept
updated with the appropriate information as to which controllers
and channels are opened or closed, what the operating modes are,
and so on.

• ADI_DEV_CMD_SET_DATAFLOW – This command is issued to enable or
disable dataflow on a device. The logic involved to enable or dis-
able dataflow is fairly complex and isolated in a static function
called SetDataflow (see “SetDataflow” on page 10-44 for more
information on this function).

• ADI_DEV_CMD_SET_STREAMING - This command is issued to enable or
disable the streaming mode of the device driver. (To fully under-
stand what the streaming mode operation entails, users should be
familiar with the streaming capability of the DMA manager system
service, as described in “DMA Manager” on page 6-1. Though
peripheral DMA support is not required of a device that supports
streaming, devices that are supported by peripheral DMA automat-
ically leverage the streaming capabilities of the DMA manager.)

When streaming mode is enabled, the device is configured to treat
data coming into and/or out of the device as a continuous stream
of data. Typically, this allows the device driver to transmit and
receive data through the device at maximum speed.

In order to use the streaming mode of the device manager, the
application must ensure that the following conditions are met:

• The device always has buffers to process and never runs out
of buffers. This means the application guarantees devices
that are opened for inbound or bidirectional dataflow
always have a buffer in which to store data that is received,

VisualDSP++ 5.0 Device Drivers and System 10-41
Services Manual for Blackfin Processors

Device Driver Manager

and devices that are opened for outbound or bidirectional
dataflow always have a buffer to transmit out through the
device.

• The system timing is such that the device manager can
acknowledge and service callbacks for a buffer before a call-
back for another buffer on that same device and going in
that same direction (inbound or outbound) is generated.

These conditions can be fairly easily met in most systems.

Static Functions

This section describes the static functions within the device manager that
are used in support of the API functions.

PDDCallback

The PDDCallback function is called in response to events from the physical
driver. After error checking the device handle (if error checking is
enabled), the device manager simply passes these events back to the
application.

Note that in this routine (and the DMACallback function) the device
manager calls the client callback function directly, regardless of whether
live callbacks are in effect. It can do this as the physical driver is passed the
handle to the deferred callback service as part of the adi_pdd_Open
function.

As such, if the deferred callback service is in use, the invocation of the
PDDCallback function in the device manager is deferred by the physical
driver. In this way, the PDDCallback function can directly call the client’s
callback function.

Device Manager Design

10-42 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

DMACallback

The DMACallback function is called in response to DMA events from the
DMA manager for devices that are supported by peripheral DMA.
Assuming error checking is enabled, the device handle is validated first.
The function then determines the event that has occurred and performs its
processing based on the event type.

If the event indicates that a descriptor has been processed, the processed
flag and processed count fields of the buffer are updated. The application’s
callback function is then invoked in order to notify the application of the
event.

If the event indicates that DMA processing has generated the ADI_DEV_
EVENT_SUBBUFFER_PROCESSED event, the function makes the appropriate
callback into the application, stating that a sub-buffer has completed pro-
cessing. If the event indicates that DMA processing has generated the ADI_
DEV_EVENT_BUFFER_PROCESSED event, the function makes the appropriate
callback into the application, stating that the entire buffer has completed
processing.

The DMA manager reports asynchronous DMA errors via the callback
mechanism. There errors are, in turn, passed back to the client via its
callback function.

Note that in this routine (and the PDDCallback function), the device
manager calls the client callback function directly, without concern for
whether live callbacks are in effect. It can do this as the DMA manager is
passed the handle to the deferred callback service as part of the adi_dma_
Open function. As such, if the deferred callback service is in use, the invo-
cation of the DMACallback function in the device manager is deferred by
the DMA manager. In this way, the dmaCallback function can directly call
the client’s callback function.

VisualDSP++ 5.0 Device Drivers and System 10-43
Services Manual for Blackfin Processors

Device Driver Manager

PrepareBufferList

The PrepareBufferList function prepares a single buffer or list of buffers
for submission to the DMA manager (when the device is supported by
peripheral DMA) or the physical driver (when the device is not supported
by peripheral DMA).

The function begins by determining the value of the direction field in the
DMA configuration control register. Because the data structures for
circular buffers, one-dimensional buffers, and two-dimensional buffers
differ, each must be treated separately.

If passed as a circular buffer, the function assumes there is only one buffer
in the buffer list. For devices opened with the ADI_DEV_MODE_CIRCULAR
dataflow method, only a single buffer is provided so this is a valid assump-
tion to make. The function configures the DMA configuration control
register according to the parameters within the circular buffer data struc-
ture. The DMA configuration control register is set to generate inner-loop
interrupts if the application wants to be called back when each sub-buffer
has completed processing, or is set to generate outer-loop interrupts if the
application wants to be called back when the entire buffer has completed
processing, or neither if the application does not want any callbacks. The
word size is set to the width of a data element in the buffer, and the direc-
tion field is set appropriately. The function then returns to the caller.

If the buffer type passed into the function specifies one-dimensional or
two-dimensional buffers, the processing is largely the same except where
noted.

For each buffer passed in, the processed flag and processed count fields
within the buffer structure are cleared. If the physical device is supported
by peripheral DMA, the reserved area at the beginning of each buffer
structure is converted into a large model descriptor. The descriptor is then
configured according to the parameters within the buffer structure,
including such things as buffer size, width of an element, data direction,
whether it is one-dimensional or two-dimensional, and so on. The

Device Manager Design

10-44 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

descriptor for each buffer in the chain is updated to point to the next
descriptor for the corresponding buffer within the chain. The last descrip-
tor in the chain, corresponding to the last buffer within the chain, is
updated to point to NULL for the next descriptor. After processing is
completed, a chain of buffers is established. All of the buffers are initial-
ized appropriately, and the reserved area in each buffer contains a DMA
descriptor for that buffer that, in turn, points to the DMA descriptor for
the next buffer in the chain.

Lastly, if the device is opened for synchronous mode and peripheral DMA
is supported, the last descriptor in the chain is forced to generate a call-
back from the DMA manager to the device manager. This allows the
device manager to acknowledge when the last buffer has been processed so
that it can update the processed fields appropriately. The last descriptor
also acts as the trigger that responds each time the adi_dev_Read or adi_
dev_Write function returns back to the application.

SetDataflow

The SetDataflow function is called in response to the ADI_DEV_CMD_SET_
DATAFLOW command being received by the adi_dev_Control API function.
This function enables or disables dataflow according to the flag.

The SetDataflow function begins processing by ensuring that the system
is not trying to enable dataflow when it is already enabled or disable
dataflow when it is already disabled. If this check is not performed, DMA
and/or the physical drivers would likely generate errors.

When dataflow is being disabled, the function first calls the adi_pdd_Con-
trol function of the physical driver to disable dataflow. If the device is
using peripheral DMA, it is important to disable dataflow at the device
first, before shutting down DMA. Once the physical driver has disabled
dataflow, any and all DMA channels that were opened for the device are
closed. This is affected by calls to the DMA manager.

VisualDSP++ 5.0 Device Drivers and System 10-45
Services Manual for Blackfin Processors

Device Driver Manager

When dataflow is being enabled, if the device is supported by peripheral
DMA, the function first enables dataflow on the DMA channels by
making calls into the DMA manager to enable dataflow on the channel or
channels that have been opened for the device. After the dataflow on the
DMA channels has been enabled, the function calls the adi_pdd_Control
function of the physical driver to enable dataflow.

Physical Driver Design
The physical driver is that part of the driver that controls the hardware for
the device. Only the physical driver has knowledge of the device’s control
and status registers, and the fields within those registers. Unlike the device
manager, in which there is only a single device manager in the system, any
number of physical drivers can be present in a system.

Physical Driver Design Overview
Under application control, only the device manager communicates with
each of the physical device drivers. Applications never interact directly
with a physical driver or vice versa. However, similar to the execution
sequence that applications have with the device manager, the device
manager controls the physical device drivers in much the same manner.
The device manager opens, controls, and closes physical device drivers
analogous to how the application opens, controls, and closes the device
manager.

Each physical driver in the system is controlled independently from the
other physical drivers in the system. Although multiple physical drivers
may exist simultaneously in a system, multiple physical drivers should
never control the same device.

In general, a physical driver controls all instances of a device within a sys-
tem. For example, if there are four serial ports (SPORTs) in the system, a

Physical Driver Design

10-46 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

single physical driver for the SPORT peripheral is capable of controlling
all four serial ports individually and simultaneously.

The physical driver is responsible for hooking any and all interrupts as
needed for the physical device. Many physical devices generate interrupts
on error conditions. These interrupts are caught by the physical driver and
passed back up as an event via the callback mechanism. The interrupt
manager provides a very simple, straightforward mechanism that is used
for all interrupt processing. This simplifies the task of porting device driv-
ers to different operating environments, toolchains, and operating
systems.

If a device is supported by peripheral DMA, the physical driver is greatly
simplified as the device manager typically controls all DMA interaction,
without any involvement from the physical driver. When a device is
opened, the device manager interrogates the physical driver as to whether
the device is supported by peripheral DMA. If the physical driver responds
in the affirmative, the device manager controls all DMA activity (such as
initialization, providing data buffers, callback mechanisms, and so on) via
the DMA manager API. As such, the device manager never calls the adi_
pdd_Read and adi_pdd_Write routines of a physical driver that is
supported by peripheral DMA. Physical drivers for devices that are sup-
ported by peripheral DMA are quite simple to implement.

For devices that are not supported by peripheral DMA, physical drivers
can still take advantage of the DMA manager, as memory DMA can be an
effective strategy for reading/writing to devices that use programmed I/O.
If directed to use deferred callbacks, physical drivers use the services of the
deferred callback manager exclusively in order to post callbacks into the
device manager. See “Deferred Callback Manager” on page 5-1 for more
information.

Physical drivers have their own API, which is accessed by the device
manager. The following sections describe the API and the functionality
provided by the physical driver.

VisualDSP++ 5.0 Device Drivers and System 10-47
Services Manual for Blackfin Processors

Device Driver Manager

Physical Device Driver API Description
The API into a physical device driver is similar to the API between the
device manager and the application in that there is a function in the
physical driver API that maps to each function in the device manager API,
except for adi_dev_Init. These functions are all prefixed with adi_pdd
and are defined in the device manager include file (adi_dev.h).

The physical device driver functions are encapsulated in a structure called
ADI_DEV_PDD_ENTRY_POINT. Each physical driver exports an entry point
structure. The application passes the address of this structure to the device
manager as part of the adi_dev_Open function call. The device manager, in
turn, uses this data structure to call the individual routines in the physical
driver. This mechanism allows multiple physical drivers to exist in the
same system without causing name space conflicts.

There are five functions in the physical driver API. These functions are
described in the sections that follow. The API functions include:

• adi_pdd_Open – Opens a device for use

• adi_pdd_Close – Closes a device

• adi_pdd_Read – Provides buffers for reception of data from a device

• adi_pdd_Write – Provides buffers containing data for transmission
out the device

• adi_pdd_Control – Configures the device

Physical Driver Include File (“xxx.h”)
The API for physical drivers is defined in the adi_dev.h include file of the
device manager. However, physical drivers can extend some of the
definitions and enumerations defined by the device manager. Additional
command IDs, event IDs, and return codes can be created by each
physical driver. These extensible definitions are described in the sections

Physical Driver Design

10-48 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

that follow. These definitions are normally defined in an include file pro-
vided with the physical driver. For example, the PPI driver, whose code is
contained in the adi_ppi.c file, has a companion adi_ppi.h include file.
The only contents of the include file are the extensible definitions that the
physical driver makes available to the application.

Client applications should include the device manager adi_dev.h file and
the include file for each of the physical drivers they will be using. For
example, a client application using the PPI physical driver should include
the adi_dev.h and adi_ppi.h include files. The adi_dev.h include file and
physical driver include files for all Analog Devices-provided drivers are
found in the Blackfin/Include/Drivers directory.

Extensible Definitions

The physical driver can define its own extensions to the command IDs,
event IDs, and return codes, beyond those already defined by the device
manager in the adi_dev.h file.

Physical drivers can create any number of additional command IDs.
Applications can issue these command IDs via the adi_dev_Control API
function. When the adi_dev_Control function of the device manager sees
an extended command ID, the device manager passes the call onto the
physical driver’s adi_pdd_Control function, passing along the parameters
provided by the application. This gives the physical driver the option of
creating additional command IDs that are relevant to the device being
controlled.

For example, a physical driver for a DAC may define a command ID that
allows the application to set or detect the output volume level for the
DAC.

In a similar fashion, physical drivers can create additional event IDs that
they can pass back to the application. Physical drivers can create any
number of additional event IDs. Physical drivers can send these events to
the application via a callback to the device manager. When the device

VisualDSP++ 5.0 Device Drivers and System 10-49
Services Manual for Blackfin Processors

Device Driver Manager

manager’s PDDCallback function is passed an extended event ID, it passes
the event and parameters passed to the device manager’s callback function
along to the application. This gives the physical driver the option of
creating additional event IDs that are relevant to the device being con-
trolled. For example, a physical driver that controls a device that is
detecting the level of a signal can create an event that notifies the
application when the signal has reached some predetermined value.

Physical drivers can also return custom-defined error codes. Physical
drivers can create any number of additional return codes. These drivers
can return these error codes in response to any physical driver API
function call from the device manager. The device manager routinely
looks for the ADI_DEV_RESULT_SUCCESS error code. Anything other than
ADI_DEV_RESULT_SUCCESS is interpreted to be an error.

When a physical driver API function returns an error code not equal to
ADI_DEV_RESULT_SUCCESS, the device manager passes the error code back
to the application as the return value for the device manager API function
that triggered the error. This gives the physical driver the option of
creating additional return codes that are relevant to the device being
controlled.

For example, a physical driver may return a unique error code in response
to a command to affect a parameter on the device. The physical driver
could return an error code that provides a high level of detail as to what
caused the error.

The adi_dev.h file contains the starting enumeration values for each
physical driver. Use this value as the starting value for all command IDs,
event IDs, and return codes.

ADI_DEV_PDD_ENTRY_POINT

The physical driver’s include function must include a declaration of the
entry point into the driver. This declaration declares, as a global variable,
the address of the entry point for the physical driver. The application

Physical Driver Design

10-50 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

passes the address of the entry point to the device manager when the
device is opened. For example, the line

extern ADI_DEV_PDD_ENTRY_POINT PPIEntryPoint;

// entry point to the PPI driver

in the PPI driver’s include file informs the application to pass the variable
PPIEntryPoint as the entry point parameter in the adi_dev_Open function
call to open the PPI device driver.

Physical Driver Source (“xxx.c”)
All functions within the physical driver source code, including the actual
physical driver API functions, are declared static so that they are not
exposed to any other software components. The only global piece of code
or data is the entry point address. The entry point is a simple structure
that contains the addresses of the physical driver API functions in the fol-
lowing order.

ADI_DEV_PDD_ENTRY_POINT PPIEntryPoint = {

adi_pdd_Open,

adi_pdd_Close,

adi_pdd_Read,

adi_pdd_Write,

adi_pdd_Control

};

Source code for all Analog Devices-supplied physical drivers is located in
the Blackfin/Lib/Src/Drivers directory.

All code within the driver source is in support of the five physical driver
API functions. These functions and the logic that they need to provide are
described in sections that follow. All physical driver API functions must
return an error code. The device manager checks the return code for every
physical driver API call. If the physical driver returns anything other than
ADI_DEV_RESULT_SUCCESS, it assumed to be some type of failure.

VisualDSP++ 5.0 Device Drivers and System 10-51
Services Manual for Blackfin Processors

Device Driver Manager

 Similar to what is implemented in the device manager, it is highly
recommended that physical drivers implement some type of
switchable error checking, ideally using the ADI_DEV_DEBUG macro.
As a minimum, physical driver handles (ADI_DEV_PDD_HANDLE)
should be validated in each API function.

adi_pdd_Open Functional Description

The adi_pdd_Open function is called by the device manager in response to
the application calling the adi_dev_Open function. Its purpose is to open
the device for use. For detailed reference information, see “adi_pdd_
Open” on page 10-83.

The adi_pdd_Open function should first verify that the device being
requested is available for use and supports the requested data direction.
Appropriate error codes are returned if the device is unavailable or does
not support the requested direction.

The device being controlled is initialized and flushed of any stray data or
pending interrupts. Any interrupts that are required to be handled in sup-
port of the device are hooked. For devices that are supported with
peripheral DMA, typically only the error interrupt need be hooked. The
interrupt manager of the system services is used for all hooking of inter-
rupts. Enabling/disabling of interrupts through the system interrupt
controller (SIC) is also accomplished using the interrupt manager service
calls.

The physical driver saves the handle to the callback service. If non-NULL
(meaning that deferred callbacks are in use), the physical driver invokes all
callbacks through the service identified by the callback service handle. If
NULL (meaning all callbacks are live and not deferred), the physical
driver calls the device manager’s callback function directly when sending
events.

Physical Driver Design

10-52 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The physical driver also saves the ADI_DEV_PDD_HANDLE value in the loca-
tion provided by the device manager. The device manager passes this
handle back to the physical driver in all other API function calls.

The adi_pdd_Open function returns ADI_DEV_RESULT_SUCCESS if successful.

adi_pdd_Control Functional Description

The adi_pdd_Control function is called by the device manager in response
to the application calling the adi_dev_Control function. Its purpose is to
process configuration-type commands from the device manager and client
application. Like all the API functions, if error checking is enabled, the
routine validates the physical driver handle upon entry into the function.
For detailed reference information, see “adi_pdd_Control” on
page 10-82.

Processing within the adi_pdd_Control function is based upon the com-
mand ID that is passed in as a parameter. Of the command IDs
enumerated by the device manager in the adi_dev.h file, as a minimum,
physical drivers must process the following commands:

• ADI_DEV_CMD_SET_DATAFLOW – Turns on and turns off the flow of
data through the device

• ADI_DEV_CMD_GET_PERIPHERAL_DMA_SUPPORT – Responds with TRUE
or FALSE if the device is supported by peripheral DMA. If the
device is supported by peripheral DMA, the adi_pdd_Control
function is also prepared to respond to the following command
IDs:

• ADI_DEV_CMD_GET_INBOUND_DMA_PMAP_ID – Responds with
the DMA peripheral map (PMAP) ID for the given device

• ADI_DEV_CMD_GET_OUTBOUND_DMA_PMAP_ID – Responds with
the DMA peripheral map (PMAP) ID for the given device

VisualDSP++ 5.0 Device Drivers and System 10-53
Services Manual for Blackfin Processors

Device Driver Manager

In most cases, the adi_pdd_Control function of the physical driver is con-
structed similarly to a C-style switch statement. Each command that the
physical driver cares about, including the required command IDs listed
above and any additional command IDs created by the physical driver
itself, have an entry in the statement. If the physical driver receives a com-
mand ID that it does not understand, it typically returns the ADI_DEV_
RESULT_NOT_SUPPORTED return code.

adi_pdd_Read Functional Description

The adi_pdd_Read function is called by the device manager in response to
the application calling the adi_dev_Read function. Its purpose is to fill
buffers with inbound data that is received from the device. With all API
functions, if error checking is enabled, the routine validates the physical
driver handle upon entry into the function. For detailed reference infor-
mation, see “adi_pdd_Read” on page 10-85.

For devices that are supported by peripheral DMA, the device manager
manages all buffer queueing and reception. As a result, if the device is
supported by peripheral DMA, the adi_pdd_Read function is never called
by the device manager and no functionality need be provided by this
routine. This greatly simplifies device drivers for devices that are sup-
ported by processor DMA. Physical drivers that are supported by
peripheral DMA still need to provide this function but should simply
return ADI_DEV_RESULT_NOT_SUPPORTED as this routine should never get
called.

For devices that are not supported by peripheral DMA, the adi_pdd_Read
function is passed one or more buffers that the application has provided
for inbound data reception. The physical driver can choose to process the
buffers immediately, or provide the logic and functionality to queue or
somehow stage these buffers for use at a time. However, the physical
driver is required to process the buffers in the order in which they were
received.

Physical Driver Design

10-54 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

For some devices, it may not be possible or practical to completely fill a
buffer with data. For example, consider an Ethernet driver. The Ethernet
driver typically receives packets that vary in length. The application may
know what the maximum size Ethernet packet is and provide the driver
with buffers sized to the maximum packet size. The driver may then
receive a packet from the network that is smaller than the maximum
packet size. It would be impractical for the physical driver to wait until
additional packets were received and completely fill the buffer before pro-
cessing. So, it is the physical driver’s option to decide when to consider a
buffer fully processed. Each buffer has a processed flag and processed size
flag that the physical driver sets, based on when it considers a buffer pro-
cessed and how much valid data the buffer contains.

Also, any buffer can be flagged by the application for notification when
the buffer has completed processing. If a buffer is not flagged for a call-
back, the physical driver does not notify the device manager when the
buffer is processed. If, however, the buffer is flagged for a callback (once
the buffer is processed), the physical driver is obligated to set the pro-
cessed flag and processed size field in the buffer, and to notify the device
manager via the device manager’s callback function that was passed to the
physical driver as a parameter in the adi_pdd_Open function call, that the
buffer has completed processing.

adi_pdd_Write Functional Description

The adi_pdd_Write function is called by the device manager in response
to the application calling the adi_dev_Write function. Its purpose is to
transmit the data within the buffers out through the device. For all API
functions, if error checking is enabled, the routine validates the physical
driver handle upon entry into the function. For detailed reference infor-
mation, see “adi_pdd_Write” on page 10-86.

As in the case for adi_pdd_Read, for devices that are supported by
peripheral DMA, the device manager manages all buffer queueing and
transmission. As a result, if the device is supported by peripheral DMA,

VisualDSP++ 5.0 Device Drivers and System 10-55
Services Manual for Blackfin Processors

Device Driver Manager

the adi_pdd_Write function is never called by the device manager and no
functionality need be provided by this routine. This greatly simplifies
device drivers for devices that are supported by processor DMA. Physical
drivers that are supported by peripheral DMA must provide this function,
but should simply return ADI_DEV_NOT_SUPPORTED as this routine should
never get called.

For devices that are not supported by peripheral DMA, the adi_pdd_Write
function is passed one or more buffers that the application has provided
for transmission out through the device. The physical driver can choose to
process the buffers immediately, or provide the logic and functionality to
queue or stage these buffers for transmission at a later time. The physical
driver is required, however, to process the buffers in the order in which
they were received.

Each buffer has a processed flag and processed size flag that the physical
driver sets based on when it considers a buffer processed and how much
data was transmitted out through the device. Unlike the adi_pdd_Read
case, the entire contents of the buffer is expected to be transmitted.

Also, any buffer can be flagged by the application for notification when
the buffer has completed processing. If a buffer is not flagged for a call-
back, the physical driver does not notify the device manager when the
buffer is processed. However, if the buffer is flagged for a callback, once
the buffer is processed the physical driver is obligated to set the processed
flag and processed size field in the buffer and notify the device manager
via the device manager’s callback function that was passed to the physical
driver as a parameter in the adi_pdd_Open function call, that the buffer has
completed processing.

adi_pdd_Close Functional Description

The adi_pdd_Close function is called by the device manager in response
to the application calling the adi_dev_Close function. Its purpose is to
gracefully shutdown and idle the device. For all API functions, if error
checking is enabled, the routine validates the physical driver handle is

Physical Driver Design

10-56 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

upon entry into the function. For detailed reference information, see
“adi_pdd_Close” on page 10-81.

After validating the driver handle, the adi_pdd_Close function terminates
all data transmission and reception if it is not already stopped, as it is pos-
sible for the application to call the adi_dev_Close function while dataflow
is enabled.

The function idles the device and leaves the device in a state such that it
can be opened again, should the application reopen the device at a later
time. All resources that were allocated in support of the device are
released. For example, if an error interrupt was hooked during the adi_
pdd_Open function, it is released as part of the adi_pdd_Close function.

Device Manager API Reference
This section provides the device manager API. The device manager API is
defined in the adi_dev.h file.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 10-57
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Close

Description

The adi_dev_Close() function closes a device. Dataflow is stopped if it
has not already been stopped and the device is put back into an idled state.
After calling adi_dev_Close, the only way to access the device again is to
first open it with the adi_dev_Open function call.

Prototype

u32 adi_dev_Close(

ADI_DEV_DEVICE_HANDLE DeviceHandle

);

Arguments

Return Value

DeviceHandle Handle used to identify the device

ADI_DEV_RESULT_SUCCESS Device closed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE Device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR Error occurred while closing down DMA for
the device.

xxx Device-specific return code

Physical Driver Design

10-58 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dev_Control

Description

The adi_dev_Control() function sets or detects a configuration parameter
for a device.

Prototype

u32 adi_dev_Control(

ADI_DEV_DEVICE_HANDLE DeviceHandle,

u32 Command,

void *pArg

);

Arguments

Return Value

DeviceHandle Handle used to identify the device

Command Command identifier

pArg Address of command-specific parameter

ADI_DEV_RESULT_SUCCESS Function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE Device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR Error was reported while configuring the DMA
manager.

ADI_DEV_RESULT_NOT_SUPPORTED Command is not supported.

xxx Device-specific return code

VisualDSP++ 5.0 Device Drivers and System 10-59
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Init

Description

The adi_dev_Init() function creates a device manager and initializes
memory for the device manager. This function is typically called at initial-
ization time.

Prototype

u32 adi_dev_Init(

void *pMemory,

size_t MemorySize,

u32 *pMaxDevices,

ADI_DEV_MANAGER_HANDLE *pManagerHandle,

void *pEnterCriticalParam

);

Arguments

pMemory Pointer to an area of static memory used by the device man-
ager

MemorySize Size, in bytes, of memory supplied for the device manager

pMaxDevices On return, this argument contains the number of simulta-
neously open devices that the device manager can support
given the memory supplied.

pManagerHandle Pointer to memory location where the handle to the device
manager is stored

pEnterCriticalParam Parameter that is passed to the function that protects critical
areas of code

Physical Driver Design

10-60 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_DEV_RESULT_SUCCESS Device manager was successfully initialized.

ADI_DEV_RESULT_NO_MEMORY Insufficient memory has been supplied to device manager.

VisualDSP++ 5.0 Device Drivers and System 10-61
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Open

Description

The adi_dev_Open() function opens a device for use. Internal data struc-
tures are initialized, preliminary device control is established, and the
device is reset and prepared for use.

Prototype

u32 adi_dev_Open(

ADI_DEV_MANAGER_HANDLE ManagerHandle,

ADI_DEV_PDD_ENTRY_POINT *pEntryPoint,

u32 DeviceNumber,

void *ClientHandle,

ADI_DEV_DEVICE_HANDLE *pDeviceHandle,

ADI_DEV_DIRECTION Direction,

ADI_DMA_MANAGER_HANDLE DMAHandle,

ADI_DCB_HANDLE DCBHandle,

ADI_DCB_CALLBACK_FN ClientCallback

);

Arguments

ManagerHandle Handle to the device manager that controls the device

pEntryPoint Address of the physical driver’s entry point

DeviceNumber Number representing an index into a “device table” of available devices
within the system, specifying which device to open. (Please also refer to
“Virtual Devices and Device Indexing” on page 9-8.)

ClientHandle Identifier defined by the application. The device manager passes this
value back to the client as an argument in the callback function.

pDeviceHandle Pointer to an application-provided location where the device manager
stores an identifier defined by the device manager. All subsequent com-
munication initiated by the client to the device manager for this device
includes this handle.

Physical Driver Design

10-62 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

Direction Data direction for the device: inbound, outbound or bidirectional. (See
“ADI_DEV_DIRECTION” on page 10-67.)

DMAHandle Handle to the DMA manager service that is used for this device (can be
NULL if DMA is not used)

DCBHandle Handle to the deferred callback service that is used for this device. If
NULL, all callbacks will be live and not deferred.

ClientCallback Address of the client’s callback function

ADI_DEV_RESULT_SUCCESS Device was opened successfully.

ADI_DEV_RESULT_BAD_MANAGER_HANDLE Device manager handle does not point to a
device manager.

ADI_DEV_RESULT_NO_MEMORY Insufficient memory is available to open the
device.

ADI_DEV_RESULT_DEVICE_IN_USE Device is already in use.

xxx Device-specific return code

VisualDSP++ 5.0 Device Drivers and System 10-63
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Read

Description

The adi_dev_Read() function reads data from a device or queues recep-
tion buffers to a device.

Prototype

u32 adi_dev_Read(

ADI_DEV_DEVICE_HANDLE DeviceHandle,

ADI_DEV_BUFFER_TYPE BufferType,

ADI_DEV_BUFFER *pBuffer

);

Arguments

Return Value

DeviceHandle Handle used to identify the device

BufferType Identifies type of buffer: one-dimensional,
two-dimensional, or circular. (See “ADI_DEV_
BUFFER_TYPE” on page 10-66.)

pBuffer Address of the buffer or first buffer in a chain of
buffers. (See “ADI_DEV_BUFFER” on
page 10-79.)

ADI_DEV_RESULT_SUCCESS Function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE Device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR Error was reported while configuring the DMA
manager.

ADI_DEV_RESULT_DATAFLOW_UNDEFINED Dataflow method has not yet been set.

xxx Device-specific return code

Physical Driver Design

10-64 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_dev_Terminate

Description

The adi_dev_Terminate() function frees up all memory used by the
device manager, stops data flow, closes all open device drivers, and termi-
nates the device manager.

Prototype

u32 adi_dev_Terminate(

ADI_DEV_MANAGER_HANDLE ManagerHandle

);

Arguments

Return Value

ManagerHandle Handle to the device manager

ADI_DEV_RESULT_SUCCESS Function completed successfully.

VisualDSP++ 5.0 Device Drivers and System 10-65
Services Manual for Blackfin Processors

Device Driver Manager

adi_dev_Write

Description

The adi_dev_Write() function writes data to a device or queues transmis-
sion buffers to a device.

Prototype

u32 adi_dev_Write(

ADI_DEV_DEVICE_HANDLE DeviceHandle,

ADI_DEV_BUFFER_TYPE BufferType,

ADI_DEV_BUFFER *pBuffer

);

Arguments

Return Value

DeviceHandle Handle used to identify the device.

BufferType Identifies type of buffer: one-dimensional,
two-dimensional, or circular. (See “ADI_DEV_
BUFFER_TYPE” on page 10-66.)

pBuffer Address of the buffer or first buffer in a chain of
buffers. (See “ADI_DEV_BUFFER” on
page 10-79.)

ADI_DEV_RESULT_SUCCESS Function completed successfully.

ADI_DEV_RESULT_BAD_DEVICE_HANDLE Device handle does not identify a valid device.

ADI_DEV_RESULT_DMA_ERROR Error was reported while configuring the
DMA manager.

ADI_DEV_RESULT_DATAFLOW_UNDEFINED Dataflow method has not yet been set.

xxx Device-specific return code

Device Manager Public Data Types and Enumerations

10-66 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Device Manager Public Data Types and
Enumerations

This section defines public data structures and enumerations used by the
device manager service.

ADI_DEV_BUFFER_TYPE
The ADI_DEV_BUFFER_TYPE enumeration is used to specify the type of
buffer provided to the driver. Table 10-1 describes the values for the ADI_
DEV_BUFFER_TYPE enumeration.

Table 10-1. ADI_DEV_BUFFER_TYPE

Name Description

ADI_DEV_BUFFER_UNDEFINED Undefined type

ADI_DEV_1D One-dimensional buffer

ADI_DEV_2D Two-dimensional buffer

ADI_DEV_CIRC Circular buffer

ADI_DEV_SEQ_1D Sequential one-dimensional buffer

ADI_DEV_SWITCH Switch buffer

ADI_DEV_UPDATE_SWITCH Buffer to chain with the existing switch buffer

ADI_DEV_BUFFER_SKIP Skip this buffer and DMA channel (for multi-DMA devices)

ADI_DEV_BUFFER_TABLE Table of buffers

ADI_DEV_BUFFER_END a End of buffer array

VisualDSP++ 5.0 Device Drivers and System 10-67
Services Manual for Blackfin Processors

Device Driver Manager

ADI_DEV_MODE
The ADI_DEV_MODE enumeration is used to specify the dataflow method.
Table 10-2 describes the values for the ADI_DEV_MODE enumeration.

ADI_DEV_DIRECTION
The ADI_DEV_DIRECTION enumeration is used to specify the data direction.
Table 10-3 describes the values for ADI_DEV_DIRECTION enumeration.

Table 10-2. ADI_DEV_MODE

Name Description

ADI_DEV_MODE_UNDEFINED Undefined mode

ADI_DEV_MODE_CIRCULAR Circular buffer

ADI_DEV_MODE_CHAINED Chained buffer

ADI_DEV_MODE_CHAINED_LOOPBACK Chained buffer with loopback

ADI_DEV_MODE_SEQ_CHAINED Sequential chained buffer

ADI_DEV_MODE_SEQ_CHAINED_LOOPBACK Sequential chained buffer with loopback

Table 10-3. ADI_DEV_DIRECTION

Name Description

ADI_DEV_DIRECTION_UNDEFINED Undefined direction

ADI_DEV_DIRECTION_INBOUND Inbound direction (read)

ADI_DEV_DIRECTION_OUTBOUND Outbound direction (write)

ADI_DEV_DIRECTION_BIDIRECTIONAL Both inbound and outbound (read and write)

Device Manager Public Data Types and Enumerations

10-68 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

CALLBACK EVENTS
The device manager header file lists enumerations for callback events
which are extensible by the physical device driver (PDD).

The starting value for device manager specific enumerations is
0x40000000. This value is defined in the services.h file as ADI_DEV_
ENUMERATION_START.

Table 10-4 lists enumeration values for callback events.

RESULT CODES
The device manager header file adi_dev.h lists enumeration values for
function return result codes, which are extensible by the physical device
driver (PDD).

The starting value for device manager specific enumerations is
0x40000000. This value is defined in the file services.h as ADI_DEV_
ENUMERATION_START.

Table 10-4. Callback Events

Name Description

ADI_DEV_EVENT_START 0x40000000 - starting point

ADI_DEV_EVENT_BUFFER_PROCESSED 0x0001 - buffer completed processing

ADI_DEV_EVENT_SUB_BUFFER_PROCESSED 0x0002 - a circular sub-buffer has been processed

ADI_DEV_EVENT_DMA_ERROR_INTERRUPT 0x0003 - DMA controller generated an error inter-
rupt

VisualDSP++ 5.0 Device Drivers and System 10-69
Services Manual for Blackfin Processors

Device Driver Manager

Table 10-5 lists enumeration values for result codes.

Table 10-5. Result Codes

Name Description

ADI_DEV_RESULT_SUCCESS Generic success = 0

ADI_DEV_RESULT_FAILED Generic failure = 1

ADI_DEV_RESULT_START 0x40000000 - starting point

ADI_DEV_RESULT_NOT_SUPPORTED Functionality is not supported

ADI_DEV_RESULT_DEVICE_IN_USE Device already in use

ADI_DEV_RESULT_NO_MEMORY Insufficient memory for operation

ADI_DEV_RESULT_NOT_USED_1 No longer used

ADI_DEV_RESULT_BAD_DEVICE_NUMBER Bad device number

ADI_DEV_RESULT_DIRECTION_NOT_SUPPORTED Data direction not supported

ADI_DEV_RESULT_BAD_DEVICE_HANDLE Bad device handle

ADI_DEV_RESULT_BAD_MANAGER_HANDLE Bad device manager handle

ADI_DEV_RESULT_BAD_PDD_HANDLE Bad physical driver handle

ADI_DEV_RESULT_INVALID_SEQUENCE Invalid sequence of commands

ADI_DEV_RESULT_ATTEMPTED_READ_ON_OUTBOUND_DEVICE Attempted read on outbound device

ADI_DEV_RESULT_ATTEMPTED_WRITE_ON_INBOUND_DEVICE Attempted write on inbound device

ADI_DEV_RESULT_DATAFLOW_UNDEFINED Dataflow method is undefined

ADI_DEV_RESULT_DATAFLOW_INCOMPATIBLE Operation incompatible with the data-
flow method

ADI_DEV_RESULT_BUFFER_TYPE_INCOMPATIBLE Device does not support the given
buffer type

ADI_DEV_RESULT_NOT_USED_2 No longer used

ADI_DEV_RESULT_CANT_HOOK_INTERRUPT Cannot hook the interrupt

ADI_DEV_RESULT_CANT_UNHOOK_INTERRUPT Cannot unhook the interrupt

ADI_DEV_RESULT_NON_TERMINATED_LIST Non-NULL terminated buffer list

Device Manager Public Data Types and Enumerations

10-70 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DEV_RESULT_NO_CALLBACK_FUNCTION_SUPPLIED No callback function provided to
Open function

ADI_DEV_RESULT_REQUIRES_UNIDIRECTIONAL_DEVICE Requires unidirectional device

ADI_DEV_RESULT_REQUIRES_BIDIRECTIONAL_DEVICE Requires bidirectional device

ADI_DEV_RESULT_TWI_LOCKED TWI locked in other operation

ADI_DEV_RESULT_REQUIRES_TWI_CONFIG_TABLE Requires configuration table for the
TWI driver

ADI_DEV_RESULT_CMD_NOT_SUPPORTED Command not supported

ADI_DEV_RESULT_INVALID_REG_ADDRESS Accessing invalid device register
address

ADI_DEV_RESULT_INVALID_REG_FIELD Accessing invalid device register field
location

ADI_DEV_RESULT_INVALID_REG_FIELD_DATA Providing invalid device register field
value

ADI_DEV_RESULT_ATTEMPT_TO_WRITE_READONLY_REG Attempt to write a read-only register

ADI_DEV_RESULT_ATTEMPT_TO_ACCESS_RESERVE_AREA Attempt to access a reserved location

ADI_DEV_RESULT_ACCESS_TYPE_NOT_SUPPORTED Access type provided by the driver is
not supported

ADI_DEV_RESULT_DATAFLOW_NOT_ENABLED Sync mode- enable dataflow before
providing buffers

ADI_DEV_RESULT_BAD_DIRECTION_FIELD Sequential I/O mode- buffers provided
with invalid direction

ADI_DEV_RESULT_BAD_IVG Bad IVG number detected

ADI_DEV_RESULT_SWITCH_BUFFER_PAIR_INVALID Invalid buffer pair provided with
switch/update switch buffer type

ADI_DEV_RESULT_DMA_CHANNEL_UNAVAILABLE No DMA channel available to process
command/buffer

ADI_DEV_RESULT_ATTEMPTED_BUFFER_TABLE_NESTING Buffer table nesting is not allowed

Table 10-5. Result Codes (Cont’d)

Name Description

VisualDSP++ 5.0 Device Drivers and System 10-71
Services Manual for Blackfin Processors

Device Driver Manager

COMMAND IDs
The device manager header file adi_dev.h lists enumeration values for
command IDs, which are extensible by the physical device driver (PDD).

The starting value for device manager specific enumerations is
0x40000000. This value is defined in the file services.h as ADI_DEV_
ENUMERATION_START.

Table 10-6 lists enumeration values for Command IDs.

Table 10-6. Command IDs

Name Description Value

ADI_DEV_CMD_START ADI_DEV_ENUMERATION_
START

0x40000000

ADI_DEV_CMD_UNDEFINED Undefined

ADI_DEV_CMD_END End of table NULL

ADI_DEV_CMD_PAIR Single command pair being
passed

ADI_DEV_CMD_VALUE_PAIR

ADI_DEV_CMD_TABLE Table of command pairs ADI_DEV_CMD_VALUE_PAIR

ADI_DEV_CMD_SET_DATAFLOW Enable/disable dataflow TRUE/FALSE

ADI_DEV_CMD_SET_DATAFLOW_
METHOD

Set dataflow method TRUE/FALSE

ADI_DEV_CMD_NOT_USED_1 No longer used

ADI_DEV_CMD_SET_
SYNCHRONOUS

Set device to synchronous I/O TRUE/FALSE

ADI_DEV_CMD_NOT_USED_2 No longer used

ADI_DEV_CMD_SET_STREAMING Set streaming mode TRUE/FALSE

ADI_DEV_CMD_GET_MAX_
INBOUND_SIZE

Get size of biggest inbound
packet

u32*

ADI_DEV_CMD_GET_MAX_
OUTBOUND_SIZE

Get size of biggest outbound
packet

u32*

Device Manager Public Data Types and Enumerations

10-72 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DEV_CMD_GET_
PERIPHERAL_DMA_SUPPORT

Query whether device supports
processor DMA

u32*

ADI_DEV_CMD_GET_INBOUND_
DMA_PMAP_ID

Get peripheral’s DMA PMAP
value for inbound data

ADI_DMA_PMAP*

ADI_DEV_CMD_GET_OUTBOUND_
DMA_PMAP_ID

Get peripheral’s DMA PMAP
value for outbound data

ADI_DMA_PMAP*

ADI_DEV_CMD_SET_INBOUND_
DMA_CHANNEL_ID

Set DMA channel ID for
inbound DMA

ADI_DMA_CHANNEL_ID

ADI_DEV_CMD_GET_INBOUND_
DMA_CHANNEL_ID

Get DMA channel ID for
inbound DMA

ADI_DMA_CHANNEL_ID*

ADI_DEV_CMD_SET_OUTBOUND_
DMA_CHANNEL_ID

Set DMA channel ID for
outbound DMA

ADI_DMA_CHANNEL_ID

ADI_DEV_CMD_GET_OUTBOUND_
DMA_CHANNEL_ID

Get DMA channel ID for
outbound DMA

ADI_DMA_CHANNEL_ID*

ADI_DEV_CMD_GET_2D_
SUPPORT

Query whether device supports
2D transfers

u32*

ADI_DEV_CMD_SET_ERROR_
REPORTING

Enable/disable error reporting TRUE/FALSE

ADI_DEV_CMD_FREQUENCY_
CHANGE_PROLOG

Notification of impending
core/system frequency change

ADI_DEV_FREQUENCIES*

ADI_DEV_CMD_FREQUENCY_
CHANGE_EPILOG

Notification of new core/
system frequency settings

ADI_DEV_FREQUENCIES*

ADI_DEV_CMD_REGISTER_READ Read a single device register ADI_DEV_ACCESS_REGISTER*

ADI_DEV_CMD_REGISTER_
FIELD_READ

Read a specific device register
field

ADI_DEV_ACCESS_REGISTER_
FIELD *

ADI_DEV_CMD_REGISTER_
TABLE_READ

Read a table of selective device
registers

ADI_DEV_ACCESS_REGISTER*

ADI_DEV_CMD_REGISTER_
FIELD_TABLE_READ

Read table of selective device
register(s) field(s)

ADI_DEV_ACCESS_REGISTER_
FIELD*

ADI_DEV_CMD_REGISTER_
BLOCK_READ

Read a block of consecutive
device registers

ADI_DEV_ACCESS_REGISTER_
BLOCK*

Table 10-6. Command IDs (Cont’d)

Name Description Value

VisualDSP++ 5.0 Device Drivers and System 10-73
Services Manual for Blackfin Processors

Device Driver Manager

ADI_DEV_1D_BUFFER
The data structure ADI_DEV_1D_BUFFER describes a normal one-dimen-
sional buffer. Table 10-7 describes the elements of this data structure.

ADI_DEV_CMD_REGISTER_
WRITE

Write to a single device register ADI_DEV_ACCESS_REGISTER*

ADI_DEV_CMD_REGISTER_
FIELD_WRITE

Write to a specific device
register field

ADI_DEV_ACCESS_REGISTER_
FIELD*

ADI_DEV_CMD_REGISTER_
TABLE_WRITE

Write to a table of selective
device registers

ADI_DEV_ACCESS_REGISTER

ADI_DEV_CMD_REGISTER_
FIELD_TABLE_WRITE

Write to a table of selective
device register(s) field(s)

ADI_DEV_ACCESS_REGISTER_
FIELD*

ADI_DEV_CMD_REGISTER_
BLOCK_WRITE

Write to a block of consecutive
device registers

ADI_DEV_ACCESS_REGISTER_
BLOCK*

ADI_DEV_CMD_UPDATE_1D_
DATA_POINTER

Update the data pointer in a
single 1D buffer

ADI_DEV_1D_BUFFER*

ADI_DEV_CMD_UPDATE_2D_
DATA_POINTER

Update the data pointer in a
single 2D buffer

ADI_DEV_2D_BUFFER*

ADI_DEV_CMD_UPDATE_SEQ_
1D_DATA_POINTER

Update the data pointer in a
single sequential 1D buffer

ADI_DEV_SEQ_1D_BUFFER*

ADI_DEV_CMD_GET_INBOUND_
DMA_CURRENT_ADDRESS

Get current address register
value of inbound DMA

u32*

ADI_DEV_CMD_GET_OUTBOUND_
DMA_CURRENT_ADDRESS

Get current address register
value of outbound DMA

u32*

Table 10-7. ADI_DEV_1D_BUFFER

Name Type Description

Reserved char[ADI_DEV_RESERVED_SIZE] Reserved for physical device
driver use

Data void* Pointer to data

Table 10-6. Command IDs (Cont’d)

Name Description Value

Device Manager Public Data Types and Enumerations

10-74 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DEV_2D_BUFFER
The data structure ADI_DEV_2D_BUFFER describes a normal one-dimen-
sional buffer. Table 10-8 describes the elements of this data structure.

ElementCount u32 Data element count

ElementWidth u32 Data element width (in bytes)

CallbackParameter void* Callback flag/pArg value

ProcessedFlag volatile u32 Processed flag

ProcessedElementCount u32 Number of bytes processed

pNext struct adi_dev_1d_buffer* Next buffer

pAdditionalInfo void* Device-specific pointer to addi-
tional information

Table 10-8. ADI_DEV_2D_BUFFER

Name Type Description

Reserved char[ADI_DEV_RESERVED_SIZE] Reserved for physical device
driver use

Data void* Pointer to data

ElementWidth u32 Data element width (in bytes)

XCount u32 XCOUNT value for 2D

XModify s32 XMODIFY value for 2D

YCount u32 YCOUNT value for 2D

YModify s32 YMODIFY value for 2D

CallbackParameter void* Callback flag/pArg value

ProcessedFlag volatile u32 Processed flag

ProcessedElementCount u32 Number of bytes processed

Table 10-7. ADI_DEV_1D_BUFFER (Cont’d)

Name Type Description

VisualDSP++ 5.0 Device Drivers and System 10-75
Services Manual for Blackfin Processors

Device Driver Manager

ADI_DEV_CIRCULAR_BUFFER
The data structure ADI_DEV_CIRCULAR_BUFFER describes a normal circular
buffer. Table 10-9 describes the elements of this room with data structure.

pNext struct adi_dev_2d_buffer* Next buffer

pAdditionalInfo void* Device-specific pointer to addi-
tional information

Table 10-9. ADI_DEV_CIRCULAR_BUFFER

Name Type Description

Reserved char[ADI_DEV_RESERVED_SIZE] Reserved for physical device
driver use

Data void* Pointer to data

SubBufferCount u32 Number of sub-buffers

SubBufferElementCount u32 Number of data elements in
one sub-buffer

ElementWidth u32 Data element width (in bytes)

CallbackType ADI_DEV_CIRCULAR_CALLBACK Circular buffer callback switch

pAdditionalInfo void* Device-specific pointer to addi-
tional information

Table 10-8. ADI_DEV_2D_BUFFER (Cont’d)

Name Type Description

Device Manager Public Data Types and Enumerations

10-76 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DEV_SEQ_1D_BUFFER
The data structure ADI_DEV_SEQ_1D_BUFFER describes a sequential one-
dimensional buffer. Table 10-10 describes the elements of this data struc-
ture.

ADI_DEV_BUFFER_PAIR
The data structure ADI_DEV_BUFFER_PAIR describes a sequential one-
dimensional buffer. Table 10-11 describes the elements of this data
structure.

ADI_DEV_DMA_INFO
The data structure ADI_DEV_DMA_INFO holds peripheral DMA channel
information. Table 10-12 describes the elements of this data structure.

Table 10-10. ADI_DEV_SEQ_1D_BUFFER

Name Type Description

BufferType ADI_DEV_BUFFER_TYPE Buffer type

pDirection union ADI_DEV_BUFFER Pointer to a buffer of above type

Table 10-11. ADI_DEV_BUFFER_PAIR

Name Type Description

Buffer ADI_DEV_1D_BUFFER Buffer

Direction ADI_DEV_DIRECTION Direction

Table 10-12. ADI_DEV_DMA_INFO

Name Type Description

MappingID ADI_DMA_PMAP DMA peripheral mapping ID

ChannelHandle ADI_DMA_CHANNEL_HANDLE Handle to this DMA channel

VisualDSP++ 5.0 Device Drivers and System 10-77
Services Manual for Blackfin Processors

Device Driver Manager

ADI_DEV_DMA_ACCESS
The data structure ADI_DEV_DMA_ACCESS accesses a peripheral’s inbound
and outbound DMA chain data. Table 10-13 describes the elements of
this data structure.

ADI_DEV_FREQUENCIES
The data structure ADI_DEV_FREQUENCIES maintains information about the
clock frequency changes. Table 10-14 describes the elements of this data
structure.

SwitchModeFlag u8 Switch mode status flag (TRUE when in
switch mode)

pSwitchHead ADI_DMA_DESCRIPTOR_UNION* Head of switch buffer chain

pSwitchTail ADI_DMA_DESCRIPTOR_UNION* Tale of switch buffer chain

pNext struct ADI_DEV_DMA_INFO* Pointer to structure holding next DMA
channel information

Table 10-13. ADI_DEV_DMA_ACCESS

Name Type Description

DmaChannelCount u8 Number of DMA channels to access and selected device

pData void* Start location of an array for the DMA-related data

Table 10-14. ADI_DEV_FREQUENCIES

Name Type Description

CoreClock u32 Core clock (CCLK)

SystemClock u32 System clock (SCLK)

Table 10-12. ADI_DEV_DMA_INFO (Cont’d)

Name Type Description

Device Manager Public Data Types and Enumerations

10-78 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DEV_ACCESS_REGISTER
The data type ADI_DEV_ACCESS_REGISTER is for accessing a single, off-chip
device register. Table 10-15 describes the elements of this data structure.

ADI_DEV_ACCESS_REGISTER_BLOCK
The data type ADI_DEV_ACCESS_REGISTER_BLOCK is for accessing blocks of
consecutive, off-chip device registers. Table 10-16 describes the elements
of this data structure.

Table 10-15. ADI_DEV_ACCESS_REGISTER

Name Type Description

Address u16 Device register address

Data u16 Data to be written to, or read from the register

Table 10-16. ADI_DEV_ACCESS_REGISTER_BLOCK

Name Type Description

Count u32 Number of registers to be accessed

Address u16 Starting address of register block

pData u16* Pointer to an array of register data to be written to, or read from the
register block

VisualDSP++ 5.0 Device Drivers and System 10-79
Services Manual for Blackfin Processors

Device Driver Manager

ADI_DEV_ACCESS_REGISTER_FIELD
The data type ADI_DEV_ACCESS_REGISTER_FIELD is for accessing fields
within off-chip device registers. Table 10-17 describes the elements of this
data structure.

ADI_DEV_BUFFER
The union ADI_DEV_BUFFER describes a union of all the buffer types.
Table 10-18 describes the elements of this union.

Table 10-17. ADI_DEV_ACCESS_REGISTER_FIELD

Name Type Description

Address u16 Address of register to be accessed

Field u16 Register field to be accessed (see off-chip driver header file)

Data u16 Data to be written to, or read from the register field

Table 10-18. ADI_DEV_BUFFER

Name Type Description

OneD ADI_DEV_1D_BUFFER One-dimensional buffer

TwoD ADI_DEV_2D_BUFFER Two-dimensional buffer

Circular ADI_DEV_CIRCULAR_BUFFER Circular buffer

Seq1D ADI_DEV_SEQ_1D_BUFFER One-dimensional sequential buffer

BufferPair ADI_DEV_BUFFER_PAIR Buffer pair

Device Manager Public Data Types and Enumerations

10-80 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Physical Driver API Reference
This section describes the API used between the device manager and each
physical driver. The physical driver API is defined in the adi_dev.h file.

Notation Conventions
The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 10-81
Services Manual for Blackfin Processors

Device Driver Manager

adi_pdd_Close

Description

The adi_pdd_Close() function closes a device. Dataflow is stopped if it
has not already been stopped and the device is put back into an idle state.

Prototype

u32 adi_pdd_Close(

ADI_PDD_DEVICE_HANDLE PDDHandle

);

Arguments

Return Value

PDDHandle Handle used to identify the device

ADI_DEV_RESULT_SUCCESS Device closed successfully.

xxx Device-specific code

Device Manager Public Data Types and Enumerations

10-82 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pdd_Control

Description

The adi_pdd_Control() function sets or detects a configuration parameter
for a device.

Prototype

u32 adi_pdd_Control(

ADI_DEV_PDD_HANDLE PDDHandle,

u32 Command,

void *pArg

);

Arguments

Return Value

PDDHandle Handle used to identify the device

Command Command identifier

pArg Address of command-specific parameter

ADI_DEV_RESULT_SUCCESS Function completed successfully.

ADI_DEV_RESULT_NOT_SUPPORTED Command is not supported.

xxx Device-specific return code

VisualDSP++ 5.0 Device Drivers and System 10-83
Services Manual for Blackfin Processors

Device Driver Manager

adi_pdd_Open

Description

The adi_pdd_Open() function opens a physical device for use. Internal
data structures are initialized, preliminary device control is established,
and the device is reset and prepared for use.

Prototype

u32 adi_ppd_Open(

ADI_DEV_MANAGER_HANDLE ManagerHandle,

u32 DeviceNumber,

ADI_DEV_DEVICE_HANDLE DeviceHandle,

ADI_DEV_PDD_HANDLE *pPDDHandle,

ADI_DEV_DIRECTION Direction,

void *pEnterCriticalParam,

ADI_DMA_MANAGER_HANDLE DMAHandle,

ADI_DCB_HANDLE DCBHandle,

ADI_DCB_CALLBACK_FN DMCallback

);

Arguments

ManagerHandle Handle to the device manager that controls the physical
driver

DeviceNumber Number identifying which device is open. Device num-
bers begin with zero. For example, if there are four serial
ports, they are numbered 0 through 3.

DeviceHandle Device manager-supplied parameter that uniquely identi-
fies the device to the device manager

pPDDHandle Pointer to a location where the physical driver stores a
handle that uniquely identifies the device to the physical
driver

Device Manager Public Data Types and Enumerations

10-84 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

Direction Data direction for the device: inbound, outbound, or
bidirectional

pEnterCriticalParam Parameter that is passed to the function that protects crit-
ical areas of code.

DMAHandle Handle to the DMA manager service that is used for this
device (can be NULL if DMA is not used)

DCBHandle Handle to the deferred callback service that is used for
this device. If NULL, all callbacks are live and not
deferred.

DMCallback Address of the device manager’s callback function

ADI_DEV_RESULT_SUCCESS Device opened successfully.

ADI_DEV_RESULT_DEVICE_IN_USE Device manager handle does not point to a device man-
ager.

xxx Device-specific return code

VisualDSP++ 5.0 Device Drivers and System 10-85
Services Manual for Blackfin Processors

Device Driver Manager

adi_pdd_Read

Description

The adi_pdd_Read() function provides buffers to a device for reception of
inbound data. This function is never called for devices that are supported
by peripheral DMA.

Prototype

u32 adi_pdd_Read(

ADI_DEV_PDD_HANDLE PDDHandle,

ADI_DEV_BUFFER_TYPE BufferType,

ADI_DEV_BUFFER *pBuffer

);

Arguments

Return Value

PDDHandle Handle used to identify the device

BufferType Identifies type of buffer: one-dimensional, two-dimen-
sional or circular

pBuffer Address of the buffer or first buffer in a chain of buffers

ADI_DEV_RESULT_SUCCESS Function completed successfully.

ADI_DEV_RESULT_BAD_PDD_HANDLE PDD handle does not identify a valid device.

xxx Device-specific return code

Device Manager Public Data Types and Enumerations

10-86 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pdd_Write

Description

The adi_pdd_Write() function provides buffers to a device for transmis-
sion of outbound data. This function is never called for devices that are
supported by peripheral DMA.

Prototype

u32 adi_pdd_Write(

ADI_DEV_PDD_HANDLE PDDHandle,

ADI_DEV_BUFFER_TYPE BufferType,

ADI_DEV_BUFFER *pBuffer

);

Arguments

Return Value

PDDHandle Handle used to identify the device

BufferType Identifies type of buffer: one-dimensional, two-dimen-
sional, or circular

pBuffer Address of the buffer or first buffer in a chain of buffers

ADI_DEV_RESULT_SUCCESS Function completed successfully.

ADI_DEV_RESULT_BAD_PDD_HANDLE PDD handle does not identify a valid device.

xxx Device-specific return code

VisualDSP++ 5.0 Device Drivers and System 10-87
Services Manual for Blackfin Processors

Device Driver Manager

Examples
Examples showing how to use the device driver model as well as Analog
Devices device drivers are provided with the device driver and system
services distribution media.

For examples of applications using the device drivers, see the Black-
fin/EZ-Kits directory. Source code for all Analog Devices-provided
device drivers is located in the Blackfin/Lib/Src/Driver directory.

Examples

10-88 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 11-1
Services Manual for Blackfin Processors

11 REAL-TIME CLOCK SERVICE

This chapter describes how to use the real-time clock service within the
system services library to enable the features of the real-time clock on
Blackfin processors. The application programming interface (API)
described in this chapter allows real-time clock events to be scheduled and
serviced in a manner consistent with the other system services.

This chapter contains the following sections:

• “Introduction” on page 11-2

• “Operation” on page 11-2

• “Real-Time Clock Service API Data Types and Enumerations” on
page 11-30

• “Interdependencies” on page 11-33

Introduction

11-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The real-time clock service provides an easy-to-use interface to the
real-time clock that is available on most Blackfin processors. In addition
to the reading and writing of the date and time, the service allows an
application to coordinate eight different real-time clock events in a consis-
tent manner, regardless of the processor derivative. There are five periodic
events that can be enabled to occur each second, each minute, each hour,
each day at midnight, and each day at a specific time. There is an alarm
that occurs once at a specific date and time. There is a stopwatch event
that occurs when a given duration has elapsed. And there is an event
which signals the completion of all pending register writes.

The sections in this chapter cover the basic operation of the real-time
clock service, describing the application programming interface (API) and
providing the necessary instructions for initializing and using the real-time
clock service in a client application.

The debug version of the system services library provides parameter check-
ing for a more complete test of the API function parameters and other
error conditions. Analog Devices strongly recommends that development
work be done using the debug versions of the system services library, and
that final test and deployment be done with the release version of the
library.

Operation
This section describes the overall operation of the real-time clock service.
Details on the application programming interface (API) can be found later
in this chapter.

VisualDSP++ 5.0 Device Drivers and System 11-3
Services Manual for Blackfin Processors

Real-Time Clock Service

Initialization
Prior to using the real-time clock service, the application must initialize
the service by calling the initialization function, adi_rtc_Init(). Unlike
some system services which require the application to provide memory to
the service upon initialization, the real-time clock service requires no addi-
tional memory. The only parameter passed to adi_rtc_Init() is a critical
region parameter that may be used later if the interrupt manager is called
upon to protect critical regions of code. In the current implementation of
the system services, a NULL pointer is used for the critical region parame-
ter. For more information, refer to “Protecting Critical Code Regions” on
page 2-13.

Before initializing the real-time clock service, the application should ini-
tialize the interrupt manager by calling adi_int_Init(). If callbacks are to
be deferred, rather than “live”, then the deferred callback (DCB) manager
should also be initialized by calling adi_dcb_Init().

Some of the real-time clock hardware memory-mapped registers (MMR)
have certain limitations, in that they allow only one value to be written in
any given 1 Hz cycle. A value written to the MMR does not take effect
until the next 1 Hz tick, and any subsequent value written to the same reg-
ister within that time period is discarded. The real-time clock service
implements a register caching system that works around this issue, to
ensure that none of the intended functionality is lost. The application
should not attempt to access any of the memory-mapped registers directly,
but should depend solely upon the API functions provided by the service.

When the application calls adi_rtc_Init(), the register caches are
cleared. The prescaler bit is set so the real-time clock runs in 1 Hz mode,
like a regular clock. The callback environment is initialized and the event
flag register is cleared of any pending events. The real-time clock interrupt
handler is hooked into the IVG chain, and the real-time clock service is
ready to go. Real-time clock interrupts are initialized to also “wake up” the
processor. If this is not the desired behavior, the application may call the
API function adi_rtc_DisableWakeup().

Operation

11-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Termination
When the application no longer requires the real-time clock service, it
calls the termination function, adi_rtc_Terminate(). This function
removes any callbacks that were installed, cleaning up all statically-defined
data structures.

Setting and Reading the Date and Time
To set the date and time of the real-time clock, the real-time clock service
provides an API function called adi_rtc_SetDateTime(). To use this
function, the application declares a structure of type tm, which is a C-stan-
dard time structure defined in the system include file, time.h. The
application sets the fields of this structure with the month, day, year,
hour, minute, and second and passes a pointer to the structure to
adi_rtc_SetDateTime(). The function converts the data to 32-bit integer
format and loads it into the RTC_STAT register, where the real-time clock
hardware maintains the date and time. The RTC_STAT register is shown
below. Each field of the tm structure is represented by a range of bits
within the register.

The adi_rtc_SetDateTime() function only needs to be called once,
although it can be called multiple times. The date and time take effect on
the next 1 Hz tick and are maintained in one-second increments for as
long as the external battery power source is present. An application may
subsequently call upon the real-time clock service to obtain the current
date and time, or to install callbacks for the clock-driven events.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Day Counter (0–32767) Hour (cont’d)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Hour (0–23) Minutes (0–59) Seconds (0–59)

VisualDSP++ 5.0 Device Drivers and System 11-5
Services Manual for Blackfin Processors

Real-Time Clock Service

The real-time clock service provides an API function called
adi_rtc_GetDateTime() which allows the application to retrieve the date
and time from the memory-mapped RTC_STAT register. To use this func-
tion, the application declares a structure of type tm, which is a C-standard
time structure defined in the system include file, time.h. The application
passes a pointer to the tm structure. The function reads the date and time
from the RTC_STAT register and returns the information in the tm
structure.

The real-time clock service supports only the functionality of the hard-
ware. It does not make adjustments to the date and time for daylight
savings or time zones. The application can make these adjustments easily
since the date and time are stored in a tm structure for compatibility with
standard time functions found in the VisualDSP C/C++ Compiler
Run-Time Library.

Real-Time Clock Events
The real-time clock service provides a mechanism for allowing certain pre-
defined conditions, referred to as events, to be serviced at the interrupt
level during regular program execution. Each event is identified by a
unique Event ID that is defined in the include file, adi_rtc.h. The appli-
cation provides a callback function to handle an event. The real-time
clock service provides the mechanism for installing and removing call-
backs, and for invoking a callback when the appropriate conditions are
met. The real-time clock service supports eight different events. The
application enables an event by calling the adi_rtc_InstallCallback()
function, passing the appropriate Event ID.

One Second Periodic Event

The application may enable an interrupt to occur when the seconds
counter in the RTC_STAT register advances. This interrupting event
becomes enabled when the application calls the
adi_rtc_InstallCallback() function, passing the argument

Operation

11-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_RTC_EVENT_SECONDS. This event stays enabled and periodic interrupts
continue to occur every second, until the application disables the event, by
passing the argument ADI_RTC_EVENT_SECONDS to the
adi_rtc_RemoveCallback() function.

One Minute Periodic Event

The application may enable a periodic interrupt to occur when the min-
utes counter of the RTC_STAT register advances. This interrupting event
becomes enabled when the application calls the
adi_rtc_InstallCallback() function, passing the argument
ADI_RTC_EVENT_MINUTES. This event stays enabled and periodic interrupts
continue to occur every minute, until the application disables the event by
passing the argument ADI_RTC_EVENT_MINUTES to the
adi_rtc_RemoveCallback() function.

Hourly Periodic Event

The application may enable a periodic interrupt to occur when the hours
counter of the RTC_STAT register advances. This interrupting event
becomes enabled when the application calls the
adi_rtc_InstallCallback() function, passing the argument
ADI_RTC_EVENT_HOURS. This event stays enabled and periodic interrupts
continue to occur every hour until the application disables the event by
passing the argument ADI_RTC_EVENT_HOURS to the
adi_rtc_RemoveCallback() function.

Daily Periodic Event

The application may enable a periodic interrupt to occur at midnight
when the days counter of the RTC_STAT register advances. This interrupting
event becomes enabled when the application calls the
adi_rtc_InstallCallback() function, passing the argument
ADI_RTC_EVENT_DAYS. This event stays enabled and periodic interrupts
continue to occur each day until the application disables the event by

VisualDSP++ 5.0 Device Drivers and System 11-7
Services Manual for Blackfin Processors

Real-Time Clock Service

passing the argument ADI_RTC_EVENT_DAYS to the
adi_rtc_RemoveCallback() function.

Periodic or One-Shot Stopwatch Event

The application may set up a stopwatch event to interrupt when a specified
time duration has elapsed. The same stopwatch event can be either peri-
odic or one shot. The event becomes enabled when the application passes
the argument ADI_RTC_EVENT_STOPWATCH to the
adi_rtc_InstallCallback() function, also passing the number of seconds
of the stopwatch time duration. The stopwatch event occurs only once by
default, as a “one-shot” stopwatch event. The callback function may then
either disable the event by passing the argument
ADI_RTC_EVENT_STOPWATCH to the adi_rtc_RemoveCallback() function, or
it may re-enable the stopwatch event by calling the API function
adi_rtc_ResetStopwatch(). If re-enabled, the stopwatch becomes a peri-
odic event.

Once Only Alarm Event

The application may enable an alarm event that interrupts once on a given
day at a specific time. This interrupting event becomes enabled when the
application passes the argument ADI_RTC_EVENT_ONCE_ALM to the
adi_rtc_InstallCallback() function, also passing a tm structure contain-
ing the date and time of the alarm. After the alarm event occurs, the
callback may be removed by passing the argument
ADI_RTC_EVENT_ONCE_ALM to the adi_rtc_RemoveCallback() function.
Then, another such event can be scheduled by installing the callback
again. After this event has been scheduled, and before it occurs, it may be
canceled by removing the callback.

Each Day Alarm Event

The application may enable an alarm that interrupts at a specific time each
day as long as the alarm is enabled. This interrupting event becomes

Operation

11-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

enabled when the application passes the argument
ADI_RTC_EVENT_EACH_DAY_ALM to the adi_rtc_InstallCallback() func-
tion, also passing a tm structure containing the time of day that the alarm
should occur. The event stays enabled and the interrupt occurs each day at
the specified time, until the application disables the event by calling the
adi_rtc_RemoveCallback() function, passing the argument
ADI_RTC_EVENT_EACH_DAY_ALM.

Pending Writes Complete Event

All writes to the memory-mapped registers RTC_STAT, RTC_ALARM,
RTC_SWCNT, and RTC_ICTL are synchronized to the 1 Hz tick. The applica-
tion may want to be alerted when the pending writes have completed. The
application may enable an interrupt to occur when all pending writes to
these registers have completed. This event becomes enabled when the
application passes the argument ADI_RTC_EVENT_WRITES_COMPLETE to the
adi_rtc_InstallCallback() function. The event stays enabled until the
application disables the event by calling the adi_rtc_RemoveCallback()
function, passing the argument ADI_RTC_EVENT_WRITES_COMPLETE.

Callbacks
The application may enable and process any of the real-time clock events
by defining and installing a callback for that event. A callback is simply a
function, associated with a specific event, or a group of events, that is exe-
cuted whenever the associated event occurs. A separate callback function
may be written for each event, or a single callback function may handle all
the real-time clock events, perhaps within a case statement. Unless a call-
back is deferred, it is executed from within the interrupt service routine,
by the real-time clock interrupt handler. The handler, part of the real-time
clock service, is called from the interrupt manager whenever a real-time
clock interrupt is triggered by one of the eight possible real-time clock
events. The real-time clock service provides the function to install call-
backs, the function to remove callbacks, and the interrupt handler which

VisualDSP++ 5.0 Device Drivers and System 11-9
Services Manual for Blackfin Processors

Real-Time Clock Service

invokes the callbacks. The application provides the callback function,
which controls how each event is processed, and also an optional data
structure, comprised of event-specific information, that is passed to the
callback function from the real-time clock service interrupt handler. A
coding example appears later in this section which demonstrates how that
data structure can be used.

The Callback List

To process callbacks, the real-time clock maintains a table with an entry
for each of the eight events. Each entry contains a pointer to a callback
function, or to NULL if no callback has been installed. When the applica-
tion calls adi_rtc_InstallCallback passing an Event ID, the real-time
clock service inserts a pointer to the callback function into the entry for
the event. When the event occurs, the real-time clock interrupt handler
uses the entry to find and execute the callback function designated for this
event. When the application calls adi_rtc_RemoveCallback to disable an
event, the callback pointer is removed from the callback list entry for that
event.

Installing a Callback

To install callback functionality for one of the real-time clock events, the
application simply calls the API function adi_rtc_InstallCallback pass-
ing the Event ID. For some events, such as alarms and stopwatch events,
other information is passed to this function, such as the time that the
alarm should occur, or the duration of a stopwatch period. The
adi_rtc_InstallCallback function uses this information to configure the
hardware registers to generate the interrupt at the appropriate time. An
optional data structure called ClientHandle is also passed to the
adi_rtc_InstallCallback function, containing information to be stored
in the callback list and passed to the callback when it occurs.

Operation

11-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Removing a Callback

The application may disable the processing of an event by passing the
Event ID as a parameter to the function adi_rtc_RemoveCallback. This
function removes the callback from the callback list entry for the event,
and also configures the hardware so it no longer generates an interrupt for
the event.

The Real-Time Clock Service Interrupt Handler

The real-time clock service has an interrupt handler that is “hooked” into
the interrupt manager’s “chain” for the associated interrupt vector group
(IVG). Note the difference between the interrupt handler, which is
defined in the real-time clock service to process real-time clock events, and
the interrupt service routine (ISR), which is defined in the interrupt man-
ager to handle any interrupting event of a given IVG level. The interrupt
manager’s ISR executes the real-time clock interrupt handler when a
real-time clock interrupting event occurs. The real-time clock interrupt
handler reads the event flags in the RTC_ISTAT register to determine which
event triggered the interrupt. The handler then looks at the callback list
entry for the event (see “The Callback List ” on page 11-9). The entry will
point to the callback function (see “Callbacks” on page 11-8) and to the
ClientHandle parameter (see “Using the ClientHandle Parameter in a
Callback” below). The handler executes the callback, passing the Cli-
entHandle parameter. When the callback is complete, it returns to the
real-time clock interrupt handler, which returns control to the interrupt
manager.

Using the ClientHandle Parameter in a Callback

An optional data structure called ClientHandle is also passed as an argu-
ment to the adi_rtc_InstallCallback function. This user-defined
structure contains event-specific information to be stored in the callback
list entry. When the event occurs, the interrupt manager executes the
real-time clock service interrupt handler. The interrupt handler uses the

VisualDSP++ 5.0 Device Drivers and System 11-11
Services Manual for Blackfin Processors

Real-Time Clock Service

callback list to find the address of the callback and the ClientHandle
information that it must pass to the callback.

Coding Example
A PeriodicStopwatch example is installed with VisualDSP++ 5.0. This
example demonstrates the use of the functions adi_rtc_InstallCallback
and adi_rtc_RemoveCallback for setting up a stopwatch event and servic-
ing it within a callback. It demonstrates the use of the
adi_rtc_ResetStopwatch function to re-enable the stopwatch event, and
the use of the ClientHandle to creatively control event handling, so that a
periodic stopwatch event occurs repeatedly every five seconds for twenty
seconds, and then stops.

In the following code example, a data structure is defined, called
STOPWATCH_INFO, which has three fields of information that are passed to
the callback. The first field indicates that this event is periodic. The sec-
ond field indicates the number of seconds that the callback function uses
when it re-enables the stopwatch event, in this case, five. The third field
tells the callback how many times to re-enable the stopwatch event, in this
case, three. If this field is set to 0, the event recurs continuously. The
ClientHandle argument is used to pass this data structure to the
adi_rtc_InstallCallback function.

typedef struct
{

 u32 PeriodicFlag; /* whether the callback shall be periodic

or one-shot */

 u32 SecondsCounter; /* value to place in the stopwatch

count register when re-enabling the stopwatch */

 u32 NumRepetitions; /* how many times to re-enable the

stopwatch */

 u32 NumRepetitions; /* how many times to re-enable the

stopwatch */

} STOPWATCH_INFO;

Operation

11-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

In the example, a callback function is provided called RTCCallback which
handles all the real-time clock events. (Only the processing of the STOP-
WATCH event is shown here.) The callback function accepts three
arguments:

void *ClientHandle

u32 EventID

void *pArg

The ClientHandle contains the structure that was passed as a parameter to
the adi_rtc_InstallCallback function when the callback was installed.
The interrupt handler passes this argument to the callback function when
the interrupt occurs. The EventID specifies which of the eight possible
events generated the callback, in this case, the stopwatch event. The pArg
is a flexible argument, defined as type void* and reserved for the service to
pass any pertinent information the callback needs to process the event.
The callback performs a switch on the EventID and executes a case state-
ment that proceeds according to the EventID. For the stopwatch event, the
callback sees that the periodic flag is set, so it calls the
adi_rtc_ResetStopwatch function to re-enable the event, using the Num-
Seconds value to set the stopwatch counter.

Below is a code example from within the callback function where the stop-
watch event is processed.

static void RTCCallback (void *ClientHandle,

u32 Event,

void *pArg)

{

STOPWATCH_INFO CountdownStruct =

(STOPWATCH_INFO)ClientHandle ;

VisualDSP++ 5.0 Device Drivers and System 11-13
Services Manual for Blackfin Processors

Real-Time Clock Service

switch ((u32)Event)

{

/* stopwatch countdown timeout event */

case ADI_RTC_EVENT_STOPWATCH:

{

/* increment the stopwatch event counter */

SWEventCounter++;

/* use the fields of the data structure

to see whether we are done */

/* if it's a one-shot ...*/

if ((CountdownStruct.PeriodicFlag == 0)

/* or if it's periodic... */

|| ((CountdownStruct.PeriodicFlag == 1)

/* … but the stopwatch event counter reached

 the number of repetitions */

&& (SWEventCounter == CountdownStruct.NumRepetitions)

/* If NumRepetitions were 0, we would repeat forever.

If the counter wrapped to zero, we would not stop */

&& (CountdownStruct.NumRepetitions != 0)))

{

adi_rtc_RemoveCallback(ADI_RTC_EVENT_STOPWATCH);

StopwatchCompleteFlag = 1;

SWEventCounter = 0;

}

else

Operation

11-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

{

/* the else condition means it is periodic, and either the

repetitions are unlimited or the count has not yet

reached number of repetitions, so we re-enable the event */

adi_rtc_ResetStopwatch(CountdownStruct.SecondsCounter);

}

/* done */

break;

}

In the main function of the example, a callback is installed for the stop-
watch event. It takes a total of 20 seconds for the event to complete. The
pertinent sections of the function are shown here.

main()

{

int NumSeconds;

int* pNumSeconds;

/* to pass information when installing stopwatch callback */

STOPWATCH_INFO StopwatchCallbackInfo;

/* and a pointer to it */

STOPWATCH_INFO* pStopwatchCallbackInfo;

/* the example initializes system services including the real

time clock service*/

Result = adi_ssl_Init();

/* zero this flag */

StopwatchCompleteFlag = 0;

/* initialize the static stopwatch event counter */

SWEventCounter = 0;

VisualDSP++ 5.0 Device Drivers and System 11-15
Services Manual for Blackfin Processors

Real-Time Clock Service

/* When re-enabled, the stopwatch will be set for 5 seconds*/

StopwatchCallbackInfo.SecondsCounter = 5;

/* stopwatch will happen periodically */

StopwatchCallbackInfo.PeriodicFlag = 1;

/* stopwatch will be re-enabled three times */

StopwatchCallbackInfo.NumRepetitions = 3;

/* point to the structure which contains the information for

 the callback */

pStopwatchCallbackInfo = &StopwatchCallbackInfo;

/* the first stopwatch timeout happens to be the same as the

reset stopwatch value, 5 seconds */

NumSeconds = StopwatchCallbackInfo.SecondsCounter;

/* install the stopwatch callback */

adi_rtc_InstallCallback(ADI_RTC_EVENT_STOPWATCH,

(void*)pStopwatchCallbackInfo, NULL, RTCCallback,

(void*)NumSeconds);

/* wait for the stopwatch event to occur. After 5 seconds it

will repeat three times. */

while(StopwatchCompleteFlag == 0);

/* arrive here after 20 seconds */

}

Operation

11-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

RTC Service Application Programming
Interface (API)

This section provides the details of the data structures and functions
within the RTC service application program interface (API).

Notation and Naming Conventions
To safeguard against conflicts with other software libraries provided by
Analog Devices (or other sources), the real-time clock service uses an
unambiguous naming convention in which enumeration values and type-
def statements use the ADI_RTC_ prefix. Functions and global variables
use the lowercase adi_rtc_ equivalent.

Each function within the real-time clock service API returns an error code
of the type ADI_RTC_RESULT. Like other system services, a return value of
zero (0=ADI_RTC_RESULT_SUCCESS) indicates that no error occurred during
the function call. Any nonzero value indicates the specific type of error
that occurred. The error codes for the real-time clock service, unique from
those of other system services, are defined in the adi_rtc.h include file, so
the cause of the error can be determined from looking up the error code in
that file.

The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 11-17
Services Manual for Blackfin Processors

Real-Time Clock Service

RTC Service API Functions
This section describes the RTC functions that are available to the applica-
tion. These functions read and write to the hardware registers so the
application does not have to study the details of each register. Below is a
list of the functions in the RTC API.

• “adi_rtc_Init” on page 11-18

• “adi_rtc_Terminate” on page 11-19

• “adi_rtc_SetDateTime” on page 11-20

• “adi_rtc_GetDateTime” on page 11-21

• “adi_rtc_InstallCallback” on page 11-22

• “adi_rtc_RemoveCallback” on page 11-24

• “adi_rtc_SetEpoch” on page 11-25

• “adi_rtc_GetEpoch” on page 11-26

• “adi_rtc_EnableWakeup” on page 11-27

• “adi_rtc_DisableWakeup” on page 11-28

• “adi_rtc_ResetStopwatch” on page 11-29

Each API function returns a value of type ADI_RTC_RESULT which indicates
the success or failure of the function call. The result codes are defined in
Table 11-5 on page 11-32. This table describes the structures and data
types in the API.

Operation

11-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_rtc_Init

Description

The adi_rtc_Init() function initializes the real-time clock service as
described in “Initialization” on page 11-3.

Prototype

ADI_RTC_RESULT adi_rtc_Init(

void *pCriticalRegionArg

);

Arguments

The function accepts one argument of type void*, which is the critical
region parameter.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 11-19
Services Manual for Blackfin Processors

Real-Time Clock Service

adi_rtc_Terminate

Description

The adi_rtc_Terminate() function terminates the real-time clock service
as described in “Termination” on page 11-4.

Prototype
ADI_RTC_RESULT adi_rtc_Terminate(void);

Arguments

The function takes no arguments.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

Operation

11-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_rtc_SetDateTime

Description

The adi_rtc_SetDateTime() function is called to program the date and
time into the RTC_STAT register. The new date and time take effect when
the write completes, on the next 1 Hz tick.

Prototype

ADI_RTC_RESULT adi_rtc_SetDateTime(

struct tm *pDateTime

);

Arguments

The function accepts one argument, a pointer to the tm structure that is
defined in the time.h file.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 11-21
Services Manual for Blackfin Processors

Real-Time Clock Service

adi_rtc_GetDateTime

Description

The adi_rtc_GetDateTime() function is called to read the date and time
from the RTC_STAT register.

Prototype

ADI_RTC_RESULT adi_rtc_GetDateTime(

struct tm *pDateTime

);

Arguments

The function takes one argument, a pointer to a tm structure.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

Operation

11-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_rtc_InstallCallback

Description

The adi_rtc_InstallCallback() function installs a callback for a
real-time clock event.

Prototype

ADI_RTC_RESULT adi_rtc_InstallCallback(

 ADI_RTC_EVENT_ID EventID,

 void *ClientHandle,

 ADI_DCB_HANDLE DCBHandle,

 ADI_DCB_CALLBACK_FN ClientCallback,

 void *Value

);

Arguments

The caller provides five parameters to the function, shown in Table 11-1.

Table 11-1. Parmeters for the InstallCallback Function

Data Type Name Description

ADI_RTC_EVENT_ID EventID Enumerator value that uniquely identifies the
event for which the callback is being installed

void ClientHandle Identifier defined and supplied by the applica-
tion. This value is passed to the callback func-
tion.

ADI_DCB_HANDLE DCBHandle The handle returned from the DCB service if
callbacks are deferred. NULL when callbacks
are “live”.

VisualDSP++ 5.0 Device Drivers and System 11-23
Services Manual for Blackfin Processors

Real-Time Clock Service

Return Value

ADI_DCB_CALLBACK_FN ClientCallback Name of client callback function

void Value RTC service uses this info to install alarm call-
backs or stopwatch callbacks. It specifies num-
ber of seconds or date/time. For other
callbacks, it is not used.

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

Table 11-1. Parmeters for the InstallCallback Function (Cont’d)

Data Type Name Description

Operation

11-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_rtc_RemoveCallback

Description

The adi_rtc_RemoveCallback() function removes the callback functional-
ity for the specified event. It writes to the RTC_ICTL register to disable the
event.

 Calling adi_rtc_RemoveCallback from within a callback routine is
not supported and will result in undefined behavior.

Prototype

ADI_RTC_RESULT adi_rtc_RemoveCallback(

ADI_RTC_EVENT_ID EventID

);

Arguments

The function takes one parameter, the EventID, that specifies which of the
eight possible events will have its callback removed. Refer to Table 11-1
on page 11-22 which shows the possible Event ID and its meaning.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 11-25
Services Manual for Blackfin Processors

Real-Time Clock Service

adi_rtc_SetEpoch

Description

The adi_rtc_SetEpoch() function sets the epoch time.

Prototype

ADI_RTC_RESULT adi_rtc_SetEpoch(

ADI_RTC_EPOCH *pEpoch

);

Arguments

The function takes one parameter, a pointer to an epoch time struct
which specifies the new epoch time to use. Refer to Table 11-3 on
page 11-31 which shows the fields of the epoch time structure and their
meanings.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Operation

11-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_rtc_GetEpoch

Description

The adi_rtc_GetEpoch() function returns the epoch time in the structure
provided.

Prototype

ADI_RTC_RESULT adi_rtc_GetEpoch(

ADI_RTC_EPOCH *pEpoch

);

Arguments

The function takes one parameter, a pointer to an epoch time struct.
Refer to Table 11-3 on page 11-31 which shows the fields of the epoch
time structure and their meanings.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

VisualDSP++ 5.0 Device Drivers and System 11-27
Services Manual for Blackfin Processors

Real-Time Clock Service

adi_rtc_EnableWakeup

Description

The adi_rtc_EnableWakeup() function calls on the interrupt manager to
enable the RTC bit in the system interrupt controller’s wakeup register.
Subsequently, all enabled RTC interrupting events generate a wake up to
the processor.

Prototype
ADI_RTC_RESULT adi_rtc_EnableWakeup(void);

Arguments

The function accepts no arguments. It calls the adi_int_SICWakeup func-
tion in the interrupt manager service, passing a TRUE flag.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

Operation

11-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_rtc_DisableWakeup

Description

The adi_rtc_DisableWakeup() function calls on the interrupt manager to
disable the RTC bit in the system interrupt controller’s wakeup register.
Subsequently, none of the interrupting events wake up the processor.

Prototype
ADI_RTC_RESULT adi_rtc_DisableWakeup(void);

Arguments

The function accepts no arguments (void). It calls the adi_int_SICWakeup
function in the interrupt manager service, passing a FALSE flag.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 11-29
Services Manual for Blackfin Processors

Real-Time Clock Service

adi_rtc_ResetStopwatch

Description

The adi_rtc_ResetStopwatch() function is used to re-enable a stopwatch
event without reinstalling the stopwatch callback function. It can be called
from inside or outside the callback, but it cannot be called unless a call-
back has been installed. The stopwatch event is a “one-shot” event but it
may be used as a periodic event by calling this function after the stop-
watch event has occurred once and the callback has executed (or is
executing). This function sets the RTC_SWCNT register with the NumSeconds
value and re-enables the event by writing to the RTC_ICTL register.

Prototype

ADI_RTC_RESULT adi_rtc_ResetStopwatch(

u32

);

Arguments

A single value is passed to the function which indicates the number of sec-
onds in the next duration of the stopwatch period.

Return Value

ADI_RTC_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 11-5 on page 11-32 for a list of return codes.

Real-Time Clock Service API Data Types and Enumerations

11-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Real-Time Clock Service API Data Types
and Enumerations

This section describes the data structures for reading and writing the date
and time to the RTC_STAT register, which maintains the current date and
time. It also describes the asynchronous event types and the result codes
that can be returned from an RTC function.

 tm structure
A C-standard time structure is provided in the VisualDSP++ 5.0 system
include file, time.h. This structure contains fields for the second, minute,
hour, day, month, year, plus three additional fields which are not cur-
rently used by this RTC service (Table 11-2).

 When using adi_rtc_SetDateTime() and adi_rtc_GetDateTime(),
an epoch date of the first of January 1970 is used. Although this is
the earliest date that can be stored using these functions, the year
should still be entered using the C standard epoch date of 1900.

Table 11-2. Fields of the tm Structure

Field Type and Name Field Description

int tm_sec Seconds after the minute

int tm_min Minutes after the hour

int tm_hour Hour of the day, [0,23]

int tm_mday Day of the month, [1,31]

int tm_mon Months since Jan

int tm_year Years since 1900

int tm_wday Days since Sun, [0,6]

int tm_yday Days since Jan 1 [0,365]

int tm_isdst Daylight savings flag

VisualDSP++ 5.0 Device Drivers and System 11-31
Services Manual for Blackfin Processors

Real-Time Clock Service

For example, the lowest number you can enter for this field is 70.
This is because the year, month, and day fields are stored as a
15-bit day count in the RTC_STAT register which limits the length of
time to 32,768 days (around 89 ½ years).

As with the standard tm structure, the tm_isdst field is not used.
The adi_rtc_GetDateTime() function will always return 0 for this
field.

This structure is used for compatibility with the asctime, gmtime, mktime,
and ctime functions described in more detail in the C Run-Time Library
reference section of the VisualDSP++ 5.0 C/C++ Compiler and Library
Manual for Blackfin Processors.

 ADI_RTC_EPOCH
This structure contains fields for the year, month, and day. It is used to
optionally modify the epoch time, which defaults to January 1, 1970
(Table 11-3).

Table 11-3. ADI_RTC_EPOCH

Field Name Field Type Field Description

year u32 Epoch year – [0,*]

month u32 Epoch month of the year – [1,12]

day u32 Epoch day of the month – [1,31]

Real-Time Clock Service API Data Types and Enumerations

11-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Event IDs
There are eight possible asynchronous events that are defined by the Event
ID (Table 11-4).

Result Codes
Each of the RTCS API functions returns a result code that can be trans-
lated by looking into the RTC service API header file, adi_rtc.h. The
result codes are summarized in Table 11-5.

Table 11-4. Event ID and Description

Event Name Event Description

ADI_RTC_EVENT_SECONDS (0xA0001) one second periodic interrupt

ADI_RTC_EVENT_MINUTES (0xA0002) one minute periodic interrupt

ADI_RTC_EVENT_HOURS (0xA0003) hourly periodic interrupt

ADI_RTC_EVENT_DAYS (0xA0004) daily periodic interrupt

ADI_RTC_EVENT_STOPWATCH (0xA0005) stopwatch countdown event

ADI_RTC_EVENT_EACH_DAY_ALM (0xA0006) time of day, daily alarm

ADI_RTC_EVENT_ONCE_ALM (0xA0007) day and time once only alarm

ADI_RTC_EVENT_WRITES_COMPLETE (0xA0008) pending register writes complete

Table 11-5. RTCS Return Values

Result Code Name Result Code Description

ADI_RTC_RESULT_SUCCESS Generic success = 0

ADI_RTC_RESULT_FAILED Generic failure = 1

ADI_RTC_RESULT_START (0xA0000) base of event code values

ADI_RTC_ENUMERATION_START (0xA0000) base of event code values

ADI_RTC_RESULT_INVALID_EVENT_ID (0xA0001) invalid Event ID

VisualDSP++ 5.0 Device Drivers and System 11-33
Services Manual for Blackfin Processors

Real-Time Clock Service

Interdependencies
This section describes interdependencies between the real-time clock ser-
vice and other system services.

Interrupt Manager Service
Since the real-time clock service relies on callbacks to process the events,
the application must initialize the interrupt manager service before initial-
izing the real-time clock service. During the adi_rtc_Init() function, the
interrupt manager is called upon to “hook” the real-time clock interrupt
handler which executes the callback function. During the
adi_rtc_Terminate() function, the interrupt manager is called upon to
“unhook” the real-time clock interrupt handler.

ADI_RTC_RESULT_INTERRUPT_MANAGER_ERROR (0xA0002) error from interrupt manager

ADI_RTC_RESULT_ERROR_REMOVING_CALLBACK (0xA0003) no callback installed for given ID

ADI_RTC_RESULT_CALL_IGNORED (0xA0004) function not executed

ADI_RTC_RESULT_NOT_INITIALIZED (0xA0005) RTC service was not initialized

ADI_RTC_RESULT_CALLBACK_NOT_INSTALLED (0xA0006) callback was never installed

ADI_RTC_RESULT_DATETIME_OUT_OF_RANGE (0xA0007) tm struct seconds field out of
range

ADI_RTC_RESULT_SERVICE_NOT_SUPPORTED (0xA0008) no RTC service for this processor

ADI_RTC_RESULT_ALREADY_INITIALIZED (0xA0009) service was already initialized

ADI_RTC_RESULT_CALLBACK_ALREADY_INSTALLED (0xA000A) cannot install same callback twice

ADI_RTC_RESULT_CALLBACK_CONFLICT (0xA000B) cannot install both alarm callbacks
simultaneously

Table 11-5. RTCS Return Values (Cont’d)

Result Code Name Result Code Description

Interdependencies

11-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The application may choose to have real-time clock interrupts generate a
wakeup signal to the processor. The real-time clock service provides an
API function called adi_rtc_DisableWakeup(), which calls the interrupt
manager function adi_int_SICWakeup(), passing the peripheral ID for the
real-time clock, and a FALSE flag. The real-time clock service provides an
API function called adi_rtc_EnableWakeup(), which calls the interrupt
manager function adi_int_SICWakeup(), passing the peripheral ID for the
real-time clock, and a TRUE flag, so that all real-time clock interrupting
events generate a wakeup signal to the processor.

Deferred Callback Service
Callbacks may be deferred, which means that the execution of the callback
is postponed to allow a higher priority thread to execute first. In this case,
the callback is not executed by the interrupt handler within the interrupt
service routine. Instead, the interrupt handler calls adi_dcb_Post() to
notify the deferred callback (DCB) manager that the event has occurred.
Please refer to Chapter 5, “Deferred Callback Manager” for details on how
the DCB manager processes callbacks.

VisualDSP++ 5.0 Device Drivers and System 12-1
Services Manual for Blackfin Processors

12 FILE SYSTEM SERVICE

This chapter describes the file system service (FSS). The FSS provides
access to mass storage media from the Blackfin processor.

This chapter contains:

• “Introduction” on page 12-2

• “Getting Started” on page 12-3

• “System Service Requirements” on page 12-7

• “Advanced Configuration” on page 12-11

• “File System Service API Reference” on page 12-17

• “File System Service API Data Types and Enumerations” on
page 12-52

• “The Standard C I/O Interface Functions” on page 12-56

• “Additional POSIX Functions Supported by the FSS” on
page 12-70

• “Extensibility” on page 12-82

• “Examples” on page 12-82

Introduction

12-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The file system service (FSS) provides a portable and extensible means of
accessing embedded mass storage media from the Blackfin processor. It is
designed in such a way that support for file systems such as the FAT file
system (typically found on removable media such as SD cards and USB
flash drive memory sticks) and physical interfaces (such as the
ATA/ATAPI interface on the ADSP-BF54x family of processors) can be
added to an application with minimal effort. Support for the
ADSP-BF548 EZ-KIT Lite development board is provided with Visu-
alDSP++ 5.0 for FAT file systems on the ATA and the secure digital host
interfaces for access to the attached hard disk drive and the supplied SD
Card and USB flash memory drive.

An application interfaces with these drivers using a framework and API
known as the file system service (FSS). Once initialized, the application
can make direct calls to the FSS API functions (“File System Service API
Reference” on page 12-17), or if registered, using the extensible standard
C I/O interface provided with the I/O library of VisualDSP++ 5.0. Once
registered with the I/O library, calls to fopen(), fread(), and so on are
routed to the FSS to provide seamless access to files on the mass storage
media. In this way, applications using the standard C I/O interface can be
readily ported to use the file system service. In addition to these functions,
support is provided for certain POSIX functions such as opendir(),
rename(), remove(), and so on. The functions available are outlined in
“Additional POSIX Functions Supported by the FSS” on page 12-70.

While the FSS API provides support for extending the declaration of file
and directory names to use the Unicode UTF-8 (16-bit) specification, the
current implementation of the FSS caters only for ASCII file names
(8-bit).

Access to each mass storage media type in an application is provided by
registering a device driver, termed a physical interface driver (PID), with
the FSS. Each media is formatted for a particular file system (for example,

VisualDSP++ 5.0 Device Drivers and System 12-3
Services Manual for Blackfin Processors

File System Service

the Microsoft® FAT file system) and the interpretation of these file sys-
tems is provided by the registration of another type of device driver
termed a file system driver (FSD).

Users who wish to provide additional or replacement FSDs and PIDs for
either file system or physical interface support can do so simply by follow-
ing a set of design rules for the appropriate class of device driver and
registering that driver with the FSS upon application initialization. Please
refer to “Extensibility” on page 12-82 for further details.

The file system service is designed to function in both standalone and
RTOS environments. To this end, several examples are available with
VisualDSP++ 5.0 to demonstrate the configuration and use of the FSS.
One particular example, the shell browser example, is a multi-threaded,
VDK-based application that presents a simple, command-line interface to
the file system service on a terminal emulator connected to the UART
interface of the ADSP-BF548 EZ-KIT Lite. Details of these examples are
provided in “Examples” on page 12-82.

Getting Started
The basics for initializing and using the file system service within an appli-
cation are outlined in this section. It is assumed that the system services
and device manager have already been initialized. The dependencies on
the system services resources are detailed in “System Service Require-
ments” on page 12-7.

This section describes the overall operation of the file system service. A
more complete description of the application programming interface
(API) can be found later in this chapter.

Getting Started

12-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Initialization
The file system service is built on the system services’ device driver model
and as such requires the use of both the device manager and the system
services. It is necessary, therefore, to configure the application for the use
of the system services and device manager before initializing the file
system service. The application developer should refer to the appropriate
documentation for each of the required file system drivers and physical
interface drivers in order to determine which resources are required.

The file system service is configured for use by registering the required file
system drivers and physical interface drivers, along with the device man-
ager and DMA manager handles, and the handle of a deferred callback
queue. This is achieved by passing a command-value pair table to the adi_
fss_Init() API function. The simplest table is:

ADI_FSS_CMD_VALUE_PAIR adi_fss_Config[] = {

/* Register the ATA/ATAPI interface driver */

{ ADI_FSS_CMD_ADD_DRIVER, (void*)&ADI_ATAPI_Def },

/* Register the FAT File System driver */

{ ADI_FSS_CMD_ADD_DRIVER, (void*)&ADI_FAT_Def },

/* Assign the DMA Manager Handle */

{ ADI_FSS_CMD_SET_DMA_MGR_HANDLE, (void*)adi_dma_ManagerHandle

},

/* Assign the Device Manager Handle */

{ ADI_FSS_CMD_SET_DEV_MGR_HANDLE, (void*)adi_dev_ManagerHandle

},

/* Assign the DCB Queue Handle */

{ ADI_FSS_CMD_SET_DCB_MGR_HANDLE, (void*)adi_dcb_QueueHandle },

VisualDSP++ 5.0 Device Drivers and System 12-5
Services Manual for Blackfin Processors

File System Service

/* Command Table Terminator */

{ ADI_FSS_CMD_END, (void*)NULL }

};

The address of this command-value pair table is simply passed to the adi_
fss_Init() API function as follows:

Result = adi_fss_Init(adi_fss_Config);

The above command-value pair table configures the FSS to access a hard
drive attached to the ATA/ATAPI interface of the ADSP-BF54x proces-
sor. The definition structures ADI_ATAPI_Def and ADI_FAT_Def can either
be defined in the application itself, or taken from the device driver header
files. To do the latter, a macro must be defined ahead of the #include
statement. The following is the quickest way to get up and running with
the above command-value pair table:

/* FAT12/16/32 FSD driver */

#define _ADI_FAT_DEFAULT_DEF_

#include <drivers/fsd/fat/adi_fat.h>

/* ATAPI interface */

#define _ADI_ATAPI_DEFAULT_DEF_

#include <drivers/pid/atapi/adi_atapi.h>

To register an additional driver with the FSS, simply add the appropriate
header to the file containing the above code, choose to use the default def-
inition or supply your own, and add the following command-value pair to
the FSS configuration table:

 { ADI_FSS_CMD_ADD_DRIVER,(void*)&<Device-Def-Structure> },

Please note that if the application makes simultaneous use of two or more
types of media that require the use of the same file system driver, then
only one ADI_FSS_CMD_ADD_DRIVER entry is required in the FSS configura-
tion table for the appropriate FSD. (For example, the ADSP-BF548
EZ-KIT Lite supports access to the hard disk, an SD Card, and a USB

Getting Started

12-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

flash memory drive, all of which can make use of the FAT file system
driver.)

The complete set of commands that can be used in the initialization of the
file system service is found in the description of “adi_fss_Init” on
page 12-19.

The file system service is now ready for use through its direct API. How-
ever, for greater portability of applications and libraries, the FSS is best
used indirectly through the standard C I/O interface. VisualDSP++ 5.0
provides the ability to extend the file I/O support beyond the host PC
access (PRIMIO) that is the default. This is achieved quite simply by
including the supplied FSS header file:

#include <services/fss/adi_fss.h>

and registering the required entry point structure (of type DevEntry) with
the I/O library:

add_devtab_entry(&adi_fss_entry);

The definition of the DevEntry structure can be found in Chapter 3 of the
VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin Proces-
sors. The declaration of adi_fss_entry can be found in the file adi_fss_
deventry.c in the Blackfin\lib\src\services\fss folder of the Visu-
alDSP++ 5.0 installation.

Termination
When the application no longer requires the file system service, a call to
the termination function, adi_fss_Terminate() can be made. This func-
tion unmounts all mounted file systems, closes all PIDs and FSDs, and
frees all dynamically-allocated memory.

VisualDSP++ 5.0 Device Drivers and System 12-7
Services Manual for Blackfin Processors

File System Service

System Service Requirements
It was stated in “Getting Started” on page 12-3 that the file system service
is dependent on the appropriate configuration of the system services and
device manager. The recommended way to get started is to make a copy of
the adi_ssl_init.c and adi_ssl_init.h files found in the FSS example
folders and use them as a basis for your own applications. For example, see
the sample files in:

Blackfin\Examples\ADSP-BF548 EZ-KIT Lite\Services\File

System\HardDisk\HardDiskAccess

The adi_ssl_init.c file provides the basic sequence of initialization calls
to each of the system services and the device manager, supplying each ser-
vice with the memory they require. The adi_ssl_init.h file contains the
definitions for the constants relevant to the implementation of the FSS
and is the only file of the two that requires modification. In this file, the
following macros are defined to reflect the requirements of the
application:

#define ADI_SSL_INT_NUM_SECONDARY_HANDLERS (2)

#define ADI_SSL_DCB_NUM_SERVERS (1)

#define ADI_SSL_DMA_NUM_CHANNELS (2)

#define ADI_SSL_FLAG_NUM_CALLBACKS (0)

#define ADI_SSL_SEM_NUM_SEMAPHORES (10)

#define ADI_SSL_DEV_NUM_DEVICES (2)

The values to use depends not only on the FSS configuration, that is,
which file system and physical interface drivers are registered, but also on
which other device drivers and services are used in the application, for
example the LCD display driver, an audio codec driver, and so on.

The following sections address each of these quantities in turn, but only
with respect to the file system service configuration.

System Service Requirements

12-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interrupt Manager Service
The interrupt manager is one of the core system services’ modules that
underpins the implementation of the device drivers of which the physical
interface drivers (PID) are no exception. Each PID has a number of
peripheral interrupts associated with it. For example, the ATAPI driver
has three DMA interrupts and one device interrupt. Depending on
whether you choose to use the default IVG levels for the appropriate inter-
rupts or assign custom levels determines how many secondary interrupts
are required in the application. All device drivers hook interrupt handlers
to the IVG level as identified in the SIC_IARx registers. You may find it
useful to explicitly set the required priorities with a series of calls to the
adi_int_SICSetIVG() API function for all peripherals in your application.
For example, to set the ATAPI priorities you would do the following:

adi_int_SICSetIVG(ADI_INT_DMA10_ATAPI_RX, 10);

adi_int_SICSetIVG(ADI_INT_DMA11_ATAPI_TX, 11);

adi_int_SICSetIVG(ADI_INT_ATAPI_ERROR, 7);

adi_int_SICSetIVG(ADI_INT_DMA_ERROR, 7);

In this way, you are able to see at a glance which IVG levels are used by
multiple peripherals. You can then determine the number of secondary
handlers (ADI_SSL_INT_NUM_SECONDARY_HANDLERS) to use.

Please refer to the device driver documentation for each PID required by
your application for details of the appropriate interrupt requirements.
These documents are found under the Blackfin\Docs\drivers\pid folder
in the VisualDSP++ 5.0 installation.

Deferred Callback Service
The file system service is best operated using deferred callbacks. For oper-
ation within VDK it is essential that the callbacks are deferred. While
multiple callback servers can be used in an application, it is recommended
that just one server is used and is configured to operate at IVG level 14. In

VisualDSP++ 5.0 Device Drivers and System 12-9
Services Manual for Blackfin Processors

File System Service

fact, for use within the VDK environment, only one server is allowed and
this server makes use of the Deferred Procedure Queue in VDK that is exe-
cuted at Kernel level (IVG 14).

Therefore, it is recommended that you set the value of the ADI_SSL_DCB_
NUM_SERVERS macro to 1.

In addition to the code in the adi_ssl_init.c file, the following is
required to open a queue server:

adi_dcb_Open(14, DCBMgrQueue1, SIZE_DCB_QUEUE, &ResponseCount,

&adi_dcb_QueueHandle);

where DCBMgrQueue1 is the address of a block of memory of size at least
SIZE_DCB_QUEUE. This code is extracted from the InitServices.c file in
the HardDiskAccess example. The size of the queue depends on your
requirements but a good starting point is to use four entries in the queue:
#define SIZE_DCB_QUEUE ((ADI_DCB_ENTRY_SIZE)*4)

DMA Service
The DMA manager is used by the file system service to transfer data
between the application and the physical media, where appropriate, as
determined by the nature of each PID in the application. The use of DMA
and the channels affected are detailed in the appropriate PID device driver
documents. The value given to the ADI_SSL_DMA_NUM_CHANNELS must be
incremented by the number of DMA channels required by each PID.

The DMA requirements for each physical device driver are detailed in the
documentation for that appropriate driver. For example, the ATAPI driver
requires the DMA manager to be initialized for two DMA channels; the
SD PID, one channel; and the USB host driver, no DMA channels.

System Service Requirements

12-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Semaphore Service
The file system service requires a number of semaphores for its operation.
The semaphores are used to maintain atomic access to file system and
physical interface drivers and for notification of completion of data trans-
fers. For each instance of an FSD or PID, at least two semaphores are
required. (See the appropriate drive documentation for precise details.)
Please note that if the application makes simultaneous use of two or more
types of media that require the use of the same file system driver, then two
semaphores are required for each instantiation of the appropriate FSD
driver.

The number of semaphores required also varies in proportion to the num-
ber of files that are opened at one time, as the use of the file cache requires
one semaphore per open file.

The value given to the ADI_SSL_SEM_NUM_SEMAPHORES must be incremented
by the number of semaphores required for the required FSS configuration.

When the FSS is used in the VDK environment, this value is actually
ignored by the semaphore service; however, you need to assign the appro-
priate number to the maximum active semaphores value in the kernel tab
of your application project.

Real-Time Clock Service
The dependency on the real-time clock (RTC) service applies only if a file
system driver, included in an application, makes use of the RTC to supply
time and date details to be entered in the directory entries of new and
modified files. This is the case with the FAT file system driver supplied
with VisualDSP++5.0.

Initialization of the real-time clock service and how to set the current date
and time are detailed in Chapter 11, “Real-Time Clock Service”.

VisualDSP++ 5.0 Device Drivers and System 12-11
Services Manual for Blackfin Processors

File System Service

Device Manager
Each PID and FSD registered by the application represents at least one
device driver in the application; some PIDs such as the USB mass storage
class driver may require two or more. Additionally, multiple instances of
an FSD represent separate device drivers.

The value given to the ADI_SSL_DEV_NUM_DEVICES must be incremented by
the number of PID and FSD instances appropriate for the required FSS
configuration. For more details, see the appropriate device driver docu-
mentation in the folders, Blackfin\Docs\drivers\fsd and
Blackfin\Docs\drivers\pid.

Advanced Configuration
This section describes how to go beyond the basics and tailor the initial-
ization of the file system service to suit your requirements.

Custom Configuration of Device Drivers
In “Getting Started” on page 12-3, the FSD and PID definition structures
used were those found in the appropriate header files for the drivers. How-
ever, there will be occasions when your application requires a customized
definition, such as when additional commands need to be added to the
driver’s configuration table.

The device definition structures are of type ADI_FSS_DEVICE_DEF which is
described in “File System Service API Data Types and Enumerations” on
page 12-52. This structure is defined in the FSS header file, <ser-
vices/fss/adi_fss.h>.

The command table is an array of command-value pairs (type ADI_DEV_
CMD_VALUE_PAIR) that are usual for device drivers that conform to the sys-
tem services’ device driver model.

Advanced Configuration

12-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Valid commands for the driver configuration table are presented in the
individual driver documents, found in the VisualDSP++ 5.0 installation in
the appropriate sub-folder under Blackfin\Docs\drivers\fsd or
Blackfin\Docs\drivers\pid. An example would be to assign a heap index
for the allocation of DMA buffers (see “Dynamic Memory Usage” on
page 12-13):

ADI_DEV_CMD_VALUE_PAIR ADI_FAT_ConfigTable [] = {

 { ADI_FSS_CMD_SET_CACHE_HEAP_ID, (void*)2 },

 { ADI_DEV_CMD_END, NULL },

};

In addition to being able to customize the definition of a PID, it is possi-
ble to register a PID that has already been opened and configured. This
facility is primarily provided to enable the swapping of mass storage media
between the FSS and other elements of an application. For example
embedded NAND flash, hard disk, or SD card could be swapped between
the FSS and the USB mass storage (device) class driver to enable access to
the embedded mass storage from a PC or Mac.

Before the PID can be registered in this way it must be:

• Opened: The values in the ADI_FSS_DEVICE_DEF structure defined
in the PID header file can be used in an explicit call to adi_dev_
Open. For example, the members of the ATAPI device definition
structure can be used as follows:

adi_dev_Open (adi_dev_ManagerHandle,

ADI_ATAPI_Def.pEntryPoint,

ADI_ATAPI_Def.DeviceNumber,

<client handle>,

&ADI_ATAPI_Def.DeviceHandle,

ADI_ATAPI_Def.Direction,

adi_dma_ManagerHandle,

adi_dcb_QueueHandle,

<client-callback-function>);

VisualDSP++ 5.0 Device Drivers and System 12-13
Services Manual for Blackfin Processors

File System Service

Please note that the <client-handle> and <client call-
back-function> arguments only have meaning prior to registration
of the PID with the file system service; these items are reassigned
within the FSS. If they have no direct relevance to the application
itself, they can be assigned NULL and 1 respectively.

• Data Flow Method Assigned: The data flow method of the PID
must be set to ADI_DEV_MODE_CHAINED with the following com-
mand-value pair:

{ADI_DEV_CMD_SET_DATAFLOW_METHOD,(void *)

ADI_DEV_MODE_CHAINED}

• Configured: In addition to setting the data flow method, the PID
should be configured at the very least with the commands defined
in the command table whose location is given by the pConfigTable
member of the appropriate device definition structure.

Registration of the PID can either be accomplished by passing the follow-
ing command-value pair to adi_fss_Control:

{ADI_FSS_CMD_REGISTER_DEVICE,(void *)&ADI_ATAPI_Def}

or by using the adi_fss_RegisterDevice function:

{adi_fss_RegisterDevice(&ADI_ATAPI_Def,1);

For further details, see the definition of this function in the section “File
System Service API Reference” on page 12-17.

Dynamic Memory Usage
In a departure from other system services and device drivers, the file sys-
tem service makes extensive use of dynamically-allocated memory for
internal data structures and DMA buffers.

Advanced Configuration

12-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

This is largely due to the somewhat arbitrary and indeterminate nature of
the memory requirements associated with file systems, where buffer sizes
depend on the media present and the file system used. The use of dynamic
memory within all parts of the FSS framework frees the application devel-
oper from having to estimate the amount of memory required at build
time.

However, in order to give the application developer some control, all
dynamic memory requests throughout the FSS and its component file sys-
tem and physical interface drivers are made through centralized functions,
which then make calls into the C library functions or can be directed to
call custom functions for either greater efficiency or monitoring purposes.
There are three heap allocation functions for malloc, realloc, and free
operations, and all three must be replaced with custom functions if any are
to be replaced. To use your own functions, ensure that the functions you
wish to use conform to the following prototypes for each operation.

malloc:
void *<custom-heap_malloc-function>(int, size_t);

realloc:

void *<custom-heap_realloc-function>(int, void *, size_t);

free:

void <custom-heap_free-function>(int, void *);

These are then required to be registered with the file system service using
the following command-value pairs:

{ ADI_FSS_CMD_SET_MALLOC_FUNC,

(void*)<custom-heap_malloc-function> },

{ ADI_FSS_CMD_SET_REALLOC_FUNC,

(void*)<custom-heap_realloc-function> },

{ ADI_FSS_CMD_SET_FREE_FUNC,

(void*)<custom-heap_free-function> },

VisualDSP++ 5.0 Device Drivers and System 12-15
Services Manual for Blackfin Processors

File System Service

Furthermore, memory allocation is divided into two categories of memory
requirement: general memory is defined as the memory required for data
structures such as device driver instance data and file descriptors, and so
on, and cache memory is defined as the memory required for cache-type
buffers such as DMA transfer buffers. Management of these categories of
memory is implemented by the use of custom (or user) heaps, available
with VisualDSP++ 5.0. Each component of the FSS framework allocates
general memory off the single general heap defined in the FSS. For cache
memory requirements, each component can be assigned a separate cache
heap to use.

Two commands are defined to assign the indexes of general and cache
heaps. To assign the general heap index, use the following command-value
pair in the FSS configuration table passed to the adi_fss_Init() function
only:

{ ADI_FSS_CMD_SET_GENERAL_HEAP_ID, (void*)GeneralHeap },

The GeneralHeap value is the array index of the heap entry in the heap_
table. For example, in “Shell_Browser” on page 12-85, the GeneralHeap
value is assigned to 1 which is the index of the FSSGeneralHeap_space
entry in the following table1:

struct heap_table_t heap_table[4] =

{

 { &ldf_heap_space, (int) &ldf_heap_length, 0 },

 { &FSSGeneralHeap_space, (int) &FSSGeneralHeap_length, 1 },

 { &FSSCacheHeap_space, (int) &FSSCacheHeap_length, 2 },

 { 0, 0, 0 }

};

1 Please note that this is also the userid value in the table entry, which is a coincidental consequence of
the above entries being auto-generated by the project options wizard. For user heaps defined with
heap_install, this may not be the case.

Advanced Configuration

12-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

This index can also be obtained from a call to heap_lookup() for
the userid required:

GeneralHeap = heap_lookup(1);

To assign a cache heap use:

{ ADI_FSS_CMD_SET_CACHE_HEAP_ID, (void*)CacheHeap },

which can be added to the configuration table of each driver and the adi_
fss_Init() function. In the latter case, it is used to assign the heap index
for allocation of each file cache buffer. See “File Cache” below for further
details.

The default case is for all cache heaps to default to the general heap, and
the general heap to default to the system heap. This is the case for the con-
figuration shown in “Getting Started” on page 12-3. Please note that
while it is perfectly valid to use the same cache heap index for each driver
(FSD or PID), the heap index is required to be registered with each device
driver through its configuration table.

File Cache
The file system service is designed to use a file cache when appropriate.
This cache, which is allocated from the FSS cache heap, (“Dynamic Mem-
ory Usage” on page 12-13), acts as a read-ahead, write-behind cache so as
to enhance data transfer rates in either direction. To achieve higher trans-
fer rates, cache blocks are transferred to or from the media in the
background, and its use is thus optimal for physical interface drivers that
use peripheral DMA. The decision to use a file cache for a file is taken by
the FSS upon opening a file, when the respective file system driver and
physical interface drivers are queried to determine whether a file cache can
be supported. Please refer to the appropriate FSD and PID documentation
for details. For example, the FAT and ATAPI drivers for access to the hard
disk on the ADSP-BF548 EZ-KIT Lite support the use of a file cache.

VisualDSP++ 5.0 Device Drivers and System 12-17
Services Manual for Blackfin Processors

File System Service

Each file cache comprises a number of blocks, each the size of the smallest
addressable unit within the respective file system. For example, in the FAT
file system, the block size is that of a cluster. The cluster size depends on
the size and format (for example, FAT12, FAT16 or FAT32) of the media.
The FSS requests the block size from the appropriate FSD upon opening a
file. The number of cache blocks to use defaults to four (4), but can be
overridden upon initialization of the FSS with the inclusion of the follow-
ing command-value pair in the FSS configuration table:

{ ADI_FSS_CMD_SET_NUMBER_CACHE_BLOCKS,

(void*)<number-cache-blocks> },

When a file is opened, the file cache is dynamically allocated from the FSS
cache heap; when the file is closed, the memory is freed.

Please note that for the default format of the hard disk of the
ADSP-BF548 EZ-KIT Lite, a cluster—and hence each cache block—is
16 KB in size.

File System Service API Reference
This section provides the details of the data structures and functions
within the FSS or file system service application program interface (API).
It is usually intended that the API be used via intermediate code such as
the extensible. Its use may provide marginal benefits in terms of through-
put speed and code size, but this is offset by its lack of portability between
development environments.

Advanced Configuration

12-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Notation and Naming Conventions
To safeguard against conflicts with other software libraries provided by
Analog Devices, or other sources, the file system service uses an unambig-
uous naming convention in which enumeration values and typedef
statements use the ADI_FSS_ prefix. Functions and global variables use the
lowercase adi_fss_ equivalent.

Each function within the file system service API returns an error code of
type ADI_FSS_RESULT. Like the other system services, a return value of zero
(ADI_FSS_RESULT_SUCCESS) indicates that no error has occurred during the
function call. Any nonzero value indicates the specific type of error that
has occurred. The error codes for the file system service are unique from
those of the other system services, and are defined in the adi_fss.h header
file and in “File System Service API Data Types and Enumerations” on
page 12-52. The cause of the error can be determined by looking up the
error code in the file. The reference pages for the API functions use the
following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 12-19
Services Manual for Blackfin Processors

File System Service

adi_fss_Init

Description

The adi_fss_Init() function initializes the file system service and pre-
pares it for operation. Configuration is effected by supplying a table of
command-value pairs. The only mandatory commands are:

In addition to these commands, others may also be used as appropriate for
the physical interface and file system drivers present in the overall configu-
ration. Please refer to the relevant driver documentation for further
details. The optional commands are:

ADI_FSS_CMD_ADD_DRIVER (0xB0005) Sets the location of the ADI_FSS_DEVICE_
DEF structure defining either a file system driver (FSD)
or physical interface driver (PID). This command is
mandatory only for FSDs.

ADI_FSS_CMD_SET_DEV_MGR_HANDLE (0xB000E) Sets device manager handle

ADI_FSS_CMD_SET_DMA_MGR_HANDLE (0xB000D) Sets DMA manager handle. It is
required only if a PID uses peripheral DMA.

ADI_FSS_CMD_SET_DCB_MGR_HANDLE (0xB000F) Sets DCB queue manager han-
dle. It is strongly recommended to use
deferred callbacks in a standalone applica-
tion, and compulsory in a VDK application.

ADI_FSS_CMD_SET_CACHE_HEAP_ID (0xB0011) Heap ID for cache blocks

ADI_FSS_CMD_SET_GENERAL_HEAP_ID (0xB0014) Heap ID for file descriptors

ADI_FSS_CMD_SET_NUMBER_CACHE_BLOCKS (0xB0012) Number of cache blocks to use
(min 2)

ADI_FSS_CMD_SET_NUMBER_CACHE_SUB_
BLOCKS

(0xB0013) Number of cache sub-blocks to
use (min 1). It is highly recommended not
to alter this value.

ADI_FSS_CMD_SET_MALLOC_FUNC (0xB0006) Sets client malloc function

ADI_FSS_CMD_SET_REALLOC_FUNC (0xB0007) Sets client realloc function

Advanced Configuration

12-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Prototype

u32 adi_fss_Init(

ADI_FSS_CMD_VALUE_PAIR *pTable
);

ADI_FSS_CMD_SET_FREE_FUNC (0xB0008) Sets client free function

ADI_FSS_CMD_SET_VOLUME_SEPARATOR (0xB0009) Sets volume separator character

ADI_FSS_CMD_SET_DIRECTORY_SEPARATOR (0xB000A) Sets directory separator charac-
ter

ADI_FSS_CMD_SET_MEDIA_CHANGE_CALLBACK (0xB001B) Sets the ADI_DCB_CALLBACK_FN
callback function that is called when the
media is changed; for example, when a USB
flash drive or SD card is inserted or
removed.

ADI_FSS_CMD_SET_MEDIA_CHANGE_HANDLE (0xB001C) Sets the handle that is sent as the
first argument to the callback function upon
media change.

ADI_FSS_CMD_SET_DATA_SEMAPHORE_TIMEOUT (0xB001D) Sets the timeout argument for
all semaphore pends within the context of
the FSS. This value must be the logical OR
of the timeout value in ticks and the appro-
priate value to prevent an RTOS error con-
dition on timeout.

ADI_FSS_CMD_SET_TRANSFER_RETRY_COUNT (0xB001E) Sets the number of times a trans-
fer is retried after a semaphore timeout. The
value includes the initial attempt, so a value
of one means no retries after the timeout.
This is the default.

ADI_FSS_CMD_REGISTER_DEVICE (0xB0019) Registers a physical interface
driver by specifying the location of the
appropriate ADI_FSS_DEVICE_DEF struc-
ture. Prior to using this command, the
appropriate device driver must be opened
and configured.

VisualDSP++ 5.0 Device Drivers and System 12-21
Services Manual for Blackfin Processors

File System Service

Arguments

Return Value

pTable Pointer to table of command-pair values used to initialize the FSS module

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

Advanced Configuration

12-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_Terminate

Description

The adi_fss_Terminate() function terminates the file system service.

Prototype
u32 adi_fss_Terminate(void);

Arguments

The function takes no arguments.

Return Value

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-23
Services Manual for Blackfin Processors

File System Service

adi_fss_Control

Description

The adi_fss_Control() function is called to send specific commands to
the FSS service module for control of operations. Valid command codes
are:

Command Code Name Command Code Description

ADI_FSS_CMD_END (0xB0002) End of table of control-command pairs

ADI_FSS_CMD_PAIR (0xB0003) Value is pointer to control-command pair

ADI_FSS_CMD_TABLE (0xB0004) Value is pointer to table of control-command
pairs

ADI_FSS_CMD_GET_NUMBER_VOLUMES (0xB000B) Gets the number of available partitions

ADI_FSS_CMD_GET_VOLUME_INFO (0xB000C) Gets information regarding available partitions

ADI_FSS_CMD_FORMAT_VOLUME (0xB4017) Formats a volume

ADI_FSS_CMD_REGISTER_DEVICE (0xB0019) Registers a physical interface driver by specify-
ing the location of the appropriate ADI_FSS_DEVICE_DEF
structure. Prior to using this command, the appropriate
device driver must be opened and configured.

ADI_FSS_CMD_DEREGISTER_DEVICE (0xB001A) Deregisters the handle of a physical interface
device.

ADI_FSS_CMD_SET_MEDIA_CHANGE_
CALLBACK

(0xB001B) Sets the ADI_DCB_CALLBACK_FN callback func-
tion that is called when the media is changed; for example,
when a USB flash drive or SD card is inserted or removed.

ADI_FSS_CMD_SET_MEDIA_CHANGE_
HANDLE

(0xB001C) Sets the handle that is sent as the first argu-
ment to the callback function upon media change.

Advanced Configuration

12-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Prototype

u32 adi_fss_Control(

u32 CommandID,

void *Value

);

Arguments

Return Value

ADI_FSS_CMD_SET_DATA_
SEMAPHORE_TIMEOUT

(0xB001D) Sets the timeout argument for all semaphore
pends within the context of the FSS. This value must be
the logical OR of the timeout value in ticks and the appro-
priate value to prevent an RTOS error condition on time-
out.

ADI_FSS_CMD_SET_TRANSFER_
RETRY_COUNT

(0xB001E) Sets the number of times a transfer is retried
after a semaphore timeout. The value includes the initial
attempt, so a value of one means no retries after the time-
out. This is the default. After all attempts have failed, the
FSS reports the error back to the application.

CommandID Command ID

Value Pointer to command-specific value

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of
return codes.

Command Code Name Command Code Description

VisualDSP++ 5.0 Device Drivers and System 12-25
Services Manual for Blackfin Processors

File System Service

adi_fss_RegisterDevice

Description

The adi_fss_RegisterDevice() function is called to register a physical
interface driver (PID) with the FSS. Upon registration, the PID is acti-
vated. Media detection can also be performed dependent on the value of
the PollForMedia argument.

Prototype

u32 adi_fss_RegisterDevice(

ADI_FSS_DEVICE_DEF *pDeviceDef,

u32 PollForMedia

);

Arguments

Return Value

pDeviceDef The location of the device definition structure
for the required physical interface driver

PollForMedia Flag to determine whether to poll for media
after activation. Set 1 to poll, 0 otherwise. If
polling is not chosen, the application must
explicitly poll for media

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of
return codes.

Advanced Configuration

12-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_DeRegisterDevice

Description

The adi_fss_DeRegisterDevice() function is called to deregister a physi-
cal interface driver (PID) with the FSS. All associated volumes will be
unmounted and the device deactivated.

Prototype

u32 adi_fss_DeRegisterDevice(

ADI_DEV_DEVICE_HANDLE DeviceHandle

);

Arguments

Return Value

DeviceHandle The device handle of the physical interface
driver that is to be deregistered with the FSS

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of
return codes.

VisualDSP++ 5.0 Device Drivers and System 12-27
Services Manual for Blackfin Processors

File System Service

adi_fss_PollMediaOnDevice

Description

The adi_fss_PollMediaOnDevice() function is called to poll the media
associated with the given PID device handle.

Prototype

u32 adi_fss_PollMediaOnDevice(

ADI_DEV_DEVICE_HANDLE DeviceHandle

);

Arguments

Return Value

DeviceHandle The device handle of the required physical
interface driver

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of
return codes.

Advanced Configuration

12-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_PollMedia

Description

The adi_fss_PollMedia() function is called to poll the physical interface
devices (PID) for changes in media.

Prototype
u32 adi_fss_PollMedia(void);

Arguments

The function takes no arguments.

Return Value

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of
return codes.

VisualDSP++ 5.0 Device Drivers and System 12-29
Services Manual for Blackfin Processors

File System Service

adi_fss_Stat

Description

The adi_fss_Stat() function is called to get the status of a file or direc-
tory. The name and name length of the file or directory are passed to this
function, as well as a data structure in which the function stores the infor-
mation about the file or directory.

Prototype

u32 adi_fss_Stat(

ADI_FSS_WCHAR *name,

u32 namelen,

struct stat *pStat

);

Arguments

Return Value

name Array to store Unicode UTF-8 name of file or
directory

namelen Length of name array

pStat Address of structure to hold information

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of
return codes.

Advanced Configuration

12-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_UnMountDevice

Description

The adi_fss_UnMountDevice() function is called to unmount all volumes
on the media associated with the given PID device handle. The device
remains registered with the FSS.

Prototype

u32 adi_fss_UnMountDevice(

ADI_DEV_DEVICE_HANDLE DeviceHandle

);

Arguments

Return Value

DeviceHandle The device handle of the required physical
interface driver

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of
return codes.

VisualDSP++ 5.0 Device Drivers and System 12-31
Services Manual for Blackfin Processors

File System Service

adi_fss_FileOpen

Description

The adi_fss_FileOpen() function opens a file stream for reading or writ-
ing. The name argument can be specified as an absolute or relative path.
Valid mode values are given in the following table. Combinations of mode
values may be required. For example, to open a file for append would
require the mode to be specified as ADI_FSS_MODE_WRITE | ADI_FSS_MODE_
APPEND.

Prototype

u32 adi_fss_FileOpen(

ADI_FSS_WCHAR *name,

u32 namelen,

u32 mode,

ADI_FSS_FILE_HANDLE *FileHandle);

ADI_FSS_MODE_READ Read-only access

ADI_FSS_MODE_WRITE Write access only

ADI_FSS_MODE_READ_
WRITE

Read and write access

ADI_FSS_MODE_APPEND Append mode

ADI_FSS_MODE_CREATE Create file if not found

ADI_FSS_MODE_TRUNCATE Truncate file if existing file opened for write

Advanced Configuration

12-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

name NULL-terminated string identifying file to open

namelen Length of name string excluding NULL; for example, the value that the
strlen(name) would return

mode Mode in which file is opened

FileHandle Location to store handle identifying file stream

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-33
Services Manual for Blackfin Processors

File System Service

adi_fss_FileClose

Description

The adi_fss_FileClose() function closes the file stream identified by
FileHandle.

Prototype

u32 adi_fss_FileClose(ADI_FSS_FILE_HANDLE FileHandle);

Arguments

Return Value

FileHandle Handle identifying file stream

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return
codes.

Advanced Configuration

12-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_FileWrite

Description

The adi_fss_FileWrite() function writes the size number of bytes of
data identified by buf to a file stream identified by FileHandle and returns
the number of bytes written to the location pointed at by the BytesWrit-
ten pointer.

Prototype

u32 adi_fss_FileWrite(

ADI_FSS_FILE_HANDLE FileHandle,

u8 *buf,

u32 size,

u32 *BytesWritten

);

Arguments

Return Value

FileHandle Handle identifying file stream

buf Start address of buffer to write

size Number of bytes to write

BytesWritten Location to store actual size written

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-35
Services Manual for Blackfin Processors

File System Service

adi_fss_FileRead

Description

The adi_fss_FileRead function reads data from a file stream identified by
FileHandle, places it in the buffer identified by buf, and returns the num-
ber of bytes read into the location pointed to by the BytesRead pointer.

Prototype

u32 adi_fss_FileRead(

ADI_FSS_FILE_HANDLE FileHandle,

u8 *buf,

u32 size,

u32 *BytesRead

);

Arguments

Return Value

FileHandle Handle identifying file stream

buf Start address of buffer to fill

size Number of bytes to read

BytesRead Location to store actual size read

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return
codes.

Advanced Configuration

12-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_FileSeek

Description

The adi_fss_FileSeek function moves the current file position to the
location defined by the Offset and Origin arguments.

The Origin value should have one of the following values (defined in
stdio.h):

You can use adi_fss_FileSeek to move beyond the end of a file, but not
before the beginning. Using adi_fss_FileSeek clears the EOF flag associ-
ated with that stream.

Prototype

u32 adi_fss_FileSeek(

ADI_FSS_FILE_HANDLE FileHandle,

s32 offset,

u32 whence,

u32 *tellpos

);

SEEK_SET Seek from the start of the file

SEEK_CUR Seek from the current location

SEEK_END Seek from the end of the file

VisualDSP++ 5.0 Device Drivers and System 12-37
Services Manual for Blackfin Processors

File System Service

Arguments

Return Value

FileHandle Handle identifying file stream

offset Offset (in bytes) from Origin location

whence Location to begin seek from

tellpos Location to store current position after seek

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

Advanced Configuration

12-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_FileTell

Description

The adi_fss_FileTell function reports the current position in the file.

Prototype

u32 adi_fss_FileTell(

ADI_FSS_FILE_HANDLE FileHandle

u32 *tellpos

);

Arguments

Return Value

FileHandle Handle identifying file stream

tellpos Location to store current position

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-39
Services Manual for Blackfin Processors

File System Service

adi_fss_IsEOF

Description

The adi_fss_IsEOF() function determines if the end of the file on the
indicated data stream has been reached.

Prototype

u32 adi_fss_IsEOF(ADI_FSS_FILE_HANDLE FileHandle);

Arguments

Return Value

FileHandle Handle identifying file stream

ADI_FSS_RESULT_SUCCESS No error has been encountered.

ADI_FSS_RESULT_EOF End of file has been reached.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return
codes.

Advanced Configuration

12-40 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_FileRemove

Description

The adi_fss_FileRemove() routine removes the specified file. The name
argument can be specified as an absolute or relative path.

Prototype

u32 adi_fss_FileRemove(

ADI_FSS_WCHAR *name,

u32 namelen

);

Arguments

Return Value

name NULL-terminated string identifying file to remove

namelen Length of name string excluding terminating NULL; for example, the value
that strlen(name) would return

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-41
Services Manual for Blackfin Processors

File System Service

adi_fss_FileRename

Description

The adi_fss_FileRename() routine renames a file from old_path to new_
path. Both arguments can be specified as absolute or relative paths.

Prototype

u32 adi_fss_FileRename(

ADI_FSS_WCHAR *old_path,

u32 oldlen,

ADI_FSS_WCHAR *new_path,

u32 newlen

);

Arguments

Return Value

old_path NULL-terminated string identifying file to rename

oldlen Length of old_path string excluding terminating
NULL; for example, the value that strlen(name)
would return

new_path NULL-terminated string identifying new file name

newlen Length of new_path string excluding NULL; for exam-
ple, the value that strlen(name) would return

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

Advanced Configuration

12-42 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_DirOpen

Description

The adi_fss_DirOpen() routine opens the specified directory stream. The
name argument can be specified as an absolute or relative path.

Prototype

u32 adi_fss_DirOpen(

ADI_FSS_WCHAR *name,

u32 namelen,

ADI_FSS_DIR_HANDLE *DirHandle
);

Arguments

Return Value

name NULL-terminated string identifying the directory to
open

namelen Length of name string excluding terminating NULL;
for example, the value that strlen(name) would
return

DirHandle Location to store handle identifying directory stream

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-43
Services Manual for Blackfin Processors

File System Service

adi_fss_DirClose

Description

The adi_fss_DirClose() routine closes the identified directory stream.

Prototype

u32 adi_fss_DirClose(ADI_FSS_DIR_HANDLE DirHandle);

Arguments

Return Value

DirHandle Handle identifying directory stream

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

Advanced Configuration

12-44 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_DirRead

Description

The adi_fss_DirRead() routine returns a pointer to the next directory
entry from the directory stream.

Prototype

u32 adi_fss_DirRead(

ADI_FSS_DIR_HANDLE DirHandle,

ADI_FSS_DIR_ENTRY **pDirEntry

);

Arguments

Return Value

DirHandle Handle identifying directory stream

pDirEntry Location to store pointer to directory entry structure

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-45
Services Manual for Blackfin Processors

File System Service

adi_fss_DirSeek

Description

The adi_fss_DirSeek() routine seeks to the specific place in a directory
stream specified by DirHandle. The Seekpos argument should be obtained
from a previous call to adi_fss_DirTell().

Prototype

u32 adi_fss_DirSeek(

ADI_FSS_DIR_HANDLE DirHandle,

u32 tellpos

);

Arguments

Return Value

DirHandle Handle identifying directory stream

tellpos Position (in bytes) in directory stream to seek

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

Advanced Configuration

12-46 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_DirTell

Description

The adi_fss_DirTell() routine reports the current position (in bytes) in
the specified directory stream.

Prototype

u32 adi_fss_DirTell(

ADI_FSS_DIR_HANDLE DirHandle,

u32 *tellpos

);

Arguments

Return Value

DirHandle Handle identifying directory stream

tellpos Location to store current position

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-47
Services Manual for Blackfin Processors

File System Service

adi_fss_DirRewind

Description

The adi_fss_DirRewind() routine rewinds the specified directory stream
to its beginning.

Prototype

u32 adi_fss_DirRewind(ADI_FSS_DIR_HANDLE DirHandle);

Arguments

Return Value

DirHandle Handle identifying directory stream

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

Advanced Configuration

12-48 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_DirChange

Description

The adi_fss_DirChange() routine changes the current working directory,
from which relative file paths are evaluated. The name value can be speci-
fied as either a relative or absolute path.

Prototype

u32 adi_fss_DirChange(

ADI_FSS_WCHAR *name,

u32 namelen
);

Arguments

Return Value

name NULL-terminated string identifying new current working directory

namelen Length of name string excluding terminating NULL; for example, the value that
strlen(name) would return

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See the Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-49
Services Manual for Blackfin Processors

File System Service

adi_fss_GetCurrentDir

Description

The adi_fss_GetCurrentDir() routine returns the name of the current
working directory.

Prototype

u32 adi_fss_GetCurrentDir(

ADI_FSS_WCHAR *name,

u32 *namelen
);

Arguments

Return Value

name Array to store NULL-terminated string containing the cur-
rent working directory

namelen Location to store length of name array

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

Advanced Configuration

12-50 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_fss_DirCreate

Description

The adi_fss_DirCreate() routine creates a specified directory. The name
argument can be specified as an absolute or relative path, provided that all
intermediate directories exist.

Prototype

u32 adi_fss_DirCreate(

ADI_FSS_WCHAR *name,

u32 namelen,

u32 mode
);

Arguments

Return Value

name NULL-terminated string identifying directory to open

namelen Length of name string excluding terminating NULL; for example, the
value that strlen(name) would return

mode Mode of newly-created directory (ignored). This argument is reserved for
future use.

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

VisualDSP++ 5.0 Device Drivers and System 12-51
Services Manual for Blackfin Processors

File System Service

adi_fss_DirRemove

Description

The adi_fss_DirRemove() routine removes the specified directory. The
name argument can be specified as an absolute or relative path.

Prototype

u32 adi_fss_DirRemove(

ADI_FSS_WCHAR *name,

u32 namelen

);

Arguments

Return Value

name NULL-terminated string identifying directory to remove

namelen Length of name string excluding terminating NULL; for example, the
value that strlen(name) would return

ADI_FSS_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred.
See Table 12-1 on page 12-55 for a list of return codes.

File System Service API Data Types and Enumerations

12-52 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

File System Service API Data Types and
Enumerations

This section describes the data types used by the FSS API and the result
code enumerations.

ADI_FSS_WCHAR
The ADI_FSS_WCHAR data type is used for all file and directory names used
in the FSS API. As mentioned in the “Introduction” on page 12-2, the
current implementation of the FSS caters only for ASCII file names
(8-bit). This data type is defined as:

typedef char ADI_FSS_WCHAR;

ADI_FSS_VOLUME_IDENT
The ADI_FSS_VOLUME_IDENT data type is used for the identifiers of each
mounted volume. The data type is defined as:

typedef char ADI_FSS_VOLUME_IDENT;

ADI_FSS_FILE_HANDLE
The ADI_FSS_FILE_HANDLE is an opaque data type used to uniquely iden-
tify the file stream to manipulate. It is defined as:

typedef void *ADI_FSS_FILE_HANDLE;

VisualDSP++ 5.0 Device Drivers and System 12-53
Services Manual for Blackfin Processors

File System Service

ADI_FSS_DIR_HANDLE
The ADI_FSS_DIR_HANDLE is an opaque data type used to uniquely identify
the directory stream to manipulate. It is defined as:

typedef void *ADI_FSS_DIR_HANDLE;

ADI_FSS_CMD_VALUE_PAIR
The ADI_FSS_CMD_VALUE_PAIR data type is a structure containing a com-
mand code and an associated value. These command-value pairs are used
in the FSS configuration table and in calls to adi_fss_Control(). The
appropriate commands are detailed at “adi_fss_Init” on page 12-19 and
“adi_fss_Control” on page 12-23. The structure is defined as:

typedef struct {

u32 CommandID; */

void *Value;

} ADI_FSS_CMD_VALUE_PAIR;

where the fields are assigned as shown in the following table.

ADI_FSS_DIR_ENTRY
The ADI_FSS_DIR_ENTRY data type is a structure that contains the details of
a directory entry. The structure is identical to the POSIX struct dirent
structure:
typedef struct dirent ADI_FSS_DIR_ENTRY;

The struct dirent structure is described in the POSIX documentation
(see “Additional POSIX Functions Supported by the FSS” on page 12-70

CommandID ID of command to execute

Value Associated value as appropriate for the command ID

File System Service API Data Types and Enumerations

12-54 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

for the location of this document) and is defined in the FSS header file,
<services/fss/adi_fss.h>.

ADI_FSS_DEVICE_DEF
The ADI_FSS_DEVICE_DEF data type defines a structure to contain the
information required to open and configure an FSD or PID device driver.
It is defined as:

typedef struct {

u32 DeviceNumber;

ADI_DEV_PDD_ENTRY_POINT *pEntryPoint;

ADI_DEV_CMD_VALUE_PAIR *pConfigTable;

void *pCriticalRegionData;

ADI_DEV_DIRECTION Direction;

ADI_DEV_DEVICE_HANDLE DeviceHandle;

ADI_FSS_VOLUME_IDENT DefaultMountPoint;

} ADI_FSS_DEVICE_DEF;

where the assigned fields are shown in the following table.

DeviceNumber This defines which peripheral device to use. This is
the DeviceNumber argument required for a call to adi_dev_
Open(). See the appropriate driver documentation for valid
values.

pEntryPoint This is a pointer to the device driver entry points and is passed
as the pEntryPoint argument required for a call to adi_dev_
Open(). See the appropriate driver header file and documen-
tation for the entry point declaration.

pConfigTable This is a pointer to the table of command-value pairs to con-
figure the device driver. If no commands are required, this
value can be set to NULL.

pCriticalRegionData This is a pointer to the argument that should be passed to the
system services adi_int_EnterCriticalRegion() func-
tion. This is currently not used and should be set to NULL.

VisualDSP++ 5.0 Device Drivers and System 12-55
Services Manual for Blackfin Processors

File System Service

Result Codes
Each of the FSS API functions returns a result code that can be interpreted
by looking up the value in the FSS service API header file, adi_fss.h. The
result codes are summarized in Table 12-1.

Direction This is the Direction argument required for a call to adi_
dev_Open(). See the appropriate driver documentation for
valid values.

DeviceHandle This is the location used internally to store the device driver
handle on return from a call to adi_dev_Open(). It should
be set to NULL prior to initialization.

DefaultMountPoint This is the default drive letter used for volumes managed by
the driver. This is especially useful for removable media types
such as USB memory sticks, SD cards, and optical media.
This can be left as NULL if no preference is desired.

Table 12-1. Result Codes

Result Code Name Result Code Description

ADI_FSS_RESULT_SUCCESS Generic success = 0

ADI_FSS_RESULT_FAILED Generic failure = 1

ADI_FSS_RESULT_OPEN_FAILED (0XB0001) file/directory open failure
(media fault)

ADI_FSS_RESULT_NOT_FOUND (0XB0002) file/directory not found

ADI_FSS_RESULT_CLOSE_FAILED (0XB0003) file/directory close failure
(media fault)

ADI_FSS_RESULT_NO_MEDIA (0xB0004) no media detected

ADI_FSS_RESULT_MEDIA_CHANGED (0xB0005) media has changed since
last check

ADI_FSS_RESULT_MEDIA_FULL (0xB0006) no room left on media

ADI_FSS_RESULT_NO_MEMORY (0xB0007) insufficient memory to
perform request

Result Codes

12-56 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The Standard C I/O Interface Functions
This section briefly details the standard C I/O API. By registering the FSS
with the C I/O library as detailed in Chapter 3 of the C and C++ Compiler
and Linker Manual for Blackfin Processors, and as described in “Getting
Started” on page 12-3, calls to functions in this section are routed to the
FSS after processing by the I/O library. All functions follow the POSIX
convention for the argument and return types. Please refer to a suitable C
textbook for further details.

This list details most of the available functions, but any function defined
in <stdio.h> for file access results in appropriate (primitive) calls to the
FSS API.

ADI_FSS_RESULT_INVALID_DEVICE (0xB0008) device driver cannot be
initialized

ADI_FSS_RESULT_BAD_FILE_HANDLE (0xB0009) no valid file descriptor at
address supplied

ADI_FSS_RESULT_BAD_NAME (0xB000A) invalid path specified for
file/directory

ADI_FSS_RESULT_EOF (0xB000B) end of file reached

ADI_FSS_RESULT_EOD (0xB000C) end of directory reached

ADI_FSS_RESULT_BAD_VOLUME (0xB000D) invalid partition specified

ADI_FSS_RESULT_NOT_SUPPORTED (0xB000E) command code is not
supported

ADI_FSS_RESULT_TIMEOUT (0xB0010) timeout has occurred

ADI_FSS_RESULT_BAD_CACHE_HANDLE (0xB0011) bad cache handle

ADI_FSS_RESULT_CANT_CREATE_SEMAPHORE (0xB0012) cannot create semaphore
in file cache

Table 12-1. Result Codes (Cont’d)

Result Code Name Result Code Description

VisualDSP++ 5.0 Device Drivers and System 12-57
Services Manual for Blackfin Processors

File System Service

fopen

Description

The fopen() function opens a named file in accordance to the mode flags.

Prototype

FILE * fopen (const char *name, const char *mode);

Result Codes

12-58 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

fclose

Description

The fclose() function closes a file identified by stream.

Prototype

int fclose (FILE * stream);

VisualDSP++ 5.0 Device Drivers and System 12-59
Services Manual for Blackfin Processors

File System Service

fwrite

Description

The fwrite() function writes num data elements of size bytes to the file
identified by stream.

Prototype

int fwrite (void *buffer, size_t size, size_t num, FILE *stream);

Result Codes

12-60 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

fread

Description

The fread() function reads num data elements of size bytes from the file
identified by stream.

Prototype

int fread (void *buffer, size_t size, size_t num, FILE *stream);

VisualDSP++ 5.0 Device Drivers and System 12-61
Services Manual for Blackfin Processors

File System Service

fprintf

Description

The fprintf() function writes to the file identified by stream as deter-
mined by the format string. The VisualDSP++ 5.0 I/O library performs all
the required format processing.

Prototype

int fprintf (FILE *stream, const char *fmt, ...);

Result Codes

12-62 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

fscanf

Description

The fscanf() function reads from the file identified by stream as deter-
mined by the format string. The VisualDSP++ 5.0 I/O library performs all
the required format processing.

Prototype

int fscanf (FILE *stream, const char *fmt, ...);

VisualDSP++ 5.0 Device Drivers and System 12-63
Services Manual for Blackfin Processors

File System Service

fgetc

Description

The fgetc() function reads the next byte from the file identified by
stream.

Prototype

int fgetc (FILE *stream);

Result Codes

12-64 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

fgets

Description

The fgets() function reads the next n bytes from the file identified by
stream into the buf character array.

Prototype

char * fgets (char *buf, int n, FILE *stream);

VisualDSP++ 5.0 Device Drivers and System 12-65
Services Manual for Blackfin Processors

File System Service

fputc

Description

The fputc() function writes the ci byte to the file identified by stream.

Prototype

int fputc (int ci, FILE *stream);

Result Codes

12-66 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

fputs

Description

The fputs() function writes the text string, s, to the file identified by
stream.

Prototype

int fputs (const char *s, FILE *stream);

VisualDSP++ 5.0 Device Drivers and System 12-67
Services Manual for Blackfin Processors

File System Service

fseek

Description

The fseek() function moves the current file position.

Prototype

int fseek (FILE *stream, long offset, int origin);

Result Codes

12-68 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ftell

Description

The ftell() function returns the current position in a file.

Prototype

long ftell (FILE *stream);

VisualDSP++ 5.0 Device Drivers and System 12-69
Services Manual for Blackfin Processors

File System Service

feof

Description

The feof() function returns whether the current file is at end-of-file
(EOF).

Prototype

int feof (FILE *stream);

Result Codes

12-70 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Additional POSIX Functions Supported
by the FSS

This section provides a brief listing of the additional POSIX functions and
structures supported by the FSS system service. A more comprehensive
description of the routine can be found with an internet search on the
function name or through viewing the function’s reference page in The
Single UNIX® Specification, Version 2, System Interface & Headers Refer-
ence Pages, available online at:

http://www.opengroup.org/onlinepubs/007908775/xshix.html.

The functions listed in this section have no implementation within the
VisualDSP++ 5.0 I/O library except for rename() and remove(). These
two functions also exist within the VisualDSP++ 5.0 I/O library but are
limited to PRIMIO access to the file system of the host PC.

To use all functions in this section, you will need to include the FSS
header file, <services/fss/adi_fss.h>, in your application source file. By
including this header file, all references to rename and remove in the
source file will resolve to the FSS variants for these functions.

http://www.opengroup.org/onlinepubs/007908775/xshix.html

VisualDSP++ 5.0 Device Drivers and System 12-71
Services Manual for Blackfin Processors

File System Service

opendir

Description

The opendir() function opens the specified directory for processing by
readdir, readdir_r, telldir, seekdir, rewinddir, and closedir.

Prototype

DIR *opendir (const char *dirname)

Result Codes

12-72 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

closedir

Description

The closedir() function closes access to a directory structure pointed to
by the dirp argument.

Prototype

int closedir (DIR * dirp)

VisualDSP++ 5.0 Device Drivers and System 12-73
Services Manual for Blackfin Processors

File System Service

readdir

Description

The readdir() function returns a pointer to a dirent structure represent-
ing the next directory entry in the specified directory stream. It returns
NULL on reaching the end-of-file or if an error occurred. The filenames
are returned in the order in which they are stored by the file system.

Prototype

struct dirent *readdir (DIR *dirp)

Result Codes

12-74 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

readdir_r

Description

The readdir_r() function behaves similarly to readdir but instead of
returning a pointer to a dirent structure it populates the structure refer-
enced by the entry argument with the details of the directory entry at the
current position in the directory stream. A pointer to this structure is also
returned in the location specified by the result argument. This location
will contain NULL upon reaching the end of the directory stream. Like
readdir it positions the directory stream at the next entry upon return.

 Prototype

int readdir_r (DIR *dirp, struct dirent *entry, struct dirent

**result)

VisualDSP++ 5.0 Device Drivers and System 12-75
Services Manual for Blackfin Processors

File System Service

rewinddir

Description

The rewinddir() function rewinds the specified directory.

Prototype

void rewinddir (DIR *dirp)

Result Codes

12-76 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

seekdir

Description

The seekdir() function sets the position of the next readdir() operation
on the directory stream specified by dirp to the position specified by loc.

Prototype

void seekdir (DIR *dirp, long loc);

VisualDSP++ 5.0 Device Drivers and System 12-77
Services Manual for Blackfin Processors

File System Service

telldir

Description

The telldir() function obtains the current location associated with the
specified directory stream.

Prototype

long telldir (DIR *dirp);

Result Codes

12-78 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

mkdir

Description

The mkdir() function creates the specified directory. The mode argument
is ignored by the FSS.

Prototype

int mkdir (const char *path, mode_t mode)

VisualDSP++ 5.0 Device Drivers and System 12-79
Services Manual for Blackfin Processors

File System Service

rmdir

Description

The rmdir() utility deletes the specified directory.

Prototype

int rmdir (const char *path);

Result Codes

12-80 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

rename

Description

The rename() function renames the file from _oldnm to _newnm.

Prototype

int rename (const char *_oldnm, const char *_newnm);

VisualDSP++ 5.0 Device Drivers and System 12-81
Services Manual for Blackfin Processors

File System Service

remove

Description

The remove() function removes the specified file.

Prototype

int remove (const char *_filename);

Extensibility

12-82 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Extensibility
The file system service supports a straightforward and simple approach to
the insertion of additional or replacement drivers, to support different file
systems (FSDs) to interpret the media attached to new or existing physical
interfaces (PIDs).

New device drivers for insertion into the FSS must conform to either the
FSD or PID design documents supplied with VisualDSP++ 5.0:

Blackfin\docs\drivers\fsd\Generic_FSD_Design_Document.pdf,

Blackfin\docs\drivers\pid\Generic_PID_Design_Document.pdf,

These documents detail how the drivers interface with the other compo-
nents of the file system service framework.

Once created, the driver is directly available for incorporation within the
FSS. All that is required is to declare an ADI_FSS_DEVICE_DEF structure
(and accompanying configuration table if required) and register it with the
FSS via the ADI_FSS_CMD_ADD_DRIVER command:

 { ADI_FSS_CMD_ADD_DRIVER,(void*)&<Device-Def-Structure> },

The details of the ADI_FSS_DEVICE_DEF structure are described in “File
System Service API Data Types and Enumerations” on page 12-52.

Examples
Included with VisualDSP++ 5.0 are some examples to demonstrate how
the FSS is configured and how it can be used. As examples, their scope of
operation has been purposely limited; please employ caution when using
them as a basis for your own applications. The examples described in this
section are all specific to the ADSP-BF548 EZ-KIT Lite development
board. Similar examples may exist for the ADSP-BF527 EZ-KIT Lite

VisualDSP++ 5.0 Device Drivers and System 12-83
Services Manual for Blackfin Processors

File System Service

development board but will use only the USB host mass storage interface
to access USB flash drives.

Three examples are included. The first (HardDiskAccess) shows how to get
started with the file system service. The second (HardDiskFormat) is
somewhat more complex and demonstrates how to use the constituent
drivers away from the FSS in order to format the hard disk drive,
especially if it has never been formatted previously. The final example
(Shell_Browser) is a multi-threaded, VDK-based application demonstrat-
ing the use of the file system service within a multi-threaded,
multi-peripheral environment.

HardDiskAccess
This simple program (the Hello World of the FSS) demonstrates the basic
configuration of the file system service and its use.

Description

This example program performs the following operations:

1. Shows the characteristics of the FAT partition.

2. Creates a sub-directory on a hard disk.

3. Moves to that directory.

4. Creates a file in that directory.

5. Lists the contents of that directory.

6. Performs a checksum operation on the created file and displays the
results.

7. Removes that file.

8. Moves back to the root directory.

Examples

12-84 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

9. Removes the sub-directory.

10.Exits the program.

This program assumes an attached hard drive that has been previously for-
matted as a single FAT partition. The file created is filled with known data
and the checksum operation checks against a previously-calculated
checksum value to ensure data integrity. Please note that the timestamps
of the created files may appear arbitrary. This is due to the fact that the
real-time clock (RTC) may have not been set yet. See the Shell_Browser
application for details of setting the RTC.

Configuration

The HardDiskAccess example initializes the FSS for:

• Two cache blocks per file

• The ATA/ATAPI driver

• The FAT file system

Configuration is performed in the InitfileSystem.c file with a call to
adi_fss_Init() by passing it the address of the adi_fss_config array.
Then, the FSS system is added to the C runtime library device table.
When configured, the FSS service becomes the default for file access via
the standard I/O interface.

HardDiskFormat
This program is used to format the attached hard disk as a single, 32GB
FAT 32 partition. This example is only relevant to the ADSP-BF548
EZ-KIT Lite development board.

VisualDSP++ 5.0 Device Drivers and System 12-85
Services Manual for Blackfin Processors

File System Service

Description

This example program is a simple, standalone application that initializes
the SSL, loads the ATAPI PID, attaches to the ATAPI hard disk, formats
the disk, and then exits.

Configuration

The application only initializes the FSS in as far as establishing the general
heap index, for memory allocation within the drivers. Otherwise, both the
ATAPI PID and FAT FSD drivers are configured and accessed directly to
format the partition and create the master boot record (MBR).

Shell_Browser
This application provides a simple shell interface to the file system service
to navigate the media available and perform certain operations such as dis-
playing a slideshow of bitmap files to the LCD attached to the
ADSP-BF548 EZ-KIT Lite.

Description

This example program uses three threads—a communication thread to
interface with an I/O console connected to the UART interface, an image
display thread to view images on the LCD panel, and a command thread
to control the application and perform non-image related file tasks. The
communication thread collects the input from the I/O console and passes
it to the command thread. The image display thread takes an image file or
a list of image files and displays the images to the LCD panel. The com-
mand thread interprets the input commands and performs the required
actions. A full list of the commands supported is available by typing
“help” or “?”. Likewise, the syntax of any individual command can be
obtained by typing the command followed by -h. For example, rmdir -h
lists the syntax and purpose of the command.

Examples

12-86 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Since the example consists of three separate threads, the order of initializa-
tion and interoperability is important. The command thread performs the
initialization of the system services prior to the other threads being exe-
cuted. The image display thread and the console thread are reliant on the
fact that all required system services have been initialized already.

Configuration

The Shell_Browser sets up the FSS for:

• Two cache blocks per file

• The ATA/ATAPI driver

• The SD card driver

• The USB host mass storage driver

• The FAT file system

• The UART device driver for data transmission

When the example is running, it:

• Registers the UART console driver to be used for stdin and stdout

• Initializes the image viewer LCD driver

• Starts the image viewer thread

Once all three threads are running, the program is ready to accept key-
board input and perform the input operations. Note that the Shell_
Browser application makes extensive use of most of the different system
services to perform its operations. Its utility is not limited to simply show-
ing the operation of the file system service, but extends to giving an
example of the use of system services and device drivers, and the FSS in
particular, in a threaded environment.

VisualDSP++ 5.0 Device Drivers and System 12-87
Services Manual for Blackfin Processors

File System Service

Please note that the timestamps of any created files may appear arbitrary.
This is due to the fact that the real-time clock (RTC) may have not been
set yet. This can be achieved using the date command. For example, to set
the date to 2:30 P.M. on Monday, September 17, 2007, enter the follow-
ing at the prompt: date mon 091714302007. Enter 'date -h' for full usage
details.

Examples

12-88 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 13-1
Services Manual for Blackfin Processors

13 PULSE-WIDTH MODULATION

This chapter describes the pulse-width modulation (PWM) service, which
provides the application with an easy-to-use interface to the PWM con-
troller, featured on some Blackfin processors.

This chapter contains:

• “Introduction” on page 13-2

• “Operation” on page 13-2

• “PWM Service API Functions” on page 13-27

• “PWM Service API Data Types and Enumerations” on page 13-34

• “Interdependencies” on page 13-52

Introduction

13-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The system services pulse-width modulation (PWM) service facilitates
control over the programmable, pulse-width modulation unit, which gen-
erates waveforms to drive a three-phase voltage source inverter, for use in
motor control applications.

A single PWM is featured on the ADSP-BF512/514/516/518 family of
Blackfin processors. Two identical PWM modules are featured on the
ADSP-BF50/504F/506F Blackfin family.

This chapter is devoted entirely to the use of the system services PWM ser-
vice in software applications. Further details of the PWM module
hardware are available in the ADSP-BF50x and ADSP-BF51x Blackfin Pro-
cessor Hardware Reference manuals.

The debug version of the system services library provides parameter check-
ing for a more complete test of the API function parameters and other
error conditions. Analog Devices strongly recommends that development
work be done using the debug versions of the system service library, and
that final test and deployment be done with the release version of the
library.

Operation
This section describes the basic features and overall operation of the PWM
service. Details on the application programming interface (API) can be
found later in this chapter.

Initialization
Prior to using the PWM service, the application must initialize the service
by calling the PWM initialization function, adi_pwm_Init.

VisualDSP++ 5.0 Device Drivers and System 13-3
Services Manual for Blackfin Processors

Pulse-Width Modulation

In the presence of two PWMs, adi_pwm_Init is called once, with separate
command pairs for each PWM. No command pairs should be passed for
an unused PWM. The commands and their associated values are selected
from the predefined enumerations and data structures described within
this chapter, all of which begin with the ADI_PWM_ prefix. When it is neces-
sary to identify which PWM a command or value is intended for, an
optional 0 or 1 is appended after the prefix, documented as
ADI_PWM(x)_ , where the “x” represents the optional PWM number.

For each enabled PWM, certain parameters must be passed to the initial-
ization function, which the PWM service uses to set the associated values
in the PWM memory-mapped registers (MMRs). The required parameters
are:

• Port mux mapping for each signal (primary or secondary)

• Period of synchronization pulse

• Width of synchronization pulse (must be > 2 system clock periods)

• Dead time inserted after the “ideal” output pair

• Duty cycle for each channel pair

• Enable status for each individual channel or for all channels

• Polarity of all output signals

• Operating mode of the PWM (single update or double update)

Operation

13-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

There are additional optional configuration parameters which may be
passed to either the initialization function, or the PWM control function,
adi_pwm_Control. These optional parameters are:

• Sync pulse on output pin. The synchronization pulse signal may
be generated on an output pin. This behavior is disabled by
default, and may be enabled or disabled by passing a command
with an argument which specifies either enable or disable.

• Internal or external sync pulse. The synchronization pulse is gen-
erated internally, by default, as a function of the PWM
synchronization pulse width and frequency. The PWM may be
programmed to expect the synchronization pulse from an external
source, appearing on an input pin. This allows multiple PWMs to
share a synchronization pulse from the same external source.

• Synchronous or asynchronous external sync pulse. By default, an
externally supplied synchronization pulse is synchronous to the
internal system clock, but a command may be passed to change the
external pulse to asynchronous.

• IVG levels. IVG10 is the default assignment of the two PWM
interrupting signals, trip and sync. A command may be passed to
change the IVG of either interrupt signal, to avoid any possible
IVG sharing conflicts within the application.

• Switch reluctance. This mode is disabled by default but may be
enabled or disabled by passing a command, with an argument
which specifies enable or disable.

• Channel crossover mode. This mode, disabled by default, can be
enabled or disabled by passing a command with an argument spec-
ifying the channel pair (A, B, or C) and the desired state (enable or
disable). When crossover is enabled, the two signals of the specified
PWM channel pair are swapped, so that the PWM signal destined
for the high-side switch is diverted to the complementary low-side
output, and vice versa.

VisualDSP++ 5.0 Device Drivers and System 13-5
Services Manual for Blackfin Processors

Pulse-Width Modulation

• Gate chopping mode. This mode, disabled by default, may be
enabled or disabled by passing a command with an argument spec-
ifying the desired state (enable or disable). With gate chopping
enabled, the output signals may be mixed with a high-frequency
chopping signal. Chopping may be independently enabled for the
high-side and low-side outputs, using two separate commands.

• Trip input signal. The trip input signal may be permanently dis-
abled in the hardware by a pull-up resistor. Generally, the trip
input signal is enabled by default, and may be enabled or disabled
by passing a command with an argument specifying either “enable”
or “disable”.

Commands to enable or disable the trip and sync interrupt signals should
not be passed to the adi_pwm_Init function. These interrupts are
automatically disabled during the initialization phase, and any pending
trip and sync interrupt signals are cleared.

The initialization function saves the trip and sync interrupt vector group
(IVG) assignments for future reference. It calls the interrupt manager ser-
vice to hook the PWM trip and PWM sync interrupt handlers, which
service the trip and sync interrupts.

When built for debug mode, the initialization function verifies that all
required initialization parameters have been passed in and processed, for
each enabled PWM, before it sets a PWM initialization flag, which then
tells the other PWM service API functions that PWM initialization has
been successfully completed. The initialization function returns an error
result code to the caller, in debug mode, if not all of the required parame-
ters were passed in. If a PWM API function is called while the PWM
initialization flag is not set, an error result code will be returned to the
caller.

Once initialization has been successfully completed, the application may
install callbacks (see Callbacks) for the trip and sync events on each
enabled PWM (see PWM Events) by calling adi_pwm_InstallCallback.

Operation

13-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

 Beginning with VisualDSP++ 5.0 Update 8, the adi_pwm_Init
function no longer enables the PWM unit. The PWM hardware
should be enabled after callbacks have been installed, by passing
the ADI_PWM_CMD_SET_PWM_ENABLE command to the adi_pwm_Con-
trol function.

In the presence of multiple PWMs, there is one trip event and one
sync event for each PWM.

The interrupt for the trip event is not enabled until either a callback is
installed for the trip event, or the ADI_PWM_CMD_SET_TRIP_INT_ENABLE
command is passed to the adi_pwm_Control function, with the value
ADI_PWM(x)_ENABLE argument.

The interrupt for the sync event is not enabled until either a callback is
installed for the sync event or the ADI_PWM_CMD_SET_SYNC_INT_ENABLE
command is passed to the adi_pwm_Control function, with the value
ADI_PWM(x)_ENABLE argument.

Before initializing the PWM service, the application should initialize the
interrupt manager by calling adi_pwm_Init. Because PWM signals are
multiplexed, the port control manager service must be initialized by call-
ing adi_ports_Init(). If callbacks are to be deferred, rather than “live”,
then the deferred callback (DCB) manager should also be initialized by
calling adi_dcb_Init().

Termination
When the application no longer requires the use of PWM service, it calls
the termination function, adi_pwm_Terminate. The termination function
disables the PWM interrupts, unhooks the PWM interrupt handler, unin-
stalls any callbacks (see Callbacks) which had been installed by the
application, cleans up any statically-defined data structures used by the
PWM service, and clears the PWM service initialization flag, so that
PWM API functions may no longer be called.

VisualDSP++ 5.0 Device Drivers and System 13-7
Services Manual for Blackfin Processors

Pulse-Width Modulation

PWM Events
The PWM service provides a mechanism for allowing certain events to be
serviced at the interrupt level during regular program execution. Each
event is identified by a unique Event ID that is defined in the include file
adi_pwm.h. The application may provide a separate callback function to
handle each event individually, or it may provide a single callback to han-
dle all the events. The PWM service provides the mechanism for installing
and removing callbacks (see Callbacks), and for invoking a callback when
the appropriate conditions are met. The PWM service supports two
external asynchronous events for each PWM: trip and synchronization.
Each of these events can be configured to generate an interrupt to the
core. The application enables an event by calling the adi_pwm_Install-
Callback function, passing the appropriate Event ID.

Trip Signal Event

The application may enable the trip event to generate an interrupt by call-
ing the adi_pwm_InstallCallback function, passing the argument
ADI_PWM(x)_EVENT_TRIP. The trip input is an emergency fault condition,
which automatically shuts down the PWM, placing all six PWM channels
in the OFF state. Passing the ADI_PWM_CMD_SET_TRIP_INT_ENABLE com-
mand to the adi_pwm_Control function, with the command argument
ADI_PWM(x)_ENABLE, causes the trip event to generate an interrupt with no
callback.

Synchronization Pulse Event

The application may enable a periodic synchronization (or sync) interrupt
to occur on the rising edge of the synchronization pulse for each PWM.
This interrupting event is enabled by passing the argument
ADI_PWM(x)_EVENT_SYNC to the adi_pwm_InstallCallback function. Pass-
ing the ADI_PWM_CMD_SET_SYNC_INT_ENABLE command to the adi_pwm_
Control function, with the command argument ADI_PWM(x)_ENABLE,
causes the sync event to generate an interrupt with no callback.

Operation

13-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The period of the sync pulse is set by passing the ADI_PWM_CMD_
SET_PERIOD command to the adi_pwm_Init function. The sync pulse
is available for external use by passing the ADI_PWM_CMD_SET_SYNC_OUT_
ENABLE command. The width of the pulse is programmed by passing the
command ADI_PWM_CMD_SET_SYNC_PULSE_WIDTH.

By default, the sync pulse is internally generated. The command ADI_PWM_
CMD_SET_SYNC_SOURCE may be passed to tell the PWM service that the
pulse is generated externally. The command ADI_PWM_CMD_SET_SYNC_
SELECT should also be passed to specify whether the externally-generated
sync pulse is synchronous or asynchronous to the internal clock.

In single update mode, a synchronization event occurs at the beginning of
each period. In double update mode, the event occurs at both the begin-
ning and at the mid-point of each period, so two sync events happen in
each period. The command, ADI_PWM_CMD_GET_PHASE, can be passed to the
adi_pwm_Control function to determine whether the sync event signifies
the first half or the second half of the PWM cycle.

Typically, the application installs a callback for the synchronization event,
for the purpose of triggering an ADC to sample data, and possibly for
updating the three PWM channel duties, according to the control algo-
rithm performed on the sampled data.

This event stays enabled and periodic interrupts continue to occur, until
the application disables the event by passing the argument ADI_PWM(x)_
EVENT_SYNC to the adi_pwm_RemoveCallback function, or by passing the
command ADI_PWM_CMD_SET_TRIP_INT_ENABLE, with the command argu-
ment ADI_PWM(x)_DISABLE, to the adi_pwm_Control function.

Callbacks
The application may enable and process any of the PWM events, by
installing a callback to handle the event. The callback is executed when-
ever the associated event occurs. A separate callback function may handle
each event, or a single callback function may handle all of the PWM

VisualDSP++ 5.0 Device Drivers and System 13-9
Services Manual for Blackfin Processors

Pulse-Width Modulation

events. Unless a callback is deferred, it is executed from within the inter-
rupt service routine, by the PWM trip interrupt handler, or PWM sync
interrupt handler, which are internal to the PWM service.

The PWM service provides the functions to install the callbacks, the func-
tions to remove the callbacks, and the interrupt handlers which invoke the
callbacks. The application provides the callback functions, which control
how each event is processed. The application may also provide an optional
data structure, comprised of event-specific information, that is passed to
the callback function from the PWM service trip and sync interrupt
handlers.

Installing a Callback

To install callback functionality for one of the PWM events, the applica-
tion simply calls the API function adi_pwm_InstallCallback passing the
Event ID for the event to be processed by the callback, and the name of
the callback function. The PWM service maintains a callback table with
an entry for each event. When a callback is installed, the entry for the
event is updated to point to the callback function. The PWM is config-
ured so that the event triggers an interrupt, and the interrupt manager
service is configured to unmask the interrupt in the core event controller
(CEC) register, if it had not already been enabled.

An optional data structure called ClientHandle may be passed, which con-
tains information to be stored in the callback table and passed to the
callback, when it occurs.

Removing a Callback

The application may disable the processing of an event by passing the
EventID as a parameter to the adi_pwm_RemoveCallback function. This
function removes the entry for that event from the callback table and calls
upon the interrupt manager service to disable the interrupt for the event.
The event may be enabled to interrupt, without executing a callback, by
passing the appropriate command ADI_PWM_CMD_SET_TRIP_INT_ENABLE or

Operation

13-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWM_CMD_SET_SYNC_INT_ENABLE, with the argument ADI_PWM(x)_
ENABLE.

The PWM Service Interrupt Handlers

The PWM service has an interrupt handler for each of the PWM events:
trip (for each PWM) and sync (for each PWM). The handlers are hooked
into the interrupt manager’s chain for the associated interrupt vector
group (IVG). Note the difference between the following three types of
functions.

1. Interrupt handler. This is defined inside the PWM service to pro-
cess PWM events.

2. Interrupt service routine (ISR). This is defined inside of the inter-
rupt manager, to service an interrupting event. The interrupt
manager’s ISR executes the PWM interrupt handlers as well as any
other handlers that are hooked into the chain for the same IVG.

3. Callback function. When the ISR calls a PWM trip or sync handler
function, the handler executes any live callbacks it finds in the call-
back table, passing the ClientHandle parameter which is also
stored in the callback table entry. If callbacks are deferred, the han-
dler posts the callbacks to the deferred callback service.

The PWM sync interrupt handler checks to see if the sync interrupt signal
is active. In the presence of multiple PWMs, there is a sync handler for
each PWM, which also verifies that the sync interrupt is active for the
correct PWM. It then checks the callback table entry for that event, to
find the address of the callback, plus other event-specific information. The
handler executes the callback, passing the other information that it finds
in the callback list entry for the event. When the callback is complete, it
returns to the PWM sync interrupt handler, which returns control to the
interrupt manager.

VisualDSP++ 5.0 Device Drivers and System 13-11
Services Manual for Blackfin Processors

Pulse-Width Modulation

The PWM trip interrupt handler checks to see if the trip interrupt signal
is active. In the presence of multiple PWMs, there is a trip handler for
each PWM, which also verifies that the trip interrupt is active for the cor-
rect PWM. It then checks the callback table entry for that event, to find
the address of the callback, plus other event-specific information. The
handler executes the callback, passing the other information that it finds
in the callback list entry for the event. When the callback is complete, it
returns to the PWM trip interrupt handler, which returns control to the
interrupt manager.

Using the ClientHandle Parameter in a Callback

An optional data structure called ClientHandle is passed as an argument
to the adi_pwm_InstallCallback function. This user-defined structure
contains event-specific information to be stored in the callback table
entry. When the event occurs, the interrupt manager executes the PWM
service interrupt handler. The interrupt handler uses the callback table to
find the address of the callback and the ClientHandle information that it
must pass to the callback.

Programming Examples
A complete PWM service coding example is included in the VisualDSP++
installation. The example, which generates a 50 Hz, 3-phase sine wave,
demonstrates the proper initialization of the PWM service, the calculation
of dead time, sync pulse period, and sync pulse width, based on a desired
fundamental frequency and the system clock (SCLK). It demonstrates the
installation of a sync pulse callback, which occurs periodically to modify
the duties for each channel.

The following sections contain code samples which demonstrate the cor-
rect usage of the PWM commands in an application.

Operation

13-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

 In the ADI_PWM(x)_ prefix, the “x” in parentheses indicates an
optional PWM number. It should be replaced by a 0 or 1 for the
ADSP-BF50x family (ADI_PWM0_ or ADI_PWM1_). For the
ADSP-BF51x family it should be removed, as there is only one
PWM, (ADI_PWM_).

Initialization – Command-Pair Table

Listing 13-1 and Listing 13-2 show command-pair tables of required com-
mands, which must be passed to the PWM initialization function for
proper PWM functionality. Listing 13-1 is for the ADSP-BF51x Blackfin
family, which has one PWM. Listing 13-2 is for the ADSP-BF50x Black-
fin family, which has two PWMs. Optional commands, which may be
passed here or in later calls to the adi_pwm_Control function, are
described in the sub-sections which follow.

 For more information on the command-pair structure data type,
see “ADI_PWM_NUMBER” on page 13-46.

Please refer to the sine wave example in the VisualDSP++ installation for
information on calculating the values for PWM_SyncPeriod, PWM_SyncWidth,
and PWM_DeadTime.

Listing 13-1. Command-Pair Table Initialization for the ADSP-BF51x

/* Populate an ADI_PWM_CHANNEL_STATUS structure to enable all

three channels at once */

ADI_PWM_CHANNEL_STATUS pwm_EnableALL_struct =

{ADI_PWM_CHANNEL_ALL, ADI_PWM_ENABLE};

/* Populate three ADI_PWM_CHANNEL_DUTY_CYCLE structures to set

the duty cycles for the three individual channel pairs (0 = 50%

duty cycle) */

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm_dutyA_struct =

{ADI_PWM_CHANNEL_A, 0};

VisualDSP++ 5.0 Device Drivers and System 13-13
Services Manual for Blackfin Processors

Pulse-Width Modulation

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm_dutyB_struct =

{ADI_PWM_CHANNEL_B, 0};

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm_dutyC_struct =

{ADI_PWM_CHANNEL_C, 0};

/* Define a port mux mapping table using all primary

mux signals */

 ADI_PWM_PORT_MAP pwm_PortMuxMap =

 {

ADI_PWM_MUX_PRI,

ADI_PWM_MUX_PRI,

ADI_PWM_MUX_PRI,

ADI_PWM_MUX_PRI,

ADI_PWM_MUX_PRI,

ADI_PWM_MUX_PRI,

ADI_PWM_MUX_PRI,

ADI_PWM_MUX_PRI,

 };

 ADI_PWM_COMMAND_PAIR PwmInitTable[] =

 {

/* required initialization commands */

{ADI_PWM_CMD_SET_PORT_MUX, (void*) &pwm_PortMuxMap},

{ADI_PWM_CMD_SET_PERIOD, (void*) PWM_SyncPeriod},

{ADI_PWM_CMD_SET_SYNC_PULSE_WIDTH, (void*) PWM_SyncWidth},

{ADI_PWM_CMD_SET_DEAD_TIME, (void*) PWM_DeadTime},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm_dutyA_struct},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm_dutyB_struct},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm_dutyC_struct},

{ADI_PWM_CMD_SET_CHANNEL_ENABLE, (void*) &pwm_EnableALL_struct},

{ADI_PWM_CMD_SET_POLARITY, (void*) ADI_PWM_POLARITY_HIGH},

{ADI_PWM_CMD_SET_UPDATE_MODE, (void*) ADI_PWM_DOUBLE_UPDATE },

/* indicate the last command of the table */

Operation

13-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

{ADI_PWM_CMD_END, (void*)0 }

};

/* Initialize PWM service */

Result = adi_pwm_Init(PwmInitTable, (void*)NULL);

Listing 13-2. Command-Pair Table Initialization for the ADSP-BF50x

/* This structure enables all channels for PWM0 */

ADI_PWM_CHANNEL_STATUS pwm_EnablePWM0_struct =

{ADI_PWM_CHANNEL_ALL, ADI_PWM0_ENABLE};

/* This structure enables all channels for PWM1 */

ADI_PWM_CHANNEL_STATUS pwm_EnablePWM1_struct =

{ADI_PWM_CHANNEL_ALL, ADI_PWM1_ENABLE};

/* Populate the three structures to set the duty cycles for the

three channels on PWM0 (0 = 50% duty cycle) */

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm0_dutyA_struct =

{ADI_PWM_0, ADI_PWM_CHANNEL_A, 0};

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm0_dutyB_struct =

{ADI_PWM_0, ADI_PWM_CHANNEL_B, 0};

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm0_dutyC_struct =

{ADI_PWM_0, ADI_PWM_CHANNEL_C, 0};

VisualDSP++ 5.0 Device Drivers and System 13-15
Services Manual for Blackfin Processors

Pulse-Width Modulation

/* Populate the three structures to set the duty cycles for the

three channels on PWM1 (0 = 50% duty cycle) */

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm1_dutyA_struct =

{ADI_PWM_1, ADI_PWM_CHANNEL_A, 0};

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm1_dutyB_struct =

{ADI_PWM_1, ADI_PWM_CHANNEL_B, 0};

 ADI_PWM_CHANNEL_DUTY_CYCLE pwm1_dutyC_struct =

{ADI_PWM_1, ADI_PWM_CHANNEL_C, 0};

/* Define a port mux mapping table using all primary

mux signals */

 ADI_PWM_PORT_MAP pwm_PortMuxMap =

 {

ADI_PWM_MUX_PRI, //AH_0_MUX:1;

ADI_PWM_MUX_PRI, //AL_0_MUX:1;

ADI_PWM_MUX_PRI, //BH_0_MUX:1;

ADI_PWM_MUX_PRI, //BL_0_MUX:1;

ADI_PWM_MUX_PRI, //CH_0_MUX:1;

ADI_PWM_MUX_PRI, //CL_0_MUX:1;

ADI_PWM_MUX_PRI, //SYNC_0_MUX:1;

ADI_PWM_MUX_PRI, //TRIP_0_MUX:1;

ADI_PWM_MUX_PRI, //AH_1_MUX:1;

ADI_PWM_MUX_PRI, //AL_1_MUX:1;

ADI_PWM_MUX_PRI, //BH_1_MUX:1;

ADI_PWM_MUX_PRI, //BL_1_MUX:1;

ADI_PWM_MUX_PRI, //CH_1_MUX:1;

ADI_PWM_MUX_PRI, //CL_1_MUX:1;

ADI_PWM_MUX_PRI, //SYNC_1_MUX:1;

ADI_PWM_MUX_PRI, //TRIP_1_MUX:1;

 };

Operation

13-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

 ADI_PWM_COMMAND_PAIR PWMInitTable[] =

 {

/* required initialization commands */

{ADI_PWM_CMD_SET_PORT_MUX, (void*) &pwm_PortMuxMap},

{ADI_PWM_CMD_SET_PERIOD, (void*) &pwm0_SyncPeriod},

{ADI_PWM_CMD_SET_PERIOD, (void*) &pwm1_SyncPeriod},

{ADI_PWM_CMD_SET_SYNC_PULSE_WIDTH, (void*) &pwm0_SyncWidth},

{ADI_PWM_CMD_SET_SYNC_PULSE_WIDTH, (void*) &pwm1_SyncWidth},

{ADI_PWM_CMD_SET_DEAD_TIME, (void*) &pwm0_DeadTime},

{ADI_PWM_CMD_SET_DEAD_TIME, (void*) &pwm1_DeadTime},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm0_dutyA_struct},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm0_dutyB_struct},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm0_dutyC_struct},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm1_dutyA_struct},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm1_dutyB_struct},

{ADI_PWM_CMD_SET_DUTY_CYCLE, (void*) &pwm1_dutyC_struct},

{ADI_PWM_CMD_SET_CHANNEL_ENABLE, (void*)&pwm_EnablePWM0_struct},

{ADI_PWM_CMD_SET_CHANNEL_ENABLE, (void*)&pwm_EnablePWM1_struct},

{ADI_PWM_CMD_SET_POLARITY, (void*) ADI_PWM0_POLARITY_HIGH},

{ADI_PWM_CMD_SET_POLARITY, (void*) ADI_PWM1_POLARITY_HIGH},

{ADI_PWM_CMD_SET_UPDATE_MODE, (void*) ADI_PWM0_DOUBLE_UPDATE },

{ADI_PWM_CMD_SET_UPDATE_MODE, (void*) ADI_PWM1_DOUBLE_UPDATE },

VisualDSP++ 5.0 Device Drivers and System 13-17
Services Manual for Blackfin Processors

Pulse-Width Modulation

/* OPTIONAL – Change the IVG num of PWM0 and PWM1 */

{ADI_PWM_CMD_SET_SYNC_IVG, (void*) &pwm0_SYNCIVG_struct },

{ADI_PWM_CMD_SET_TRIP_IVG, (void*) &pwm0_TRIPIVG_struct },

{ADI_PWM_CMD_SET_SYNC_IVG, (void*) &pwm1_SYNCIVG_struct },

{ADI_PWM_CMD_SET_TRIP_IVG, (void*) &pwm1_TRIPIVG_struct },

/* indicate the last command of the table */

{ADI_PWM_CMD_END, (void*)0 }

};

Set Switch Reluctance

Listing 13-3 enables or disables the switch reluctance mode. This com-
mand may be passed to adi_pwm_Control or it may appear in a
command-pair table to be passed to adi_pwm_Init.

Listing 13-3. Switch Reluctance Mode – Enable/Disable

/* To enable switch reluctance mode */

adi_pwm_Control(ADI_PWM_CMD_SET_SWITCH_RELUCTANCE,

ADI_PWM(x)_ENABLE);

/* To disable switch reluctance mode */

adi_pwm_Control(ADI_PWM_CMD_SET_SWITCH_RELUCTANCE,

ADI_PWM(x)_DISABLE);

Operation

13-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Crossover

Listing 13-4 enables or disables crossover mode on each channel pair.

Listing 13-4. Crossover Mode – Enable/Disable

/* structures to disable or enable crossover for each channel

pair */

ADI_PWM_CHANNEL_STATUS pwm_CrossA_struct =

{ADI_PWM_CHANNEL_A, ADI_PWM(x)_DISABLE};

ADI_PWM_CHANNEL_STATUS pwm_CrossB_struct =

{ADI_PWM_CHANNEL_B, ADI_PWM(x)_ENABLE};

ADI_PWM_CHANNEL_STATUS pwm_CrossC_struct =

{ADI_PWM_CHANNEL_C, ADI_PWM(x)_ENABLE};

ADI_PWM_COMMAND_PAIR PwmCrossoverTable[] =

{

 {ADI_PWM_CMD_SET_CROSSOVER, (void*) &pwm_CrossA_struct},

 {ADI_PWM_CMD_SET_CROSSOVER, (void*) &pwm_CrossB_struct},

 {ADI_PWM_CMD_SET_CROSSOVER, (void*) &pwm_CrossC_struct}

};

adi_pwm_Control(PwmCrossoverTable);

Gate Chopping

Listing 13-5 sets gate chopping frequency, and enables or disables gate
chopping on the high or low sides.

Listing 13-5. Gate Chopping Commands

/* Command to Set Gate Chopping Frequency for BF51x Family */

adi_pwm_Control(ADI_PWM_CMD_SET_GATE_CHOPPING_FREQ,

(void*) 0x30);

VisualDSP++ 5.0 Device Drivers and System 13-19
Services Manual for Blackfin Processors

Pulse-Width Modulation

/* Command to Set Gate Chopping Frequency for BF50x Family */

ADI_PWM_NUMBER_AND_VALUE pwm0ChopFreq = { ADI_PWM_0, 0x30 };

adi_pwm_Control(ADI_PWM_CMD_SET_GATE_CHOPPING_FREQ,

(void*) &pwm0ChopFreq);

/* command to enable gate chopping on low side */

adi_pwm_Control(ADI_PWM_CMD_SET_GATE_ENABLE_LOW,

ADI_PWM(x)_ENABLE);

/* command to enable gate chopping on high side */

adi_pwm_Control(ADI_PWM_CMD_SET_GATE_ENABLE_HIGH,

ADI_PWM(x)_ENABLE);

Channel Enable/Disable (Individual)

Listing 13-6 enables or disables individual channels.

Listing 13-6. Individual Channel – Enable/Disable

/* ADI_PWM_CHANNEL_STATUS structures used to enable the channels

individually */

ADI_PWM_CHANNEL_STATUS pwm_EnableAH_struct =

{ADI_PWM_CHANNEL_AH, ADI_PWM(x)_ENABLE};

ADI_PWM_CHANNEL_STATUS pwm_EnableBH_struct =

{ADI_PWM_CHANNEL_BH, ADI_PWM(x)_ENABLE};

ADI_PWM_CHANNEL_STATUS pwm_EnableCH_struct =

{ADI_PWM_CHANNEL_CH, ADI_PWM(x)_ENABLE};

ADI_PWM_CHANNEL_STATUS pwm_EnableAL_struct =

{ADI_PWM_CHANNEL_AL, ADI_PWM(x)_ENABLE};

ADI_PWM_CHANNEL_STATUS pwm_EnableBL_struct =

{ADI_PWM_CHANNEL_BL, ADI_PWM(x)_ENABLE};

ADI_PWM_CHANNEL_STATUS pwm_EnableCL_struct =

{ADI_PWM_CHANNEL_CL, ADI_PWM(x)_ENABLE};

Operation

13-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

/* ADI_PWM_CHANNEL_STATUS structures used to disable the channels

individually */

ADI_PWM_CHANNEL_STATUS pwm_DisableAH_struct =

{ADI_PWM_CHANNEL_AH, ADI_PWM(x)_DISABLE};

ADI_PWM_CHANNEL_STATUS pwm_DisableBH_struct =

{ADI_PWM_CHANNEL_BH, ADI_PWM(x)_DISABLE};

ADI_PWM_CHANNEL_STATUS pwm_DisableCH_struct =

{ADI_PWM_CHANNEL_CH, ADI_PWM(x)_DISABLE};

ADI_PWM_CHANNEL_STATUS pwm_DisableAL_struct =

{ADI_PWM_CHANNEL_AL, ADI_PWM(x)_DISABLE};

ADI_PWM_CHANNEL_STATUS pwm_DisableBL_struct =

{ADI_PWM_CHANNEL_BL, ADI_PWM(x)_DISABLE};

ADI_PWM_CHANNEL_STATUS pwm_DisableCL_struct =

{ADI_PWM_CHANNEL_CL, ADI_PWM(x)_DISABLE};

/* Command-Pair Table to enable channel pairs A and B,

disable C */

ADI_PWM_COMMAND_PAIR ChannelEnableTable[] =

{

 {ADI_PWM_CMD_SET_CHANNEL_ENABLE,

(void*) &pwm_EnableAH_struct},

 {ADI_PWM_CMD_SET_CHANNEL_ENABLE,

(void*) &pwm_EnableBH_struct},

 {ADI_PWM_CMD_SET_CHANNEL_ENABLE,

(void*) &pwm_DisableCH_struct},

 {ADI_PWM_CMD_SET_CHANNEL_ENABLE,

(void*) &pwm_EnableAL_struct},

 {ADI_PWM_CMD_SET_CHANNEL_ENABLE,

(void*) &pwm_EnableBL_struct},

 {ADI_PWM_CMD_SET_CHANNEL_ENABLE,

(void*) &pwm_DisableCL_struct},

};

adi_pwm_Control(ChannelDisableTable);

VisualDSP++ 5.0 Device Drivers and System 13-21
Services Manual for Blackfin Processors

Pulse-Width Modulation

Low Side Invert

Listing 13-7 enables or disables low side invert.

Listing 13-7. Low Side Invert – Enable/Disable

/* ADI_PWM_CHANNEL_STATUS structures used to enable low side

invert for individual channel pairs */

ADI_PWM_CHANNEL_STATUS pwm_lsi_A_Enable =

{ADI_PWM_CHANNEL_A, ADI_PWM(x)_ENABLE};

ADI_PWM_CHANNEL_STATUS pwm_lsi_B_Enable =

{ADI_PWM_CHANNEL_B, ADI_PWM(x)_ENABLE};

ADI_PWM_CHANNEL_STATUS pwm_lsi_C_Enable =

{ADI_PWM_CHANNEL_C, ADI_PWM(x)_ENABLE};

/* ADI_PWM_CHANNEL_STATUS structures used to disable low side

invert for individual channel pairs */

ADI_PWM_CHANNEL_STATUS pwm_lsi_A_Disable =

{ADI_PWM_CHANNEL_A, ADI_PWM(x)_DISABLE};

ADI_PWM_CHANNEL_STATUS pwm_lsi_B_Disable =

{ADI_PWM_CHANNEL_B, ADI_PWM(x)_DISABLE};

ADI_PWM_CHANNEL_STATUS pwm_lsi_C_Disable =

{ADI_PWM_CHANNEL_C, ADI_PWM(x)_DISABLE};

/* Command-Pair Table to enable low side invert for channels A

and B, but not C* /

ADI_PWM_COMMAND_PAIR LowSideInvertTable[] =

{

 {ADI_PWM_CMD_SET_LOW_SIDE_INVERT,

(void*) &pwm_lsi_A_Enable},

 {ADI_PWM_CMD_SET_LOW_SIDE_INVERT,

(void*) &pwm_lsi_B_Enable},

 {ADI_PWM_CMD_SET_LOW_SIDE_INVERT,

(void*) &pwm_lsi_C_Disable}

Operation

13-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

}

adi_pwm_Control(LowSideInvertTable);

External Sync Pulse

Listing 13-8 enables an external sync pulse and configures it as synchro-
nous or asynchronous to the internal system clock. The listing also enables
the sync pulse to be output on a pin.

Listing 13-8. External Sync Pulse Commands

/* Command to enable external sync pulse */

adi_pwm_Control(ADI_PWM_CMD_SET_SYNC_SOURCE,

(void*)ADI_PWM(x)_SYNC_SOURCE_EXTERNAL);

/* Command to enable the external sync pulse to be asynchronous

to the internal clock */

adi_pwm_Control(ADI_PWM_CMD_SET_SYNC_SEL,

(void*)ADI_PWM(x)_SYNC_ASYNCH);

/* Command to enable the external sync pulse to be synchronous to

the internal clock */

adi_pwm_Control(ADI_PWM_CMD_SET_SYNC_SEL,

(void*)ADI_PWM(x)_SYNC_SYNCH);

/* Command to enable the sync pulse to be output on a pin */

adi_pwm_Control(ADI_PWM_CMD_SET_SYNC_OUT_ENABLE,

(void*)ADI_PWM(x)_ENABLE);

VisualDSP++ 5.0 Device Drivers and System 13-23
Services Manual for Blackfin Processors

Pulse-Width Modulation

Trip and Sync Interrupts

Listing 13-9 is mainly for informational purposes, as these commands are
not usually required. An interrupt is automatically enabled for a trip or
sync event when a callback is installed for that event. The interrupt is
disabled when the callback is removed for the event. The interrupt
condition is cleared by the interrupt handler, when the trip or sync inter-
rupt occurs.

Listing 13-9. Trip and Sync Interrupt Commands

/* Command to enable Trip Interrupt – Happens when callback is

installed */

adi_pwm_Control(ADI_PWM_CMD_TRIP_INT_ENABLE,

(void*)ADI_PWM(x)_ENABLE);

/* Command to disable Trip Interrupt – Happens when callback is

removed. */

adi_pwm_Control(ADI_PWM_CMD_TRIP_INT_ENABLE,

(void*)ADI_PWM(x)_DISABLE);

/* Command to enable Sync Interrupt – Happens when callback is

installed. */

adi_pwm_Control(ADI_PWM_CMD_SYNC_INT_ENABLE,

(void*)ADI_PWM(x)_ENABLE);

/* Command to disable Sync Interrupt – Happens when callback is

removed. */

adi_pwm_Control(ADI_PWM_CMD_SYNC_INT_ENABLE,

(void*)ADI_PWM(x)_DISABLE);

/* ADSP-BF51x Command to Clear Sync Interrupt – PWM Sync Handler

does this automatically */

adi_pwm_Control(ADI_PWM_CMD_CLEAR_SYNC_INT, (void*)1);

Operation

13-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

/* ADSP-BF50x Command to Clear PWM 0 Sync Interrupt – PWM Sync

Handler does this automatically */

adi_pwm_Control(ADI_PWM_CMD_CLEAR_SYNC_INT, ADI_PWM_0);

/* ADSP-BF51x Command to Clear Trip Interrupt – PWM Trip Handler

does this automatically */

adi_pwm_Control(ADI_PWM_CMD_CLEAR_SYNC_INT, (void*)1);

/* ADSP-BF50x Command to Clear PWM 1 Trip Interrupt – PWM Sync

Handler does this automatically */

adi_pwm_Control(ADI_PWM_CMD_CLEAR_SYNC_INT, ADI_PWM_1);

Change the IVG Level of the Trip or Sync Interrupt

Listing 13-10 demonstrates the command pairs that must be included in a
command-pair table that is passed to the initialization function, in order
to change the IVG level of the trip and sync interrupts. In this example,
the IVG is set to 9. The IVG level should not be changed after
initialization.

Listing 13-10. Command-Pair Table Commands for IVG Level Change

/* ADSP-BF51x Family – Set Trip=IVG9; Sync=IVG9 */

/* Pass this in command-pair table to adi_pwm_Init, to change the

IVG level of the Trip interrupt */

{ADI_PWM_CMD_SET_TRIP_IVG, (void*)9}

/* Pass this in command-pair table to adi_pwm_Init, to change the

IVG level of the Sync interrupt */

 {ADI_PWM_CMD_SET_SYNC_IVG, (void*)9}

/* ADSP-BF50x Family – Set PWM0 Trip=IVG7; Sync=IVG11 */

 ADI_PWM_NUMBER_AND_VALUE pwm0_TRIPIVG_struct={ADI_PWM_0,7};

 ADI_PWM_NUMBER_AND_VALUE pwm0_SYNCIVG_struct={ADI_PWM_0,11};

VisualDSP++ 5.0 Device Drivers and System 13-25
Services Manual for Blackfin Processors

Pulse-Width Modulation

 {ADI_PWM_CMD_SET_SYNC_IVG, (void*) &pwm0_SYNCIVG_struct};

 {ADI_PWM_CMD_SET_TRIP_IVG, (void*) &pwm0_TRIPIVG_struct};

/* ADSP-BF50x Family – Set PWM0 Trip=IVG7; Sync=IVG11 */

 ADI_PWM_NUMBER_AND_VALUE pwm1_TRIPIVG_struct={ADI_PWM_1,7};

 ADI_PWM_NUMBER_AND_VALUE pwm1_SYNCIVG_struct={ADI_PWM_1,11};

 {ADI_PWM_CMD_SET_SYNC_IVG, (void*) &pwm1_SYNCIVG_struct};

 {ADI_PWM_CMD_SET_TRIP_IVG, (void*) &pwm1_TRIPIVG_struct};

Trip Input Signal

Listing 13-11 enables or disables the trip input signal.

 Caution! Use this command with care. The trip input signal is used
to detect a hardware failure and to turn off all channel signals.

Listing 13-11. Trip Input Signal – Enable/Disable

/* Command to enable Trip Input */

adi_pwm_Control(ADI_PWM_CMD_SET_TRIP_INPUT_ENABLE,

(void*) ADI_PWM(x)_ENABLE);

/* Command to disable Trip Input */

adi_pwm_Control(ADI_PWM_CMD_SET_TRIP_INPUT_ENABLE,

(void*) ADI_PWM(x)_DISABLE);

PWM Enable/Disable

Listing 13-12 shows the command to enable or disable the PWM.
Enabling the PWM begins motor control operation using the parameters
that have been specified by adi_pwm_Init. This command should be
passed after the PWM is configured, and callbacks have been installed.

Operation

13-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Listing 13-12. PWM Enable/Disable

/* Command to enable the PWM */

adi_pwm_Control(ADI_PWM_CMD_SET_PWM_ENABLE,

(void*) ADI_PWM(x)_ENABLE);

/* Command to disable the PWM */

adi_pwm_Control(ADI_PWM_CMD_SET_PWM_ENABLE,

(void*) ADI_PWM(x)_DISABLE);

PWM Service Application Programming Interface
(API)

This section provides the details of the data structures and functions
within the PWM service application program interface (API).

Notation and Naming Conventions

To safeguard against conflicts with other software libraries provided by
Analog Devices, or other sources, the PWM service uses an unambiguous
naming convention in which enumeration values and typedef statements
use the ADI_PWM_ prefix. Functions and global variables use the lowercase
adi_pwm_ equivalent.

Each function within the PWM service API returns an error code of the
type ADI_PWM_RESULT. Like the other system services, a return value of zero
(0=ADI_PWM_RESULT_SUCCESS) indicates that no error has occurred during
the function call. Any nonzero value indicates the specific type of error
that has occurred. The error codes for the PWM service, unique from
those of the other system services, are defined in the adi_pwm.h include
file, so the cause of the error can be determined from looking up the error
code in that file.

VisualDSP++ 5.0 Device Drivers and System 13-27
Services Manual for Blackfin Processors

Pulse-Width Modulation

The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

PWM Service API Functions
This section describes the PWM functions that are available to the appli-
cation. These functions read and write to the hardware registers so the
application developer does not have to study the details of each register.
Below is a list of the functions in the PWM API.

• adi_pwm_Init

• adi_pwm_Terminate

• adi_pwm_Control

• adi_pwm_InstallCallback

• adi_pwm_RemoveCallback

Each API function returns a value of type ADI_PWM_RESULT which indicates
the success or failure of the function call. The result codes are defined in a
table in the subsection that describes the structures and data types in the
API.

Operation

13-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwm_Init

Description

The adi_pwm_Init() function initializes the pulse-width modulation ser-
vice as described in the initialization section.

Prototype

ADI_PWM_RESULT adi_pwm_Init(

const ADI_PWM_COMMAND_PAIR *table,

void *pCriticalRegionArg

);

Arguments

The function accepts two arguments: a ADI_PWM_COMMAND_PAIR which
specifies the commands for the function to process, and a void*, which is
the critical region parameter.

Return Value

ADI_PWM_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred. See “ADI_PWM_
RESULT” on page 13-48.

VisualDSP++ 5.0 Device Drivers and System 13-29
Services Manual for Blackfin Processors

Pulse-Width Modulation

adi_pwm_Terminate

Description

The adi_pwm_Terminate() function terminates the pulse-width modula-
tion service as described in the termination section.

 Prototype
ADI_PWM_RESULT adi_pwm_Terminate(void);

Arguments

The function accepts no arguments.

Return Value

ADI_PWM_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred. See “ADI_PWM_
RESULT” on page 13-48.

Operation

13-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwm_Control

Description

The adi_pwm_Control() function enables the pulse-width modulation
control/status registers to be configured or queried according to specified
command-value pairs, in one of three ways:

1. A single command-value pair is passed.

adi_pwm_Control(ADI_PWM(x)_CMD_SET_POLARITY,

(void*)ADI_PWM(x)_POLARITY_HIGH,);

2. A single command-value pair structure is passed.

ADI_PWM_COMMAND_PAIR cmd =

{ADI_PWM_CMD_SET_POLARITY(void*) ADI_PWM(x)_POLARITY_

HIGH};

adi_pwm_Control(ADI_PWM_CMD_PAIR,(void*)&cmd);

3. A table of ADI_PWM_COMMAND_PAIR structures is passed. The last
entry in the table must be ADI_PWM_CMD_END.

ADI_PWM_COMMAND_PAIR table[] = {

{ADI_PWM_CMD_SET_POLARITY,(void*) ADI_PWM(x)_POLARITY_

HIGH},

{ADI_PWM_CMD_SET_SYNC_OUT_ENABLE,(void*) ADI_PWM(x)_

ENABLE},

{ADI_PWM_CMD_END,0}

};

VisualDSP++ 5.0 Device Drivers and System 13-31
Services Manual for Blackfin Processors

Pulse-Width Modulation

Prototype

ADI_PWM_RESULT adi_pwm_Control(

ADI_PWM_COMMAND Command,

void *Value

);

Arguments

Refer to the ADI_PWM_COMMAND for the complete list of commands and asso-
ciated values.

Return Value

Command ADI_PWM_COMMAND enumeration value specifies
the meaning of the associated value argument.

Value The required value. See “ADI_PWM_
RESULT” on page 13-48.

ADI_PWM_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred. See “ADI_PWM_
RESULT” on page 13-48.

Operation

13-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_pwm_InstallCallback

Description

The adi_pwm_InstallCallback() function installs a callback for a
pulse-width modulation event.

Prototype

ADI_PWM_RESULT adi_pwm_InstallCallback(

ADI_PWM_EVENT_ID EventID,

void *ClientHandle,

ADI_DCB_HANDLE DCBHandle,

ADI_DCB_CALLBACK_FN ClientCallback

);

Arguments

The caller provides four parameters to the function.

Return Value

Data Type Name Description

ADI_PWM_EVENT_ID EventID ID of the interrupting event (See
“ADI_PWM_EVENT_ID” on
page 13-46.)

Void ClientHandle Application data passed to call-
back

ADI_DCB_HANDLE DCBHandle Deferred callback service handle

ADI_DCB_CALLBACK_FN ClientCallback Name of client callback function

ADI_PWM_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred. See “ADI_PWM_
RESULT” on page 13-48.

VisualDSP++ 5.0 Device Drivers and System 13-33
Services Manual for Blackfin Processors

Pulse-Width Modulation

adi_pwm_RemoveCallback

Description

The adi_pwm_RemoveCallback() function removes a callback for a
pulse-width modulation event.

 Calling adi_pwm_RemoveCallback from within a callback routine is
not supported and will result in undefined behavior.

Prototype

ADI_PWM_RESULT adi_pwm_RemoveCallback(

ADI_PWM_EVENT_ID EventID

);

Arguments

Return Value

EventID ADI_PWM_EVENT enumeration value specifies
the meaning of the associated value argument.

ADI_PWM_RESULT_SUCCESS No error has been encountered.

Any other value Error has occurred. See “ADI_PWM_
RESULT” on page 13-48.

PWM Service API Data Types and Enumerations

13-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

PWM Service API Data Types and
Enumerations

This section defines the data types and enumerations that are exposed to
the application by the application programming interface (API), for select-
ing command-pair values. The constant value ADI_PWM_ENUMERATION_
START is defined in the system services include file, services.h. It defines
the base of a unique bank of enumeration values for the PWM service to
use. Some of the following enumerations begin at 0. The rest are based on
the value ADI_PWM_ENUMERATION_START, to identify them as PWM
enumerations.

The PWM number must be specified for the ADSP-BF50x Blackfin fam-
ily, which has two identical PWMs. Some of the data structures and
enumeration names vary between the ADSP-BF51x and ADSP-BF50x
Blackfin processor families.

ADI_PWM_CHANNEL_STATUS
The channel and value structure is used as a command argument to be
passed along with a command to the adi_pwm_Init or adi_pwm_Control
functions. A channel is combined with a channel-specific value, for use
with the commands ADI_PWM_CMD_SET_CHANNEL_ENABLE, ADI_PWM_CMD_
SET_CROSSOVER, and ADI_PWM_CMD_SET_LOW_SIDE_INVERT. This structure
indicates the channel ID and the enable status of the specified signal for
that channel. In the presence of multiple PWMs, the PWM number is
embedded in the enable status structure.

VisualDSP++ 5.0 Device Drivers and System 13-35
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_CHANNEL_DUTY_CYCLE
The channel and duty cycle structure is used as a command argument to
be passed along with the ADI_PWM_SET_DUTY_CYCLE command to the adi_
pwm_Init or adi_pwm_Control functions. In this structure, the channel
ID is combined with the channel specific, unsigned integer duty cycle
value for that channel.

Table 13-1. ADI_PWM_CHANNEL_STATUS

Type Name Description

ADI_PWM_CHANNEL Channel Indicates the channel ID

ADI_PWM_ENABLE_STATUS Status Indicates the channel specific
status, and the PWM number,
in the presence of multiple
PWMs

Table 13-2. ADI_PWM_CHANNEL_DUTY_CYCLE

Data Type Name Description

ADI_PWM_NUMBER PwmNumber Indicates which PWM
(ADSP-BF50x only)

ADI_PWM_CHANNEL Channel Indicates the channel ID

u32 Value Indicates the channel specific
value

PWM Service API Data Types and Enumerations

13-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWM_COMMAND_PAIR
A command-pair structure combines a command with a value. The value
can be a data structure which combines multiple values, such as channel
ID and Boolean for enabling or disabling a feature of that channel.

ADI_PWM_NUMBER_AND_CHANNEL_STATUS
When requesting the enable status, crossover status, or low side invert sta-
tus of a channel, it is necessary to specify the channel and which PWM the
requested status is for, if there are multiple PWMs. This structure allows
the PWM number to be specified in the PwmNumber field, and an ADI_PWM_
CHANNEL_STATUS structure to be passed in the ChannelStatus field, so that
the proper information can be returned in the Status field which is inside
the ADI_PWM_CHANNEL_STATUS structure named ChannelStatus.

Table 13-3. ADI_PWM_COMMAND_PAIR

Data Type Name Description

ADI_PWM_COMMAND Kind Indicates the command to
execute

Void* Value The command argument,
which can be cast to any other
data type

Table 13-4. ADI_PWM_NUMBER_AND_CHANNEL_STATUS

Data Type Name Description

ADI_PWM_NUMBER PwmNumber Specifies PWM0 or PWM1

ADI_PWM_CHANNEL_STATUS ChannelStatus Enable channel status

VisualDSP++ 5.0 Device Drivers and System 13-37
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_NUMBER_AND_ENABLE_STATUS
When requesting the status of switch reluctance or gate enable modes, if
there are multiple PWMs, it is necessary to specify which PWM the
requested status is for. This structure allows the PWM number to be spec-
ified in the PwmNumber field, so that the proper enable status can be
returned in the Status field.

ADI_PWM_NUMBER_AND_VALUE
A simple u32 type value is passed to the adi_pwm_Init or adi_pwm_Con-
trol functions to set the sync period, pulse width, or dead time of a PWM.
In the presence of multiple PWMs, the PWM number must also be speci-
fied. This data structure combines an ADI_PWM_NUMBER enumeration with a
u32 value, such as the dead time, sync pulse width, or the sync period.

Table 13-5. ADI_PWM_NUMBER_AND_ENABLE_STATUS

Data Type Name Description

ADI_PWM_NUMBER PwmNumber Specifies PWM0 or PWM1

ADI_PWM_ENABLE_STATUS Status Enable status

Table 13-6. ADI_PWM_NUMBER_AND_VALUE

Data Type Name Description

ADI_PWM_NUMBER PwmNumber Specifies PWM0 or PWM1

void* Value Value to set

PWM Service API Data Types and Enumerations

13-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWM_PORT_MAP
The ADI_PWM_PORT_MAP structure has eight bit fields for the ADSP-BF51x,
or sixteen bit fields for the ADSP-BF50x, each named after one of the
eight multiplexed signals on each PWM. Each field must be set to one of
the two ADI_PWM_PORT_MUX enumerations, either ADI_PWM_PORT_MUX_PRI or
ADI_PWM_PORT_MUX_SEC, to select the primary or secondary port mapping.
This structure must be passed to the adi_pwm_Init function, following
the ADI_PWM_CMD_SET_PORT_MUX command.

Table 13-7. ADI_PWM_PORT_MAP

Data Type Name Description

Bit Field AH_MUX Port mapping for PWM 0 AH signal

Bit Field AL_MUX Port mapping for PWM 0 AL signal

Bit Field BH_MUX Port mapping for PWM 0 BH signal

Bit Field BL_MUX Port mapping for PWM 0 BL signal

Bit Field CH_MUX Port mapping for PWM 0 CH signal

Bit Field CL_MUX Port mapping for PWM 0 CL signal

Bit Field SYNC_MUX Port mapping for PWM 0 SYNC signal

Bit Field TRIP_MUX Port mapping for PWM 0 TRIP signal

Bit Field AH_MUX Port mapping for PWM 1 AH signal (ADSP-BF50x only)

Bit Field AL_MUX Port mapping for PWM 1 AL signal (ADSP-BF50x only)

Bit Field BH_MUX Port mapping for PWM 1 BH signal (ADSP-BF50x only)

Bit Field BL_MUX Port mapping for PWM 1 BL signal (ADSP-BF50x only)

Bit Field CH_MUX Port mapping for PWM 1 CH signal (ADSP-BF50x only)

Bit Field CL_MUX Port mapping for PWM 1 CL signal (ADSP-BF50x only)

Bit Field SYNC_MUX Port mapping for PWM 1 SYNC signal (ADSP-BF50x only)

Bit Field TRIP_MUX Port mapping for PWM 1 TRIP signal (ADSP-BF50x only)

VisualDSP++ 5.0 Device Drivers and System 13-39
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_CHANNEL
Channel enumerations are passed as part of a command argument to spec-
ify which channel the command is intended for.

ADI_PWM_COMMAND
The ADI_PWM_COMMAND enumeration type describes the command type in
an ADI_PWM_COMMAND_PAIR structure. Each of the PWM service commands
can be found in the PWM service API header file, adi_pwm.h.

Command enumerations for the PWM service begin with the value ADI_
PWM_ENUMERATION_START (defined in include/services/services.h) for
easy identification.

Table 13-8. ADI_PWM_CHANNEL

Name Description

ADI_PWM_CHANNEL_A Channel pair AH, AL

ADI_PWM_CHANNEL_B Channel pair BH, BL

ADI_PWM_CHANNEL_C Channel pair CH, CL

ADI_PWM_CHANNEL_AH High side output channel A

ADI_PWM_CHANNEL_AL Low side output channel A

ADI_PWM_CHANNEL_BH High side output channel B

ADI_PWM_CHANNEL_BL Low side output channel B

ADI_PWM_CHANNEL_CH High side output channel C

ADI_PWM_CHANNEL_CL Low side output channel C

PWM Service API Data Types and Enumerations

13-40 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Table 13-9 lists the available commands and the context for their use.

Table 13-9. ADI_PWM_COMMAND

Name Description Argument

ADI_PWM_CMD_END End of a command-pair table

ADI_PWM_CMD_PAIR Passing a command pair

ADI_PWM_CMD_TABLE Passing a command-pair table.
See “Programming Examples”
on page 13-11.

ADI_PWM_CMD_SET_CHANNEL_
ENABLE

Enable/disable a PWM signal
channel in PWMSEG. See “Pro-
gramming Examples” on
page 13-11.

pADI_PWM_CHANNEL_STATUS
(specifies PWM number if appli-
cable)

ADI_PWM_CMD_SET_DUTY_
CYCLE

Set the duty cycle in PWMCHA,
PWMCHB, PWMCHC registers or in
PWMCHAL, PWMCHBL, PWMCHCL
registers in SR mode. See “Pro-
gramming Examples” on
page 13-11.

pADI_PWM_CHANNEL_DUTY_
CYCLE
(specifies PWM number if appli-
cable)

ADI_PWM_CMD_SET_DEAD_
TIME

Set PWM switching dead time
value in PWMDT register. See
“Programming Examples” on
page 13-11.

u32 (ADSP-BF51x)
ADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_SET_PERIOD Set the period for sync pulse in
the PWMTM register. See “Pro-
gramming Examples” on
page 13-11.

u32 (ADSP-BF51x)
ADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_SET_SYNC_
PULSE_WIDTH

Set sync pulse width in
PWMSYNCWT. See “Program-
ming Examples” on
page 13-11.

u32 (ADSP-BF51x)
ADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)
(Sync pulse must be greater than
two system clock periods.)

ADI_PWM_CMD_SET_
CROSSOVER

Enable/disable crossover mode
for specified channel in
PWMSEG register. See “Program-
ming Examples” on
page 13-11.

pADI_PWM_CHANNEL_STATUS

VisualDSP++ 5.0 Device Drivers and System 13-41
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_CMD_SET_POLARITY Set the polarity for a signal in
PWMCTRL. See “Programming
Examples” on page 13-11.

ADI_PWM_POLARITY

ADI_PWM_CMD_SET_GATE_
CHOPPING_FREQ

Set gate drive chopping fre-
quency in PWMGATE. See “Pro-
gramming Examples” on
page 13-11.

u32 (ADSP-BF51x)
ADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_SET_GATE_
ENABLE _LOW

Enable/disable gate chopping
for low side in PWMGATE. See
“Programming Examples” on
page 13-11.

ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_SET_GATE_
ENABLE _HIGH

Enable/disable gate chopping
for high side in PWMGATE. See
“Programming Examples” on
page 13-11.

ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_SET_LOW_
SIDE_INVERT

Set low side invert in PWMLSI
register for a given channel. See
“Programming Examples” on
page 13-11.

ADI_PWM_CHANNEL_STATUS

ADI_PWM_CMD_SET_SWITCH_
RELUCTANCE

Enable/disable switch reluc-
tance mode in PWMCTRL. See
“Programming Examples” on
page 13-11.

ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_SET_SYNC_
INT_ENABLE

Enables/disables sync pulse
interrupt input in PWMCTRL.
See “Programming Examples”
on page 13-11.

ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_SET_SYNC_
SOURCE

Set sync pulse source to inter-
nal/external in PWMCTRL. See
“Programming Examples” on
page 13-11.

ADI_PWM_SYNC_SOURCE

ADI_PWM_CMD_SET_SYNC_
SELECT

Set external sync select in PWM-
CTRL 0=asynch, 1=sync
def=1. See “Programming
Examples” on page 13-11.

ADI_PWM_SYNC_SELECT

Table 13-9. ADI_PWM_COMMAND (Cont’d)

Name Description Argument

PWM Service API Data Types and Enumerations

13-42 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWM_CMD_SET_PORT_MUX Selects either primary or alter-
nate port mux mapping for
each signal

ADI_PWM_PORT_MUX

ADI_PWM_CMD_SET_SYNC_
OUT_ENABLE

Enable/disable SyncEnable in
PWMCTRL for sync pulse to
appear on output pin. See
“Programming Examples” on
page 13-11.

ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_SET_TRIP_
INT_ENABLE

Enables/disables trip pulse
interrupt input in PWMCTRL.
See “Programming Examples”
on page 13-11.

ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_SET_TRIP_
INPUT_ENABLE

Enables/disable trip input. See
“Programming Examples” on
page 13-11.

ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_SET_UPDATE_
MODE

Set PWM operating mode in
PWMCTRL - single/double
update. See “Programming
Examples” on page 13-11.

ADI_PWM_UPDATE_MODE

ADI_PWM_CMD_SET_PWM_
ENABLE

Enables a software shutdown of
all 6 channels

ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_SET_TRIP_IVG Change the IVG level of the
trip interrupt. See “Program-
ming Examples” on
page 13-11.

&u32 (ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_SET_SYNC_IVG Change the IVG level of the
sync interrupt. See “Program-
ming Examples” on
page 13-11.

&u32 (ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_CLEAR_SYNC_
INT

Clear sync interrupt in
PWMSTAT. See “Programming
Examples” on page 13-11.

N/A (ADSP-BF51x)
PWM_NUMBER (ADSP-BF50x)

Table 13-9. ADI_PWM_COMMAND (Cont’d)

Name Description Argument

VisualDSP++ 5.0 Device Drivers and System 13-43
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_CMD_CLEAR_TRIP_
INT

Clear trip interrupt in
PWMSTAT. See “Program-
ming Examples” on
page 13-11.

N/A (ADSP-BF51x)
PWM_NUMBER (ADSP-BF50x)

ADI_PWM_CMD_GET_CHANNEL_
ENABLE

Get enable status of a channel
from PWMSEG

pADI_PWM_CHANNEL_STATUS
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_
CHANNEL_STATUS
(ADSP-BF50x)

ADI_PWM_CMD_GET_DUTY_
CYCLE

Get duty cycle from PWMCHA,
PWMCHB, PWMCHC, PWMCHAL,
PWMCHBL, PWMCHCL registers, in
SR mode only

pADI_PWM_CHANNEL_DUTY_
CYCLE

ADI_PWM_CMD_GET_DEAD_
TIME

Get switching dead time from
PWMDT register

&u32 (ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_PERIOD Get the period for the sync
pulse from PWMTM register

&u32 (ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_SYNC_
PULSE_WIDTH

Get sync pulse width in
PWMSYNCWT register

&u32 (ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_
CROSSOVER

Get crossover mode for speci-
fied channel PWMSEG register

pADI_PWM_CHANNEL_STATUS
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_
CHANNEL_STATUS
(ADSP-BF50x)

ADI_PWM_CMD_GET_POLARITY Get PWM polarity from
PWMSTAT

&ADI_PWM_POLARITY

ADI_PWM_CMD_GET_GATE_
CHOPPING_FREQ

Get gate drive chopping fre-
quency from PWMGATE

u32

ADI_PWM_CMD_GET_GATE_
ENABLE_HIGH

Get gate chopping enable sta-
tus for high side from PWMGATE

&ADI_PWM_ENABLE_STATUS

Table 13-9. ADI_PWM_COMMAND (Cont’d)

Name Description Argument

PWM Service API Data Types and Enumerations

13-44 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWM_CMD_GET_GATE_
ENABLE_LOW

Get gate chopping enable sta-
tus for low side from PWMGATE

&ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_GET_LOW_
SIDE_INVERT

Get low side invert for a chan-
nel in PWMLSI register

pADI_PWM_CHANNEL_STATUS

ADI_PWM_CMD_GET_SWITCH_
RELUCTANCE

Get SR mode PWMSTAT &ADI_PWM_ENABLE_STATUS

ADI_PWM_CMD_GET_SYNC_INT Get sync interrupt from
PWMSTAT

&ADI_PWM_ENABLE_STATUS
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_TRIP_INT Get trip interrupt in PWMSTAT &ADI_PWM_ENABLE_STATUS
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_SYNC_
SOURCE

Get sync pulse source (internal
or external)

&ADI_PWM_SYNC_SOURCE
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_SYNC_SEL Get extern sync select
0=asynch, 1=sync def=1

&ADI_PWM_SYNC_SELECT
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_UPDATE_
MODE

Get PWM operating mode
from PWMSTAT- single/double
update

&ADI_PWM_UPDATE_MODE
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_PWM_
ENABLE

Get software shutdown status
(all 6 channel disable)

&ADI_PWM_ENABLE_STATUS
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_PHASE Get PWM phase from
PWMSTAT 0=1st half 1=2nd half
def=0

&ADI_PWM_ENABLE_STATUS
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

Table 13-9. ADI_PWM_COMMAND (Cont’d)

Name Description Argument

VisualDSP++ 5.0 Device Drivers and System 13-45
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_ENABLE_STATUS
This enumeration is used in conjunction with a command and sometimes
also with a channel ID to indicate whether a particular feature is enabled
or disabled. It is used to enable or disable channels, gate chopping, switch
reluctance, sync, and trip interrupts. In the presence of multiple PWMs,
this enumeration also specifies which PWM a command is intended for.

ADI_PWM_CMD_GET_TRIP_PIN Get trip pin value from
PWMSTAT

&ADI_PWM_ENABLE_STATUS
(ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

ADI_PWM_CMD_GET_OUTPUT Get output signal from
PWMSTAT2

&u32 (ADSP-BF51x)
pADI_PWM_NUMBER_AND_VALUE
(ADSP-BF50x)

Table 13-10. ADI_PWM_ENABLE_STATUS

Name Numeric Value Description

ADI_PWM_DISABLE,
ADI_PWM0_DISABLE

0 Disable status for PWM0

ADI_PWM_ENABLE,
ADI_PWM0_ENABLE

1 Enable status for PWM0

ADI_PWM1_DISABLE 2 Disable status for PWM1

ADI_PWM1_ENABLE 3 Enable status for PWM1

Table 13-9. ADI_PWM_COMMAND (Cont’d)

Name Description Argument

PWM Service API Data Types and Enumerations

13-46 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWM_EVENT_ID
On each PWM module, there are two events which are defined by unique
event IDs. In the presence of multiple PWMs, the enumeration name con-
tains a digit to specify which PWM the enumeration applies to.

ADI_PWM_NUMBER
In the presence of multiple PWMs, an enumeration called ADI_PWM_NUM-
BER is used, sometimes within other data structures, to specify which
PWM an action is intended for. The value of ADI_NUM_PWM specifies how
many PWMs there are. Currently the maximum is two.

Table 13-11. ADI_PWM_EVENT_ID

Name Numeric Offset Value (from
ADI_PWM_
ENUMERATION_START)

Description

ADI_PWM_EVENT_START,
ADI_PWM_ENUMERATION_START

0x00 Base value for PWM. Defined in
services.h service enumera-
tions.

ADI_PWM_EVENT_TRIP,
ADI_PWM0_EVENT_TRIP

0x01 Trip interrupt event for PWM0

ADI_PWM_EVENT_SYNC,
ADI_PWM0_EVENT_SYNC

0x02 Sync interrupt event for PWM0

ADI_PWM1_EVENT_TRIP 0x03 Trip interrupt event for PWM1

ADI_PWM1_EVENT_SYNC 0x04 Sync interrupt event for PWM1

Table 13-12. ADI_PWM_NUMBER

Name Numeric Value Description

ADI_PWM_0 0 Specifies PWM0

ADI_PWM_1 1 Specifies PWM1

ADI_NUM_PWM 2 Total number of PWMs

VisualDSP++ 5.0 Device Drivers and System 13-47
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_POLARITY
This enumeration is used in conjunction with the command ADI_PWM_
CMD_SET_POLARITY to set the polarity for all output signals to active high
or active low. In the presence of multiple PWMs, this enumeration also
specifies which PWM a command is intended for.

ADI_PWM_PORT_MUX
This enumeration is used to specify which port mux mapping to use, pri-
mary or secondary, for each individual signal.

Table 13-13. ADI_PWM_POLARITY

Name Description

ADI_PWM_SOURCE_LOW,
ADI_PWM0_SOURCE_LOW

Low polarity PWM0

ADI_PWM_SOURCE_HIGH,
ADI_PWM0_SOURCE_HIGH

High polarity PWM0

ADI_PWM1_SOURCE_LOW Low polarity PWM1

ADI_PWM1_SOURCE_HIGH High polarity PWM1

Table 13-14. ADI_PWM_PORT_MUX

Name Description

ADI_PWM_PORT_MUX_PRI Primary port mux mapping

ADI_PWM_PORT_MUX_SEC Secondary port mux mapping

PWM Service API Data Types and Enumerations

13-48 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWM_RESULT
Each of the PWM service API functions returns a result code that can be
translated by looking into the PWM service API header file, adi_pwm.h.

As with all system services, generic success is defined as 0 and generic fail-
ure is defined as 1. This allows the calling function to quickly evaluate the
return code for a zero or nonzero value. All detailed result codes for the
PWM service begin with the value ADI_PWM_ENUMERATION_START for easy
identification.

The result codes are summarized in Table 13-15.

Table 13-15. ADI_PWM_RESULT

Name Description

ADI_PWM_RESULT_INVALID_EVENT_ID Specified EventID does not exist

ADI_PWM_RESULT_INTERRUPT_MANAGER_
ERROR

Error returned from interrupt manager

ADI_PWM_RESULT_ERROR_REMOVING_
CALLBACK

Cannot find callback for given ID

ADI_PWM_RESULT_NOT_INITIALIZED PWM service has not been initialized.

ADI_PWM_RESULT_CALLBACK_NOT_INSTALLED Specified callback was never installed.

ADI_PWM_RESULT_SERVICE_NOT_SUPPORTED PWM service is not supported for this processor

ADI_PWM_RESULT_ALREADY_INITIALIZED PWM service has already been initialized

ADI_PWM_RESULT_CALLBACK_ALREADY_
INSTALLED

Cannot install the same callback twice

ADI_PWM_RESULT_INVALID_CHANNEL Specified channel does not exist

ADI_PWM_RESULT_INVALID_COMMAND Specified command does not exist

ADI_PWM_RESULT_INVALID_ENABLE_STATUS Invalid parameter passed with enable command

ADI_PWM_RESULT_INVALID_DUTY_CYCLE Invalid duty cycle

ADI_PWM_RESULT_INVALID_DEAD_TIME Invalid switching dead time

ADI_PWM_RESULT_INVALID_PERIOD Invalid period for sync pulse

VisualDSP++ 5.0 Device Drivers and System 13-49
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_RESULT_INVALID_PULSE_WIDTH Invalid pulse width

ADI_PWM_RESULT_INVALID_CROSSOVER Invalid crossover mode

ADI_PWM_RESULT_INVALID_POLARITY Invalid polarity for output signals

ADI_PWM_RESULT_INVALID_GATE_CHOPPING_
FREQ

Invalid gate drive chopping frequency

ADI_PWM_RESULT_INVALID_GATE_ENABLE Invalid argument passed with gate chopping
enable command

ADI_PWM_RESULT_INVALID_LOW_SIDE_
INVERT

Invalid parameter passed with low side invert
command

ADI_PWM_RESULT_INVALID_SWITCH_
RELUCTANCE

Invalid switch reluctance mode

ADI_PWM_RESULT_INVALID_SYNC_INT_
ENABLE

Invalid parameter passed with sync pulse inter-
rupt command

ADI_PWM_RESULT_INVALID_SYNC_SOURCE Invalid parameter passed with sync pulse source
command

ADI_PWM_RESULT_INVALID_SYNC_SEL Invalid external sync select

ADI_PWM_RESULT_INVALID_TRIP_INT_
ENABLE

Invalid parameter passed with trip pulse inter-
rupt command

ADI_PWM_RESULT_INVALID_SYNC_OUT_
ENABLE

Invalid parameter passed with sync pulse output
enable command

ADI_PWM_RESULT_INVALID_UPDATE_MODE Invalid PWM operating mode

ADI_PWM_RESULT_INVALID_PWM_ENABLE Invalid PWM enable status

ADI_PWM_RESULT_PORT_MUX_MAPPING_NOT_
SET

Port mux mapping not passed to adi_pwm_
Init

ADI_PWM_RESULT_PERIOD_NOT_SET Period not passed to adi_pwm_Init

ADI_PWM_RESULT_DEAD_TIME_NOT_SET Dead time not passed to adi_pwm_Init

ADI_PWM_RESULT_DUTY_CYCLE_A_NOT_SET Duty cycle not passed to adi_pwm_Init for
channel A.

ADI_PWM_RESULT_DUTY_CYCLE_B_NOT_SET Duty cycle not passed to adi_pwm_Init for
channel B.

Table 13-15. ADI_PWM_RESULT (Cont’d)

Name Description

PWM Service API Data Types and Enumerations

13-50 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWM_SYNC_SEL
When the synchronization pulse source is external, this enumeration is
used in conjunction with the command ADI_PWM_CMD_SET_SYNC_SELECT to
set the external synchronization pulse to synchronous or asynchronous. In
the presence of multiple PWMs, this enumeration also specifies which
PWM a command is intended for.

ADI_PWM_RESULT_DUTY_CYCLE_C_NOT_SET Duty cycle not passed to adi_pwm_Init for
channel C.

ADI_PWM_RESULT_SYNC_PULSE_WIDTH_NOT_
SET

Sync pulse width not passed to adi_pwm_Init.

ADI_PWM_RESULT_OPERATING_MODE_NOT_SET Operating mode not passed to adi_pwm_Init.

ADI_PWM_RESULT_CHANNEL_ENABLE_NOT_SET Channel enable command not passed to adi_
pwm_Init.

ADI_PWM_RESULT_POLARITY_NOT_SET Polarity not passed to adi_pwm_Init.

ADI_PWM_RESULT_SWITCH_RELUCTANCE_IS_
ACTIVE

Command meaningless in switch reluctance
mode

ADI_PWM_RESULT_SWITCH_RELUCTANCE_NOT_
ACTIVE

Command meaningless when not in switch
reluctance mode

Table 13-16. ADI_PWM_SYNC_SEL

Name Description

ADI_PWM_SYNC_ASYNC,
ADI_PWM0_SYNC_ASYNC

External sync source for PWM0 is asynchronous.

ADI_PWM_SYNC_SYNC,
ADI_PWM0_SYNC_SYNC

External sync source for PWM0 is synchronous.

ADI_PWM1_SYNC_ASYNC External sync source for PWM1 is asynchronous.

ADI_PWM1_SYNC_SYNC External sync source for PWM1 is synchronous.

Table 13-15. ADI_PWM_RESULT (Cont’d)

Name Description

VisualDSP++ 5.0 Device Drivers and System 13-51
Services Manual for Blackfin Processors

Pulse-Width Modulation

ADI_PWM_SYNC_SOURCE
This enumeration is used in conjunction with the command ADI_PWM_
CMD_SET_SYNC_SOURCE to set the synchronization pulse source to either
internal or external. In the presence of multiple PWMs, this enumeration
also specifies which PWM a command is intended for.

ADI_PWM_UPDATE_MODE
This enumeration is used to specify the operating mode of the PWM: sin-
gle update or double update. In the presence of multiple PWMs, this
enumeration also specifies which PWM a command is intended for.

Table 13-17. ADI_PWM_SYNC_SOURCE

Name Description

ADI_PWM_SOURCE_INTERNAL,
ADI_PWM0_SOURCE_INTERNAL

Internal sync source PWM0

ADI_PWM_SOURCE_EXTERNAL,
ADI_PWM0_SOURCE_EXTERNAL

External sync source PWM0

ADI_PWM1_SOURCE_INTERNAL Internal sync source PWM1

ADI_PWM1_SOURCE_EXTERNAL External sync source PWM1

Table 13-18. ADI_PWM_UPDATE_MODE

Name Numeric
Value

Description

ADI_PWM_SINGLE_UPDATE,
ADI_PWM0_SINGLE_UPDATE

0 Single update operating mode PWM0

ADI_PWM_DOUBLE_UPDATE,
ADI_PWM0_DOUBLE_UPDATE

1 Double update operating mode PWM0

ADI_PWM1_SINGLE_UPDATE 2 Single update operating mode PWM1

ADI_PWM1_DOUBLE_UPDATE 3 Double update operating mode PWM1

Interdependencies

13-52 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Interdependencies
This section describes interdependencies between the pulse-width modu-
lation service and other system services.

Interrupt Manager Service
Since the PWM service relies on callbacks to process the events, the appli-
cation must initialize the interrupt manager service before initializing the
PWM service. During the adi_pwm_Init function, the interrupt manager
is called upon to clear any pending interrupt signals from the PWM unit,
and may also be called upon to hook the PWM trip and/or sync interrupt
handlers, which execute the callback functions. During the adi_pwm_Ter-
minate function, the interrupt manager is called upon to unhook the
PWM interrupt handlers.

Deferred Callback Service
Callbacks may be deferred, which means they are executed after a higher
priority thread has finished, rather than inside the interrupt that services
the event. If callbacks are to be deferred, the deferred callback manager
should be initialized after the interrupt manager is initialized, by calling
adi_dcb_Init(). The handle returned from the deferred callback service is
used later when installing and processing callbacks. Please refer to
Chapter 5, “Deferred Callback Manager” for details.

VisualDSP++ 5.0 Device Drivers and System 13-53
Services Manual for Blackfin Processors

Pulse-Width Modulation

Port Control Manager Service
The PWM signals are multiplexed. The application must call the adi_
ports_Init() function to initialize the port control manager, prior to ini-
tializing the PWM service. Please refer to Chapter 9, “Port Control
Service” for details. During the adi_pwm_Init() function, the port control
manager is called upon to configure the port registers to select the PWM
signal functionality. The application must pass a command along with a
port mapping structure, which selects either the primary or secondary port
mapping for each signal.

Interdependencies

13-54 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 14-1
Services Manual for Blackfin Processors

14 MEMORY MANAGER
SERVICE

This chapter describes how to use the memory manager service found
within the system services library. This service follows similar application
programming interfaces (APIs) found in other system services. The chap-
ter includes:

• “Introduction” on page 14-2

• “Getting Started” on page 14-2

• “Memory Manager Service API Reference” on page 14-10

• “Coding Example” on page 14-36

• “Memory Manager Service API Structures, Definitions, and Enu-
merations” on page 14-39

• “Adding Custom Allocation Algorithms” on page 14-46

• “Custom Allocation Model Functions API” on page 14-53

• “Comparison of Allocation Algorithms” on page 14-63

• “Performance Measurements” on page 14-67

Introduction

14-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The memory manager service manages dynamic memory allocation in an
application. This service can create and manage several memory pools
simultaneously. Memory manager supports several predefined memory
allocation schemes. The application has the choice of choosing a pre-
defined allocation scheme or it can use its own custom allocation scheme.
The section “Comparison of Allocation Algorithms” on page 14-63 is
helpful when choosing the appropriate algorithm(s) for the application.

The memory manager is designed to work in a multithreaded environ-
ment. It uses the underlying RTOS services for protecting the critical
regions. All the OS specific calls are made through an abstraction layer
(OSAL: OS Abstraction Layer) to make the service usable across multiple
OSs.

In a non-multithreaded environment (No OS case), the OSAL is a thin
layer and all the functions return without calling the OS functions. See
the OSAL User’s Guide for more details.

Getting Started
This section describes the overall operation of the memory manager ser-
vice. Details on the API can be found in “Memory Manager Service API
Structures, Definitions, and Enumerations” on page 14-39.

Initialization
Before using the memory manager service, an application needs to initial-
ize the service by calling the function adi_mem_Init. If the application
uses an RTOS, then the RTOS must be initialized and started after the
memory manager is initialized. As OSAL uses memory manager for its
dynamic allocations, it is required to initialize memory manager prior to
OSAL.

VisualDSP++ 5.0 Device Drivers and System 14-3
Services Manual for Blackfin Processors

Memory Manager Service

The memory manager is single instanced; once initialized it will be there
through the lifetime of the application. The function adi_mem_Init() ini-
tializes all the internal data structures of the memory manager service. To
protect the data structures from being reinitialized when they are being
used, this function can be called only once or can be called after it is ter-
minated by calling the function adi_mem_Terminate() function.

/*

** Initialize Memory Manager

*/

eResult = adi_mem_Init();

/* Check if Memory Manager is initialized successfully */

If(eResult != ADI_MEM_RESULT_SUCCESS)

{

// Failed to initialize memory manager take appropriate

action here

}

Termination
The memory manager can be terminated using the function adi_mem_
Terminate(). After the memory manager service is terminated, none of its
functions can be called. To call them again, it is required to initialize the
memory manager once more.

/*

** Terminate Memory Manager

*/

eResult = adi_mem_Terminate();

/* Check if Memory Manager is terminated successfully */

If(eResult != ADI_MEM_RESULT_SUCCESS)

{

Getting Started

14-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

// Failed to terminate memory manager take appropriate

action here

}

Installing Memory Allocation Schemes
After the memory manager is initialized, the application should choose
and install one (or more) memory allocation scheme that it is going to use
for the pools that will be created. This is required for both predefined and
custom memory allocation schemes. An application has to determine
which memory allocation algorithms it is going to use and it should call
the corresponding installation functions for those allocation schemes. The
section, “Comparison of Allocation Algorithms” on page 14-63, is helpful
in choosing appropriate algorithms for the application. The choice of allo-
cation scheme from the installed ones is done during the memory pool
creation.

There are three different predefined memory allocation schemes currently
available in the memory manager:

• Fixed Block. To install this scheme, the application calls the func-
tion adi_mem_InstallFixedBlockModel().

• Binary Buddy. To install this scheme, the application calls the
function adi_mem_InstallBinBuddyModel().

• Circular Buffer. To install this scheme, the application calls the
function adi_mem_InstallCircularModel().

For custom allocation schemes, the corresponding install function should
be provided when a custom allocation scheme is added. See “Adding Cus-
tom Allocation Algorithms” on page 14-46 for more details on how to add
a custom allocation scheme.

The use of the install functions is to eliminate the code during the linking
stage for those allocation schemes which are not used. This is to reduce the

VisualDSP++ 5.0 Device Drivers and System 14-5
Services Manual for Blackfin Processors

Memory Manager Service

memory foot print. If the call to one of the install functions is included
into the application code, that corresponding code in the services library is
included in the build and the code for other memory allocation schemes
are eliminated by the linker.

/*

** Install required memory allocation algorithms,

** these functions always return success

*/

adi_mem_InstallFixedBlockModel();

adi_mem_InstallBinBuddyModel();

Creating/Destroying a Memory Pool
Applications pass the memory block (that needs to be managed) to the
memory manager for creation of a memory pool. The maximum number
of memory pools that can be created (simultaneously) is 32 (ADI_MAX_NUM_
POOLS defined in “adi_mem.h”). The maximum size of a pool that can be
managed is 0x7FFFFFFF bytes (ADI_MEM_MAX_POOL_SIZE defined in “adi_
mem.h”). To create a memory pool, the application needs to call one of the
functions adi_mem_CreatePublicPool() or adi_mem_
CreatePrivatePool().

An application may want the pool to be visible (public) to other mod-
ules/threads of the application or it may want it to be not visible (private).
The choice of making a pool private or public can only be made during
the creation of the pool.

A public pool can be used by any module/thread for memory allocation,
but a private pool can be used by the module/thread that created it or it
can share the pool with other modules/threads by passing them the pool
handle. The choice is made by calling different functions to create the
pool. A public pool can be created using adi_mem_CreatePublicPool()
and a private pool can be created using adi_mem_CreatePrivatePool().

Getting Started

14-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The primary difference between the two APIs is specifying the characteris-
tics of the pool. When creating a public pool, it is required to specify the
characteristics of the memory pool so that when it is listed in the public
pools list, its characteristics can be known to other modules which are
using it. The characteristics of the pool help in choosing the right pool
from the list of public pools to suit the needs of a particular module.
When creating a private pool, it is not required to specify the characteris-
tics as it will not be listed in the public pools.

For details on other parameter, see “Memory Manager Service API Struc-
tures, Definitions, and Enumerations” on page 14-39. See “Memory
Allocation/Reallocation and Freeing” on page 14-8 for details on how a
private pool is protected from memory allocation by other modules.

The choice of an allocation scheme is made during the creation of the
pool, which is indicated by eModel parameter.

A memory pool is destroyed by calling the function adi_mem_
DestroyPool(). A memory pool can only be destroyed when all the mem-
ory allocated from that particular pool is freed.

/*

** Create a Public Pool which will be visible to other

modules/threads

*/

eResult = adi_mem_CreatePublicPool(

/* Pointer to the heap */

pPoolMem,

/* Size in bytes of the memory passed for heap */

nPoolMemSizeBytes,

/* Address to hold the returned pool handle */

hMemPool,

/* Allocation scheme to be used */

eModel,

/* Characteristics of the Heap */

pCharacteristics,

VisualDSP++ 5.0 Device Drivers and System 14-7
Services Manual for Blackfin Processors

Memory Manager Service

/* Pointer to the memory required for storing

Memory Manager and algorithmic specific private

data */

pLocalMem,

 /* Size in bytes of the memory passed for private

data */

nLocalMemSizeBytes);

/*

** Create a Private Pool which will be hidden from other

modules/threads

*/

eResult = adi_mem_CreatePrivatePool(

/* Pointer to the heap */

pPoolMem,

/* Size in bytes of the memory passed for heap */

nPoolMemSizeBytes,

/* Address to hold the returned pool handle */

hMemPool,

/* Allocation scheme to be used */

eModel,

/* Pointer to the memory required for storing

Memory Manager and algorithmic specific private

data */

pLocalMem,

/* Size in bytes of the memory passed for private

data */

nLocalMemSizeBytes);

// Use the pool...

/*

** Destroy the pool after using it

*/

Getting Started

14-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

eResult = adi_mem_DestroyPool(hMemPool);

if(eResult != ADI_MEM_RESULT_SUCCESS)

{

// Failed to destroy the pool, add code to take

appropriate action

}

Memory Allocation/Reallocation and Freeing
Memory allocation requires the pool handle from which the memory
needs to be allocated. Reallocation and freeing does not need the pool
handle as memory is already allocated and the pool information is there in
the memory block header. See “Memory Manager Service API Structures,
Definitions, and Enumerations” on page 14-39 for details on the API.

A pool handle is provided during the creation of the pool (see adi_mem_
CreatePublicPool() or adi_mem_CreatePrivaePool). A pool handle can
also be obtained from the list of public pools by calling the function adi_
mem_ListPublicPools(). The list returned by this function has the pool
handle in each node. Private pools are not listed by the adi_mem_
ListPublicPools(), they are protected and cannot be used for allocation
by other modules.

The list returned by adi_mem_ListPublicPools() has the characteristics
of each pool along with the pool handle. Based on its needs (L1/L2/L3 or
cached/non-cached), an application can choose the appropriate pool and
use the corresponding pool handle for memory allocation.

/*

** Allocate Memory from the created pool

*/

eResult = adi_mem_Alloc(

/* Handle to the memory pool from which memory to be

allocated */

VisualDSP++ 5.0 Device Drivers and System 14-9
Services Manual for Blackfin Processors

Memory Manager Service

hMemPool,

/* Pointer in which allocated memory block pointer

is written */

&pData,

/* Size of the memory block required */

200);

if(eResult != ADI_MEM_RESULT_SUCCESS)

{

// Failed to allocate memory, take appropriate action

}

else

{

// Use the allocated memory

 /*

 ** Free the allocated memory

 */

 eResult = adi_mem_Free(pData);

 /* Check if the memory block is freed successfully */

 if(eResult != ADI_MEM_RESULT_SUCCESS)

 {

// Failed to free memory, take appropriate action

 }

}

Memory Manager Service API Reference

14-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Memory Manager Service API
Reference

This section documents the memory manager service application pro-
gramming interface (API).

Notation and Naming Conventions
To safeguard against conflicts with other software libraries provided by
Analog Devices, or other sources, the memory manager service uses an
unambiguous naming convention in which enumeration values and type-
def statements use the ADI_MEM_ prefix. Functions and global variables use
the lowercase adi_mem_ equivalent.

Each function within the memory manager service API returns an error
code of the type ADI_MEM_RESULT. Like the other system services, a return
value of zero (0=ADI_MEM_RESULT_SUCCESS) indicates that no error has
occurred during the function call. Any nonzero value indicates the specific
type of error that has occurred. The error codes for the memory manager
service are unique from those of the other system services, and are defined
in the ‘adi_mem.h’ include file. This allows the user to determine the cause
of the error by looking up the error code in that file. Some of the error
codes are returned only in the debug version of the service. The return
codes that are returned only in debug mode are marked with a ‘D’ in the
column next to the return code in “Return Value” tables. If the return
code is not marked with ‘D’, it can be returned in both debug and release
versions of the service.

VisualDSP++ 5.0 Device Drivers and System 14-11
Services Manual for Blackfin Processors

Memory Manager Service

The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Conditions – Special conditions for the function

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

Memory Manager Service API Reference

14-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_mem_Init

Description

This function is used to initialize the memory manager service. The mem-
ory manager service should be initialized before calling any of its other
APIs.

Conditions

The memory manager can be initialized again only after it is terminated.
The function adi_mem_Terminate() should be called to terminate the
memory manager service.

Prototype
ADI_MEM_RESULT adi_mem_Init(void);

Arguments

None

Return Value

ADI_MEM_RESULT_SUCCESS Successfully initialized memory manager service

ADI_MEM_MGR_ALREADY_INITIALIZED Memory manager is already initialized. It should be ter-
minated by calling the function adi_mem_Terminate()
before calling this function again.

VisualDSP++ 5.0 Device Drivers and System 14-13
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_Terminate

Description

This function is used to terminate the memory manager service. An appli-
cation can use this function to terminate the memory manager when it
does not need the memory manager service any more.

Conditions

This function can be called only after successful initialization of the mem-
ory manager service. This function does not take care of freeing the
memory allocated by the memory manager. The application should take
care of freeing all the previously allocated memory. The memory manager
is terminated even if there is memory that is not freed.

Prototype
ADI_MEM_RESULT adi_mem_Terminate(void);

Arguments

None

Return Value

ADI_MEM_RESULT_SUCCESS Successfully terminated the memory manager
service

ADI_MEM_MGR_NOT_INITIALIZED Trying to terminate the memory manager ser-
vice when it is not initialized

ADI_MEM_RESULT_RESOURCE_DESTROY_FAILED Unable to destroy the resource allocated during
the initialization

Memory Manager Service API Reference

14-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_mem_InstallFixedBlockModel

Description

This function is used to install the fixed block memory allocation algo-
rithm. Unless this function is called, the algorithm cannot be used. A
memory pool which uses this fixed block allocation algorithm cannot be
created.

Conditions

This function can be called multiple times.

Prototype
ADI_MEM_RESULT adi_mem_InstallFixedBlockModel(void);

Arguments

None

Return Value

ADI_MEM_RESULT_SUCCESS Successfully installed the fixed block memory allocation model

VisualDSP++ 5.0 Device Drivers and System 14-15
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_InstallCircularModel

Description

This function is used to install the circular buffer memory allocation algo-
rithm. Unless this function is called, the algorithm cannot be used. A
memory pool which uses circular buffer allocation algorithm cannot be
created.

Conditions

This function can be called multiple times.

Prototype
ADI_MEM_RESULT adi_mem_InstallCircularModel(void);

Arguments

None

Return Value

ADI_MEM_RESULT_SUCCESS Successfully installed the circular buffer memory allocation model

Memory Manager Service API Reference

14-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_mem_InstallBinBuddyModel

This function is used to install the binary buddy memory allocation algo-
rithm. Unless this function is called, the algorithm cannot be used. A
memory pool which uses binary buddy allocation algorithm cannot be
created.

Conditions

This function can be called multiple times.

Prototype
ADI_MEM_RESULT adi_mem_InstallBinBuddyModel(void);

Arguments

None

Return Value

ADI_MEM_RESULT_SUCCESS Successfully installed the binary buddy memory allocation model

VisualDSP++ 5.0 Device Drivers and System 14-17
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_CreatePrivatePool

Description

This function is used to add a private memory pool to the list of pools to
be managed by the memory manager service. The maximum number of
pools that can be created (co-exist) in the system is limited. The maximum
number of memory pools that can be created are limited to 32 as defined
by the constant ADI_MEM_MAX_NUM_POOLS.

A private memory pool can only be used by the module or thread which
created it. It is not listed as part of the public pool list when requested to
list the public pools in the system using the API adi_mem_ListPub-
licPools(). As the pool is only for private use, and as the module which
created the pool knows about the characteristics of the pool, it is not
required to specify the pool characteristics in this API.

Conditions

Upon failure, this function writes NULL into a location pointed to by the
phMemPool (pointer to the memory pool handle).

This function tries to create Mutexes which are required to protect critical
sections. It is required to initialize OSAL before calling this function.

As this function acquires the Mutex to protect critical sections, it cannot
be called from an unscheduled region—that is, it cannot be called after the
scheduler is locked (see the OSAL User’s Guide for more details on sched-
uler locking). If called from an unscheduled region, Mutex acquire would
fail and this function returns the error, ADI_MEM_RESULT_RESOURCE_
ACQUIRE_FAILED.

Memory Manager Service API Reference

14-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Prototype

ADI_MEM_RESULT adi_mem_CreatePrivatePool(

void *pPoolMem,

uint32_t nPoolMemSizeBytes,

ADI_MEM_MEMPOOL_HANDLE *phMemPool,

ADI_MEM_ALLOC_MODEL eModel,

void *pLocalMem,

uint32_t nLocalMemSizeBytes

)

Arguments

pPoolMem Pointer to the location of the start of the pool in memory. This
location must be 4 bytes aligned and cannot be address 0.

nPoolMemSizeBytes Length of the pool in bytes. It must be a multiple of 4. The maxi-
mum pool size that can be managed by the manager is limited to
ADI_MEM_MAX_POOL_SIZE (0x7FFFFFFFUL = 2 Giga bytes).

phMemPool Pointer to a location in which the pool handle is stored if success-
ful

eModel Memory allocation algorithm to be used for this pool

pLocalMem Pointer to the memory required to store the memory manager and
algorithmic-specific private data

nLocalMemSizeBytes Size in bytes of the memory passed for private structures. Depend-
ing upon the allocation model chosen, appropriate memory size
has to be passed. For fixed block allocation scheme, it should be
ADI_MEM_FIXED_PRIVATE_MEM_SIZE, for circular buffer it
should be ADI_MEM_CIRC_PRIVATE_MEM_SIZE, for binary buddy
it should be ADI_MEM_BUDDY_PRIVATE_MEM_SIZE. Refer to the
adi_mem.h file for actual size. Custom allocation modeling
depends upon the algorithm.

VisualDSP++ 5.0 Device Drivers and System 14-19
Services Manual for Blackfin Processors

Memory Manager Service

Return Value

ADI_MEM_RESULT_SUCCESS Successfully create the memory pool using
the given memory

ADI_MEM_RESULT_MISALIGNED_ADDR D Pointer to the given memory for creating
the pool is pointing to an address which is
not aligned to a 4 bytes boundary

ADI_MEM_RESULT_INVALID_ADDR D Pointer to the given memory for creating
the pool is pointing to a NULL or pointing
to address 0x0 or pointer to the memory
which is required to store private struc-
tures of memory manager and algorith-
mic-specific implementation is pointing to
NULL

ADI_MEM_RESULT_INVALID_SIZE D Given memory size for creating the mem-
ory pool is not a multiple of 4 or given size
is greater than the maximum manageable
size (ADI_MEM_MAX_POOL_SIZE)

ADI_MEM_RESULT_INSUFFICIENT_MEMORY D Given memory size which is required to
store private structures of memory man-
ager and algorithmic-specific implementa-
tion is not sufficient

ADI_MEM_RESULT_POOLS_FULL No more pools available, reached the max-
imum number of pools supported by the
memory manager

ADI_MEM_RESULT_INVALID_MODEL D Chosen memory allocation algorithm is
invalid

ADI_MEM_RESULT_MODEL_NOT_INSTALLED D Chosen memory allocation algorithm is
valid but not yet installed. The required
memory model should be installed before
using them. See the description of the
APIs “adi_mem_InstallFixedBlock-
Model” on page 14-14, “adi_mem_
InstallCircularModel” on page 14-15, and
“adi_mem_InstallBinBuddyModel” on
page 14-16 to learn about installing an
algorithm.

Memory Manager Service API Reference

14-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_MEM_RESULT_MGR_NOT_INITIALIZED Memory manager is not yet initialized or
not initialized after termination. See the
description of the API “adi_mem_Init” on
page 14-12 to learn about initializing the
memory manager.

ADI_MEM_RESULT_RESOURCE_UNAVAILABLE Resource required to protect critical sec-
tion (Mutex) is not available

ADI_MEM_RESULT_RESOURCE_DESTROY_FAILED Failed to destroy the created resource. The
created resource is destroyed if there were
any errors while creating the pool.

ADI_MEM_RESULT_RESOURCE_ACQUIRE_FAILED Failed to acquire the required resource

ADI_MEM_RESULT_RESOURCE_RELEASE_FAILED Failed to release the required resource

VisualDSP++ 5.0 Device Drivers and System 14-21
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_CreatePublicPool

Description

This function is used to add a public memory pool to the list of pools to
be managed by the memory manager service. The maximum number of
pools that can be created (co-exist) in the system is limited. The maximum
number of memory pools that can be created are limited to 32 as defined
by the constant ADI_MEM_MAX_NUM_POOLS.

A public memory pool can be used by any module or thread along with
the module which created it. A public pool is listed as part of the public
pool list when requested using the API adi_mem_ListPublicPools(). Each
pool in the public pool list is listed along with its characteristics, so that
they can be used to choose the right pool according to the requirements.
To know the characteristics that are associated with pools, see “ADI_
MEM_INFO Structure” on page 14-44.

Conditions

Upon failure, this function writes NULL into location pointed by the
phMemPool (pointer to the memory pool handle).

This function tries to create Mutexes which are required to protect critical
sections. It is required to initialize OSAL before calling this function.

As this function acquires the Mutex to protect critical sections, it cannot
be called from an unscheduled region—that is, it cannot be called after the
scheduler is locked (see the OSAL User’s Guide for more details on
scheduler locking). If called from an unscheduled region, Mutex acquire
would fail and this function returns an error of ADI_MEM_RESULT_
RESOURCE_ACQUIRE_FAILED.

Memory Manager Service API Reference

14-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Prototype

ADI_MEM_RESULT adi_mem_CreatePublicPool(

void *pPoolMem,

uint32_t nPoolMemSizeBytes,

ADI_MEM_MEMPOOL_HANDLE *phMemPool,

ADI_MEM_ALLOC_MODEL eModel,

ADI_MEM_CHAR *const pCharacteristics,

void *pLocalMem,

uint32_t nLocalMemSizeBytes)

Arguments

pPoolMem Pointer to the location of the start of the pool in memory. This location
must be 4 bytes aligned and cannot be address 0.

nPoolMemSizeBytes Length of the pool in bytes. It must be a multiple of 4. The maximum
pool size that can be managed by the manager is limited to ADI_MEM_
MAX_POOL_SIZE (0x7FFFFFFFUL = 2 Giga bytes).

phMemPool Pointer to a location where the pool handle is stored if successful

eModel Memory allocation algorithm to be used for this pool

pLocalMem Pointer to the memory required to store the memory manager and algo-
rithmic-specific private data

pCharacteristics Characteristics of the memory that are passed to create the memory
pool. This information is shown when this pool is listed in the public
pool list. Note that this information is not used in anyway by the mem-
ory manager— it is used only to characterize the memory pool. The
memory pool characteristics help to choose the right pool from the
public pool list.

nLocalMemSizeBytes Size in bytes of the memory passed for private structures. Depending
upon the allocation model chosen, appropriate memory size has to be
passed. For fixed block allocation scheme it should be ADI_MEM_
FIXED_PRIVATE_MEM_SIZE, for circular buffer it should be ADI_MEM_
CIRC_PRIVATE_MEM_SIZE, for binary buddy it should be ADI_MEM_
BUDDY_PRIVATE_MEM_SIZE. Refer to the adi_mem.h file for actual
size. For custom allocation modeling, it depends upon the algorithm.

VisualDSP++ 5.0 Device Drivers and System 14-23
Services Manual for Blackfin Processors

Memory Manager Service

Return Value

ADI_MEM_RESULT_SUCCESS Successfully create the memory pool
using the given memory

ADI_MEM_RESULT_MISALIGNED_ADDR D Pointer to the given memory for creating
the pool is pointing to an address which
is not aligned to a 4 bytes boundary

ADI_MEM_RESULT_INVALID_ADDR D Pointer to the given memory for creating
the pool is pointing to a NULL or point-
ing to address 0x0 or pointer to the
memory which is required to store pri-
vate structures of the memory manager
and algorithmic-specific implementa-
tion is pointing to NULL

ADI_MEM_RESULT_INVALID_SIZE D Given memory size for creating the
memory pool is not a multiple of 4 or
given size is greater than the maximum
manageable size (ADI_MEM_MAX_POOL_
SIZE)

ADI_MEM_RESULT_INSUFFICIENT_MEMORY D Given memory size which is required to
store private structures of the memory
manager and algorithmic-specific imple-
mentation is not sufficient

ADI_MEM_RESULT_POOLS_FULL No more pools available, reached the
maximum number of pools supported by
the memory manager

ADI_MEM_RESULT_INVALID_MODEL D Chosen memory allocation algorithm is
invalid

ADI_MEM_RESULT_MODEL_NOT_INSTALLED D Chosen memory allocation algorithm is
valid but not yet installed. The required
memory model should be installed
before using them. See the descriptions
of the APIs “adi_mem_InstallFixed-
BlockModel” on page 14-14, “adi_
mem_InstallCircularModel” on
page 14-15, and “adi_mem_InstallBin-
BuddyModel” on page 14-16 to learn
about installing an algorithm.

Memory Manager Service API Reference

14-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_MEM_RESULT_INVALID_BANKID D Specified bank ID as memory pool char-
acteristics is invalid

ADI_MEM_RESULT_INVALID_MEM_TYPE D Specified memory type as memory pool
characteristics is invalid

ADI_MEM_RESULT_INVALID_CACHE D Specified cache characteristics are invalid

ADI_MEM_RESULT_MGR_NOT_INITIALIZED Memory manager is not yet initialized or
not initialized after termination. See the
description of “adi_mem_Init” on
page 14-12 to learn about initializing the
memory manager.

ADI_MEM_RESULT_RESOURCE_UNAVAILABLE Resource required to protect critical sec-
tion (Mutex) is not available

ADI_MEM_RESULT_RESOURCE_DESTROY_FAILED Failed to destroy the created resource

ADI_MEM_RESULT_RESOURCE_ACQUIRE_FAILED Failed to acquire the required resource

ADI_MEM_RESULT_RESOURCE_RELEASE_FAILED Failed to release the required resource

VisualDSP++ 5.0 Device Drivers and System 14-25
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_DestroyPool

Description

This function is used to remove a memory pool from the list of pools
managed by the memory manager. This function is used to destroy both
private and public pools.

Conditions

The given pool is not destroyed unless all the memory allocated from that
pool is freed. This is done to protect from unexpected results when a
memory block is freed after the pool is destroyed.

This function cannot be called from an unscheduled region as it tries to
acquire the Mutex. When called from an unscheduled region, Mutex
acquire would fail and this function returns ADI_MEM_RESULT_RESOURCE_
ACQUIRE_FAILED.

Prototype
ADI_MEM_RESULT adi_mem_DestroyPool(ADI_MEM_MEMPOOL_HANDLE

hMemPool)

Arguments

hMemPool Handle to the pool to be removed from managing

Memory Manager Service API Reference

14-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_MEM_RESULT_SUCCESS Successfully destroyed the given
memory pool

ADI_MEM_RESULT_MGR_NOT_INITIALIZED Memory manager is not yet initialized
or not initialized after termination.
See description of the API
“adi_mem_Init” on page 14-12 to
learn about initializing the memory
manager.

ADI_MEM_RESULT_INVALID_HANDLE D Given pool handle is invalid or NULL

ADI_MEM_RESULT_POOL_IN_USE Given pool is in use. There are some
unfreed blocks of memory allocated
from this pool. Those blocks should
be freed before destroying the pool.

ADI_MEM_RESULT_RESOURCE_ACQUIRE_FAILED Failed to acquire the required resource
(Mutex) to protect critical sections

ADI_MEM_RESULT_RESOURCE_RELEASE_FAILED Failed to release the acquired resource

ADI_MEM_RESULT_RESOURCE_DESTROY_FAILED Failed to destroy the created resource

VisualDSP++ 5.0 Device Drivers and System 14-27
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_ListPublicPools

Description

This function is used to get the list of public pools currently available for
allocation. This function returns a linked list of all the public pools cur-
rently available. Each node in the list is an “ADI_MEM_INFO Structure”
which contains the characteristics of the corresponding memory pool.
When using this list, an application can choose a particular memory pool
based on its requirements. After choosing the pool it can use the pool han-
dle of the corresponding pool (pool handle is one of the members in the
node) for memory allocation.

Conditions

Information in the list can change from the time it was obtained and by
the time it is used. The linked list can change if one of the public pools
gets deleted or when a new public pool is added. To guarantee that the
contents of the list are unchanged before being used, the application
should protect the section by locking the scheduler by using adi_osal_
SchedulerLock (see OSAL User’s Guide for more details). Once the pool
is chosen and memory is allocated from that pool, it will not be destroyed
until all the memory allocated from that pool is freed.

Prototype
ADI_MEM_RESULT adi_mem_ListPublicPools(ADI_MEM_INFO **ppInfo)

Arguments

ppInfo Pointer to the memory location where the link to the start of public pools
linked list is returned

Memory Manager Service API Reference

14-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_MEM_RESULT_SUCCESS Successfully obtained the public pool list

ADI_MEM_RESULT_NO_PUBLIC_POOL Currently no public pools available

ADI_MEM_RESULT_INVALID_ADDR D Given pointer to store the public pool list is a
NULL pointer

ADI_MEM_RESULT_MGR_NOT_INITIALIZED Memory manager not initialized

VisualDSP++ 5.0 Device Drivers and System 14-29
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_Control

Description

The memory manager allows an application to set or get run-time config-
uration parameters. This function allows the application to set or retrieve
memory pool configuration parameters.

Conditions

This function cannot be called from an unscheduled region as it tries to
acquire the Mutex. When called from an unscheduled region, Mutex
acquire would fail and this function returns ADI_MEM_RESULT_RESOURCE_
ACQUIRE_FAILED.

Not all the commands are supported by all the allocation algorithms. If a
particular command in not supported by the allocation algorithm, then
ADI_MEM_RESULT_UNKOWN_CONTROL_ID is returned.

Prototype

ADI_MEM_RESULT adi_mem_Control(

 ADI_MEM_MEMPOOL_HANDLE hMemPool,

 uint32_t nControlID,

 void * const pValue)

Arguments

hMemPool Handle of the memory pool whose configuration parameter
needs to be set or retrieved

nControlID Control command. See Table 14-5 on page 14-41 for a list of
commands.

pValue Pointer to the value that needs to be set or pointer into which
the configuration value is read

Memory Manager Service API Reference

14-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_MEM_RESULT_SUCCESS Successfully obtained or set the configu-
ration parameter

ADI_MEM_RESULT_UNKNOWN_CONTROL_ID Given control command is unknown or
not supported

ADI_MEM_RESULT_CMD_NOT_PERMITTED Given command is not supported in the
current state of the memory pool

ADI_MEM_RESULT_INVALID_ADDR D Given pointer to the value is a NULL
pointer

ADI_MEM_RESULT_MGR_NOT_INITIALIZED Memory manager not initialized

ADI_MEM_RESULT_RESOURCE_ACQUIRE_FAILED Failed to acquire the required resource
(Mutex) to protect critical sections

ADI_MEM_RESULT_RESOURCE_RELEASE_FAILED Failed to release the acquired resource

VisualDSP++ 5.0 Device Drivers and System 14-31
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_Alloc

Description

This function allocates a block of memory from the given memory pool.

Conditions

If the zero size block is requested, this function returns an error ADI_MEM_
RESULT_ZERO_SIZE and a NULL pointer is written into the given pointer.

This function cannot be called from an unscheduled region as it tries to
acquire the Mutex. When called from an unscheduled region, Mutex
acquire would fail and this function returns ADI_MEM_RESULT_RESOURCE_
ACQUIRE_FAILED.

Prototype

ADI_MEM_RESULT adi_mem_Alloc(

ADI_MEM_MEMPOOL_HANDLE hMemPool,

void** ppData

uint32_t nSize)

Arguments

hMemPool Handle to the memory pool from which memory is allocated

ppData Pointer to a location where the pointer to the allocated block of memory
is written

nSize Size of the block to allocate

Memory Manager Service API Reference

14-32 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_MEM_RESULT_SUCCESS Successfully allocated the requested block
size memory

ADI_MEM_RESULT_POOL_FULL No memory available in the given pool,
the pool is full

ADI_MEM_RESULT_ZERO_SIZE Requested a zero block size

ADI_MEM_INVALID_SIZE Requested block size bigger than the cur-
rent block size (in case of fixed block
memory allocation algorithm)

ADI_MEM_RESULT_MGR_NOT_INITIALIZED Memory manager not initialized

ADI_MEM_RESULT_RESOURCE_ACQUIRE_FAILED Failed to acquire the required resource
(Mutex) to protect critical sections

ADI_MEM_RESULT_RESOURCE_RELEASE_FAILED Failed to release the acquired resource

VisualDSP++ 5.0 Device Drivers and System 14-33
Services Manual for Blackfin Processors

Memory Manager Service

adi_mem_Free

Description

This function frees a given memory block.

Conditions

If the pointer pData is a NULL pointer, the function immediately returns
with ADI_MEM_SUCCESS.

When tried to free a memory block which is already freed, this function
returns with a success ADI_MEM_SUCCESS.

This function cannot be called from an unscheduled region as it tries to
acquire the Mutex. When called from an unscheduled region, Mutex
acquire would fail and this function returns ADI_MEM_RESULT_RESOURCE_
ACQUIRE_FAILED.

Prototype
ADI_MEM_RESULT adi_mem_Free(void *pData)

Arguments

Return Value

pData Pointer to the block of memory that needs to be freed

ADI_MEM_RESULT_SUCCESS Successfully freed the given memory block

ADI_MEM_RESULT_MGR_NOT_INITIALIZED Memory manager not initialized

ADI_MEM_RESULT_RESOURCE_ACQUIRE_FAILED Failed to acquire the required resource
(Mutex) to protect critical sections

ADI_MEM_RESULT_RESOURCE_RELEASE_FAILED Failed to release the acquired resource

Memory Manager Service API Reference

14-34 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_mem_Free

Description

This function resizes a memory block that was already allocated. This
function is not available in all allocation algorithms. If a particular model
does not support realloc, this function returns with an error code of ADI_
MEM_RESULT_NOT_SUPPORTED.

Conditions

This function frees the memory block if the new size requested is zero.

Prototype
ADI_MEM_RESULT adi_mem_Realloc(uint32_t nSize, void **ppData)

Arguments

nSize New size to which the given memory block is resized. If size is zero, then the given
memory block is freed.

ppData Pointer to a location that holds the pointer to the block of memory to be resized

VisualDSP++ 5.0 Device Drivers and System 14-35
Services Manual for Blackfin Processors

Memory Manager Service

Return Value

ADI_MEM_RESULT_SUCCESS Successfully resized the given memory block

ADI_MEM_RESULT_INVALID_ADDR Given address to the memory block is
invalid

ADI_MEM_RESULT_INSUFFICIENT_MEMORY Given new block size is bigger than the
available block size

ADI_MEM_RESULT_NOT_SUPPORTED Realloc not supported in the current alloca-
tion model

ADI_MEM_RESULT_MGR_NOT_INITIALIZED Memory manager not initialized

ADI_MEM_RESULT_RESOURCE_ACQUIRE_FAILED Failed to acquire the required resource
(Mutex) to protect critical sections

ADI_MEM_RESULT_RESOURCE_RELEASE_FAILED Failed to release the acquired resource

Coding Example

14-36 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Coding Example
This section contains code snippets for some memory manager APIs.

Memory Manager Initialization
/* Initialize the memory Manager */

eResult = adi_mem_Init();

Install the Required Algorithms
/* Install the Fixed Block allocation algorithm */

adi_mem_InstallFixedBlockModel();

Memory Pool Creation
 /* Fill the characteristics of the memory block

 which is passed to created the pool */

 Characteristics.eBank = ADI_MEM_INFO_BANK2;

 /* Bank to which the block belongs to */

 Characteristics.eCache = ADI_MEM_INFO_CACHE_ON;

 /* Cache on/off on this block */

 Characteristics.eType = ADI_MEM_INFO_TYPE_L3;

 /* Memory type L1/L2/L3 */

 /* create a public pool with fixed block allocation

 scheme */

 eResult = adi_mem_CreatePubliPool(

&MemoryPool,

/* Memory required for pool */

POOL_SIZE,

/* Size of the pool */

&hMemPool,

/* Pointer to pool handle */

VisualDSP++ 5.0 Device Drivers and System 14-37
Services Manual for Blackfin Processors

Memory Manager Service

ADI_MEM_ALLOC_MODEL_FIXED,

/* allocation model to be used */

&Characteristics,

/* Characteristics of the memory

block */

&PrivateStructMem,

/* Memory for algorithmic specific

data */

ADI_MEM_FIXED_PRIVATE_MEM_SIZE

/* Memory size for private data */

);

Using Public Pool List
/* List out the public pools and choose the required pool based

 on the characteristics*/

eResult = adi_mem_ListPublicPools(&pPoolList);

/* Check if the list is empty */

if(pPoolList != NULL)

{

ADI_MEM_MEMPOOL_HANDLE hReqMempool = NULL;

/* There are some public pools available choose one */

/* Assuming that the required pool is with following

characteristics,

1. Bank 2

2. Cache to be ON

3. Memory type L3

4. Model – Don’t care

5. Available block size > 200 bytes.*/

Coding Example

14-38 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

while(pPooList != NULL)

{

if((pPoolList->eBank == ADI_MEM_INFO_BANK2) &&

(pPoolList->eCache == ADI_MEM_INFO_CACHE_ON) &&

(pPoolList->eType == ADI_MEM_INFO_TYPE_L3) &&

(pPoolList->nMaxBlockSizeAvail > 200))

{

/* Got the pool with required characteristics */

hReqMemPool = pPoolList->hMemPool;

break;

}

else

{

/* Move to the next pool */

pPoolList = pPoolList->pNext;

}

 }

 }

Allocate, Free, and Realloc Memory
{

void *pData;

adi_mem_Alloc(hMemPool, &pData, 100);

...

adi_mem_Realloc(pData, 200);

...

adi_mem_Free(pData);

}

VisualDSP++ 5.0 Device Drivers and System 14-39
Services Manual for Blackfin Processors

Memory Manager Service

Memory Manager Service API
Structures, Definitions, and Enumerations

This section lists all the structure definitions, constant definitions, and
enumerations that are used in the APIs. All of these can be found in the
file adi_mem.h.

Allocation Models (ADI_MEM_ALLOC_MODEL)
Table 14-1 is an enumerated list which contains the values for the pre-
defined and user-defined memory allocation models.

Table 14-1. Allocation Models and Description

Model Name Value Model Description

ADI_MEM_ALLOC_MODEL_FIXEDBLOCK 0 Fixed-size block allocation

ADI_MEM_ALLOC_MODEL_BINBUDDY 1 Binary buddy allocation

ADI_MEM_ALLOC_MODEL_CIRCULAR 2 Circular buffer allocation

ADI_MEM_ALLOC_MODEL_USER1 3 User-defined allocation model

ADI_MEM_ALLOC_MODEL_USER2 4 User-defined allocation model

ADI_MEM_ALLOC_MODEL_USER3 5 User-defined allocation model

ADI_MEM_ALLOC_MODEL_MAX 6 Maximum number of allocation models

Memory Manager Service API Structures, Definitions, and
Enumerations

14-40 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Bank Information (ADI_MEM_BANK_INFO)
Table 14-2 is an enumerated list of the physical memory banks. The bank
information is used as one of the memory pool characteristics to identify
from which memory bank the memory pool belongs.

Cache Information (ADI_MEM_CACHE_INFO)
Table 14-3 is an enumerated list of possible cache configuration. This is
one of the memory pool characteristics which indicates if the cache on the
block of memory which this pool belongs to is enabled/disabled (and with
what configuration).

Table 14-2. Memory Bank Info and Description

Bank Name Value Description

ADI_MEM_INFO_BANK0 0 Extern Memory (L3) Bank 0

ADI_MEM_INFO_BANK1 1 Extern Memory (L3) Bank 1

ADI_MEM_INFO_BANK2 2 Extern Memory (L3) Bank 2

ADI_MEM_INFO_BANK3 3 Extern Memory (L3) Bank 3

ADI_MEM_INFO_BANK_L1A 0x1000 Internal Data Memory L1A Bank

ADI_MEM_INFO_BANK_L1B 0x1001 Internal Data Memory L1B Bank

Table 14-3. Cache Configuration Info and Description

Cache Configuration Value Description

ADI_MEM_INFO_CACHE_OFF 0 Cache disabled on this memory block

ADI_MEM_INFO_CACHE_ON 1 Cache enabled on this memory block

ADI_MEM_INFO_CACHE_ON_WT 2 Cache enabled with write through option on this
memory block

ADI_MEM_INFO_CACHE_ON_WB 3 Cache enabled with write back option on this
memory block

VisualDSP++ 5.0 Device Drivers and System 14-41
Services Manual for Blackfin Processors

Memory Manager Service

Memory Type Information (ADI_MEM_TYPE_INFO)
Table 14-4 is an enumerated list of possible memory types. This is one of
the memory pool characteristics used to indicate from which type of mem-
ory the memory pool belongs.

Commands (ADI_MEM_COMMAND)
There are several commands available to set or get a configuration param-
eter. Table 14-5 is an enumerated list that contains available commands.

Table 14-4. Memory Type Info and Description

Memory Type Value Description

ADI_MEM_INFO_TYPE_L1 1 Memory pool is from L1 (internal memory)

ADI_MEM_INFO_TYPE_L2 2 Memory pool is from L2 (slow internal memory)

ADI_MEM_INFO_TYPE_L3 3 Memory pool is from L3 (external memory)

Table 14-5. Commands and Description

Command Name Value Description

ADI_MEM_CMD_GET_BLOCK_SIZE 0xd0001 Get the max block size in bytes that can be
allocated (fixed block only)

ADI_MEM_CMD_SET_BLOCK_SIZE 0xd0002 Set the max block size in bytes that can be
allocated (fixed block only)

ADI_MEM_CMD_GET_POOL_SIZE 0xd0003 Get the actual pool size in bytes after creation

Memory Manager Service API Structures, Definitions, and
Enumerations

14-42 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Result Codes (ADI_MEM_RESULT)
Table 14-6 is an enumerated list of possible result codes from the memory
manager service.

Table 14-6. Result Codes and Description

Result Code Name Value Description

ADI_MEM_RESULT_SUCCESS 0x0 General success

ADI_MEM_RESULT_FAILURE 0x1 General failure

ADI_MEM_RESULT_START 0xd0000 Base of result code values

ADI_MEM_RESULT_INSUFFICIENT_MEMORY 0xd0001 Memory supplied is not sufficient
for the operation

ADI_MEM_RESULT_MISALIGNED_ADDR 0xd0002 The heap address passed is non 4
byte aligned

ADI_MEM_RESULT_INVALID_SIZE 0xd0003 One of the parameter sizes is not
valid

ADI_MEM_RESULT_ZERO_SIZE 0xd0004 Size passed for allocation is zero

ADI_MEM_RESULT_INVALID_BLOCK_SIZE 0xd0005 Invalid fixed block size requested

ADI_MEM_RESULT_MGR_NOT_INITIALIZED 0xd0006 Operation not permitted as mem-
ory manager not initialized

ADI_MEM_RESULT_MGR_ALREADY_INITIALIZED 0xd0007 Memory manager is already ini-
tialized

ADI_MEM_RESULT_INVALID_BANKID 0xd0008 The bank ID passed is invalid (out
of range)

ADI_MEM_RESULT_INVALID_CACHE 0xd0009 Invalid cache parameter

ADI_MEM_RESULT_INVALID_MEM_TYPE 0xd000a Invalid memory type is passed

ADI_MEM_RESULT_MODEL_NOT_INSTALLED 0xd000b Requested allocation model not
yet installed

ADI_MEM_RESULT_POOLS_FULL 0xd000c There are no more pools for add-
ing new pool

ADI_MEM_RESULT_MEM_UNAVAILABLE 0xd000d Memory not available to allocate

VisualDSP++ 5.0 Device Drivers and System 14-43
Services Manual for Blackfin Processors

Memory Manager Service

ADI_MEM_RESULT_INVALID_MODEL 0xd000e The allocation model is invalid

ADI_MEM_RESULT_INVALID_HANDLE 0xd000f The memory pool handle is
invalid

ADI_MEM_RESULT_MEM_NOT_MANAGED 0xd0010 The given memory address is not
managed

ADI_MEM_RESULT_UNKNOWN_CONTROL_ID 0xd0011 The configuration parameter ID is
invalid

ADI_MEM_RESULT_NO_PUBLIC_POOL 0xd0012 There are no public pools cur-
rently available

ADI_MEM_RESULT_INVALID_ADDR 0xd0013 The address passed is invalid

ADI_MEM_RESULT_NOT_SUPPORTED 0xd0014 The given operation is not sup-
ported

ADI_MEM_RESULT_POOL_IN_USE 0xd0015 The given memory pool is in use,
it cannot be deleted

ADI_MEM_RESULT_RESOURCE_UNAVAILABLE 0xd0016 Resource required for the memory
manager operation is not available

ADI_MEM_RESULT_RESOURCE_ACQUIRE_FAILED 0xd0017 Could not acquire the required
resource

ADI_MEM_RESULT_RESOURCE_RELEASE_FAILED 0xd0018 Could not release the acquired
resource

ADI_MEM_RESULT_RESOURCE_DESTROY_FAILED 0xd0019 Could not destroy the created
resource

ADI_MEM_RESULT_CMD_NOT_PERMITTED 0xd001a Command not permitted in the
current state of pool

ADI_MEM_RESULT_POOL_EMPTY 0xd001b No memory for allocation from
current pool

Table 14-6. Result Codes and Description (Cont’d)

Result Code Name Value Description

Memory Manager Service API Structures, Definitions, and
Enumerations

14-44 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_MEM_INFO Structure
typedef struct __ADI_MEM_INFO

{

struct __ADI_MEM_INFO *pNext;

ADI_MEM_MEMPOOL_HANDLE hMemPool;

ADI_MEM_BANK_INFO eBank;

ADI_MEM_CACHE_INFO eCache;

ADI_MEM_TYPE_INFO eType;

ADI_MEM_ALLOC_MODEL eModel;

uint32_t nMaxBlockSizeAvail;

uint32_t nUserCriteria;

}ADI_MEM_INFO;

This structure is used as a node in the linked list of public pools. When
an application requests the available list of public pools (using adi_mem_
ListPublicPools), a linked list of this structure is returned.

Table 14-7. Description of Fields in ADI_MEM_INFO
Structure

Field Description

pNext Pointer to the “ADI_MEM_MODEL Structure”

hMemPool Handle to the memory pool

eBank Indicates which bank the memory pool belongs to. See “Bank
Information (ADI_MEM_BANK_INFO)” for possible bank
values.

eChache Iindicates whether cache is enable/disabled on the memory block
where the pool resides. See “Cache Information (ADI_MEM_
CACHE_INFO)” for details on possible cache options.

eType Memory type (L1/L2/L3) of the memory block where the pool
resides

eModel Memory allocation model that is required to manage this pool.
See “Allocation Models (ADI_MEM_ALLOC_MODEL)” for
possible models.

VisualDSP++ 5.0 Device Drivers and System 14-45
Services Manual for Blackfin Processors

Memory Manager Service

ADI_MEM_CHAR Structure
typedef struct __ADI_MEM_CHAR

{

ADI_MEM_BANK_INFO eBank;

ADI_MEM_CACHE_INFO eCache;

ADI_MEM_TYPE_INFO eType;

uint32_t nUserCriteria;

}ADI_MEM_CHAR;

This structure is used to provide the characteristics of the memory that are
being used to create a pool using that memory. This is used only when cre-
ating a public pool and will be shown when listed in the public pools. This
information can be used by other modules to choose a particular pool
from the public pool list to suit its requirements.

nMaxBlockSizeAvail Maximum block size in bytes that is available for allocation from
this pool. This field is not required to be filled by the applica-
tion.

nUserCriteria If the application wants to add any other characteristics to the
memory block, it can add them using this field. This field can be
later used to choose the pools with these criteria from the list of
public pools.

Table 14-7. Description of Fields in ADI_MEM_INFO
Structure (Cont’d)

Field Description

Adding Custom Allocation Algorithms

14-46 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Adding Custom Allocation Algorithms
This section describes internal data stuctures and memory block header
formats.

Internal Data Structures
This section describes the internal data structures used by the memory
manager.

ADI_MEM_MODEL Structure

This structure is used by each pool to store its algorithmic-specific func-
tion pointers along with the pointer to the memory required to store its
private data. Table 14-9 explains each of the fields in the structure.

Table 14-8. Description of Fields in ADI_MEM_CHAR Structure

Field Description

eBank Indicates which bank the memory pool belongs to. See “Bank
Information (ADI_MEM_BANK_INFO)” for possible bank
values.

eChache Indicates whether cache is enable/disabled on the memory block
where the pool resides. See “Cache Information (ADI_MEM_
CACHE_INFO)” for details on possible cache options.

eType Memory type (L1/L2/L3) of the memory block where the pool
resides

nUserCriteria If the application wants to add any other characteristics to the
memory block, it can add them using this field. This field can be
later used to choose the pools with these criteria from the list of
public pools.

VisualDSP++ 5.0 Device Drivers and System 14-47
Services Manual for Blackfin Processors

Memory Manager Service

typedef struct __ADI_MEM_MODEL

{

ADI_MEM_RESULT (*pfCreate)

(ADI_MEM_MEMPOOL_HANDLE const hPool);

ADI_MEM_RESULT (*pfDestroy)

(ADI_MEM_MEMPOOL_HANDLE const hPool);

ADI_MEM_RESULT (*pfControl)

(ADI_MEM_MEMPOOL_HANDLE const hPool,

uint32_t nControlID, void * const pValue);

ADI_MEM_RESULT (*pfAlloc)

(ADI_MEM_MEMPOOL_HANDLE const hPool,

uint32_t nSize, void **pData);

ADI_MEM_RESULT (*pfFree)

(ADI_MEM_MEMPOOL_HANDLE const hPool,

void *const pData);

ADI_MEM_RESULT (*pfReAlloc)

(ADI_MEM_MEMPOOL_HANDLE const hPool,

uint32_t nSize, void** ppData);

void *pPrivateStruct;

uint32_t nPrivateSize;

} ADI_MEM_MODEL;

Table 14-9. Description of Fields in ADI_MEM_MODEL
Structure

Field Description

pfCreate Pointer to the algorithmic-specific pool create function

pfDestroy Pointer to the algorithmic-specific pool destroy function

pfControl Pointer to the algorithmic-specific control function

pfAlloc Pointer to the algorithmic-specific memory allocation function

pfFree Pointers to the algorithmic-specific memory free function

pfRealloc Pointer to the algorithmic-specific memory reallocation function

Adding Custom Allocation Algorithms

14-48 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_MEM_MEMPOOL_STRUCT Structure

This structure is used to store all the information regarding a memory
pool. This is not used in the APIs but only used internally by the memory
manager and algorithmic-specific functions. Table 14-10 explains each of
the fields in the structure.

typedef struct __ADI_MEM_MEMPOOL_STRUCT

{

void *pPoolBase;

void *pPoolEnd;

uint32_t nBytesAllocated;

uint32_t nPoolSize;

uint32_t nCreatedPoolSizeBytes;

uint32_t aMutexMem[ADI_OSAL_MAX_MUTEX_

SIZE_BYTES;

ADI_OSAL_MUTEX_HANDLE hMultiThread;

ADI_MEM_MODEL oModelFunc;

ADI_MEM_INFO oInfo;

bool bPoolPrivate;

uint8_t rMemPoolID;

} ADI_MEM_MEMPOOL_STRUCT;

pPrivateStruct Pointer to the memory required to store the private data of the
algorithm

nPrivateSize Size of the algorithmic-specific private memory in bytes

Table 14-9. Description of Fields in ADI_MEM_MODEL
Structure (Cont’d)

Field Description

VisualDSP++ 5.0 Device Drivers and System 14-49
Services Manual for Blackfin Processors

Memory Manager Service

Memory Block Header Format
Each allocated memory block is preceded by a common header which has
the pool information (pool to which this block of memory belongs) and a
custom header if required by the algorithm. Figure 14-1 illustrates the for-
mat of the memory block header. This information is useful for the free

Table 14-10. Description of Fields in ADI_MEM_MEMPOOL_
STRUCT Structure

Field Description

pPoolBase Pointer to the start of the pool memory

pPoolEnd Pointer to the end of the pool memory

nBytesAllocated Total number of bytes allocated from this pool

nPoolSize Size of the pool in bytes. Size should be less than ADI_MEM_
MAX_POOL_SIZE.

nCreatedPoolSizeBytes Actual size of the pool after creation. Some algorithms trun-
cate the memory given for pool creation into a logical size
that is suitable for the algorithm. In such cases, the created
pool size will be different from the given memory size.

aMutexMem Memory required for creating the Mutex to protect this
pool

hMultiThread Handle to the Mutex which is used to lock the pool when it
is being accessed

oModelFunc Object which contains the function pointers for the algo-
rithmic-specific functions. See “ADI_MEM_MODEL
Structure” for more details.

oInfo Object which contains the information and characteristics
of the pool. See “ADI_MEM_INFO Structure” for more
details.

bPoolPrivate Flag to indicate whether the pool is private (= true) or pub-
lic (=false)

rMemPoolID Pool identifier for this pool

Adding Custom Allocation Algorithms

14-50 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

and realloc functions to identify which pool the given memory block
belongs to.

If there is a requirement to add any algorithmic specific header it should
be added before the pool information block. The actual pointer for the
allocated memory block that is returned to the application is after the pool
information block.

Figure 14-1 assumes a little-endian machine and field ordering is not
guaranteed to be a shown on a big-endian machine. So the fields should
never be acceded directly using offsets—they should be accessed only
using the ADI_MEM_POOL_INFO structure. Table 14-11 explains the fields in
the ADI_MEM_POOL_INFO structure.

typedef struct __ADI_MEM_POOL_INFO

{

uint8_t nReserved1;

uint8_t nAlgReserved;

uint8_t nAllocatedFlag;

uint8_t rAllocPoolID;

}ADI_MEM_POOL_INFO;

Figure 14-1. Indicating the Memory Block Header and Data

Algorithmic specific
Header

Reserved
(8 bits)

Reserved for Algorithm
(8 bits)

nAllocatedFlag
(8 bits)

PoolID
(8 bits)

Actual Memory pointer
passed to Application

Complete block of memory

Pool Information

VisualDSP++ 5.0 Device Drivers and System 14-51
Services Manual for Blackfin Processors

Memory Manager Service

The memory manager service supports a custom allocation scheme. It
allows adding up to three custom allocation schemes. The choice of select-
ing custom or pre-existing allocation schemes is done during the creation
of the pool. To select a custom model, an application has to set eModel to
ADI_MEM_ALLOC_MODEL_USER1/2/3 in the ADI_MEM_INFO structure when the
function adi_mem_CreatePool() is called.

Adding custom allocation algorithms can be done by providing an install
function which is called by the application before using the custom model.
See “Custom_Install” on page 14-54 for prototype and a description of a
custom install function.

Each of the functions has to follow certain API. See “Custom Allocation
Model Functions API” on page 14-53 for description and prototypes.

Table 14-11. Description of Fields in ADI_MEM_POOL_INFO
Structure

Field Description

nReserved1 Reserved for future use

nAlgReserved Reserved for algorithmic-specific data

nAllocatedFlag Flag to indicate if the block is allocated. Set to 1 if the block is
allocated, otherwise set to 0.

rAllocPoolID Pool ID to which the memory block belongs

Adding Custom Allocation Algorithms

14-52 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The following code snippet shows how a custom allocation model can be
added.

/* Custom install function for user model 1 which is called by

application before using the model */

ADI_MEM_RESULT Custom_Install(void)

{

/* Provide the Custom_Create function pointer to the memory

manager */

gCreatePoolFuncPtrTable[ADI_MEM_ALLOC_MODEL_USER1] = Custom_

Create;

}

/* create function fills in the function pointers in the memory

pool structure which are called by the memory manager. This func-

tion is called by memory manager */

ADI_MEM_RESULT Custom_Create (

ADI_MEM_MEMPOOL_HANDLE const hMemPool,

uint32_t *const pCreatedPoolSize)

{

ADI_MEM_MODEL *pModelFunc = &hMemPool->oModelFunc;

...

...

/* Fill in the algorithmic specific function pointers */

pModelFunc->pfDestroy = &Custom_Destroy;

pModelFunc->pfAlloc = &Custom_Alloc;

pModelFunc->pfFree = &Custom_Free;

pModelFunc->pfReAlloc = &Custom_Realloc;

pModelFunc->pfControl = &Custom_Control;

 ...

}

VisualDSP++ 5.0 Device Drivers and System 14-53
Services Manual for Blackfin Processors

Memory Manager Service

Custom Allocation Model Functions API
This section describes the APIs that need to be followed by each function.
Note that all the parameters passed to these functions are validated by the
corresponding manager wrapper functions. Also, the wrapper functions
take care of protecting critical sections when required.

Custom Allocation Model Functions API

14-54 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Custom_Install

Description

This function is called by the application before using the algorithm. This
function helps in providing the create function to the memory manager by
writing it into a function pointer table (gCreatePoolFuncPtrTable). This
table is indexed using the model type. Currently, the memory manager
supports three user models. The custom create function has to be written
into gCreatePoolFuncPtrTable using one of the model type as index ADI_
MEM_ALLOC_MODEL_USER1, or ADI_MEM_ALLOC_MODEL_USER2, or ADI_MEM_
ALLOC_MODEL_USER3. See the code snippet provided in “Adding Custom
Allocation Algorithms” on page 14-46.

Conditions

This function can be called multiple times. If called again, it installs the
algorithm again.

Prototype
ADI_MEM_RESULT Custom_Install(void)

Arguments

None

Return Value

ADI_MEM_RESULT_SUCCESS Successfully installed the custom allocation algorithm

VisualDSP++ 5.0 Device Drivers and System 14-55
Services Manual for Blackfin Processors

Memory Manager Service

Custom_Create

Description

This function is called from the memory manager pool create wrapper API
functions (adi_mem_CreatePrivatePool or adi_mem_CreatePublicPool)
once the pool is created. The function gets the handle to the pool that is
newly created. The function can be used to initialize the private structure
(which is part of the pool structure) according to the custom requirements
and initialize the memory pool according to the custom requirements. All
the arguments that are passed to this function are validated by the wrapper
API function. All the fields in the pool structure (see “ADI_MEM_
MEMPOOL_STRUCT Structure” on page 14-48) are initialized except
the private structure (pPrivateStruct) in oModelFunc (see “ADI_MEM_
MODEL Structure” on page 14-46) and nMaxBlockSizeAvail in oInfo
(see “ADI_MEM_INFO Structure” on page 14-44). The nMaxBlock-
SizeAvail always represents the maximum memory block size that is
available for allocation at any given point of time (without the space that
is required for any custom headers). This field must be updated whenever
there is a memory allocation, a free, or a realloc, which can change the
available block size.

This function has to initialize the function pointers in oModelFunc with
the custom algorithmic-specific functions. See the code snippet in “Add-
ing Custom Allocation Algorithms” on page 14-46.

Prototype
ADI_MEM_RESULT Custom_Create(

ADI_MEM_MEMPOOL_HANDLE const hPool,

uint32_t *pCreatedPoolSize)

Custom Allocation Model Functions API

14-56 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

hPool Handle to the pool (pointer to the structure ADI_MEM_MEMPOOL_STRUCT)
which is created and initialized by the memory manager

pCreatedPoolSize Pointer to a location in which the size of the pool that is created out of
the given pool size is stored. In some allocation schemes, the pool size has
to be truncated to a logical size. In such cases, the requested pool size is
smaller than the passed pool size.

ADI_MEM_RESULT_SUCCESS Successfully created the custom memory pool

ADI_MEM_RESULT_INSUFFICIENT_MEMORY Memory passed to create the pool is insufficient

ADI_MEM_RESULT_INVALID_SIZE Given memory size to store private structure is insuf-
ficient

Any other value Error has occurred. See Table 14-6 on page 14-42 for
the list of return codes.

VisualDSP++ 5.0 Device Drivers and System 14-57
Services Manual for Blackfin Processors

Memory Manager Service

Custom_Destroy

Description

This function clears any required fields in the private structure and any
other initialization required in the memory pool before it is destroyed.
The actual destruction of the pool is done by the manager wrapper func-
tion which calls this function.

Prototype
ADI_MEM_RESULT Custom_Destroy (

ADI_MEM_MEMPOOL_HANDLE const hPool)

Arguments

Return Value

hPool Handle to the pool (pointer to the structure ADI_MEM_MEMPOOL_STRUCT) which
is created and initialized by the memory manager

ADI_MEM_RESULT_SUCCESS Successfully destroyed the pool

Any other value Error has occurred. See Table 14-6 on page 14-42 for the list of
return codes.

Custom Allocation Model Functions API

14-58 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Custom_Control

Description

This function is called from the adi_mem_Control() memory manager
wrapper function. It is up to this function to see if it supports the passed
configuration parameter (command). If it does not support the requested
command, it returns ADI_MEM_RESULT_UNKNOWN_CONTROL_ID, otherwise it
takes the appropriate action and return.

Prototype

ADI_MEM_RESULT Custom_Control (

ADI_MEM_MEMPOOL_HANDLE const hPool,

uint32_t nControlID,

void *const pValue)

Arguments

Return Value

hPool Handle to the pool (pointer to the structure ADI_MEM_MEMPOOL_STRUCT) which
is created and initialized by the memory manager

nControlID Control command that needs to be executed

pValue Pointer to the value that is set or pointer to the location into which the configu-
ration parameter is read

ADI_MEM_RESULT_SUCCESS Successfully processed the given command

Any other value Error has occurred. See Table 14-6 on page 14-42 for the list of
return codes.

VisualDSP++ 5.0 Device Drivers and System 14-59
Services Manual for Blackfin Processors

Memory Manager Service

Custom_Alloc

Description

This function is called from the adi_mem_Alloc () manager wrapper
function. The function allocates the requested memory block if it is
available.

Prototype

ADI_MEM_RESULT Custom_Alloc(

ADI_MEM_MEMPOOL_HANDLE const hMemPool,

void **ppData,

uint32_t nSize)

Arguments

Return Value

hMemPool Handle to the pool (pointer to the structure ADI_MEM_MEMPOOL_STRUCT)
which is created and initialized by the memory manager

nSize Size of the memory block requested in bytes. The validation of the size is done
by the wrapper function. The only check that needs to be done by this function
is if the requested block size is available or not.

ppData Pointer to the location where the pointer to the allocated block is stored upon
success. The validation of the pointer is done by the wrapper function.

ADI_MEM_RESULT_SUCCESS Successfully allocated the required size memory block

Any other value Error has occurred. See Table 14-6 on page 14-42 for the list
of return codes.

Custom Allocation Model Functions API

14-60 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Custom_Free

Description

This function is called to free the given block of memory. This function is
called from the adi_mem_Free() wrapper function.

Prototype

ADI_MEM_RESULT Custom_Free(

ADI_MEM_MEMPOOL_HANDLE const hMemPool,

void *const pData)

Arguments

Return Value

hMemPool Handle to the pool (pointer to the structure ADI_MEM_MEMPOOL_STRUCT) which
is created and initialized by the memory manager

pData Pointer to the memory block that needs to be freed. Validation of this pointer is
done by the wrapper function. Note that this pointer is the pointer returned
previously by the Custom_Alloc() function. To get to any custom header,
using a negative offset from the passed memory block address is required. See
Figure 14-1 on page 14-50 to learn about the header format.

ADI_MEM_RESULT_SUCCESS Successfully freed the given memory block

Any other value Error has occurred. See Table 14-6 on page 14-42 for the list of
return codes.

VisualDSP++ 5.0 Device Drivers and System 14-61
Services Manual for Blackfin Processors

Memory Manager Service

Custom_Realloc

Description

This function is called to resize a previously allocated memory block to a
bigger or smaller block. The function is called by the adi_mem_Realloc()
wrapper function. This functionality may not be feasible by all the mem-
ory allocation algorithms. If it is not possible to support this functionality,
the function returns an error of ADI_MEM_RESULT_NOT_SUPPORTED.

Prototype

ADI_MEM_RESULT adi_mem_AlgoFixedRealloc(

ADI_MEM_MEMPOOL_HANDLE const hMemPool,

uint32_t nSize, void **ppData)

Arguments

hMemPool Handle to the pool (pointer to the structure ADI_MEM_MEMPOOL_STRUCT)
which is created and initialized by the memory manager

nSize New size to which the given memory block should be resized. The validation
of the size is not done by the wrapper function. This function has to check if
the size is valid and if it fits into the current available memory.

ppData Pointer to the location which contains the pointer to the memory block that
needs to be resized. Validation of this pointer is done by the wrapper func-
tion. Note that this pointer is the pointer returned previously by the Custom_
Alloc() function. To get to any custom header, using a negative offset from
the passed memory block address is required. See Figure 14-1 on page 14-50
to learn about the header format.

Custom Allocation Model Functions API

14-62 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_MEM_RESULT_SUCCESS Successfully resized the given memory block

ADI_MEM_RESULT_NOT_SUPPORTED Realloc not supported by this custom memory allocation
algorithm

Any other value Error has occurred. See Table 14-6 on page 14-42 for the
list of return codes.

VisualDSP++ 5.0 Device Drivers and System 14-63
Services Manual for Blackfin Processors

Memory Manager Service

Comparison of Allocation Algorithms
This section provides comparisons between the allocation models that are
available in the memory manager service and regular malloc.

A Quick Comparison Chart
This section provides a quick comparison chart (Figure 14-12) that is
helpful when deciding which allocation algorithm(s) is better suited for
the application.

• Internal Fragmentation: The memory wasted due to extra alloca-
tion than the requested block size is internal fragmentation.

Internal fragmentation = overall allocated memory / allocated
memory.

Table 14-12. Comparison Chart Between Different Memory Allocation
Models

Regular Malloc Fixed Block Binary Buddy Circular Buffer

Allocation Speed Good Best Good Better

Coalescence Speed Bad Best Better Good

Internal Fragmentation No High Low No

External Fragmentation High No Low No

Header Overhead Low Lowest Low Lower

Efficiency with Cache Good Best Good Better

Comparison of Allocation Algorithms

14-64 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

• External Fragmentation: External fragmentation happens when
there are many small available blocks but they cannot be used to
allocate a larger requested block size.

External fragmentation = requested memory / available memory

Pros and Cons of Allocation Algorithms
This section describes the arguments for and against usage of each alloca-
tion algorithm.

Regular malloc

This is the memory allocation scheme that comes along with the run-time
libraries. It follows the regular malloc/free APIs.

Pros

• Simple to use API

• No internal fragmentation

• Variable block size

• Relatively less overhead on headers

Cons

• Large external fragmentation

• Slow coalescence

Fixed Block

This algorithm splits the memory pool into blocks of memory of the same
size.

VisualDSP++ 5.0 Device Drivers and System 14-65
Services Manual for Blackfin Processors

Memory Manager Service

Pros

• Fast allocation coalescence

• Low memory overhead for headers, since they are small

• Less external fragmentation

Cons

• Large internal fragmentation

• Maximum allocation size is limited to the block size

This algorithm is typically used when fast allocation/coalescence is
required and memory allocations are typically around the same size.
Examples can be found in message passing systems and allocations for
structures such as tasks TCB or headers.

Binary Buddy

This algorithm splits the given pool as memory is requested. It always
splits each block in half (binary) until the right size is found. A series of
link-lists structures are generated during the splits. When two adjacent
blocks are free, they are merged back together into a bigger block.

Pros

• Low memory overhead since headers are small

• Block size variable

• Very low external fragmentation

• Relatively faster coalescence

Comparison of Allocation Algorithms

14-66 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Cons

• Allocation is relatively slow as find and splitting initially may be
required

• Some amount of internal fragmentation if the requested block size
is not equal to a binary size (along with headers)

Circular Buffer

This algorithm is used when allocation and free are done in order.

Pros

• Variable block size

• No internal fragmentation

• No external fragmentation

Cons

• Lower internal fragmentation (but not nil)

• Fragile: a non-freed block eventually makes all allocations fail even
though there is enough free memory

VisualDSP++ 5.0 Device Drivers and System 14-67
Services Manual for Blackfin Processors

Memory Manager Service

Performance Measurements
 Table 14-13 shows the average cycles measurement taken in a typical allo-
cation and free sequence.

The above measurements were taken by keeping the code and data in L1
memory and the heaps placed in L3 memory. The code was built with
release mode by turning on optimization for speed and setting it to 100.

The number of allocations and allocation size was chosen such that they
resemble to the real world applications. Figure 14-2 shows the graph of
allocation size verses their corresponding number of allocations.

Allocations were done by choosing a block size randomly from the set of
predefined block sizes. (A pseudo random generator was used). When the
number of allocations of a particular block size reaches the maximum
number of allocations for that block (as shown in Figure 14-2) then allo-
cations of that block size is not done any more.

Table 14-13. Cycles Count

Alloc Free

Regular Malloc 860 879

Fixed Block 229 252

Circular Buffer 382 616

Binary Buddy 431 641

Performance Measurements

14-68 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

The addresses of the allocated blocks were stored in an array which is used
while freeing the blocks.

Freeing was also done in a similar fashion by randomly choosing the index
to the array of previously allocated blocks.

Figure 14-2. Graph of Allocation Size Versus Number of Allocations

VisualDSP++ 5.0 Device Drivers and System 14-69
Services Manual for Blackfin Processors

Memory Manager Service

Figure 14-3 shows a graph of iteration number versus the allocation/free
block size done during that iteration.

Figure 14-3. Graph of Iterations Versus Block Size of Allocation and Free

Performance Measurements

14-70 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

VisualDSP++ 5.0 Device Drivers and System 15-1
Services Manual for Blackfin Processors

15 STDIO SERVICE

This chapter describes how to use the STDIO service found within the
system services library. This service follows similar application program-
ming interfaces (APIs) found in other system services. The chapter
includes:

• “Introduction” on page 15-2

• “Getting Started” on page 15-2

• “STDIO Service API Reference” on page 15-10

• “STDIO Service API Structures, Definitions, and Enumerations”
on page 15-23

Introduction

15-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Introduction
The STDIO service helps to redirect STDIO streams (STDIN, STDOUT and
STDERR) to different output peripherals. Each STDIO stream can be redi-
rected to different output devices. For example, STDIN can be done
through default device (JTAG) and STDOUT can be redirected to UART
device. The APIs are designed so more devices can be supported in the
future.

The STDIO service is designed to work in a multithreaded environment.
It uses the underlying RTOS services for protecting the critical regions.
All the OS specific calls are made through an abstraction layer (OSAL: OS
Abstraction Layer) to make the service usable across multiple OSs.

In a non-multithreaded environment (No OS case), the OSAL is a thin
layer and only supports semaphore and mutex functions. See the OSAL
User’s Guide for more details.

Getting Started
This section describes the overall operation of the STDIO service. Details
on the API can be found in “STDIO Service API Reference” on
page 15-10. All the APIs are declared in the header file adi_stdio.h.

Initialization
Before using the STDIO service, an application needs to initialize the ser-
vice by calling the function adi_stdio_Init.

The function adi_stdio_Init initializes all the internal data structures of
the STDIO service. To protect the data structures from being reinitialized
when they are being used, this function can be called only once. Note that
if the application calls adi_stdio_Terminate, then adi_stdio_Init would
have to be called again before the STDIO service can be used.

VisualDSP++ 5.0 Device Drivers and System 15-3
Services Manual for Blackfin Processors

STDIO Service

Each of the STDIO devices needs memory to maintain its internal data
structures. The required memory is allocated dynamically by the STDIO
service. The application should pass the handle to the memory pool which
is used for dynamic allocations. If NULL is passed as a handle to the mem-
ory pool, then memory is allocated from the system heap using heap
allocation functions instead of the memory manager service. The applica-
tion should also pass the handles to other required services (device
manager, DMA manager and DCB manager) through the initialization
function. The initialization function returns the handle to the default
STDIO device (JTAG). The default STDIO handle can be used to
redirect STDIO streams back to the default device. The following code
snippet shows a typical initialization procedure.

<services/stdio/adi_stdio.h> /* STDIO service include */

/* Memory size in bytes required to create memory pool for STDIO

*/

#define STDIO_POOL_SIZE 4096

/*

** Memory required to create memory pool for STDIO

*/

static uint8_t aSTDIOPoolMem[STDIO_POOL_SIZE];

static uint8_t aBuddyPrivateMem[ADI_MEM_BUDDY_PRIVATE_MEM_SIZE];

uint32_t main(void)

{

 ADI_MEM_MEMPOOL_HANDLE hStdioMemPool;

 /*

 ** Variable to hold return code

 */

 ADI_STDIO_RESULT eResult;

 // Initialize Memory Manager, OSAL

 ...

Getting Started

15-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

 // Initialize other required service here to obtain

 // adi_dev_ManagerHandle, adi_dma_ManagerHandle

 /* Register the Buddy memory allocation algorithm with Memory

Manager */

 adi_mem_InstallBinBuddyModel();

 /* Create Memory Manager pool for STDIO */

 if((adi_mem_CreatePrivatePool(

 aSTDIOPoolMem,

 STDIO_POOL_SIZE,

 &hStdioMemPool,

 ADI_MEM_ALLOC_MODEL_BINBUDDY,

 aBuddyPrivateMem,

 ADI_MEM_BUDDY_PRIVATE_MEM_SIZE))

 != ADI_MEM_RESULT_SUCCESS)

 {

// Failed to create memory pool take appropriate action here

 }

 /*

 ** Initialize STDIO Service

 */

 eResult = adi_stdio_Init(

 /* Device Manager Handle */

 adi_dev_ManagerHandle,

 /* DMA Manager Handle */

 adi_dma_ManagerHandle,

 /* DCB Manager Handle */

 adi_dcb_ManagerHandle,

/* Memory pool handle */

/* Pointer to JTAG STDIO Device handle */

VisualDSP++ 5.0 Device Drivers and System 15-5
Services Manual for Blackfin Processors

STDIO Service

&hSTDIOJTAG

);

 /* Check if STDIO Service is initialized successfully */

 if(eResult != ADI_STDIO_RESULT_SUCCESS)

 {

 // Failed to initialize STDIO Service take appropriate

action here

 }

 ...

 ...

}

Register the Required STDIO Device Types
After the STDIO service is initialized, the application should determine
the STDIO device types that it is going to use and register them with the
service. The following code snippet shows the registration procedure for a
UART device.

/*

** Register the UART Device Type

*/

eResult = adi_stdio_RegisterUART();

/* Check if STDIO Device type is registered successfully */

if(eResult != ADI_STDIO_RESULT_SUCCESS)

{

 // Failed to register STDIO device type, take appropriate

action here

}

Getting Started

15-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Open the Required STDIO Device(s)
Once the required device type is registered with the STDIO service, it can
be opened. The STDIO device must be open before redirecting any
STDIO streams to it. The STDIO service takes care of configuring the
STDIO device with default values (see “Commands (ADI_STDIO_
COMMAND)” on page 15-24 for default values for each of the configu-
ration parameters) to make it operational. The application uses the
control interface (adi_stdio_ControlDevice API function) to change the
default configuration values. The following code snippet shows the proce-
dure to open an UART device.

/*

** Open the UART Device Type

*/

eResult = adi_stdio_OpenDevice(

ADI_STDIO_DEVICE_TYPE_UART, /* UART Device Type */

0, /* Physical Device number */

&hSTDIOUART /* Pointer to the handle */

);

/* Check if STDIO Device opened successfully */

if(eResult != ADI_STDIO_RESULT_SUCCESS)

{

 // Failed to open STDIO device type, take appropriate action

here

}

Configure STDIO Device
After the device is opened, it can be configured to change the default con-
figuration values (see “Commands (ADI_STDIO_COMMAND)” on
page 15-24 for default values for each of the configuration parameters).
This step can be skipped if the default configuration values are suitable for

VisualDSP++ 5.0 Device Drivers and System 15-7
Services Manual for Blackfin Processors

STDIO Service

the application’s needs. The following code snippet shows an example of
how to disable character echo on STDOUT device.

/*

** Disable character echo on the UART Device

*/

eResult = adi_stdio_ControlDevice(

hSTDIOUART, /* UART Device Type */

ADI_STDIO_COMMAND_ENABLE_CHAR_ECHO, /* Command ID */

(void *) false /* false to disable */

);

/* Check if command is successfully executed */

if(eResult != ADI_STDIO_RESULT_SUCCESS)

{

 // Failed to execute STDIO control command, take appropriate

action here

}

Redirect STDIO Stream
After the device is opened, any of the STDIO streams (STDIN, STDOUT,
STDERR) can be redirected to it. The STDIO streams are enumerated as
ADI_STDIO_STREAM_STDIN, ADI_STDIO_STREAM_STDOUT, ADI_STDIO_STREAM_
STDERR for STDIN, STDOUT, STDERR respectively and ADI_STDIO_STREAM_
ALL_CONSOLE_IO represents all three STDIO streams. See “Stream Types
(ADI_STDIO_STREAM_TYPE)” on page 15-23 for more explanation
on steam types. By default, all the STDIO streams are directed to default
STDIO device (JTAG) by the run-time library. The application can
choose a particular STDIO stream and redirect that stream to the STDIO
device that it opened and the remaining streams are still directed to the

Getting Started

15-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

default STDIO device. The following code snippet shows a redirection of
all streams to the UART device that is already opened.

/* Redirect all STDIO streams to UART */

eResult = adi_stdio_RedirectStream (

hSTDIOUART, /* UART Device Handle */

ADI_STDIO_STREAM_ALL_CONSOLE_IO /* Stream Type */

);

/* Check if streams are successfully redirected */

if(eResult != ADI_STDIO_RESULT_SUCCESS)

{

 // Failed to redirect STDIO streams, take appropriate action

here

}

If required, the streams can be redirected back to the default device. The
handle to the default device is provided to the application when the
STDIO service is initialized.

Disable STDIO Stream
If required, an application can disable a particular stream. When a partic-
ular stream is disabled, it is redirected to a NULL device. This is done
internally by the STDIO service. This feature is useful when an applica-
tion needs to disable all the debug print messages that are printed on the
console window. In this case, the application can disable the STDOUT (ADI_
STDIO_STREAM_STDOUT) stream and still continue to get error messages by
keeping the STDERR stream enabled. The following code snippet shows dis-
abling STDOUT stream.

/*

** Disable STDOUT stream alone

*/

VisualDSP++ 5.0 Device Drivers and System 15-9
Services Manual for Blackfin Processors

STDIO Service

eResult = adi_stdio_DisableStream (

ADI_STDIO_STREAM_STDOUT /* Stream type to be disabled */

);

/* Check if required stream disabled successfully */

if(eResult != ADI_STDIO_RESULT_SUCCESS)

{

 // Failed to disable STDOUT stream, take appropriate action

here

}

Termination
The STDIO service can be terminated using the function adi_stdio_Ter-
minate. After the STDIO service is terminated, none of the APIs work. To
use the APIs, the STDIO must be initialized again.

/*

** Terminate STDIO Service

*/

eResult = adi_stdio_Terminate();

/* Check if STDIO service is terminated successfully */

If(eResult != ADI_STDIO_RESULT_SUCCESS)

{

 // Failed to terminate STDIO service take appropriate action

here

}

STDIO Service API Reference

15-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

STDIO Service API Reference
This section documents the STDIO service application programming
interface (API).

Notation and Naming Conventions
To safeguard against conflicts with other software libraries provided by
Analog Devices, or other sources, the STDIO service uses an unambigu-
ous naming convention in which enumeration values and typedef
statements use the ADI_STDIO_ prefix. Functions and global variables use
the lowercase adi_stdio_ equivalent.

Each function within the STDIO service API returns an error code of the
type ADI_STDIO_RESULT. Like the other system services, a return value of
zero (0=ADI_STDIO_RESULT_SUCCESS) indicates that no error has occurred
during the function call. Any nonzero value indicates the specific type of
error that has occurred. The error codes for the STDIO service are unique
from those of the other system services and they are defined in the adi_
stdio.h include file. This allows the user to determine the cause of the
error by looking up the error code in that file.

The reference pages for the API functions use the following format:

Name – Name and purpose of the function

Description – Function specification

Conditions – Special conditions for the function

Prototype – Required header file and functional prototype

Arguments – Description of function arguments

Return Value – Description of function return values

VisualDSP++ 5.0 Device Drivers and System 15-11
Services Manual for Blackfin Processors

STDIO Service

adi_stdio_Init

Description

This function is used to initialize the STDIO service. The STDIO service
should be initialized before calling any of the other APIs.

Each STDIO device needs memory to store its internal data structures.
The required memory is allocated dynamically by the STDIO service. The
application should pass the handle to the memory pool which is used for
dynamic allocations. If NULL is passed as the handle to the memory pool,
then memory is allocated from the system heap using heap allocation
functions instead of the memory manager service.

Conditions

The STDIO service can be reinitialized only after it is terminated. The
function adi_stdio_Terminate should be called to terminate the STDIO
service.

None of the other STDIO APIs work until the service is initialized.

As the STDIO service uses OSAL for all its RTOS related calls, OSAL is
required to be initialized before initializing the STDIO service.

Prototype

ADI_STDIO_RESULT adi_stdio_Init (

ADI_DEV_MANAGER_HANDLE const hDeviceMgr,

ADI_DMA_MANAGER_HANDLE const hDMAMgr,

ADI_DCB_HANDLE const hDcbMgr,

ADI_MEM_MEMPOOL_HANDLE hMemPool,

ADI_STDIO_DEVICE_HANDLE *phDefaultDevice

);

STDIO Service API Reference

15-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Arguments

Return Value

hDeviceMgr Handle to the device manager

hDMAMgr Handle to the DMA manager

hDcbMgr Handle to deferred callback manager

hMemPool Handle to the memory pool. If NULL is passed, then memory is
allocated from the system heap using the heap allocation functions
instead of the memory manager service.

phDefaultDevice Pointer to a location where the handle to the default STDIO device
is written. It is not required to open the default STDIO device—it
is opened by the run-time library. Upon successful initialization,
the STDIO service writes the handle to the default device into the
given pointer to the default device handle.

ADI_STDIO_RESULT_SUCCESS Successfully initialized the STDIO
service

ADI_STDIO_RESULT_INVALID_POINTER The given pointer to instance mem-
ory or the pointer to the default
STDIO device handle is invalid

ADI_STDIO_RESULT_INVALID_HANDLE One of the given handles is invalid

ADI_STDIO_RESULT_SERVICE_ALREADY_INITIALIZED The STDIO service is already ini-
tialized. It can only be initialized
after terminating the service using
the adi_stdio_Terminate API.

ADI_STDIO_RESULT_MUTEX_FAILURE Failed to create Mutex which is
required to protect the internal data
structures

VisualDSP++ 5.0 Device Drivers and System 15-13
Services Manual for Blackfin Processors

STDIO Service

adi_stdio_RegisterUART

Description

This function is used to register the UART device with the STDIO
service.

Conditions

This function can be called any number of times, but should be called at
least once before opening the UART device type.

Once the device is registered with the STDIO service, it is not required to
register again, even if the STDIO service is terminated and reinitialized
again.

Prototype

void adi_stdio_RegisterUART (

void

);

Arguments

None

Return Value

None

STDIO Service API Reference

15-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_stdio_OpenDevice

Description

This function is used to open the STDIO device which can be later used
to redirect one or more STDIO streams.

Conditions

Before opening the device type, register it with the STDIO service. See
“Device Type (ADI_STDIO_DEVICE_TYPE)” on page 15-24 to find
registration functions that correspond to each device type. It is not
required to register the device again even after the STDIO service is termi-
nated and reinitialized.

The device type should be one of the device types listed in the enumera-
tion Device Type (ADI_STDIO_DEVICE_TYPE) and should not be the
reserved device types ADI_STDIO_DEVICE_TYPE_RESERVED1 or ADI_STDIO_
DEVICE_TYPE_RESERVED2. These reserved device types are used internally
by the STDIO service.

Prototype

ADI_STDIO_RESULT adi_stdio_OpenDevice (
ADI_STDIO_DEVICE_TYPE eDeviceType,
uint32_t nPhysicalDevNum,
ADI_STDIO_DEVICE_HANDLE *phStdioDevice

);

VisualDSP++ 5.0 Device Drivers and System 15-15
Services Manual for Blackfin Processors

STDIO Service

Arguments

Return Value

eDeviceType The type of the device to be opened. Should be one of the values listed

in the enumeration Device Type (ADI_STDIO_DEVICE_TYPE).

nPhysicalDevNum Physical device instance number to be opened. There can be more than
one device of the same device type on a given board. This parameter is
used to identify the device to be opened among several instances of the
same device. As an example, there could be more than one UART on a
given board. This parameter identifies the UART number to be opened
for the STDIO operations. Users should refer to the hardware manual of
their board to determine the device that is used for the console I/O.

phStdioDevice Pointer to the handle of the device to be opened. Upon success, the
STDIO service writes the handle to the opened STDIO device. Note
that it is not the physical device driver handle but it is the STDIO
device handle. The actual physical device handle is stored within the
STDIO service. If required, the physical device handle can be obtained
by the application using the control command ADI_STDIO_

COMMAND_GET_DEVICE_HANDLE (0x120002).

ADI_STDIO_RESULT_SUCCESS Successfully opened given STDIO device

ADI_STDIO_RESULT_SERVICE_NOT_INITIALIZED STDIO service is not initialized. STDIO
service should be initialized before using
this API.

ADI_STDIO_RESULT_INVALID_POINTER Given pointer to the STDIO device handle
is invalid

ADI_STDIO_RESULT_NO_STDIO_DEVICES Reached the limit of maximum number of
STDIO devices that can be opened

ADI_STDIO_RESULT_DEVICE_FAILED Failed to open the physical device

ADI_STDIO_RESULT_INVALID_DEVICE_TYPE Given device type is not valid

ADI_STDIO_RESULT_DEVICE_NOT_REGISTERED Given device type is not registered. Each
device type should be registered with the
STDIO service once before opening the
device of the given device type.

STDIO Service API Reference

15-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_stdio_Redirect

Description

This function is used to redirect one or more STDIO streams to the given
STDIO device. To redirect all the streams at once, the application should
pass the stream type as ADI_STDIO_STREAM_ALL_CONSOLE_IO.

Conditions

The device to which the stream is redirected should be opened before call-
ing this function.

Prototype

ADI_STDIO_RESULT adi_stdio_RedirectStream (

ADI_STDIO_DEVICE_HANDLE hStdioDevice,

ADI_STDIO_STREAM_TYPE eStreamType

);

Arguments

hStdioDevice Handle to the STDIO device to which the given stream is redirected to

eStreamType Stream type to be redirected. Stream type should be one of the values listed
by the enumeration Stream Types (ADI_STDIO_STREAM_TYPE).

VisualDSP++ 5.0 Device Drivers and System 15-17
Services Manual for Blackfin Processors

STDIO Service

Return Value

ADI_STDIO_RESULT_SUCCESS Successfully redirected the given stream
type to the given device

ADI_STDIO_RESULT_SERVICE_NOT_INITIALIZED STDIO service is not initialized

ADI_STDIO_RESULT_INVALID_HANDLE Given handle to the STDIO device is
invalid

ADI_STDIO_RESULT_STREAM_NOT_SUPPORTED Given stream type is not supported by the
given device

ADI_STDIO_RESULT_REDIRECT_FAILED Failed to redirect the given stream

ADI_STDIO_RESULT_DEVICE_FAILED STDIO physical device initialization failed

ADI_STDIO_RESULT_SEMAPHORE_FAILURE Failed to create semaphore that is required
internally for the STDIO service

ADI_STDIO_RESULT_DEVTAB_REGISTER_FAILED Failed to register the given device into the
device table of the run-time library

STDIO Service API Reference

15-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_stdio_DisableStream

Description

This function is used to disable a given STDIO stream. When a stream is
disabled, all the activity of that stream is redirected to a NULL device and
will not be seen on the console.

Conditions

When a particular stream is disabled, other streams are still active and not
affected.

Prototype

ADI_STDIO_RESULT adi_stdio_DisableStream (

ADI_STDIO_STREAM_TYPE eStreamType

);

Arguments

Return Value

eStreamType Stream type to be disabled

ADI_STDIO_RESULT_SUCCESS Successfully disabled the given stream

ADI_STDIO_RESULT_SERVICE_NOT_INITIALIZED STDIO service is not initialized

ADI_STDIO_RESULT_SEMAPHORE_FAILURE Failed to create semaphore that is required
internally for the STDIO service

ADI_STDIO_RESULT_DEVTAB_REGISTER_FAILED Failed to register the given device into the
device table of the run-time library

VisualDSP++ 5.0 Device Drivers and System 15-19
Services Manual for Blackfin Processors

STDIO Service

adi_stdio_ControlDevice

Description

This function is primarily used to change configuration parameters of the
given device. The function is also used to get some parameters from the
STDIO service, for example, to get the handle of the physical device.

Conditions

None

Prototype

ADI_STDIO_RESULT adi_stdio_ControlDevice (

 ADI_STDIO_DEVICE_HANDLE hStdioDevice,

 uint32_t nCommandID,

 void *const pValue

);

Arguments

hStdioDevice Handle to the STDIO device

nCommandID Command ID to be executed. See Commands (ADI_STDIO_COM-
MAND) for a list of available commands.

pValue Argument required for executing the command. Depending upon the
command, different types of arguments are required. See Commands
(ADI_STDIO_COMMAND) to learn about the command-specific
arguments.

STDIO Service API Reference

15-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Return Value

ADI_STDIO_RESULT_SUCCESS Successfully executed the given command

ADI_STDIO_RESULT_INVALID_HANDLE Given handle to the STDIO device is invalid

ADI_STDIO_RESULT_DEVICE_FAILED Failure detected from physical device

ADI_STDIO_RESULT_COMMAND_NOT_SUPPORTED Given command is not supported by the
given device

VisualDSP++ 5.0 Device Drivers and System 15-21
Services Manual for Blackfin Processors

STDIO Service

adi_stdio_CloseDevice

Description

This function is used to close the STDIO device that was opened by the
application.

Conditions

When a device is closed, all the streams that were directed to the given
device are redirected to the default STDIO device.

Prototype

ADI_STDIO_RESULT adi_stdio_CloseDevice (

ADI_STDIO_DEVICE_HANDLE const hStdioDevice

);

Arguments

Return Value

hStdioDevice Handle to the STDIO device that needs to be closed

ADI_STDIO_RESULT_SUCCESS Successfully closed the given STDIO device

ADI_STDIO_RESULT_INVALID_HANDLE The STDIO service is not initialized. The STDIO
service should be initialized before using this API.

ADI_STDIO_RESULT_DEVICE_FAILED Failed to close the physical device corresponding to
the given STDIO device. The physical device is
opened by the STDIO service when the application
calls the adi_stdio_OpenDevice function.

STDIO Service API Reference

15-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_stdio_Terminate

Description

This function is used to terminate the STDIO service. The application
can use this function to terminate the STDIO service when it does not
need the STDIO service any longer.

Conditions

This function does not close any of the STDIO devices that are opened by
the application. If the intent is to reinitialize the STDIO service after ter-
minating, it is recommended to close all the devices before terminating the
STDIO service.

Before terminating, the STDIO service redirects all the STDIO streams
back to the default device.

None of the STDIO APIs work once the STDIO service is terminated. It
needs to be reinitialized by calling the API function adi_stdio_Init.

Prototype

ADI_STDIO_RESULT adi_stdio_Terminate(void)

Arguments

None

Return Value

ADI_STDIO_RESULT_SUCCESS Successfully terminated the STDIO
service

ADI_STDIO_RESULT_SERVICE_NOT_INITIALIZED Trying to terminate the STDIO service
when it is not initialized

VisualDSP++ 5.0 Device Drivers and System 15-23
Services Manual for Blackfin Processors

STDIO Service

STDIO Service API Structures, Definitions,
and Enumerations

This section lists all the structure definitions, constant definitions, and
enumerations that are used in the APIs. All of these can be found in the
file adi_stdio.h.

Stream Types (ADI_STDIO_STREAM_TYPE)
Table 15-1 is an enumerated list of supported STDIO stream types. These
values are used to specify the stream that needs to be redirected to a partic-
ular device or to disable a stream.

Table 15-1. Stream Types and Description

Stream Type Name Value Description

ADI_STDIO_STREAM_STDIN 0 Console input stream (STDIN)

ADI_STDIO_STREAM_STDOUT 1 Console output stream (STDOUT)

ADI_STDIO_STREAM_STDERR 2 Console error stream (STDERR)

ADI_STDIO_STREAM_ALL_CONSOLE_IO 3 All the above console I/O streams (STDIN,
STDOUT, STDERR)

Commands (ADI_STDIO_COMMAND)

15-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

Device Type (ADI_STDIO_DEVICE_TYPE)
Table 15-2 is an enumerated list of supported STDIO device types. The
device type is used to open the device for STDIO.

Commands (ADI_STDIO_COMMAND)
There are several commands available to set or get a configuration
parameter.

ADI_STDIO_COMMAND_ENABLE_UNIX_MODE
(0x120000)

This command is used to enable or disable the Unix mode end-of-line
(EOL) character. In Unix mode, LF (line feed) is used as EOL and in
DOS mode, CR + LF (carriage return and line feed) is used as EOL. By
default, Unix mode is set.

Table 15-2. Device Types and Description

Device Type Value Description

ADI_STDIO_DEVICE_TYPE_RESERVED1 0 Device type is reserved and used inter-
nally by the STDIO service

ADI_STDIO_DEVICE_TYPE_RESERVED2 1 Device type is reserved and used inter-
nally by the STDIO service

ADI_STDIO_DEVICE_TYPE_UART 2 UART device. Before opening this
device type, it needs to be registered by
calling the function adi_stdio_Regis-
terUART.

ADI_STDIO_DEVICE_TYPE_MAX 3 Maximum number of supported
device types

VisualDSP++ 5.0 Device Drivers and System 15-25
Services Manual for Blackfin Processors

STDIO Service

Command Specific Value

‘True’ to enable Unix mode and ‘false’ to disable it (set to DOS mode).

ADI_STDIO_COMMAND_ENABLE_CHAR_ECHO
(0x120001)

This command is used to allow the service to print the characters that are
typed on the stdin stream onto the stdout device. By default, character
echo is enabled.

Command Specific Value

‘True’ to enable character echo and ‘false’ to disable it.

ADI_STDIO_COMMAND_GET_DEVICE_HANDLE
(0x120002)

This command is used to get the physical device handle. When the
STDIO device is opened using the API adi_stdio_OpenDevice, the corre-
sponding physical device is opened by the STDIO service and its handle is
stored internally. Applications are generally not required to get the handle
to the physical device in order to use the service. This command can be
used in unusual cases where there is a need to set some physical device spe-
cific configurations which are not accessible through the STDIO service
API. It is not recommended to set any physical device configuration values
directly from the application. This may lead to unintended behavior.

Command Specific Value

Pointer to ADI_DEV_DEVICE_HANDLE (defined in adi_dev.h file) where the
physical device handle is written by the STDIO service

Commands (ADI_STDIO_COMMAND)

15-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_STDIO_COMMAND_SET_UART_PARITY_TYPE
(0x120004)

This command is used to disable parity check or set odd or even parity
check for UART communication. By default, parity check is disabled by
the STDIO service.

Command Specific Value

One of the values from the enumerated list Parity Types (ADI_STDIO_
PARITY_TYPE). When ADI_STDIO_PARITY_TYPE_ODD or ADI_STDIO_
PARITY_TYPE_EVEN is chosen, then the STDIO service automatically
enables parity check.

ADI_STDIO_COMMAND_SET_UART_WORD_LENGTH
(0x120005)

This command is used to set the UART word length. By default, the word
length is set to 8 bits.

Command Specific Value

uint8_t nWordLength;

nWordLength can be set to 5, 6, 7 or 8 bits.

ADI_STDIO_COMMAND_SET_UART_NUM_STOP_BITS
(0x120006)

This command is used to set the number of UART stop bits. By default,
the number of UART stop bits is set to 1.

VisualDSP++ 5.0 Device Drivers and System 15-27
Services Manual for Blackfin Processors

STDIO Service

Command Specific Value

uint8_t nStopBits;

nStopBits can be set to 1 or 2. A value of 1sets one stop bit, a value of 2
sets two stop bits when the UART word length is set to a non-5-bit value
and 1½ stop bits for a 5-bit word length.

ADI_STDIO_COMMAND_SET_UART_AUTO_BAUD_
CHAR (0x120007)

This command is used to set the auto baud character. The auto baud
character is used when auto baud detection is enabled. This command
specifies the character the driver should expect for autobaud detection.

Command Specific Value

uint8_t cAutoBaud;

cAutoBaud can be any ASCII character.

ADI_STDIO_COMMAND_ENABLE_AUTO_BAUD_CHAR
(0x120008)

This command is used to enable the auto baud detection. The command
enables the driver to automatically sense the baud rate of the serial line
and configure the UART accordingly. This command should be used in
conjunction with the ADI_STDIO_COMMAND_SET_UART_AUTO_BAUD_CHAR. The
application should first set the auto baud character before enabling auto
baud detection.

Command Specific Value

None. There are no command specific arguments required for this
command.

Commands (ADI_STDIO_COMMAND)

15-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_STDIO_COMMAND_SET_UART_BAUD_RATE
(0x120009)

This command is used to configure the UART for a given baud rate. By
default, the baud rate is set to 57600 Hz.

Command Specific Value

uint16_t nBaudRate;

nBaudRate is the baud rate in Hz.

Parity Types (ADI_STDIO_PARITY_TYPE)
Table 15-3 is an enumerated list of possible parity types

Result Codes (ADI_STDIO_RESULT)
Table 15-4 is an enumerated list of possible result codes from the STDIO
service.

Table 15-3. Parity Types and Description

Parity Type Value Description

ADI_STDIO_PARITY_TYPE_NONE 0x0 No parity check

ADI_STDIO_PARITY_TYPE_ODD 0x1 Odd parity

ADI_STDIO_PARITY_TYPE_EVEN 0x2 Even parity

Table 15-4. Result Codes and Description

Result Code Value Description

ADI_STDIO_RESULT_SUCCESS 0x000000 Generic success

ADI_STDIO_RESULT_FAILED 0x000001 Generic failure

VisualDSP++ 5.0 Device Drivers and System 15-29
Services Manual for Blackfin Processors

STDIO Service

ADI_STDIO_RESULT_SERVICE_NOT_INITIALIZED 0x120000 STDIO service is not
initialized

ADI_STDIO_RESULT_SERVICE_ALREADY_INITIALIZED 0x120001 STDIO service already
initialized

ADI_STDIO_RESULT_INSUFFICIENT_MEMORY 0x120002 Insufficient memory
passed to support
requested number of
instances

ADI_STDIO_RESULT_INVALID_HANDLE 0x120003 Given handle is invalid

ADI_STDIO_RESULT_INVALID_DEVICE_TYPE 0x120004 Given device type is
invalid

ADI_STDIO_RESULT_DEVICE_NOT_REGISTERED 0x120005 Given device type is
not registered

ADI_STDIO_RESULT_REDIRECT_FAILED 0x120006 Failed to redirect the
given stream to the
given device

ADI_STDIO_RESULT_SEMAPHORE_FAILURE 0x120007 Failed to create the
semaphore

ADI_STDIO_RESULT_MUTEX_FAILURE 0x120008 Failed to create the
Mutex

ADI_STDIO_RESULT_DEVTAB_REGISTER_FAILED 0x120009 Failed to register the
STDIO device with
LIBIO

ADI_STDIO_RESULT_COMMAND_NOT_SUPPORTED 0x12000A Given command is not
supported by the given
device

ADI_STDIO_RESULT_DEVICE_FAILED 0x12000B Physical device driver
failed

ADI_STDIO_RESULT_INVALID_POINTER 0x12000C Given pointer is
invalid or pointing to
NULL

Table 15-4. Result Codes and Description (Cont’d)

Result Code Value Description

Commands (ADI_STDIO_COMMAND)

15-30 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_STDIO_RESULT_INVALID_FUNCTION_POINTER 0x12000D Given function
pointer is pointing to
NULL

ADI_STDIO_RESULT_NO_STDIO_DEVICES 0x12000E Reached the limit of
maximum number of
STDIO devices that
can be opened in the
system

ADI_STDIO_RESULT_STREAM_NOT_SUPPORTED 0x12000F Given stream is not
supported by the given
device

Table 15-4. Result Codes and Description (Cont’d)

Result Code Value Description

VisualDSP++ 5.0 Device Drivers and System I-1
Services Manual for Blackfin Processors

I INDEX

A
adding custom allocation algorithms, 14-46
ADI_DCB_CALLBACK_FN data type,

5-22
adi_dcb_Close function, 5-11
ADI_DCB_CMD_END command, 5-23
ADI_DCB_CMD_FLUSH_QUEUE

command, 5-23
ADI_DCB_CMD_PAIR command, 5-23
ADI_DCB_CMD_TABLE command,

5-23
ADI_DCB_COMMAND data type, 5-23
ADI_DCB_COMMAND_PAIR data

type, 5-22, 5-23
adi_dcb_Control function, 5-12, 5-23
adi_dcb_DispatchCallbacks function, 5-9
adi_dcb_Forward function, 5-8, 5-23
adi_dcb_Init function, 5-14
adi_dcb_Open function, 5-16
adi_dcb_Post function, 5-18
adi_dcb_RegisterISR function, 5-9
adi_dcb_Remove function, 5-20
ADI_DCB_RESULT data type, 5-24
adi_dcb_Terminate function, 5-21
adi_dcb_xxxx.c source file, 5-7
ADI_DEV_1D_BUFFER, 10-73
ADI_DEV_1D_BUFFER data type, 10-7,

10-33
ADI_DEV_2D_BUFFER, 10-74
ADI_DEV_2D_BUFFER data type, 10-7,

10-33
ADI_DEV_ACCESS_REGISTER, 10-78

ADI_DEV_ACCESS_REGISTER_
BLOCK, 10-78

ADI_DEV_ACCESS_REGISTER_
FIELD, 10-79

ADI_DEV_BASE_MEMORY macro,
10-8, 10-31

ADI_DEV_BUFFER, 10-79
ADI_DEV_BUFFER data type, 10-7,

10-33
ADI_DEV_BUFFER_PAIR, 10-76
ADI_DEV_BUFFER_TYPE, 10-66
adi_dev.c file

device manager code, 10-34
ADI_DEV_CIRCULAR_BUFFER, 10-75
ADI_DEV_CIRCULAR_BUFFER data

type, 10-7, 10-33
adi_dev_Close function, 1-23, 10-16,

10-36, 10-57
ADI_DEV_CMD_GET_2D_SUPPORT

command, 10-39
ADI_DEV_CMD_GET_INBOUND_

DMA_PMAP_ID command, 10-52
ADI_DEV_CMD_GET_OUTBOUND_

DMA_PMAP_ID command, 10-52
ADI_DEV_CMD_GET_PERIPHERAL_

DMA_SUPPORT command, 10-52
ADI_DEV_CMD_PDD_START

enumeration value, 10-32
ADI_DEV_CMD_SET_DATAFLOW

command, 10-14, 10-40, 10-44,
10-52

Index

I-2 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_DEV_CMD_SET_DATAFLOW_
METHOD command, 10-12, 10-39

ADI_DEV_CMD_SET_STREAMING
command, 10-40

ADI_DEV_CMD_SET_
SYNCHRONOUS command, 10-39

adi_dev_Control function, 1-23, 10-11,
10-32, 10-38, 10-58

ADI_DEV_DEBUG macro, 10-51
ADI_DEV_DEVICE data type, 10-34,

10-36
ADI_DEV_DEVICE_MEMORY macro,

10-8, 10-31
ADI_DEV_DIRECTION, 10-67
ADI_DEV_DMA_ACCESS, 10-77
ADI_DEV_DMA_INFO, 10-76
ADI_DEV_EVENT_BUFFER_

PROCESSED event, 10-42
ADI_DEV_EVENT_SUBBUFFER_

PROCESSED event, 10-42
ADI_DEV_FREQUENCIES, 10-77
adi_dev.h file, 1-28

device manager API, 10-56
memory usage by device manager, 10-31
physical driver API, 10-80
PPI driver user code, 1-28

adi_dev_Init function, 1-26, 10-8, 10-35,
10-59

ADI_DEV_MANAGER data type, 10-34
ADI_DEV_MODE, 10-67
ADI_DEV_MODE_CHAINED_

LOOPBACK dataflow method,
10-40

ADI_DEV_MODE_CIRCULAR
dataflow method, 10-43

ADI_DEV_NOT_SUPPORTED return
code, 10-55

adi_dev_Open function, 1-23, 10-9,
10-16, 10-36, 10-61

ADI_DEV_PDD_ENTRY_POINT data
type, 10-34, 10-47

entry point declaration, 10-49
ADI_DEV_PDD_HANDLE value, 10-52
adi_dev_Read function

defined, 1-23
functional description, 10-37
providing buffers to a device, 10-14
reference page, 10-63

ADI_DEV_RESULT_NOT_
SUPPORTED return code, 10-53

ADI_DEV_RESULT_SUCCESS return
code, 10-49

ADI_DEV_SEQ_1D_BUFFER, 10-76
adi_dev_Terminate function, 1-27, 10-9,

10-64
adi_dev_Write function

defined, 1-23, 10-7
functional description, 10-38
providing buffers to a device, 10-14
reference page, 10-65

ADI_DMA_2D_TRANSFER data
structure, 6-64

ADI_DMA_2D_TRANSFER data type,
6-10, 6-29

ADI_DMA_BASE_MEMORY macro, 6-4
adi_dma_Buffer function, 6-16, 6-34,

10-37
ADI_DMA_CHANNEL_HANDLE data

type, 6-62
ADI_DMA_CHANNEL_ID

enumeration, 6-67
ADI_DMA_CHANNEL_MEMORY

macro, 6-4
adi_dma_Close function, 6-36
ADI_DMA_CMD_GET_TRANSFER_

STATUS command, 6-22
ADI_DMA_CMD_SET_STREAMING

command, 6-25
adi_dma_Command function, 6-73

VisualDSP++ 5.0 Device Drivers and System I-3
Services Manual for Blackfin Processors

Index

ADI_DMA_CONFIG_REG field values,
6-72

ADI_DMA_CONFIG_REG_WORD
data structure, 6-64

adi_dma_Control function, 6-21, 6-37
ADI_DMA_CREATEDESCRIPTOR_

ARRAY data structure, 6-64
ADI_DMA_CREATEDESCRIPTOR_

LARGE data structure, 6-65
ADI_DMA_CREATEDESCRIPTOR_

SMALL data structure, 6-66, 6-67
ADI_DMA_DATA_MODE

enumeration, 6-68
ADI_DMA_DESCRIPTOR_HANDLE

data type, 6-17, 6-63
ADI_DMA_DESCRIPTOR_UNION

data structure, 6-63
ADI_DMA_DI_EN value, 6-72
ADI_DMA_DI_SEL value, 6-72
ADI_DMA_DMA2D value, 6-72
ADI_DMA_EN value, 6-72
ADI_DMA_EVENT enumeration, 6-67
adi_dma_GetMapping, 6-40
adi_dma_GetPeripheralInterrupt ID

function, 6-41
adi_dma.h header file, 6-62, 6-64
adi_dma_Init function, 6-5, 6-42
adi_dma_MemoryClose function, 6-43
adi_dma_MemoryCopy2D function, 6-46
adi_dma_MemoryCopy function, 6-44
adi_dma_MemoryOpen function, 6-48
adi_dma_MemoryQueueClose function,

6-52
adi_dma_MemoryQueueControl function,

6-53
adi_dma_MemoryQueue function, 6-50
adi_dma_MemoryQueueOpen function,

6-54
ADI_DMA_MODE_DESCRIPTOR_

LARGE macro, 6-16

ADI_DMA_MODE_DESCRIPTOR_
SMALL macro, 6-20

adi_dma_Open function, 6-17, 6-56
ADI_DMA_PMAP enumeration, 6-69
adi_dma_Queue function, 6-58, 10-37
ADI_DMA_RESULT enumeration result

code, 6-69
adi_dma_SetConfigWord function, 6-59
adi_dma_SetMapping function, 6-60
ADI_DMA_STREAM_HANDLE data

type, 6-63
ADI_DMA_STREAM_ID enumeration,

6-71
adi_dma_Terminate function, 6-61
ADI_DMA_WDSIZE value, 6-72
ADI_DMA_WNR value, 6-73
adi_ebiu_AdjustSDRAM function, 4-10
ADI_EBIU_ASYNCH_BANK_ARDY_

ENABLE enumeration, 4-48
ADI_EBIU_ASYNCH_BANK_ARDY_

POLARITY enumeration, 4-48
ADI_EBIU_ASYNCH_BANK_DATA_

PATH enumeration, 4-47
ADI_EBIU_ASYNCH_BANK_ENABLE

enumeration, 4-47
ADI_EBIU_ASYNCH_BANK_TIMING

structure, 4-31
ADI_EBIU_ASYNCH_BANK_VALUE

structure, 4-31
ADI_EBIU_ASYNCH_CLKOUT

enumeration, 4-47
ADI_EBIU_ASYNC_HOLD_TIME

enumeration, 4-48
ADI_EBIU_ASYNCH_SETUP_TIME

enumeration, 4-49
ADI_EBIU_ASYNCH_TRANSITION_

TIME enumeration, 4-50
ADI_EBIU_BANK_NUMBER

enumeration, 4-46
ADI_EBIU_CMD_END command, 4-33

Index

I-4 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_EBIU_CMD_SET_SDRAM_
CDDBG command, 4-33

ADI_EBIU_CMD_SET_SDRAM_
EBUFE command, 4-33

ADI_EBIU_CMD_SET_SDRAM_
FBBRW command, 4-33

ADI_EBIU_CMD_SET_SDRAM_
SCTLE enumeration, 4-41

ADI_EBIU_COMMAND data type, 4-32
ADI_EBIU_COMMAND_PAIR data

type, 4-39
adi_ebiu_Control function, 4-11
ADI_EBIU_DDR_DS enumeration, 4-51
ADI_EBIU_DDR_MOBILE_DS

enumeration, 4-50
ADI_EBIU_DDR_PASR enumeration,

4-51
adi_ebiu_GetConfigSize function, 4-14
adi_ebiu_Init function, 4-2, 4-15
adi_ebiu_LoadConfig function, 4-22
ADI_EBIU_RESULT enumeration, 4-25
adi_ebiu_SaveConfig function, 4-23
ADI_EBIU_SDRAM_BANK_COL_

WIDTH enumeration, 4-41
ADI_EBIU_SDRAM_BANK_SIZE

enumeration, 4-40
ADI_EBIU_SDRAM_BANK_VALUE

structure, 4-28
ADI_EBIU_SDRAM_CDDBG

enumeration, 4-46
ADI_EBIU_SDRAM_EBUFE

enumeration, 4-44
ADI_EBIU_SDRAM_EMREN

enumeration, 4-42
ADI_EBIU_SDRAM_ENABLE

enumeration, 4-40
ADI_EBIU_SDRAM_FBBRW

enumeration, 4-45
ADI_EBIU_SDRAM_MODULE_TYPE

enumeration, 4-41

ADI_EBIU_SDRAM_PASR enumeration,
4-42

ADI_EBIU_SDRAM_PSM enumeration,
4-45

ADI_EBIU_SDRAM_PUPSD
enumeration, 4-44

ADI_EBIU_SDRAM_SRFS enumeration,
4-43

ADI_EBIU_SDRAM_TCSR
enumeration, 4-43

ADI_EBIU_SIZEOF_CONFIG macro,
4-14

adi_ebiu_Terminate function, 4-24
ADI_EBIU_TIME data type, 4-29
ADI_EBIU_TIMING_UNIT

enumeration type, 4-29
ADI_EBIU_TIMING_VALUE data type,

4-30
adi_ffs_Terminate function, 12-22
adi_flag_Clear function, 7-6, 7-15
adi_flag_Close function, 7-5, 7-16
ADI_FLAG_DIRECTION enumeration,

7-32
ADI_FLAG_EVENT enumeration, 7-32
adi_flag.h include file, 7-3, 7-4, 7-31
ADI_FLAG_ID enumeration, 7-31
adi_flag_Init function, 7-17
adi_flag_InstallCallback function, 7-7,

7-26
adi_flag_Open function, 7-5, 7-19
adi_flag_RemoveCallback function, 7-8,

7-28, 8-28, 11-24
ADI_FLAG_RESULT enumeration, 7-33
adi_flag_ResumeCallbacks function, 7-9,

7-29
adi_flag_Sense function, 7-6, 7-20
adi_flag_SetDirection function, 7-5, 7-24
adi_flag_Set function, 7-5, 7-23
adi_flag_SetTrigger function, 7-9, 7-25

VisualDSP++ 5.0 Device Drivers and System I-5
Services Manual for Blackfin Processors

Index

adi_flag_SuspendCallbacks function, 7-9,
7-30

adi_flag_Terminate function, 7-22
adi_flag_Toggle function, 7-6, 7-21
ADI_FLAG_TRIGGER enumeration,

7-34
ADI_FSS_CMD_VALUE_PAIR, 12-53
adi_fss_Control, 12-23
adi_fss_DeRegisterDevice function, 12-26
ADI_FSS_DEVICE_DEF, 12-54
adi_fss_DirChange function, 12-48
adi_fss_DirClose function, 12-43
adi_fss_DirCreate function, 12-50
ADI_FSS_DIR_ENTRY, 12-53
ADI_FSS_DIR_HANDLE, 12-53
adi_fss_DirOpen function, 12-42
adi_fss_DirRead function, 12-44
adi_fss_DirRemove function, 12-51
adi_fss_DirRewind function, 12-47
adi_fss_DirSeek function, 12-45
adi_fss_DirTell function, 12-46
adi_fss_FileClose function, 12-33
ADI_FSS_FILE_HANDLE, 12-52
adi_fss_FileOpen, 12-31
adi_fss_FileRead function, 12-35
adi_fss_FileRemove function, 12-40
adi_fss_FileRename function, 12-41
adi_fss_FileSeek function, 12-36
adi_fss_FileTell function, 12-38
adi_fss_FileWrite function, 12-34
adi_fss_GetCurrentDir function, 12-49
adi_fss_Init function, 12-19
adi_fss_IsEOF, 12-39
adi_fss_PollMedia function, 12-28
adi_fss_PollMediaOnDevice function,

12-27
adi_fss_RegisterDevice, 12-25
adi_fss_Stat function, 12-29
adi_fss_UnMountDevice function, 12-30
ADI_FSS_VOLUME_IDENT, 12-52

ADI_FSS_WCHAR, 12-52
adi_int_CECHook function, 2-6, 2-21
adi_int_CECUnhook function, 2-8, 2-23
adi_int_ClearIMASKBits function, 2-16,

2-25
adi_int_EnterCriticalRegion function,

2-14, 2-27, 10-9
adi_int_ExitCriticalRegion function, 2-14,

2-27, 2-29
adi_int_GetCurrentIVGLevel function,

2-30
adi_int_GetLibraryDetails function, 2-31
ADI_INT_HANDLER macro, 2-9
adi_int.h file, 2-10, 2-17
adi_int_Init function, 2-4, 2-19
ADI_INT_PERIPHERAL_ID

enumeration, 2-9, 2-10
ADI_INT_RESULT_NOT_

PROCESSED return code, 2-6
ADI_INT_RESULT_PROCESSED

return code, 2-6
ADI_INT_SECONDARY_MEMORY

macro, 2-5
adi_int_SetIMASKBits function, 2-16,

2-37
adi_int_SICDisable function, 2-10, 2-32
adi_int_SICEnable function, 2-10, 2-33
adi_int_SICGetIVG function, 2-10
adi_int_SICInterruptAsserted function,

2-10, 2-35
adi_int_SICSetIVG function, 2-11, 2-34,

2-36
adi_int_SICWakeup function, 2-11, 2-12,

2-39, 2-40
adi_int_Terminate function, 2-5, 2-20
adi_mem_Alloc function, 14-31
ADI_MEM_CHAR structure, 14-45

field descriptions, 14-46
adi_mem_Control function, 14-29

Index

I-6 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

adi_mem_CreatePrivatePool function,
14-17

adi_mem_CreatePublicPool function,
14-21

adi_mem_DestroyPool function, 14-25
adi_mem_Free function, 14-33, 14-34
ADI_MEM_INFO structure, 14-44

field descriptions, 14-44
adi_mem_Init function, 14-12
adi_mem_InstallBinBuddyModel

function, 14-16
adi_mem_InstallCircularModel function,

14-15
adi_mem_InstallFixedBlockModel

function, 14-14
adi_mem_ListPublicPools function, 14-27
ADI_MEM_MEMPOOL_STRUCT

structure, 14-48
field descriptions, 14-49

ADI_MEM_MODEL structure, 14-46
field descriptions, 14-47

ADI_MEM_POOL_INFO structure,
14-50

field descriptions, 14-51
adi_mem_Terminate function, 14-13
adi_pdd_Close function, 10-55, 10-81
adi_pdd_Control function, 10-36, 10-38,

10-39, 10-52, 10-82
adi_pdd_Open function, 10-41, 10-51,

10-83
adi_pdd_Read function, 10-37, 10-53,

10-85
adi_pdd_Write function, 10-54, 10-86
adi_ports_ClearProfile function, 9-22
adi_ports_Configure function, 9-13
adi_ports_EnableCAN function, 9-18
adi_ports_EnableGPIO function, 9-21
adi_ports_EnablePPI function, 9-14
adi_ports_EnableSPI function, 9-15
adi_ports_EnableSPORT function, 9-16

adi_ports_EnableTimer function, 9-19
adi_ports_EnableUART function, 9-17
adi_ports_GetProfile function, 9-23
adi_ports.h include file, 9-24, 9-25
adi_ports_Init function, 9-11
ADI_PORTS_RESULT return codes,

9-25
adi_ports_SetProfile function, 9-24
adi_ports_Terminate function, 9-12
adi_ppi.c file, 10-48
adi_ppi.h file, 1-28, 10-48
ADI_PWM_CHANNEL, 13-35
ADI_PWM_COMMAND, 13-36, 13-37,

13-46
adi_pwm_Control function, 13-30
ADI_PWM_DISABLE, 13-45
ADI_PWM_DOUBLE_UPDATE, 13-51
ADI_PWM_ENABLE, 13-45
ADI_PWM_ENABLE_STATUS, 13-35
ADI_PWM_EVENT_ENABLE_

STATUS, 13-45
ADI_PWM_EVENT_SYNC, 13-46
ADI_PWM_EVENT_TRIP, 13-46
ADI_PWM_EVENT_UPDATE_

MODE, 13-51
adi_pwm_Init function, 13-28
adi_pwm_InstallCallback function, 13-32
ADI_PWM_NUMBER, 13-46
ADI_PWM_NUMBER_AND_

CHANNEL_STATUS, 13-36
ADI_PWM_NUMBER_AND_

ENABLE_STATUS, 13-37
ADI_PWM_NUMBER_AND_VALUE,

13-37
ADI_PWM_POLARITY, 13-47
ADI_PWM_PORT_MAP, 13-38
ADI_PWM_PORT_MUX, 13-47
ADI_PWM_PORT_MUX_PRI, 13-47
ADI_PWM_PORT_MUX_SEC, 13-47

VisualDSP++ 5.0 Device Drivers and System I-7
Services Manual for Blackfin Processors

Index

adi_pwm_RemoveCallback function,
13-33

ADI_PWM_SINGLE_UPDATE, 13-51
ADI_PWM_SOURCE_EXTERNAL,

13-51
ADI_PWM_SOURCE_HIGH, 13-47
ADI_PWM_SOURCE_INTERNAL,

13-51
ADI_PWM_SOURCE_LOW, 13-47
ADI_PWM_SYNC_ASYNC, 13-50
ADI_PWM_SYNC_SOURCE, 13-51
ADI_PWM_SYNC_SYNC, 13-50
adi_pwm_Terminate function, 13-29
adi_pwr_AdjustFreq function, 3-15
ADI_PWR_CMD_END command, 3-42
ADI_PWR_CMD_FORCE_

DATASHEET_VALUES command,
3-44

ADI_PWR_CMD_GET_PLL_
LOCKCNT command, 3-47

ADI_PWR_CMD_GET_VDDINT
command, 3-46

ADI_PWR_CMD_GET_VR_CANWE
command, 3-47

ADI_PWR_CMD_GET_VR_CKELOW
command, 3-47

ADI_PWR_CMD_GET_VR_
CLKBUFOE command, 3-47

ADI_PWR_CMD_GET_VR_FREQ
command, 3-46

ADI_PWR_CMD_GET_VR_GAIN
command, 3-46

ADI_PWR_CMD_GET_VR_PHYWE
command, 3-46

ADI_PWR_CMD_GET_VR_VLEV
command, 3-46

ADI_PWR_CMD_GET_VR_WAKE
command, 3-46

ADI_PWR__CMD_PAIR command,
3-42, 3-47

ADI_PWR_CMD_SET_CCLK_TABLE
command, 3-44

ADI_PWR_CMD_SET_CLKIN
command, 3-43

ADI_PWR_CMD_SET_INPUT_
DELAY command, 3-43

ADI_PWR_CMD_SET_IVG command,
3-44

ADI_PWR_CMD_SET_OUTPUT_
DELAY command, 3-43

ADI_PWR_CMD_SET_PACKAGE
command, 3-43

ADI_PWR_CMD_SET_PC133_
COMPLIANCE command, 3-44

ADI_PWR_CMD_SET_PLL_
LOCKCNT command, 3-43

ADI_PWR_CMD_SET_PROC_
VARIANT command, 3-43

ADI_PWR_CMD_SET_VDDEXT
command, 3-44

ADI_PWR_CMD_SET_VDDINT
command, 3-43

ADI_PWR_CMD_SET_VR_CANWE
command, 3-45

ADI_PWR_CMD_SET_VR_CKELOW
command, 3-45

ADI_PWR_CMD_SET_VR_
CLKBUFOE command, 3-45

ADI_PWR_CMD_SET_VR_FREQ
command, 3-44

ADI_PWR_CMD_SET_VR_GAIN
command, 3-45

ADI_PWR_CMD_SET_VR_PHYWE
command, 3-45

ADI_PWR_CMD_SET_VR_VLEV
command, 3-44

ADI_PWR_CMD_SET_VR_WAKE
command, 3-45

ADI_PWR__CMD_TABLE command,
3-42

Index

I-8 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_PWR_COMMAND enumeration
type, 3-42

ADI_PWR_COMMAND_PAIR data
type, 3-48

ADI_PWR_COMMAND_PAIR
structure, 3-42

adi_pwr_Control function, 3-16
ADI_PWR_CSEL data type, 3-48
ADI_PWR_DF data type, 3-49
adi_pwr_GetConfigSize function, 3-18
adi_pwr_GetFreq function, 3-19
adi_pwr_GetPowerMode function, 3-20
adi_pwr_GetPowerSaving function, 3-21
adi_pwr_Init function, 3-22
ADI_PWR_INPUT_DELAY function,

3-49
adi_pwr_LoadConfig function, 3-28
ADI_PWR_MILLIVOLTS macro, 3-60
ADI_PWR_MODE data type, 3-50
ADI_PWR_OUTPUT_DELAY data type,

3-49
ADI_PWR_PACKAGE_KIND data type,

3-50
ADI_PWR_PACKAGE_PBGA macro,

3-61
ADI_PWR_PCC133_COMPLIANCE

data type, 3-51
ADI_PWR_PROC_KIND data type, 3-51
adi_pwr_Reset function, 3-29
ADI_PWR_RESULT enumeration type,

3-53
adi_pwr_SaveConfig function, 3-30
adi_pwr_SetFreq function, 3-31
adi_pwr_SetMaxFreqForVolt function,

3-33
adi_pwr_SetPowerMode function, 3-34
adi_pwr_SetVoltageRegulator function,

3-37
ADI_PWR_SIZEOF_CONFIG macro,

3-18

ADI_PWR_SSEL function, 3-55
ADI_PWR_SUCCESS return code, 3-3
adi_pwr_Terminate function, 3-41
ADI_PWR_VDDEXT function, 3-56
ADI_PWR_VLEV data type, 3-56
ADI_PWR_VLEV_DEFAULT macro,

3-60
ADI_PWR_VLEV_MAX macro, 3-60
ADI_PWR_VLEV_MIN macro, 3-60
ADI_PWR_VOLTS macro, 3-60
ADI_PWR_VR_CANWE data type, 3-57,

3-59
ADI_PWR_VR_CKELOW data type,

3-57
ADI_PWR_VR_CLKBUFOE data type,

3-57
ADI_PWR_VR_FREQ data type, 3-58
ADI_PWR_VR_FREQ_DEFAULT

macro, 3-60
ADI_PWR_VR_FREQ_MAX macro,

3-60
ADI_PWR_VR_FREQ_MIN macro,

3-60
ADI_PWR_VR_GAIN data type, 3-58,

3-59
ADI_PWR_VR_GAIN_DEFAULT

macro, 3-61
ADI_PWR_VR_GAIN_MAX macro,

3-61
ADI_PWR_VR_GAIN_MIN macro, 3-61
ADI_PWR_VR_PHYWE data type, 3-59
ADI_PWR_VR_WAKE data type, 3-60
adi_rtc_DisableWakeup, 11-3, 11-34
adi_rtc_DisableWakeup function, 11-28
adi_rtc_EnableWakeup, 11-34
adi_rtc_EnableWakeup function, 11-27
ADI_RTC_ENUMERATION_START,

11-32
ADI_RTC_EVENT_DAYS, 11-32

VisualDSP++ 5.0 Device Drivers and System I-9
Services Manual for Blackfin Processors

Index

ADI_RTC_EVENT_EACH_DAY_ALM,
11-32

ADI_RTC_EVENT_HOURS, 11-32
ADI_RTC_EVENT_ID

description, 11-32
installing callback for, 11-22
removing callback for, 11-24

ADI_RTC_EVENT_MINUTES, 11-32
ADI_RTC_EVENT_ONCE_ALM,

11-32
ADI_RTC_EVENT_SECONDS, 11-32
ADI_RTC_EVENT_STOPWATCH,

11-32
ADI_RTC_EVENT_WRITES_

COMPLETE, 11-32
adi_rtc_GetDateTime, 11-5
adi_rtc_GetDateTime function, 11-21
adi_rtc_GetEpoch function, 11-26
adi_rtc_Init, 11-3
adi_rtc_Init function, 11-18
adi_rtc_InstallCallback, 11-5, 11-9, 11-10,

11-11
adi_rtc_InstallCallback function, 11-22
adi_rtc_RemoveCallback, 11-10, 11-11
adi_rtc_RemoveCallback function, 11-24
adi_rtc_ResetStopwatch, 11-7, 11-11
adi_rtc_ResetStopwatch function, 11-29
ADI_RTC_RESULT_ALREADY_

INITIALIZED, 11-33
ADI_RTC_RESULT_CALLBACK_

ALREADY_INSTALLED, 11-33
ADI_RTC_RESULT_CALLBACK_

CONFLICT, 11-33
ADI_RTC_RESULT_CALLBACK_

NOT_INSTALLED, 11-33
ADI_RTC_RESULT_CALL_

IGNORED, 11-33
ADI_RTC_RESULT_DATETIME_

OUT_OF_RANGE, 11-33

ADI_RTC_RESULT_ERROR_
REMOVING_CALLBACK, 11-33

ADI_RTC_RESULT_FAILED, 11-32
ADI_RTC_RESULT_INTERRUPT_

MANAGER_ERROR, 11-33
ADI_RTC_RESULT_INVALID_

EVENT_ID, 11-32
ADI_RTC_RESULT_NOT_

INITIALIZED, 11-33
ADI_RTC_RESULT_SERVICE_NOT_

SUPPORTED, 11-33
ADI_RTC_RESULT_START, 11-32
ADI_RTC_RESULT_SUCCESS, 11-32
adi_rtc_SetDateTime, 11-4
adi_rtc_SetDateTime function, 11-20
adi_rtc_SetEpoch function, 11-25
adi_rtc_Terminate, 11-4
adi_rtc_Terminate function, 11-19
adi_stdio_CloseDevice function, 15-21
ADI_STDIO_COMMAND, 15-24
ADI_STDIO_COMMAND_ENABLE_

AUTO_BAUD_CHAR command,
15-27

ADI_STDIO_COMMAND_ENABLE_
CHAR_ECHO command, 15-25

ADI_STDIO_COMMAND_ENABLE_
UNIX_MODE command, 15-24

ADI_STDIO_COMMAND_GET_
DEVICE_HANDLE command,
15-25

ADI_STDIO_COMMAND_SET_
UART_AUTO_BAUD_CHAR
command, 15-27

ADI_STDIO_COMMAND_SET_
UART_BAUD_RATE command,
15-28

ADI_STDIO_COMMAND_SET_
UART_NUM_STOP_BITS
command, 15-26

Index

I-10 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ADI_STDIO_COMMAND_SET_
UART_PARITY_TYPE command,
15-26

ADI_STDIO_COMMAND_SET_
UART_WORD_LENGTH
command, 15-26

adi_stdio_ControlDevice function, 15-19
adi_stdio_DisableStream function, 15-18
adi_stdio_Init function, 15-2, 15-11
adi_stdio_OpenDevice function, 15-14,

15-16
adi_stdio_RegisterUART function, 15-13
adi_stdio_Terminate function, 15-22
adi_tmr_Close function, 8-4, 8-19
adi_tmr_CoreCommand function, 8-33
adi_tmr_CoreControl function, 8-6, 8-21
ADI_TMR_CREATE_GP_TIMER_

ID(x) macro, 8-30
ADI_TMR_EVENT enumeration, 8-33
adi_tmr_GetPeripheralID function, 8-7,

8-29
adi_tmr_GPCommand function, 8-36
adi_tmr_GPControl function, 8-5, 8-23
adi_tmr_GPGroupEnable function, 8-5,

8-24, 8-31
adi_tmr.h include file, 8-2, 8-4, 8-15
adi_tmr_Init function, 8-3, 8-16
adi_tmr_InstallCallback function, 8-8,

8-26
adi_tmr_Open function, 8-4, 8-17
adi_tmr_RemoveCallback function, 8-9,

8-28
adi_tmr_Reset function, 8-5, 8-20
ADI_TMR_RESULT enumeration, 8-32
adi_tmr_Terminate function, 8-3, 8-18
adi_tmr_WatchdogCommand function,

8-34
adi_tmr_WatchdogControl function, 8-6,

8-22

advanced configuration, 12-11
alarm

each day, 11-7
once only, 11-7

allocation algorithm
binary buddy, 14-65
circular buffer, 14-66
fixed block, 14-64
performance measurements, 14-67
regular malloc, 14-64

allocation algorithms
comparison, 14-61, 14-63
pros and cons, 14-64

allocation models (ADI_MEM_ALLOC_
MODEL), 14-39

API
DCB manager, 5-10
device drivers, 1-8, 1-23
DMA manager, 6-31
EBIU module, 4-9
flag service, 7-14
interrupt manager, 2-18
power management module, 3-14
timer service, 8-15

API data types, 12-52, 13-34
API enumerations, 12-52, 13-34
application programming interface (API).

See API
asserting an interrupt, 2-35
assigning one-shot buffers, 6-34
auto-refresh command, 4-16

B
bank activate command, 4-16
bank information (ADI_MEM_BANK_

INFO), 14-40
base memory, 6-4
buffer list, preparing, 10-43

VisualDSP++ 5.0 Device Drivers and System I-11
Services Manual for Blackfin Processors

Index

buffers
assigning to DMA channel, 6-34
filling with inbound data, 10-53
inbound data, 10-14
outbound data, 10-14
processed flag, 10-54
processed size flag, 10-54
queueing and reception, 10-53
receiving inbound data, 10-85
storing inbound data, 10-37
transmit the data out of, 10-54
transmitting outbound data, 10-86

C
cache information (ADI_MEM_CACHE_

INFO), 14-40
callback

defined, 11-8
example, 11-12
executing, 5-2
installing, 11-9
installing to a specified flag, 7-7
installing to a timer, 8-8
removing, 7-13, 7-28, 11-10, 11-24
resuming generation, 7-29
temporarily suspending, 7-30

callback events, 10-32, 10-68
callback function

about, 5-2
adi_dev.h file, 10-32
circular transfer, 6-23
deferred, 5-2
deferred execution, 5-4
described briefly, 10-16
descriptor transfer, 6-23
device manager, 10-6
DMA, 10-41
flag service, 7-6, 7-7
installing, 7-12, 7-26, 8-13, 8-26, 13-9
memory stream, 6-23

callback function (continued)
prototype, 5-22
pulse-width modulation, 13-8
removing, 8-14, 8-28
removing a callback, 13-9
timer service, 8-8
trigger condition, 7-25

callback list, 11-9, 11-10
CAN channel, enabling, 9-18
chained

buffers, 10-13
buffers with loopback, 10-14
dataflow method, 10-13

channel
interrogation, 6-22
memory, 6-4
testing count, 6-5

channel and duty cycle structure, 13-35
channel and status structure, 13-34
channel enable

example, 13-12, 13-19, 13-20
get command, 13-43
invalid, 13-48
set command, 13-40
structure, 13-34

channel handle, 6-11
circular

dataflow method, 10-12
transfer, 6-23
transfer operating mode, 6-14

circular buffer
adi_dma_Buffer function, 6-34
callback options, 10-33
device manager API buffer, 10-7
diagrammed, 10-12

cli built-in function, 5-10
ClientCallback parameter, 6-57, 10-10

Index

I-12 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

ClientHandle
example, 11-11
in adi_rtc_InstallCallback, 11-9, 11-10,

11-22
client handle, 6-11
ClientHandle parameter, 10-10
ClientHandle parameter in a callback,

13-11
CLKIN input clock frequency, 3-34
closedir function, 12-72
codecs, controlling, 10-1
code examples, memory manager service

APIs
allocate, free, and realloc memory, 14-38
install required algorithms, 14-36
memory manager initialization, 14-36
memory pool creation, 14-36
using public pool list, 14-37

code generation toolchain, 10-5
command, ADI_STDIO_COMMAND_

ADI_STDIO_COMMAND_
ENABLE_AUTO_BAUD_CHAR,
15-27

ADI_STDIO_COMMAND_
ENABLE_CHAR_ECHO, 15-25

ADI_STDIO_COMMAND_
ENABLE_UNIX_MODE, 15-24

ADI_STDIO_COMMAND_GET_
DEVICE_HANDLE, 15-25

ADI_STDIO_COMMAND_SET_
UART_AUTO_BAUD_CHAR,
15-27

ADI_STDIO_COMMAND_SET_
UART_BAUD_RATE, 15-28

ADI_STDIO_COMMAND_SET_
UART_NUM_STOP_BITS, 15-26

ADI_STDIO_COMMAND_SET_
UART_PARITY_TYPE, 15-26

ADI_STDIO_COMMAND_SET_
UART_WORD_LENGTH, 15-26

command, configuration, 10-38
command IDs, 10-71
command IDs, defined by device manager,

10-32
command-pair structure, 13-36
commands (ADI_MEM_COMMAND),

14-41
configuration word, specifying frequency of

callbacks, 6-23
controller area network (CAN) interface,

3-57, 3-59
core clock

divider ratio, 3-15
power management (PM) module, 3-2

core event controller (CEC), 2-2, 2-6
core processor, waking up, 2-39
core timer

adi_tmr_CoreControl() function, 8-6
commands, 8-33
configuring, 8-6

core voltage, 3-22
critical code region

interrupt manager, 2-14
protecting, 2-13
removing protect condition, 2-29
setting protective condition, 2-27

critical region
handling with callback functions, 5-10
parameter, 10-9

C run-time model, 1-8
C switch statement, 10-16, 10-38
custom allocation code, 14-52
custom allocation model functions API,

14-53
Custom_Alloc, 14-59
Custom_Control, 14-58
Custom_Create, 14-55
Custom_Destroy, 14-57
Custom_Free, 14-60

VisualDSP++ 5.0 Device Drivers and System I-13
Services Manual for Blackfin Processors

Index

cust alloc model functions API (continued)
Custom_Install, 14-54
Custom_Realloc, 14-61

Custom_Alloc function, 14-59
custom configuration of device drivers,

12-11
Custom_Control function, 14-58
Custom_Create function, 14-55
Custom_Destroy function, 14-57
Custom_Free function, 14-60
Custom_Install function, 14-54
Custom_Realloc function, 14-61

D
DAM service, 12-9
data buffer

types of, 10-7
used with device drivers, 10-33

dataflow
disabling, 10-44
enabling, 10-14, 10-44
enumerations, 10-31
inbound, 10-37
methods, 10-11
outbound, 10-38
starting, 10-14
stopping, 10-64
terminating, 10-16, 10-36

data structure
ADI_DEV_1D_BUFFER, 10-73
ADI_DEV_2D_BUFFER, 10-74
ADI_DEV_ACCESS_REGISTER,

10-78
ADI_DEV_ACCESS_REGISTER_

BLOCK, 10-78
ADI_DEV_ACCESS_REGISTER_

FIELD, 10-79
ADI_DEV_BUFFER, 10-79
ADI_DEV_BUFFER_PAIR, 10-76

data structure (continued)
ADI_DEV_CIRCULAR_BUFFER,

10-75
ADI_DEV_DMA_ACCESS, 10-77
ADI_DEV_DMA_INFO, 10-76
ADI_DEV_FREQUENCIES, 10-77
ADI_DEV_SEQ_1D_BUFFER, 10-76
ADI_PWM_NUMBER_AND_

CHANNEL_STATUS, 13-36
ADI_PWM_NUMBER_AND_

ENABLE_STATUS, 13-37
ADI_PWM_NUMBER_AND_

VALUE, 13-37
data type

ADI_FSS_CMD_VALUE_PAIR, 12-53
ADI_FSS_DEVICE_DEF, 12-54
ADI_FSS_DIR_ENTRY, 12-53
ADI_FSS_DIR_HANDLE, 12-53
ADI_FSS_FILE_HANDLE, 12-52
ADI_FSS_VOLUME_IDENT, 12-52
ADI_FSS_WCHAR, 12-52
ADI_PWM_CHANNEL, 13-35
ADI_PWM_COMMAND, 13-36
ADI_PWM_ENABLE_STATUS,

13-35
ADI_PWM_PORT_MAP, 13-38

DCBHandle parameter, 10-10
DCB manager

API functions, 5-10
executing function calls, 5-2
initializing, 5-14
interfacing with different RTOS, 5-7
macros, 5-22
operation, 5-3
public data types, 5-22
return codes, 5-24
terminating, 5-21

DCB queue server
closing, 5-11
opening, 5-16

Index

I-14 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

dead time, 13-11
example, 13-13, 13-16
get command, 13-43
invalid, 13-48
set command, 13-40

deferred callback
deferred callback manager (DCB)

defined, 5-2
how scheduled, 5-4
queue server

configuring, 5-12
service handle, 6-11

deferred callback manager (DCB), 5-1
deferred callback service, 12-8, 13-52
descriptor-based transfers, 6-24
descriptor chains, queueing to DMA

channel, 6-58
descriptors

array mode, 6-20
chain (large), 6-16
chain (small), 6-20
contents of array element, 6-64
queueing to DMA channel, 6-58

device driver
architecture, 1-24
asynchronous mode, 1-24
data buffers for, 10-33
directory and file structure, 1-27
library, linking, 1-30
library, rebuilding, 1-31
model, 10-1, 10-3
on-chip peripherals, 1-29
overview, 1-22
stackable, 10-17
streaming mode, 10-40
synchronous mode, 1-24

device driver API, accessing, 1-28
device indexing, 9-9

device manager, 12-11
API, 10-6, 10-30
API calls, 10-34
API functional description, 10-35
asynchronous operating mode, 10-13
buffers, 10-7
code, 10-34
configuration, 10-38
controlling physical device drivers, 10-45
initializing, 1-26, 10-8, 10-35
shutting down, 1-27
static functions, 10-41
summarized, 10-4
supporting clients, 10-4
synchronous mode, 10-39
terminating, 10-9, 10-64
termination function, 1-27

devices
closing, 10-16, 10-81
configuring, 10-11
enabling/disabling dataflow through,

10-11
opening, 10-9, 10-36
opening for use, 10-51, 10-61
setting configuration parameter, 10-82
shutting down, 10-55

device type (ADI_STDIO_DEVICE_
TYPE), 15-24

DevNumber parameter, 10-10
DMA

commands, 6-73
memory transfer, 6-48
one-dimensional memory copy, 6-44
one-dimensional transfers, 6-8
two-dimensional memory copy, 6-46
two-dimensional transfers, 6-9, 6-29

DMACallback function, 10-41, 10-42
DMA channel ID, detecting, 6-27

VisualDSP++ 5.0 Device Drivers and System I-15
Services Manual for Blackfin Processors

Index

DMA channels
closing, 6-21, 6-36
configuration, 6-20
controlling, 6-3, 6-37
identifying, 6-40
ID values, 6-67
opening, 6-11, 6-56
specifying, 6-58

DMA configuration control register, 6-12,
6-64, 10-43

DMA configuration control word, 6-64
DMA controller

circular transfer operating mode, 6-15
DMA manager, 6-3
identifying, 6-40
interface to, 6-2
large descriptor chain mode, 6-16
operating modes, 6-12
single transfer operating mode, 6-12
small descriptor mode, 6-20

DMA manager
API, 6-31
defined, 6-2
initializing, 6-4, 6-42
loopback submode, 6-24
return codes, 6-69
streaming submode, 6-25
terminating, 6-5, 6-61

DMA peripheral map (PMAP) ID, 10-52
DMA traffic control, 6-31
DMAx_CONFIG register, field values,

6-72
duty cycle

example, 13-12, 13-13, 13-14, 13-15,
13-16

get command, 13-43
invalid, 13-48
set command, 13-40
structure, 13-35

dynamic memory usage, 12-13

dynamic power management, power
management (PM) module, 3-2

dynamic power management registers,
configuring, 3-16

E
EBIU module

API functions, 4-9
controlling the configuration of, 4-32
defined, 4-1
enumerations, 4-25
initialization values, 4-15
initializing, 4-15
public data types, 4-25
return codes, 4-25
setting control values, 4-32

EBIU_SDBCTL register
EBCAW bits, 4-41
EBSZ bits, 4-40
setting, 4-15

EBIU_SDGCTL register, 4-10
CDDBG bit, 4-46
EBUFE bit, 4-44
EMREN bit, 4-42
FBBRW bit, 4-45
PASR bits, 4-42
PSM bit, 4-45
PUPSD bit, 4-44
SCTLE bit, 4-41
setting, 4-15
SRFS bit, 4-43
TCSR bits, 4-43

EBIU SDRAM registers, configuring, 4-11
EBIU_SDRRC register

adi_ebiu_AdjustSDRAM function, 4-10
adjusting SDRAM refresh rate, 4-17
setting, 4-15

entry point
address, 10-50
into physical device driver, 10-34

Index

I-16 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

enumeration
ADI_DEV_BUFFER_TYPE, 10-66
ADI_DEV_DIRECTION, 10-67
ADI_DEV_MODE, 10-67
ADI_PWM_COMMAND, 13-39
ADI_PWM_DISABLE, 13-45
ADI_PWM_DOUBLE_UPDATE,

13-51
ADI_PWM_ENABLE, 13-45
ADI_PWM_EVENT_ENABLE_

STATUS, 13-45
ADI_PWM_EVENT_SYNC, 13-46
ADI_PWM_EVENT_TRIP, 13-46
ADI_PWM_EVENT_UPDATE_

MODE, 13-51
ADI_PWM_NUMBER, 13-46
ADI_PWM_POLARITY, 13-47
ADI_PWM_PORT_MUX, 13-47
ADI_PWM_PORT_MUX_PRI, 13-47
ADI_PWM_PORT_MUX_SEC, 13-47
ADI_PWM_SINGLE_UPDATE,

13-51
ADI_PWM_SOURCE_EXTERNAL,

13-51
ADI_PWM_SOURCE_HIGH, 13-47
ADI_PWM_SOURCE_INTERNAL,

13-51
ADI_PWM_SOURCE_LOW, 13-47
ADI_PWM_SYNC_ASYNC, 13-50
ADI_PWM_SYNC_SEL, 13-50
ADI_PWM_SYNC_SOURCE, 13-51
ADI_PWM_SYNC_SYNC, 13-50
callback events, 10-68
channels, 13-39
command IDs, 10-71
commands, 13-39
result codes, 10-68
selecting sync source, 13-51

enumeration start value, 10-32

epoch time
return, 11-26
set, 11-25

epoch time structure, 11-25
event

alarm, 11-7
daily, 11-7
defined, 11-5
flag register, 11-3
ID, 11-32
IDs, 10-49
levels of, 2-2
minute, 11-6
one-shot, 11-7
periodic, 11-7
second, 11-5
types, 6-67
writes complete, 11-8

event ID
installing callbacks for, 11-5, 11-9, 11-22
removing callbacks for, 11-10

extensibility, 12-82
external

clock oscillator frequency, 3-22
voltage, 3-22, 3-56

external bus interface unit module. See
EBIU module

F
fclose function, 12-58
feof function, 12-69
fgetc, 12-63
fgetc function, 12-63
fgets function, 12-64
file cache, 12-16
file system service

advanced configuration, 12-11
API data types, 12-52
API enumerations, 12-52
API reference, 12-17

VisualDSP++ 5.0 Device Drivers and System I-17
Services Manual for Blackfin Processors

Index

file system service (continued)
custom configuration of device drivers,

12-11
deferred callback service, 12-8
device manager, 12-11
DMA service, 12-9
dynamic memory usage, 12-13
examples, 12-82
extensibility, 12-82
file cache, 12-16
getting started, 12-3
HardDiskAccess, 12-83
HardDiskFormat, 12-84
initialization, 12-4
interrupt manager service, 12-8
introduction, 12-2
notation and naming conventions, 12-18
POSIX functions, 12-70
real time clock service, 12-10
result codes, 12-55
semaphore service, 12-10
Shell_Browser, 12-85
standard C I/O interface functions,

12-56
system service requirements, 12-7
termination, 12-6

file system service API reference, 12-17
flag IDs, 7-4, 7-31
flag pins, 7-2
flags

initializing, 7-10
opening, 7-10
operating as general-purpose I/O pins,

7-19
sensing the value of, 7-12
setting for input, 7-24
setting for output, 7-24
setting input/output direction, 7-11
setting output value, 7-11

flag service
API, 7-14
callback function, 7-6
callbacks, 7-6
control flag operations, 7-4
controlling flags, 7-2
initializing, 7-3
macros, 7-32
return codes, 7-33
terminating, 7-4, 7-14

flag value, 7-6
fopen function, 12-57
fprintf function, 12-61
fputc function, 12-65
fputs function, 12-66
fread function, 12-60
fscanf function, 12-62
fseek function, 12-67
ftell function, 12-68
function, adi_dcb_

adi_dcb_Close, 5-11
adi_dcb_Control, 5-12
adi_dcb_Init, 5-14
adi_dcb_Open, 5-16
adi_dcb_Post, 5-18
adi_dcb_Remove, 5-20
adi_dcb_Terminate, 5-21

function, adi_dev_
adi_dev_Close, 10-57
adi_dev_Control, 10-58
adi_dev_Init, 10-59
adi_dev_Open, 10-61
adi_dev_Read, 10-63
adi_dev_Terminate, 10-64
adi_dev_Write, 10-65

function, adi_dma_
adi_dma_Buffer, 6-34
adi_dma_Close, 6-36
adi_dma_Control, 6-37
adi_dma_GetMapping, 6-40

Index

I-18 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

function, adi_dma_ (continued)
adi_dma_GetPeripheralInterruptID,

6-41
adi_dma_Init, 6-42
adi_dma_MemoryClose, 6-43
adi_dma_MemoryCopy, 6-44
adi_dma_MemoryCopy2D, 6-46
adi_dma_MemoryOpen, 6-48
adi_dma_MemoryQueue, 6-50
adi_dma_MemoryQueueClose, 6-52
adi_dma_MemoryQueueControl, 6-53
adi_dma_MemoryQueueOpen, 6-54
adi_dma_Open, 6-56
adi_dma_Queue, 6-58
adi_dma_SetConfigWord, 6-59
adi_dma_SetMapping, 6-60
adi_dma_Terminate, 6-61

function, adi_ebiu_
adi_ebiu_AdjustSDRAM, 4-10
adi_ebiu_Control, 4-11
adi_ebiu_GetConfigSize, 4-14
adi_ebiu_Init, 4-15
adi_ebiu_LoadConfig, 4-22
adi_ebiu_SaveConfig, 4-23
adi_ebiu_Terminate, 4-24

function, adi_flag_
adi_flag_Clear, 7-15
adi_flag_Close, 7-16
adi_flag_Init, 7-17
adi_flag_InstallCallback, 7-26
adi_flag_Open, 7-19
adi_flag_RemoveCallback, 7-28, 13-33
adi_flag_ResumeCallbacks, 7-29
adi_flag_Sense, 7-20
adi_flag_Set, 7-23
adi_flag_SetDirection, 7-24
adi_flag_SetTrigger, 7-25
adi_flag_SuspendCallbacks, 7-30
adi_flag_Terminate, 7-22
adi_flag_Toggle, 7-21

function, adi_fss_
adi_fss_Control, 12-23
adi_fss_DeRegisterDevice, 12-26
adi_fss_DirChange, 12-48
adi_fss_DirClose, 12-43
adi_fss_DirCreate, 12-50
adi_fss_DirOpen, 12-42
adi_fss_DirRead, 12-44
adi_fss_DirRemove, 12-51
adi_fss_DirRewind, 12-47
adi_fss_DirSeek, 12-45
adi_fss_DirTell, 12-46
adi_fss_FileClose, 12-33
adi_fss_FileOpen, 12-31
adi_fss_FileRead, 12-35
adi_fss_FileRemove, 12-40
adi_fss_FileRename, 12-41
adi_fss_FileSeek, 12-36
adi_fss_FileTell, 12-38
adi_fss_FileWrite, 12-34
adi_fss_GetCurrentDir, 12-49
adi_fss_Init, 12-19
adi_fss_IsEOF, 12-39
adi_fss_PollMedia, 12-28
adi_fss_PollMediaOnDevice, 12-27
adi_fss_RegisterDevice, 12-25
adi_fss_Stat, 12-29
adi_fss_Terminate, 12-22
adi_fss_UnMountDevice, 12-30

function, adi_int_
adi_int_CECHook, 2-21
adi_int_CECUnhook, 2-23
adi_int_ClearIMaskBits, 2-25
adi_int_EnterCriticalRegion, 2-27
adi_int_ExitCriticalRegion, 2-29
adi_int_GetCurrentIVGLevel, 2-30
adi_int_GetLibraryDetails, 2-31
adi_int_Init, 2-19
adi_int_SetIMaskBits, 2-37
adi_int_SICDisable, 2-32

VisualDSP++ 5.0 Device Drivers and System I-19
Services Manual for Blackfin Processors

Index

function, adi_int_ (continued)
adi_int_SICEnable, 2-33
adi_int_SICGetIVG, 2-34
adi_int_SICGlobalWakeup, 2-40
adi_int_SICInterruptAsserted, 2-35
adi_int_SICSetIVG, 2-36
adi_int_SICWakeup, 2-39
adi_int_Terminate, 2-20

function, adi_mem_
adi_mem_Alloc, 14-31
adi_mem_Control, 14-29
adi_mem_CreatePrivatePool, 14-17
adi_mem_CreatePublicPool, 14-21
adi_mem_DestroyPool, 14-25
adi_mem_Free, 14-33, 14-34
adi_mem_Init, 14-12
adi_mem_InstallBinBuddyModel,

14-16
adi_mem_InstallCircularModel, 14-15
adi_mem_InstallFixedBlockModel,

14-14
adi_mem_ListPublicPools, 14-27
adi_mem_Terminate, 14-13

function, adi_ports_
adi_ports_ClearProfile, 9-22
adi_ports_Configure, 9-13
adi_ports_EnableCAN, 9-18
adi_ports_EnableGPIO, 9-21
adi_ports_EnablePPI, 9-14
adi_ports_EnableSPI, 9-15
adi_ports_EnableSPORT, 9-16
adi_ports_EnableTimer, 9-19
adi_ports_EnableUART, 9-17
adi_ports_GetProfile, 9-23
adi_ports_Init, 9-11
adi_ports_SetProfile, 9-24
adi_ports_Terminate, 9-12

function, adi_pwm_
adi_pwm_Control, 13-30
adi_pwm_Init, 13-28
adi_pwm_InstallCallback, 13-32
adi_pwm_Terminate, 13-29

function, adi_pwr_
adi_pwr_AdjustFreq, 3-15
adi_pwr_Control, 3-16
adi_pwr_GetConfigSize, 3-18
adi_pwr_GetFreq, 3-19
adi_pwr_GetPowerMode, 3-20
adi_pwr_GetPowerSaving, 3-21
adi_pwr_Init, 3-22
adi_pwr_LoadConfig, 3-28
adi_pwr_Reset, 3-29
adi_pwr_SaveConfig, 3-30
adi_pwr_SetFreq, 3-31
adi_pwr_SetMaxFreqForVolt, 3-33
adi_pwr_SetPowerMode, 3-34
adi_pwr_SetVoltageRegulator, 3-37
adi_pwr_Terminate, 3-41

function, adi_rtc_
adi_rtc_DisableWakeup, 11-28
adi_rtc_EnableWakeup, 11-27
adi_rtc_GetDateTime, 11-21
adi_rtc_GetEpoch, 11-26
adi_rtc_Init, 11-18
adi_rtc_InstallCallback, 11-22
adi_rtc_RemoveCallback, 11-24
adi_rtc_ResetStopwatch, 11-29
adi_rtc_SetDateTime, 11-20
adi_rtc_SetEpoch, 11-25
adi_rtc_Terminate, 11-19

function, adi_stdio_
adi_stdio_CloseDevice, 15-21
adi_stdio_ControlDevice, 15-19
adi_stdio_DisableStream, 15-18
adi_stdio_Init, 15-11
adi_stdio_OpenDevice, 15-14, 15-16

Index

I-20 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

function, adi_stdio_ (continued)
adi_stdio_RegisterUART, 15-13
adi_stdio_Terminate, 15-22

function, adi_tmr_
adi_tmr_Close, 8-19
adi_tmr_CoreControl, 8-21
adi_tmr_GetPeripheralID, 8-29
adi_tmr_GPControl, 8-23
adi_tmr_GPGroupEnable, 8-24
adi_tmr_Init, 8-16
adi_tmr_InstallCallback, 8-26
adi_tmr_Open, 8-17
adi_tmr_RemoveCallback, 8-28
adi_tmr_Reset, 8-20
adi_tmr_Terminate, 8-18
adi_tmr_WatchdogControl, 8-22

function, POSIX related
closedir, 12-72
mkdir, 12-78
opendir, 12-71
readdir, 12-73
readdir_r, 12-74
remove, 12-81
rename, 12-80
rewinddir, 12-75
rmdir, 12-79
seekdir, 12-76
telldir, 12-77

function, Std C I/O
fclose, 12-58
feof, 12-69
fgetc, 12-63
fgets, 12-64
fopen, 12-57
fprintf, 12-61
fputc, 12-65
fputs, 12-66
fread, 12-60
fscanf, 12-62
fseek, 12-67

function, Std C I/O (continued)
ftell, 12-68
fwrite, 12-59

fwrite function, 12-59

G
general-purpose I/O (GPIO)) subsystem,

7-1
general-purpose timer

commands, 8-36
configuring, 8-5, 8-23
defined, 8-5
disabling, 8-5
enabling, 8-5
enabling or disabling, 8-24

GPIO, enabling, 9-21

H
handle types, used by device manager,

10-31
HardDiskAccess, 12-83
HardDiskFormat, 12-84
hardware reset, PLL controller, 3-29
hConfig argument, 3-28, 3-30
heat dissipation, 3-50

I
IMASK register

clearing bits in, 2-25
modifying, 2-16
modifying value, 2-16

include files, off-chip peripheral drivers,
1-29

InitialDeviceSettings data item, 10-34
initialization, function, 1-26

VisualDSP++ 5.0 Device Drivers and System I-21
Services Manual for Blackfin Processors

Index

initializing
DCB manager, 5-14
device manager, 1-26
DMA manager, 6-4
EBIU module, 4-15
interrupt manager, 2-4
power management module, 3-22

INTEGRITY implementation, 5-2
interdependencies, 13-52

deferred callback service, 13-52
interrupt manager service, 13-52
port control manager service, 13-53

internal data structure
ADI_MEM_MEMPOOL_STRUCT,

14-48
ADI_MEM_MODEL, 14-46

interrupt handler
C-callable subroutines, 2-8
chains, 2-3, 2-21
defined, 2-3, 11-10
described, 2-8
hooking, 11-3
invoking, 11-9
primary, 2-21
pulse-width modulation, 13-10
secondary, 2-21
unhooking for given IVG, 2-23

interrupt manager
API functions, 2-18
defined, 2-2
hooking up particular interrupt handler,

2-21
initialization, 2-4
initializing memory for, 2-19
initializing tables and vectors, 2-19
setting bits in IMASK register, 2-37
termination function, 2-5

interrupt manager service, 12-8, 13-52

interrupt nesting
disabled, 2-21
enabled, 2-21

interrupts
asserting, 2-11
DMA, 6-27
hooking into IVG chain, 6-28
levels of, 2-2
raised on DMA transfer, 6-2
unhooking, 6-28

interrupt vector groups (IVG), 2-2
ISR, 11-10
IVG, 11-3, 11-10
IVG levels, 2-2

L
lag service, terminating, 7-22
large descriptor

chain, 6-16
contents of, 6-65

libraries, rebuilding, 1-18
linear (1-D) memory transfers, 6-8
linking to system services library, 1-16
load mode register command, 4-45
loopback submode, 6-24
low-power dissipation, 3-49

M
macros

creating timer IDs, 8-30
DCB manager, 5-22
device manager, 10-31

mapping
channel ID to peripheral, 6-27
DMA channels to IVG level, 6-28
DMA channels to peripherals, 6-26
peripheral interrupt source to an IVG

level, 2-34, 2-36
mapping DMA channel, 6-60

Index

I-22 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

matrix (2-D) memory transfers, 6-9
memcpy function, 6-2
memory

allocating to device manager, 10-31
free, 10-64
initialization, 6-5
provided to device manager, 10-8

memory block
freeing, 14-33
resizing, 14-34

memory block, initializing, 6-42
memory DMA, 6-4, 6-6
memory DMA descriptor

queuing to a stream, 6-50
memory DMA stream

closing, 6-43
closing open queue, 6-52
configure, 6-53
control, 6-53
opening for queueing, 6-54
opening for use, 6-48

memory manager
creating a memory pool, 14-5
destroying a memory pool, 14-6

memory manager allocation schemes
binary buddy, 14-4, 14-16
circular buffer, 14-4
fixed block, 14-4, 14-14

memory manager API code examples,
14-36

memory manager service, 14-1
adi_mem_CreatePublicPool, 14-21
adi_mem_DestroyPool, 14-25
allocation models and descriptions,

14-39
API reference, 14-10
cache configuration and description,

14-40
commands and description, 14-41
initialization, 14-2, 14-12

memory manager service (continued)
installing memory allocation scheme,

14-4
internal data structures, 14-46
memory allocation, 14-8
memory bank information and

description, 14-40
memory block header format, 14-49
memory type and description, 14-41
result codes and description, 14-42
termination, 14-3, 14-13

memory manager service, enumerations
ADI_MEM_ALLOC_MODEL, 14-39
ADI_MEM_BANK_INFO, 14-40
ADI_MEM_CACHE_INFO, 14-40
ADI_MEM_COMMAND, 14-41
ADI_MEM_RESULT, 14-42
ADI_MEM_TYPE_INFO, 14-41

memory manager service, structure
ADI_MEM_CHAR, 14-45
ADI_MEM_INFO, 14-44

memory manager service function
adi_mem_Alloc, 14-31
adi_mem_Control, 14-29
adi_mem_CreatePrivatePool, 14-17
adi_mem_Free, 14-33, 14-34
adi_mem_Init, 14-12
adi_mem_InstallCircularModel, 14-15
adi_mem_InstallFixedBlockModel,

14-14
adi_mem_ListPublicPools, 14-27
adi_mem_Terminate, 14-13

memory pool
create, 14-5
destroy, 14-6

memory pools
create, 14-17

VisualDSP++ 5.0 Device Drivers and System I-23
Services Manual for Blackfin Processors

Index

memory streams
closing, 6-10
controlling, 6-7
identifying, 6-63
opening, 6-7

memory transfers
defined, 6-8
linear, 6-8
two-dimensional, 6-9

memory type information (ADI_MEM_
TYPE_INFO), 14-41

memory usage macros, device manager,
10-31

mkdir function, 12-78

N
nesting flag, 2-7
NestingFlag parameter, 2-7, 2-21
notation and naming conventions, 12-18

O
on-board peripherals, controlling, 10-1
on-chip peripherals, 6-69
one-dimensional

linear memory copy, 6-44
memory transfers, 6-8

one-shot, stopwatch event, 11-7, 11-11
one-shot buffers, 6-34
opendir function, 12-71
operating environment, 1-16
operating mode, 13-8

example, 13-13, 13-16, 13-17
get command, 13-44
invalid, 13-49
set command, 13-42
structure, 13-47, 13-51

P
parallel peripheral interface (PPI), 1-28
parallel peripheral interface (PPI),

controlling, 10-1
pBuffer parameter, 10-37
PDDCallback function, 10-41, 10-49
pDeviceHandle parameter, 10-10
pEntryPoint parameter, 10-10
period, 13-8, 13-11

example, 13-13, 13-16
get command, 13-43
invalid, 13-48
set command, 13-40

peripheral DMA
adi_dev_Read function, 10-37
adi_pdd_Read function, 10-53
described, 6-6

peripheral ID
defined, 8-7
identifying, 8-29

peripheral interrupt ID, 6-41
peripheral interrupts, 2-2
peripheral timer, 8-7
physical device driver

API, 10-80
API description, 10-47
custom-defined error codes, 10-49
defined, 10-4
design overview, 10-45
entry point, 10-34, 10-49
extensions, 10-48
handles, 10-51
shutdown procedure, 1-27
source code, 10-50

PLL controller
resetting, 3-28
reset to hardware reset values, 3-29

Index

I-24 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

PLL control register
DF bit, 3-49
input delay bit, 3-49
output delay bit, 3-49

PLL_DIV register
adi_pwr_AdjustFreq function, 3-15
adi_pwr_SetFreq function, 3-31
setting core clock divider bit field, 3-48
setting system clock divider bit field,

3-55
PLL input divider, 3-31
PLL_LOCKCNT register, 3-43
PLL_STAT register, 3-43
polarity

example, 13-13, 13-16
get command, 13-43
invalid, 13-49
set command, 13-41
structure, 13-47

port control manager
assigning programmable flag pins to

functions, 9-2
defined, 9-3
enumeration types, 9-25
initializing, 9-11
legacy adi_ports_EnableXxx() API usage,

9-3
newer adi_ports_Configure() API usage,

9-5
pin multiplexing, 9-13
return codes, 9-25
terminating, 9-12
usage, 9-3

port control manager service, 13-53
port control registers, 7-2
port service

device indexing, 9-8
virtual devices, 9-8

POSIX functions, 12-70

power management module
API functions, 3-14
defined, 3-1
enabling, 4-2
enumerations, 3-42
initialization values, 3-22
initializing, 3-22
macros, 3-60
public data types, 3-42
return codes, 3-53

power modes
active, 3-34
current, 3-20
deep sleep, 3-34
full-on, 3-34
hibernate, 3-34
processor, 3-34
sleep, 3-34
specifying, 3-50

power saving value, for current PLL and
voltage regulator settings, 3-21

PPI channel, enabling, 9-14
PPIEntryPoint variable, 10-50
precharge all command, 4-45
precharge command, 4-16
PrepareBufferList function, 10-37, 10-43
PrepareBufferList function, configuring

DMA configuration control register,
10-43

processor power mode, setting, 3-34, 3-50
processor variants, 1-14, 1-29
programmable flags, 7-1
programmable flag service

defined, 7-1
initialization, 7-3
initializing memory for, 7-17

public pools
create, 14-21
destroy, 14-25, 14-27
linked list, 14-27

VisualDSP++ 5.0 Device Drivers and System I-25
Services Manual for Blackfin Processors

Index

pulse-width modulation, 13-2
API functions, 13-27
callbacks, 13-8
change IVG level, 13-24
command-pair table, 13-12
enable and configure external sync,

13-22
enable and disable PWM, 13-25
enable or disable channels, 13-19
enable or disable crossover mode, 13-18
enable or disable low side invert, 13-21
enable or disable trip input, 13-25
events, 13-7
initialization, 13-2
installing a callback, 13-9
interrupt handler, 13-10
notation and naming conventions, 13-26
removing a callback, 13-9
setting gate chopping, 13-18
sine wave, 13-11
switch reluctance mode, 13-17
synchronization pulse event, 13-7
termination, 13-6
trip and sync interrupts, 13-23
trip signal event, 13-7

pulse-width modulation function
adi_pwm_Control, 13-30
adi_pwm_Init, 13-28
adi_pwm_InstallCallback, 13-32
adi_pwm_RemoveCallback(), 13-33
adi_pwm_Terminate, 13-29

pulse-width modulation initialization
command-pair table, 13-12
optional parameters, 13-4
required parameters, 13-3

Q
queue, removing entries in, 5-20
queuing DMA descriptors, 6-50

R
readdir function, 12-73
readdir_r function, 12-74
real-time clock (RTC), 3-34
real-time clock service, 12-10
real-time operating system (RTOS), 5-2,

10-4
rebuilding libraries, using other

development toolsets, 1-18
refresh rate, 4-2
remove function, 12-81
rename function, 12-80
requested frequency, 3-31
result code, 11-17, 11-30

ADI_MEM_RESULT, 14-42
ADI_STDIO_RESULT, 15-28

result code, list of, 11-32
result codes, 10-69, 12-55, 13-48
result codes, timer service, 8-32
return codes

DCB manager, 5-24
device manager, 10-32
DMA manager, 6-69
EBIU module, 4-25
flag service, 7-33
port control manager, 9-25
power management module, 3-53

return epoch time, 11-26
revision number references, 1-16
rewinddir function, 12-75
rmdir function, 12-79
RTC_ICTL, 11-24, 11-29
RTC_ISTAT, 11-10
RTC_STAT

days counter, 11-6
diagram, 11-4
hours counter, 11-6
minutes counter, 11-6
reading, 11-4, 11-21

Index

I-26 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

RTC_STAT (continued)
seconds counter, 11-6
writing, 11-5, 11-8, 11-20

RTC_SWCNT, 11-8, 11-29
RTI instruction, 2-8
RTOS, 10-4
RTS return function, 2-8

S
SDRAM

configuration, 4-15
enabling self-refresh, 4-43
low-power (2.5V), 4-36, 4-42
settings, 3-2
using low power (2.5V), 4-17

SDRAM controller, adjusting, 4-2
SDRAM control registers, timing values of

registers, 4-30
SDRAM refresh rate, 4-17
seekdir function, 12-76
self-refresh command, 4-16
semaphore service, 12-10
services.h file, 1-13, 1-14, 1-28
SetDataflow function, 10-40, 10-44
set epoch time, 11-25
setting bits in configuration word, 6-59
Shell_Browser, 12-85
SIC functions, 2-9
SIC IMASK register, 2-10
SIC interrupt assignment register, 2-10,

2-11
SIC interrupt wakeup register, 2-11
SIC wakeup register, 2-39
__SILICON_REVISION__ macro, 1-18,

1-32
silicon revision macro

See also __SILICON_REVISION__
macro

rebuilding libraries, 1-32
silicon revisions, 1-30

single transfer operating mode, 6-12
-si-revision compiler switch, 1-18, 1-32
small descriptor

chain, 6-20
contents of, 6-66

source files, driver, 1-29
SPI channel, enabling, 9-15
SPORT channel, enabling, 9-16
SPORTs, controlling, 10-1
stackable drivers, 10-17
standard C I/O interface funtions, 12-56
static data, 10-34
static functions

declaring, 10-35
within device manager, 10-41

STDIO command
configure UART baud rate, 15-28
enable auto baud detection, 15-27
enable/disable Unix mode, 15-24
get device handle, 15-25
parity check, 15-26
print stream, 15-25
set auto baud character, 15-27
set UART length, 15-26
set UART stop bits, 15-26

STDIO commands, 15-24
STDIO function

adi_stdio_RegisterUART, 15-13
STDIO service, 15-1

adi_stdio_Terminate, 15-22
API reference, 15-10
change parameters, 15-19
close, 15-21
device type, 15-24
disable stream, 15-18
initialization, 15-2, 15-11
opening device type, 15-14
redirect stream, 15-16
registration UART device, 15-13
result code and description, 15-28

VisualDSP++ 5.0 Device Drivers and System I-27
Services Manual for Blackfin Processors

Index

STDIO service (continued)
stream type, 15-23
stream type and description, 15-23
termination, 15-22

STDIO service, enumerations
ADI_STDIO_DEVICE_TYPE, 15-24
ADI_STDIO_RESULT, 15-28
ADI_STDIO_STREAM_TYPE, 15-23

STDIO service function
adi_stdio_CloseDevice, 15-21
adi_stdio_ControlDevice, 15-19
adi_stdio_Init, 15-11
adi_stdio_OpenDevice, 15-14, 15-16

sti built-in function, 5-10
stopwatch

callback, 11-12
defined, 11-7
duration, 11-9
example, 11-11
reset, 11-29

stream ID, 6-7
streaming, mode of device driver, 10-40
streaming submode, 6-25
stream type (ADI_STDIO_STREAM_

TYPE), 15-23
structure

ADI_RTC_EPOCH, 11-31
sync pulse width, 13-8

example, 13-13, 13-16
get command, 13-43
set command, 13-40

system clock
divider ratio, 3-15
setting, 3-2

system interrupt assignment register, 2-34
system interrupt controller (SIC)

defined, 2-2
disabling an interrupt, 2-32
enabling an interrupt, 2-33
functions, 2-9

system interrupt controller wakeup register,
2-39

system interrupts, 2-2
system service requirements, 12-7
system services

device driver components, 10-5
directory and file structure, 1-13

system services library
linking to, 1-16
list of services, 1-3
rebuilding, 1-17
special conditions, 1-16

T
telldir function, 12-77
termination function

adi_dev_Terminate, 1-27
interrupt manager, 2-5

the adi_dma_Queue() function, 6-17
ThreadX implementation, 5-2
timer, disabling, 8-12
timer clock inputs, 9-19
timer IDs, 8-4, 8-30
timer pins, 8-2
timer registers, resetting to power-up

values, 8-20
timers

close and shut down, 8-4
configuring, 8-10
controlling, 8-2
enabling, 8-12
general-purpose, 8-5
identifying peripheral ID for, 8-29
initializing, 8-10
opening, 8-10
opening for use, 8-17
removing a callback, 8-9
removing callbacks, 8-14
resetting, 8-5
resetting to default settings, 8-4

Index

I-28 VisualDSP++ 5.0 Device Drivers and System
Services Manual for Blackfin Processors

timers (continued)
return codes, 8-32
timer IDs, 8-30
wakeup flag, 8-8

timer service
API, 8-15
callback functions, 8-7
initialization, 8-3
initializing, 8-16
macros, 8-30, 8-31
terminating, 8-15, 8-18
termination, 8-3

tm_hour, 11-30
tm_isdst, 11-30
tm_mday, 11-30
tm_min, 11-30
tm_mon, 11-30
tm_sec, 11-30
tm structure, 11-4, 11-5, 11-8
tm structure, defined, 11-30
tm_wday, 11-30
tm_yday, 11-30
tm_year, 11-30
traffic control, 6-31

ADI_DMA_TC_GET, 6-31
ADI_DMA_TC_SET, 6-31

transfer, completing, 6-21
trigger type, 7-7
two-dimensional

DMA, 6-29
memory copy, 6-46

two-dimensional memory transfers, 6-9

U
UART channel, enabling, 9-17

V
VDDEXT external voltage, 3-56
VDK implementation, 5-2
virtual devices, 9-8
void * value, 2-22, 2-24
voltage core oscillator frequencies, 3-19
voltage regulator

acceptable switching frequency values,
3-58

acceptable voltage levels for, 3-56
resetting, 3-28

voltage regulator control register
adi_pwr_SetVoltageRegulator function,

3-37
CANWE bit, 3-57, 3-59
CKELOW bit, 3-57
CLKBUFOE bit, 3-57
PHYWE bit, 3-59
powerdown, 3-60
setting, 3-33
WAKE bit, 3-60

VR_CTL register, 3-33, 3-37

W
WaitFlag argument, 6-36
wakeup flag, 7-7
watchdog timer

commands, 8-34
configuring, 8-6, 8-22
functions, 8-6

write command, 4-16

	VisualDSP++ 5.0 Device Drivers and System Services Manual for Blackfin Processors, Revision 4.2, May 2010
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents Description
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD
	Social Networking Web Sites

	Notation Conventions

	1 Introduction
	System Services Overview
	General
	Application Interface
	Dependencies
	Initialization
	Termination
	System Services Directory and File Structure
	Accessing the System Services API
	Linking in the System Services Library
	Rebuilding the System Services Library
	Examples
	Dual-Core Considerations

	RTOS Considerations
	Interoperability of System Services With VDK
	Deployment of Services Within a Multi-Threaded Application

	Device Driver Overview
	Application Interface
	Device Driver Architecture
	Interaction With System Services

	Initialization
	Termination
	Device Driver Directory and File Structure
	Accessing the Device Driver API
	Device Driver File Locations
	Linking in the Device Driver Library
	Rebuilding the Device Driver Library
	Examples on Distribution

	2 Interrupt Manager
	Introduction
	Interrupt Manager Initialization
	Interrupt Manager Termination
	Core Event Controller Functions
	adi_int_CECHook() Function
	adi_int_CECUnhook() Function
	Interrupt Handlers

	System Interrupt Controller Functions
	adi_int_SICDisable
	adi_int_SICEnable
	adi_int_SICGetIVG
	adi_int_SICInterruptAsserted
	adi_int_SICSetIVG
	adi_int_SICWakeup
	adi_int_SICGlobalWakeup

	Protecting Critical Code Regions
	Modifying IMASK
	Examples
	File Structure
	Interrupt Manager API Reference
	Notation Conventions
	adi_int_Init
	adi_int_Terminate
	adi_int_CECHook
	adi_int_CECUnhook
	adi_int_ClearIMaskBits
	adi_int_EnterCriticalRegion
	adi_int_ExitCriticalRegion
	adi_int_GetCurrentIVGLevel
	adi_int_GetLibraryDetails
	adi_int_SICDisable
	adi_int_SICEnable
	adi_int_SICGetIVG
	adi_int_SICInterruptAsserted
	adi_int_SICSetIVG
	adi_int_SetIMaskBits
	adi_int_SICWakeup
	adi_int_SICGlobalWakeup

	3 Power Management Module
	Introduction
	PM Module Operation - Getting Started
	Dual-Core Considerations
	Using Automatic Synchronization
	Synchronization Requirement
	Running Applications on One Core Only
	Running Applications on Both Cores
	Synchronization Between Cores
	Built-In Lock Variable and Linking Considerations

	SDRAM Initialization Prior to Loading an Executable
	Power Management API Reference
	Notation Conventions
	adi_pwr_AdjustFreq
	adi_pwr_Control
	adi_pwr_GetConfigSize
	adi_pwr_GetFreq
	adi_pwr_GetPowerMode
	adi_pwr_GetPowerSaving
	adi_pwr_Init
	adi_pwr_LoadConfig
	adi_pwr_Reset
	adi_pwr_SaveConfig
	adi_pwr_SetFreq
	adi_pwr_SetMaxFreqForVolt
	adi_pwr_SetPowerMode
	adi_pwr_SetVoltageRegulator
	adi_pwr_Terminate

	Public Data Types and Enumerations
	ADI_PWR_COMMAND
	ADI_PWR_COMMAND_PAIR
	ADI_PWR_CSEL
	ADI_PWR_DF
	ADI_PWR_INPUT_DELAY
	ADI_PWR_OUTPUT_DELAY
	ADI_PWR_MODE
	ADI_PWR_PACKAGE_KIND
	ADI_PWR_PCC133_COMPLIANCE
	ADI_PWR_PROC_KIND
	ADI_PWR_RESULT
	ADI_PWR_SSEL
	ADI_PWR_VDDEXT
	ADI_PWR_VLEV
	ADI_PWR_VR_CANWE
	ADI_PWR_VR_CKELOW
	ADI_PWR_VR_CLKBUFOE
	ADI_PWR_VR_FREQ
	ADI_PWR_VR_GAIN
	ADI_PWR_VR_GPWE_MXVRWE
	ADI_PWR_VR_PHYWE
	ADI_PWR_VR_USBWE
	ADI_PWR_VR_WAKE

	PM Module Macros

	4 External Bus Interface Unit Module
	Introduction
	Using the EBIU Module
	EBIU API Reference
	Notation Conventions
	adi_ebiu_AdjustSDRAM
	adi_ebiu_Control
	adi_ebiu_GetConfigSize
	adi_ebiu_Init
	adi_ebiu_LoadConfig
	adi_ebiu_SaveConfig
	adi_ebiu_Terminate

	Public Data Types and Enumerations
	ADI_EBIU_RESULT
	ADI_EBIU_SDRAM_BANK_VALUE
	ADI_EBIU_TIME
	ADI_EBIU_TIMING_VALUE
	ADI_EBIU_ASYNCH_BANK_TIMING
	ADI_EBIU_ASYNCH_BANK_VALUE

	Setting Control Values in the EBIU Module
	ADI_EBIU_COMMAND
	ADI_EBIU_COMMAND_PAIR
	Command Value Enumerations
	ADI_EBIU_SDRAM_ENABLE
	ADI_EBIU_SDRAM_BANK_SIZE
	ADI_EBIU_SDRAM_BANK_COL_WIDTH
	ADI_EBIU_SDRAM_MODULE_TYPE
	ADI_EBIU_CMD_SET_SDRAM_SCTLE
	ADI_EBIU_SDRAM_EMREN
	ADI_EBIU_SDRAM_PASR
	ADI_EBIU_SDRAM_TCSR
	ADI_EBIU_SDRAM_SRFS
	ADI_EBIU_SDRAM_EBUFE
	ADI_EBIU_SDRAM_PUPSD
	ADI_EBIU_SDRAM_PSM
	ADI_EBIU_SDRAM_FBBRW
	ADI_EBIU_SDRAM_CDDBG
	ADI_EBIU_BANK_NUMBER
	ADI_EBIU_ASYNCH_BANK_ENABLE
	ADI_EBIU_ASYNCH_CLKOUT
	ADI_EBIU_ASYNCH_BANK_DATA_PATH
	ADI_EBIU_ASYNCH_BANK_ARDY_ENABLE
	ADI_EBIU_ASYNCH_BANK_ARDY_POLARITY
	ADI_EBIU_ASYNCH_HOLD_TIME
	ADI_EBIU_ASYNCH_SETUP_TIME
	ADI_EBIU_ASYNCH_TRANSITION_TIME
	ADI_EBIU_DDR_MOBILE_DS
	ADI_EBIU_DDR_DS
	ADI_EBIU_DDR_PASR

	5 Deferred Callback Manager
	Introduction
	Using the Deferred Callback Manager
	Interoperability With an RTOS
	adi_dcb_Forward
	adi_dcb_RegisterISR
	Handling Critical Regions Within Callbacks

	DCB Manager API Reference
	Notation Conventions
	adi_dcb_Close
	adi_dcb_Control
	adi_dcb_Init
	adi_dcb_Open
	adi_dcb_Post
	adi_dcb_Remove
	adi_dcb_Terminate

	Public Data Types and Macros
	ADI_DCB_CALLBACK_FN
	ADI_DCB_COMMAND_PAIR
	ADI_DCB_COMMAND
	ADI_DCB_ENTRY_HDR
	ADI_DCB_RESULT

	6 DMA Manager
	Introduction
	Theory of Operation
	Overview
	DMA Manager Initialization
	DMA Manager Termination
	Memory DMA and Peripheral DMA
	Controlling Memory Streams
	Opening Memory Streams
	Memory Transfers
	One-Dimensional Transfers (Linear Transfers)
	Two-Dimensional Transfers

	Closing Memory Streams

	Controlling DMA Channels
	Opening DMA Channels
	Single Transfers
	Circular Transfers
	Large Descriptor Chaining Model
	Small Descriptor Chaining Model
	Arrays of Descriptors

	Configuring a DMA Channel
	Closing a DMA Channel

	Transfer Completions
	Polling
	Callbacks
	Memory Stream Callbacks
	Circular Transfer Callbacks
	Descriptor Callbacks

	Descriptor-Based Sub-Modes
	Loopback Sub-Mode
	Streaming Sub-Mode

	DMA Channel to Peripheral Mapping
	Sensing a Mapping
	Setting a Mapping

	Interrupts
	Hooking Interrupts
	Unhooking Interrupts

	Two-Dimensional DMA
	DMA Traffic Control

	DMA Manager API Reference
	Notation Conventions
	adi_dma_Buffer
	adi_dma_Close
	adi_dma_Control
	adi_dma_GetMapping
	adi_dma_GetPeripheralInterruptID
	adi_dma_Init
	adi_dma_MemoryClose
	adi_dma_MemoryCopy
	adi_dma_MemoryCopy2D
	adi_dma_MemoryOpen
	adi_dma_MemoryQueue
	adi_dma_MemoryQueueClose
	adi_dma_MemoryQueueControl
	adi_dma_MemoryQueueOpen
	adi_dma_Open
	adi_dma_Queue
	adi_dma_SetConfigWord
	adi_dma_SetMapping
	adi_dma_Terminate

	Public Data Structures, Enumerations, and Macros
	Data Types
	ADI_DMA_CHANNEL_HANDLE
	ADI_DMA_DESCRIPTOR_UNION and ADI_DMA_DESCRIPTOR_HANDLE
	ADI_DMA_STREAM_HANDLE

	Data Structures
	ADI_DMA_2D_TRANSFER
	ADI_DMA_CONFIG_REG
	ADI_DMA_DESCRIPTOR_ARRAY
	ADI_DMA_DESCRIPTOR_LARGE
	ADI_DMA_DESCRIPTOR_SMALL
	ADI_DMA_TC_SET
	ADI_DMA_TC_GET

	General Enumerations
	ADI_DMA_CHANNEL_ID
	ADI_DMA_EVENT
	ADI_DMA_MODE
	ADI_DMA_PMAP
	ADI_DMA_RESULT
	ADI_DMA_STREAM_ID
	ADI_DMA_TC_PARAMETER

	ADI_DMA_CONFIG_REG Field Values
	ADI_DMA_DMA2D
	ADI_DMA_DI_EN
	ADI_DMA_DI_SEL
	ADI_DMA_EN
	ADI_DMA_WDSIZE
	ADI_DMA_WNR

	DMA Commands

	7 Programmable Flag Service
	Introduction
	Operation
	Initialization
	Termination
	Flag IDs
	Flag Control Functions
	adi_flag_Open
	adi_flag_Close
	adi_flag_SetDirection
	adi_flag_Set
	adi_flag_Clear
	adi_flag_Toggle
	adi_flag_Sense

	Callbacks
	adi_flag_InstallCallback
	adi_flag_RemoveCallback
	adi_flag_SuspendCallbacks
	adi_flag_ResumeCallbacks
	adi_flag_SetTrigger

	Coding Example
	Initialization
	Opening a Flag
	Setting Flag Direction
	Controlling an Output Flag
	Sensing the Value of a Flag
	Installing a Callback Function
	Suspending and Resuming Callbacks
	Removing Callbacks
	Termination

	Flag Service API Reference
	Notation Conventions
	adi_flag_Clear
	adi_flag_Close
	adi_flag_Init
	adi_flag_Open
	adi_flag_Sense
	adi_flag_Toggle
	adi_flag_Terminate
	adi_flag_Set
	adi_flag_SetDirection
	adi_flag_SetTrigger
	adi_flag_InstallCallback
	adi_flag_RemoveCallback
	adi_flag_ResumeCallbacks
	adi_flag_SuspendCallbacks

	Public Data Types, Enumerations, and Macros
	ADI_FLAG_ID
	Associated Macros

	ADI_FLAG_DIRECTION
	ADI_FLAG_EVENT
	ADI_FLAG_RESULT
	ADI_FLAG_TRIGGER

	8 Timer Service
	Introduction
	Operation
	Initialization
	Termination
	Timer IDs
	Basic Timer Functions
	adi_tmr_Open
	adi_tmr_Close
	adi_tmr_Reset

	General-Purpose Timer Functions
	adi_tmr_GPControl
	adi_tmr_GPGroupEnable

	Core Timer Functions
	adi_tmr_CoreControl

	Watchdog Timer Functions
	adi_tmr_WatchdogControl

	Peripheral Timer Functions
	adi_tmr_GetPeripheralID

	Callbacks
	adi_tmr_InstallCallback
	adi_tmr_RemoveCallback

	Coding Example
	Initialization
	Opening a Timer
	Configuring a Timer
	Enabling and Disabling Timers
	Installing a Callback Function
	Removing Callbacks
	Termination

	Timer Service API Reference
	Notation Conventions
	adi_tmr_Init
	adi_tmr_Open
	adi_tmr_Terminate
	adi_tmr_Close
	adi_tmr_Reset
	adi_tmr_CoreControl
	adi_tmr_WatchdogControl
	adi_tmr_GPControl
	adi_tmr_GPGroupEnable
	adi_tmr_InstallCallback
	adi_tmr_RemoveCallback
	adi_tmr_GetPeripheralID

	Public Data Types, Enumerations, and Macros
	Timer IDs
	Associated Macros

	ADI_TMR_RESULT
	ADI_TMR_EVENT
	ADI_TMR_CORE_CMD
	ADI_TMR_WDOG_CMD
	ADI_TMR_GP_CMD

	9 Port Control Service
	Introduction
	Using the Port Control Manager
	Legacy adi_ports_EnableXxx() API Usage
	Newer adi_ports_Configure() API Usage

	Virtual Devices and Device Indexing
	Port Control Manager API Reference
	Notation Conventions
	adi_ports_Init
	adi_ports_Terminate
	adi_ports_Configure
	adi_ports_EnablePPI
	adi_ports_EnableSPI
	adi_ports_EnableSPORT
	adi_ports_EnableUART
	adi_ports_EnableCAN
	adi_ports_EnableTimer
	adi_ports_EnableGPIO
	adi_ports_ClearProfile
	adi_ports_GetProfile
	adi_ports_SetProfile

	Public Data Types, Enumerations, and Macros
	ADI_PORTS_RESULT
	Legacy API Enumeration Values

	10 Device Driver Manager
	Device Driver Model Overview
	Using the Device Manager
	Device Manager Overview
	Theory of Operation
	Data
	Initializing the Device Manager
	Device Manager Termination
	Opening a Device
	Configuring a Device
	Dataflow Method
	Enabling Dataflow

	Providing Buffers to a Device
	Closing a Device
	Callbacks
	Initialization Sequence
	Stackable Drivers

	Deciding on a Dataflow Method
	Chained Without Loopback
	Chained With Loopback
	Circular
	Sequential With and Without Loopback

	Creating One-Dimensional Buffers
	Creating Two-Dimensional Buffers
	Creating Circular Buffers
	Creating Sequential One-Dimensional Buffers
	Device Manager Design
	Device Manager API Description
	Memory Usage Macros
	Handles
	Dataflow Enumerations
	Command IDs
	Callback Events
	Return Codes
	Circular Buffer Callback Options
	Buffer Data Types
	Physical Driver Entry Point
	API Function Definitions

	Device Manager Code
	Data Structures
	Static Data
	Static Function Declarations
	API Functional Description
	adi_dev_Init Functional Description
	adi_dev_Open Functional Description
	adi_dev_Close Functional Description
	adi_dev_Read Functional Description
	adi_dev_Write Functional Description
	adi_dev_Control Functional Description

	Static Functions
	PDDCallback
	DMACallback
	PrepareBufferList
	SetDataflow

	Physical Driver Design
	Physical Driver Design Overview
	Physical Device Driver API Description
	Physical Driver Include File (“xxx.h”)
	Extensible Definitions
	ADI_DEV_PDD_ENTRY_POINT

	Physical Driver Source (“xxx.c”)
	adi_pdd_Open Functional Description
	adi_pdd_Control Functional Description
	adi_pdd_Read Functional Description
	adi_pdd_Write Functional Description
	adi_pdd_Close Functional Description

	Device Manager API Reference
	Notation Conventions
	adi_dev_Close
	adi_dev_Control
	adi_dev_Init
	adi_dev_Open
	adi_dev_Read
	adi_dev_Terminate
	adi_dev_Write

	Device Manager Public Data Types and Enumerations
	ADI_DEV_BUFFER_TYPE
	ADI_DEV_MODE
	ADI_DEV_DIRECTION
	CALLBACK EVENTS
	RESULT CODES
	COMMAND IDs
	ADI_DEV_1D_BUFFER
	ADI_DEV_2D_BUFFER
	ADI_DEV_CIRCULAR_BUFFER
	ADI_DEV_SEQ_1D_BUFFER
	ADI_DEV_BUFFER_PAIR
	ADI_DEV_DMA_INFO
	ADI_DEV_DMA_ACCESS
	ADI_DEV_FREQUENCIES
	ADI_DEV_ACCESS_REGISTER
	ADI_DEV_ACCESS_REGISTER_BLOCK
	ADI_DEV_ACCESS_REGISTER_FIELD
	ADI_DEV_BUFFER

	Physical Driver API Reference
	Notation Conventions
	adi_pdd_Close
	adi_pdd_Control
	adi_pdd_Open
	adi_pdd_Read
	adi_pdd_Write

	Examples

	11 Real-Time Clock Service
	Introduction
	Operation
	Initialization
	Termination
	Setting and Reading the Date and Time
	Real-Time Clock Events
	One Second Periodic Event
	One Minute Periodic Event
	Hourly Periodic Event
	Daily Periodic Event
	Periodic or One-Shot Stopwatch Event
	Once Only Alarm Event
	Each Day Alarm Event
	Pending Writes Complete Event

	Callbacks
	The Callback List
	Installing a Callback
	Removing a Callback
	The Real-Time Clock Service Interrupt Handler
	Using the ClientHandle Parameter in a Callback

	Coding Example

	RTC Service Application Programming Interface (API)
	Notation and Naming Conventions
	RTC Service API Functions
	adi_rtc_Init
	adi_rtc_Terminate
	adi_rtc_SetDateTime
	adi_rtc_GetDateTime
	adi_rtc_InstallCallback
	adi_rtc_RemoveCallback
	adi_rtc_SetEpoch
	adi_rtc_GetEpoch
	adi_rtc_EnableWakeup
	adi_rtc_DisableWakeup
	adi_rtc_ResetStopwatch

	Real-Time Clock Service API Data Types and Enumerations
	tm structure
	ADI_RTC_EPOCH
	Event IDs
	Result Codes

	Interdependencies
	Interrupt Manager Service
	Deferred Callback Service

	12 File System Service
	Introduction
	Getting Started
	Initialization
	Termination

	System Service Requirements
	Interrupt Manager Service
	Deferred Callback Service
	DMA Service
	Semaphore Service
	Real-Time Clock Service
	Device Manager

	Advanced Configuration
	Custom Configuration of Device Drivers
	Dynamic Memory Usage
	File Cache

	File System Service API Reference
	Notation and Naming Conventions
	adi_fss_Init
	adi_fss_Terminate
	adi_fss_Control
	adi_fss_RegisterDevice
	adi_fss_DeRegisterDevice
	adi_fss_PollMediaOnDevice
	adi_fss_PollMedia
	adi_fss_Stat
	adi_fss_UnMountDevice
	adi_fss_FileOpen
	adi_fss_FileClose
	adi_fss_FileWrite
	adi_fss_FileRead
	adi_fss_FileSeek
	adi_fss_FileTell
	adi_fss_IsEOF
	adi_fss_FileRemove
	adi_fss_FileRename
	adi_fss_DirOpen
	adi_fss_DirClose
	adi_fss_DirRead
	adi_fss_DirSeek
	adi_fss_DirTell
	adi_fss_DirRewind
	adi_fss_DirChange
	adi_fss_GetCurrentDir
	adi_fss_DirCreate
	adi_fss_DirRemove

	File System Service API Data Types and Enumerations
	ADI_FSS_WCHAR
	ADI_FSS_VOLUME_IDENT
	ADI_FSS_FILE_HANDLE
	ADI_FSS_DIR_HANDLE
	ADI_FSS_CMD_VALUE_PAIR
	ADI_FSS_DIR_ENTRY
	ADI_FSS_DEVICE_DEF

	Result Codes
	The Standard C I/O Interface Functions
	fopen
	fclose
	fwrite
	fread
	fprintf
	fscanf
	fgetc
	fgets
	fputc
	fputs
	fseek
	ftell
	feof

	Additional POSIX Functions Supported by the FSS
	opendir
	closedir
	readdir
	readdir_r
	rewinddir
	seekdir
	telldir
	mkdir
	rmdir
	rename
	remove

	Extensibility
	Examples
	HardDiskAccess
	Description
	Configuration

	HardDiskFormat
	Description
	Configuration

	Shell_Browser
	Description
	Configuration

	13 Pulse-Width Modulation
	Introduction
	Operation
	Initialization
	Termination
	PWM Events
	Trip Signal Event
	Synchronization Pulse Event

	Callbacks
	Installing a Callback
	Removing a Callback
	The PWM Service Interrupt Handlers
	Using the ClientHandle Parameter in a Callback

	Programming Examples
	Initialization - Command-Pair Table
	Set Switch Reluctance
	Crossover
	Gate Chopping
	Channel Enable/Disable (Individual)
	Low Side Invert
	External Sync Pulse
	Trip and Sync Interrupts
	Change the IVG Level of the Trip or Sync Interrupt
	Trip Input Signal
	PWM Enable/Disable

	PWM Service Application Programming Interface (API)
	Notation and Naming Conventions

	PWM Service API Functions
	adi_pwm_Init
	adi_pwm_Terminate
	adi_pwm_Control
	adi_pwm_InstallCallback
	adi_pwm_RemoveCallback

	PWM Service API Data Types and Enumerations
	ADI_PWM_CHANNEL_STATUS
	ADI_PWM_CHANNEL_DUTY_CYCLE
	ADI_PWM_COMMAND_PAIR
	ADI_PWM_NUMBER_AND_CHANNEL_STATUS
	ADI_PWM_NUMBER_AND_ENABLE_STATUS
	ADI_PWM_NUMBER_AND_VALUE
	ADI_PWM_PORT_MAP
	ADI_PWM_CHANNEL
	ADI_PWM_COMMAND
	ADI_PWM_ENABLE_STATUS
	ADI_PWM_EVENT_ID
	ADI_PWM_NUMBER
	ADI_PWM_POLARITY
	ADI_PWM_PORT_MUX
	ADI_PWM_RESULT
	ADI_PWM_SYNC_SEL
	ADI_PWM_SYNC_SOURCE
	ADI_PWM_UPDATE_MODE

	Interdependencies
	Interrupt Manager Service
	Deferred Callback Service
	Port Control Manager Service

	14 Memory Manager Service
	Introduction
	Getting Started
	Initialization
	Termination
	Installing Memory Allocation Schemes
	Creating/Destroying a Memory Pool
	Memory Allocation/Reallocation and Freeing

	Memory Manager Service API Reference
	Notation and Naming Conventions
	adi_mem_Init
	adi_mem_Terminate
	adi_mem_InstallFixedBlockModel
	adi_mem_InstallCircularModel
	adi_mem_InstallBinBuddyModel
	adi_mem_CreatePrivatePool
	adi_mem_CreatePublicPool
	adi_mem_DestroyPool
	adi_mem_ListPublicPools
	adi_mem_Control
	adi_mem_Alloc
	adi_mem_Free
	adi_mem_Free

	Coding Example
	Memory Manager Initialization
	Install the Required Algorithms
	Memory Pool Creation
	Using Public Pool List
	Allocate, Free, and Realloc Memory

	Memory Manager Service API Structures, Definitions, and Enumerations
	Allocation Models (ADI_MEM_ALLOC_MODEL)
	Bank Information (ADI_MEM_BANK_INFO)
	Cache Information (ADI_MEM_CACHE_INFO)
	Memory Type Information (ADI_MEM_TYPE_INFO)
	Commands (ADI_MEM_COMMAND)
	Result Codes (ADI_MEM_RESULT)
	ADI_MEM_INFO Structure
	ADI_MEM_CHAR Structure

	Adding Custom Allocation Algorithms
	Internal Data Structures
	ADI_MEM_MODEL Structure
	ADI_MEM_MEMPOOL_STRUCT Structure

	Memory Block Header Format

	Custom Allocation Model Functions API
	Custom_Install
	Custom_Create
	Custom_Destroy
	Custom_Control
	Custom_Alloc
	Custom_Free
	Custom_Realloc

	Comparison of Allocation Algorithms
	A Quick Comparison Chart
	Pros and Cons of Allocation Algorithms
	Regular malloc
	Fixed Block
	Binary Buddy
	Circular Buffer

	Performance Measurements

	15 STDIO Service
	Introduction
	Getting Started
	Initialization
	Register the Required STDIO Device Types
	Open the Required STDIO Device(s)
	Configure STDIO Device
	Redirect STDIO Stream
	Disable STDIO Stream
	Termination

	STDIO Service API Reference
	Notation and Naming Conventions
	adi_stdio_Init
	adi_stdio_RegisterUART
	adi_stdio_OpenDevice
	adi_stdio_Redirect
	adi_stdio_DisableStream
	adi_stdio_ControlDevice
	adi_stdio_CloseDevice
	adi_stdio_Terminate

	STDIO Service API Structures, Definitions, and Enumerations
	Stream Types (ADI_STDIO_STREAM_TYPE)
	Device Type (ADI_STDIO_DEVICE_TYPE)

	Commands (ADI_STDIO_COMMAND)
	ADI_STDIO_COMMAND_ENABLE_UNIX_MODE (0x120000)
	Command Specific Value

	ADI_STDIO_COMMAND_ENABLE_CHAR_ECHO (0x120001)
	Command Specific Value

	ADI_STDIO_COMMAND_GET_DEVICE_HANDLE (0x120002)
	Command Specific Value

	ADI_STDIO_COMMAND_SET_UART_PARITY_TYPE (0x120004)
	Command Specific Value

	ADI_STDIO_COMMAND_SET_UART_WORD_LENGTH (0x120005)
	Command Specific Value

	ADI_STDIO_COMMAND_SET_UART_NUM_STOP_BITS (0x120006)
	Command Specific Value

	ADI_STDIO_COMMAND_SET_UART_AUTO_BAUD_ CHAR (0x120007)
	Command Specific Value

	ADI_STDIO_COMMAND_ENABLE_AUTO_BAUD_CHAR (0x120008)
	Command Specific Value

	ADI_STDIO_COMMAND_SET_UART_BAUD_RATE (0x120009)
	Command Specific Value

	Parity Types (ADI_STDIO_PARITY_TYPE)
	Result Codes (ADI_STDIO_RESULT)

	I Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

