
2010 2nd International Conference on Industrial Mechatronics and Automation

Design and Implementation of Embedded Web Server Based on ARM and Linux

Yakun Liu Xiaodong Cheng
College of Electronic Information Engineering

Inner Mongolia University
Hohhot, P.R. China

yakun _liu@yahoo.com.cn

Abstract-This paper achieves the design of an embedded

Web server, which takes ARM920T-S3c241Os chip as its core
and Linux as its operating system. This is because Linux can
be reduced and transplanted. The method used to transplant
Web server Boa on the embedded Linux platform is also
discussed in detail, and through CGI technology functions of
dynamic Web page is successfully realized. Relevant
experiments show that after the Web server is embedded
into the network video monitoring system, dynamic page
interaction can be achieved between the Web server and the
embedded system via the browser in the Windows
environment.

Keywords-embedded systems; linux; embedded Web server;
Boa; CGl

I. INTRODUCTION

With the rapid development of Internet information
technology, those fieldbus and Industrial Ethernet which
are of high-specialization and high cost and are used in
control areas are gradually being replaced by Ethernet [1].
Embedded systems and Internet technology are combined
to form a new technology - the Embedded Internet
Technology, which developed with the popularization of
computer network technology in recent years [2]. Without
restrictions from devices and systems, this technology
could function in the hardware and software as long as
they are connected. Only by using web browser through
the Ethernet and TCPIIP protocol can users get access to
various information [3]. It brings great convenience to
remote video monitoring and equipment management. The
main advantages of using embedded Web server mainly
include: (1) the client can be freely set and the browser can
be used directly without installing additional client
software; (2) for the harmonization of Web standards, it is
possible to develop cross-platform transplantation; (3) the
operating system Linux, which can be reduced and
transplanted, provides a convenient, fast and simple
method for embedded systems and Internet access [4].

II. OVERVIEW OF EXPERIMENTAL PLATFORM FOR

THE EMBEDDED WEB SERVER

The design in this paper applies S3C241Os32-bit ARM
microprocessor which takes ARM920T as its core. This
microprocessor has rich resources, including Clock, USB,
SDRAM, UART, Nand Flash, LCD, RS232 Interface,
Ethernet Interface, JT AG, Power, etc. These modules can
help achieve Internet services. The logical structure of the
hardware is shown in Fig. l.

978-1-4244-7656-511 01$26.00 ©201 0 IEEE

cxd0808@imu.edu.cn

JTAG UART

SDRAM LCD

Nand Flash RS232

USB Ethernet

Power Clock

Figure 1. The structure of system hardware

III. EMBEDDED WEB SERVER

A. The system diagrame of Embedded Web server

The system structure of embedded Web server is
shown in Fig. 2. The entire system uses BIS mode. The
client PC is connected to the Internet through a browser
and then gets access to the embedded Web server. Through
this way, remote login and operation are realized [5].
Compared with the traditional CIS mode, this mode is
simple to use, convenient to maintain, and easy to extend.

i·················�:���·�·��··�:�··��·�:;····l

Figure 2. The system diagram of Embedded Web server

B. The choice of Embedded Web server

Generally speaking, the embedded devices have
limited resources and don't need to handle the requests of
many users simultaneously. Therefore they do not need to
use the most commonly used Linux server Apache. Web
server which is specifically designed for embedded devices
are applied in such case [6]. This kind of Web server
requires relatively small storage space and less memory to
run, which makes it quite suitable for embedded
applications.

The typical embedded Web server has three kinds,
namely httpd, Boa and thttpd [7]. As the simplest Web
server, httpd has the weakest functions among the three. It
does not support authentication and CGI technology while

ICIMA2010
316

Boa and thttpd support these functions [8]. If Web server
only provides some static web pages such as simple on
line help and system introduction, then a static server can
be adopted; if you need to improve system security or
interact with users such as real-time status query and
landing, then you have to use dynamic Web technologies.
In such situation, either Boa or thttpd can achieve these
goals. In the present research, we adopt Boa, the Web
server suitable for embedded system, because thttpd has
less function and needs far more resources to run.

e. The principle of Embedded Web server Boa

Boa is a single task Web server. The difference
between Boa and traditional Web server is that when a
connection request arrives, Boa does not create a separate
process for each connection, nor handle multiple
connections by copying itself. Instead, Boa handles
multiple connections by establishing a list of HTTP
requests, but it only forks new process for CGr program. In
this way, the system resources are saved to the largest
extent [9].

Like a common Web sever, an embedded web server
can accomplish tasks such as receiving requests from the
client, analyzing requests, responding to those requests,
and finally returning results to the client. The following is
its work process.

• Complete the initialization of the Web server, such
as creating an environment variable, creating
socket, binding a port, listening to a port, entering
the loop, and waiting for connection requests form
a client.

• When there is a connection request from a client,
Web server is responsible for receiving the request
and saving related information.

• After receiving the connection request, Boa
analyzes the request, calls analysis module, and
works out solutions, URL target, and information
of the list. At the same time, it processes the
request accordingly.

• After the corresponding treatment is finished, the
Web server sends responses to the client browser
and then closes the TCP connection with the
client. For different request methods, the
embedded Web server Boa makes different
responses. If the request method is HEAD, the
response header will be sent to the browser; If the
request method is GET, in addition to sending the
response header, it will also read out from the
server the URL target file of the client request and
send it to the client browser; If the request method
is POST, the information of the list will be sent to
corresponding CGI program, and then take the
information as a CGI parameter to execute CGI
program. Finally, the results will be sent to client
browser. Boa's flowchart is shown in Fig. 3.

specified
data to

Web
browser

send the
response
header to

Web

Figure 3. Embedded Web server flowchart

D. The creation of an embedded Web server

In the embedded Linux system, the creation of a Web
server Boa has the following steps:

1) Download the source code of Boa. The source code

can be downloadfrom http://www. boa.org [10].
2) Transplant the procedure of Boa. Decompress the

downloaded source code and lead it to enter "scr"

subdirectory of the source directory [11]:
#tar xzvf boa.tar.gz
#cd boa/src
Creat "Makefile" file:
#/configure
Modify "Makefile" file. Mainly modify the cross

compiler, find CC=gcc, change it into CC=armv41-
unknown-linux-gcc, save these changes and quit
"Makefile" file.

Specify the root directory path of Web server:
enter"boa/scr/" directory, and specify the absolute path of
root directory of the Web server by modifying the
statements which are in "defines.h" file.
#define SERVER _ ROOT"/mnt/yaffs/share/www/boa/http"

Then run "make" to compile, it will creat a file named
"boa" in the directory of "boa/src". This file shall be the
executable file of Web server Boa.

3) Configure Boa so that it can support the

implementation ofCGI programs.
Boa requires to establish a boa directory in the root file

system "/mnt/yaffs/share/www" . A configuration
file"boa.conf' will be loaded when the boa boots. This file
must be edited before the boa program is running. There is
already a sample boa.conf in the Boa source directory. It

317

can also be modified on its basis. The foIlowing
configurations need to be changed:

Port 80 //set the port of Web
Oroup 0 //opening up the restrictions on the user

group

ErrorLog/mntlyaffs/share/www/boa/log/boa/error _log
//set the actual path of the error log

DocumentRoot/mnt/yaffs/share/www/html //set the
home directory of the HTML file

ScriptAlias/cgi-bini /mntlyaffs/share/www/cgi-bin
/ /specify the actual path of the virtual path of the COl
script

ScriptAlias/index.htmIl/mnt/yaffs/share/www/htmI/ind
ex.html //specify the actual path of the virtual path of the
server's default page

4) Test whether Boa can work normally, and whether

the static HTML pages can be visited normally. In this

paper, NFS approach is used to test.
According to the configuration of boa.conf, we copy

the tested home page index.html into
"/mnt/yaffs/share/www" directory. The IP address of the
board is set to be 192.168.0.11S. We
enter"/mntlyaffs/share/www/boa/src" through minicom,
and then run "./boa", and visit the foIIowing website:
http://192.168.0.11S on PC browser. Then we could see
the pages of "/mnt/yaffs/share/www/index.html". That
means Boa works normaIly in the embedded target
systems.

IV. THE IMPLEMENTATION OF DYNAMIC WEB PAGES

UNDER LINUX

There are many kinds of technologies such as COl,
ASP, PHP JSP and so on, which are used to achieve
dynamic Web pages. If the dynamic pages are to be
realized under Linux operating system, COl is preferred.
COl [12](Common Oateway Interface) is a common
interface standard which is applied to interact between the
application of external expansion application and Web
Server. COl provides the Web server with a channel to
implement external program. This service technology
makes browser and server interactive. COl is the program
consistent with this common interface standards and
running on the Web server. COl programs can be produced
in any programming language, for example, SheIl scripting
language, PerI, Fortran, Pascal and C language and so on.
The C language is chosen to write COl programs in the
present paper.

The flow chart is shown in Fig. 4, where the client
interacts with the on-site I/O module through COl
program.

user requests forward requests Impart information

return processing return result Message response
resules

Figure 4. Interaction between the client and the on-site VO module

After the daemon of Web server receives client
requests, a child process wiII be created. Then this child

process wiII set relevant data requested by COl as
environment variables and meanwhile build two data
channels between external COl program and the server
(standard input/output). Then the COl program assigned
by URL is started and keeps pace with the child process in
order to monitor the implementation state of CO I program.
The result of disposition is passed to the daemon of Web
server through the standard output stream by the child
process. Then the processing results are reported back to
the client by daemon as a response message.

A COl program is usuaIly divided into two parts. (1)
Receive data from submission form according to POST
method or OET method. (2) Oenerate the HTML source
code by means of printfO function and then correctly
return the decoded data to the browser.

V. EXPERIMENT RESULTS

We load each driver and start the Web server on an
already established experimental platform-S3c24 lOs. In
client browser, we input the corresponding IP address
http://192.168.0.11S/, and then the Web page is opened
which is as shown in Fig. S.

. , ."'iA: _
·�ltt.�11,.1'1I!l _Z-)

• lUI."'. �� IHthne,
o�J;ltIlllillUll;

• ., ... ,r 6:!OUtIfl/lfle"

. .
-

: - -'- �
�-�.=� ---� ..

� '"s,: $
'f# "
· .. a ,

Figure 5. The page when the client Web browser accesses to the Web
server

VI. CONCLUSION

This embedded Web server is a separate module which
can provide a standard interface. With slight modifications
it can be applied easily to embedded fields such as on-site
AC servo system, industrial control, and inteIIigent
appliances. Therefore, it has a wide range of application
prospects and great promotion value.

The embedded Web server designed in this paper is
based on the ARM-Linux operating system. It succeeds in
network video monitoring. The whole system has low-cost,
good openness and portability, and is easy to maintain and
upgrade. The Web server Boa selected in the present
research requires smaIl storage space and occupies less
memory when it's running. It also has more functions and
supports COL Communication between external expansion
applications and Web server can be achieved through COl
technology. This method can not only improve system
security, but also make it possible to interact with users
and create dynamic Web pages.

REFERENCES

318

[I] Wang Xianchun, Guo Jierong, Hu Weiwen, and Fan Xiping,
"Design and Implementation of Embedded Web Server Based on

ARM and Linux," Micro Computer Information, vol. 23(5-2),2007,
pp. 164-165.

[2] Jacek W, "Embedded Internet technology in process control
devices," IEEE Internet Computing, Vol. 34, 2000.

[3] 1. Douglas, "Engineering Web Technologies for Embedded
Applications," IEEE Internet Computing, May/June 1998.

[4] Wang Tianmiao, Publication: Embedded System Design and Case
Development. Beijing: Tsinghua University Press, 2002.

[5] Liu Yingshui, Xiao Zhengyu, and Sun Wei, "Embedded Web
Server Based on ARM and Linux," Microcontrollers & Embedded
Systems, june 2007, pp. 14-21.

[6] Mi-Joung Choi, Hong-Taek lu, Hyun-Jun Cha, Sook-Hyang Kim,
and 1. Won-Ki Hong, "An Efficient Embedded Web Server for
Web-based Network Element Management," International lourmal
of Network Management, Vol. 10, May 2000.

[7] Zhang Wenya., "Design and Implementation of Network Vidio
Monitoring System Based on Embedded Linux," Southwest
Jiaotong University Master Degree Thesis, May 2009, pp. 32-33.

[8] Li Weixuan, Zhao ling, Peng Zhicheng, and Xu Zhihao, "Research
of Remote Monitoring System Based on Embedded Web Server,"
AECC Symposium, vol. 20,2007, pp. 147-148.

[9] Liu Minying, "Design and Realization of a Remote Monitoring
System Based on Web ", Dalian Maritime University Master
Degree Thesis, May 2008. pp. 40-49.

[10] Zhao Huijuan, "The building of embedded Linux development
platform based on ARM9 and realization of Boa," Southwest
Jiaotong University Master Degree Thesis, Match 2008, pp. 57-59.

[11] R. Stones, and N. Matthew. Publication: Beginning Linux
Programming(2nd Edition). Endland: Wrox Press, 2003.

[12] 1. Dwight, M. Erwin, R. Niles, cm Development Handbook.
Machinery Industry Press.

319

