

安森美半导体 ON Semiconductor®

安森美半导体的电源参考设计

议程

- 参考设计怎样发挥作用
- 参考设计分类
- 参考设计细节
- 未来设计的挑战
- 总结

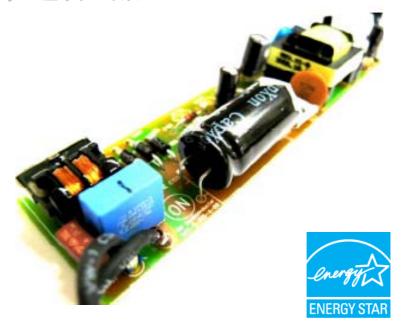
参考设计怎样发挥作用

- 通过主要的设计例子, 演示出所有功能的详情、概要、板和测试结果
- 针对真实应用 (如液晶体电视电源、打印机电源、笔记本电脑适配器等)
- 采用实际的元器件选择(如电容器、磁等)达到高性价比的方法
- 安森美半导体解决方案达到高性能
 - 缩减上市时间
 - 高能效和功率密度
 - 纤巧的设计
 - 达到国际规范要求
 - 低待机能耗
 - 高能效
 - 符合 IEC1000-3-2

节电王

参考设计分类

- 适配器应用
 - 15 W通用适配器
 - 29 W低成本打印机适配器电源
- 消费类电源解决方案
 - 8 W,符合美国能源之星,供DTA (数字到模拟转换器)机顶盒使用的 3 路输出准谐振反激转换器
 - 16 W xDSL 调制解调器 AC-DC适配器
- •显示器电源解决方案
 - 采用NCP1351的60 W 液晶体显示器电源
 - 20吋液晶体电视的 60 W电源
 - 采用NCP1606, NCP1396 的 230 W液晶体电视

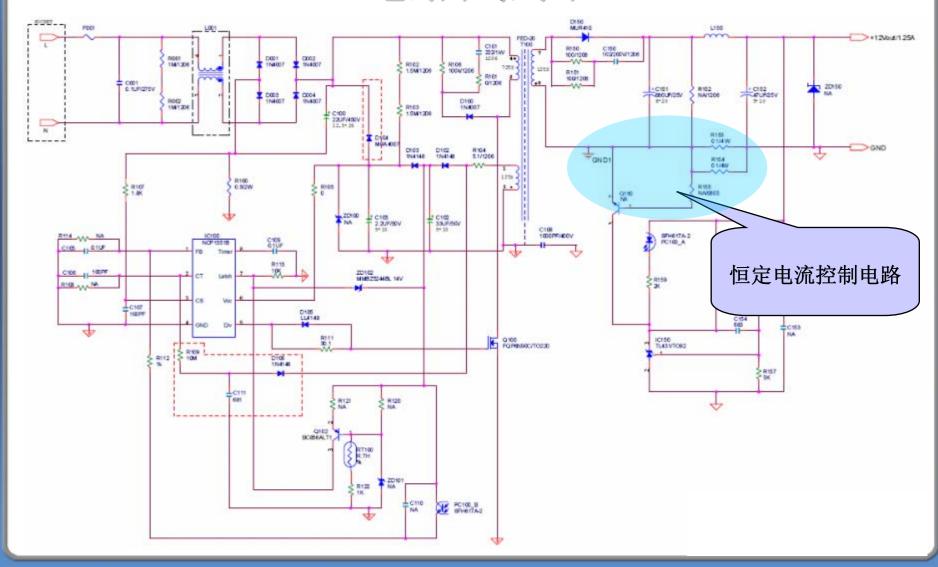

适配器应用

节电王

15 W通用适配器

- 解决方案:
 - NCP1351B, MUR410
- 目标应用:
 - 低功率适配器
 - 小配件充电器
- 规范:
 - 输入电压(交流): 90 V ~ 300 V
 - 输出电压(直流): 12 V / 1.5 A
 - 保护功能: 短路(SC)、过载(OPP)、过压(OVP)
 - 效率: 80% (@ 90 Vac, 满载)
 - 待机能耗: < 1 W (@ 240 Vac, 0.5 W负载)

节电王

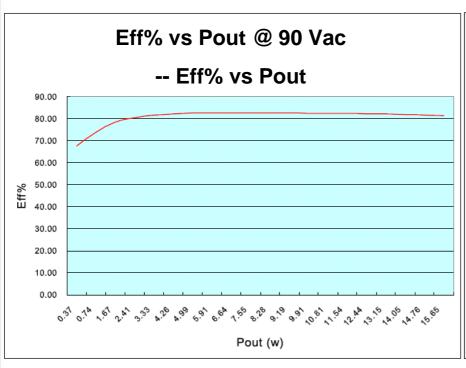

元件/拓扑结构的选择理据

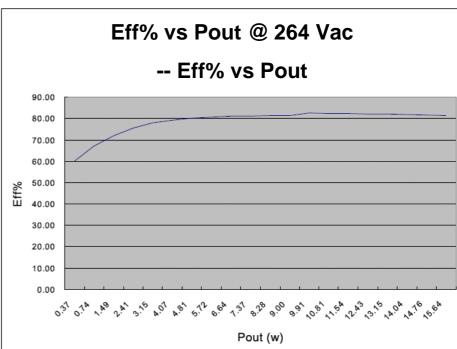
- 应用需要紧凑、低成本的解决方案
- 需要满足高工作能效、低待机功耗和强劲的保护要求
- NCP1351B特性:
 - 极佳的功能,过流保护(OCP)、过压保护(OVP)和定时器保护
 - 固定的导通时间操作可实现高能效,并最大程度减小变压器尺寸
 - 使用降频模式降低待机能耗

王 申 节

电路和框图

负载和效率


安森美半导体 ON Semiconductor®


输入交流电压 (Vac)	输出电压 (V)	输出电流 (A)	输入功率 (W)	输出功率 (W)	效率 (%)
	12	1.2	17.5	14.4	82
90	12	0.04	0.8	0.5	
	12	0	0.07	0	
264	12	1.2	17.3	14.4	83
	12	0.04	0.88	0.5	
	12	0	0.15	0	

测试数据

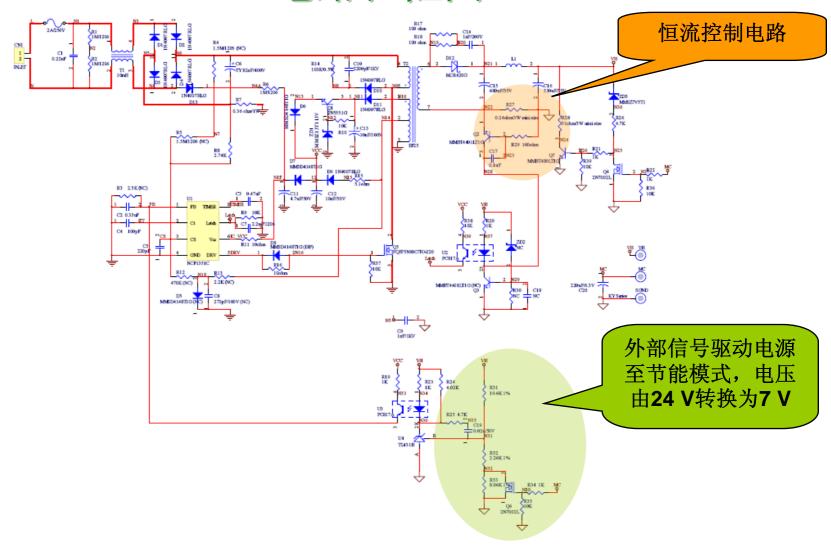
带载效率性能

节电王

29 W打印机适配器电源

- 解决方案:
 - NCP1351C, MUR420
- 目标应用:
 - 打印机电源

- 输入(交流): 90 V ~ 264 V
- 输出(直流): 24 V / 1.2 A, 7~8 V / 70 mA (节能模式)
- 保护:短路(SC)、过载(OPP)、过压(OVP)
- 效率:80% (@ 90 Vac, 满载)
- 待机能耗:<1 W (@ 264 Vac, 7~8 V / 70 mA)



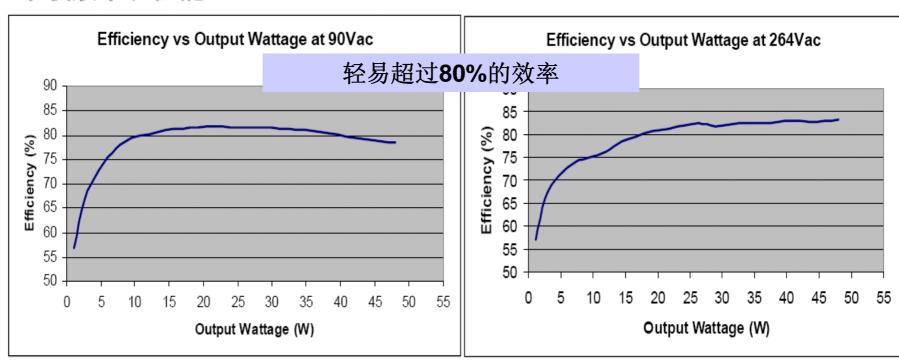
元件/拓扑结构的选择理据

- 打印机电源应用需要紧凑、高性价比的解决方案
- 需要满足高工作能效、低待机能耗和强劲的保护要求
- NCP1351C特性:
 - 极佳的功能,过流保护(OCP)、过压保护(OVP)和定时器保护
 - 固定的导通时间操作可实现高能效,并最大程度减小变压器尺寸
 - 使用降频模式降低待机能耗
 - "C"版本为打印机电源特性的两级过流保护(OCP)闩锁功能提供简单设计

电路和框图

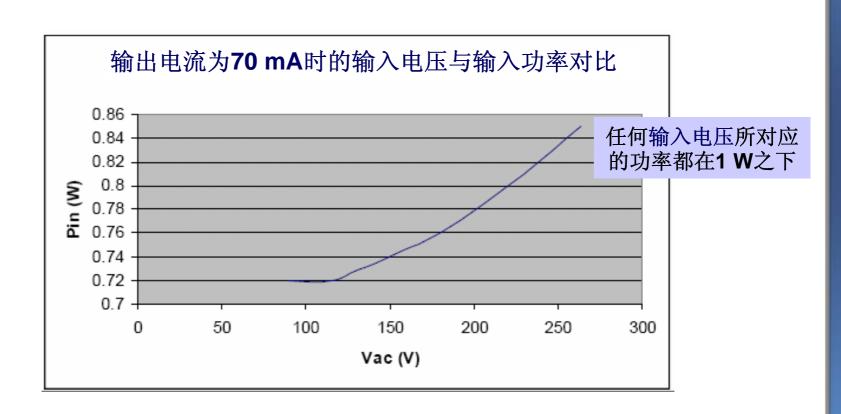
测试数据

负载和效率


输入交流电压 (Vac)	输出电压 (V)	输出电流 (A)	输入功率 (W)	输出功率 (W)	效率 (%)
90	24	1.2	36.69	28.9	78.5
	24				
	7.5	0.07	0.73	0.52	71.2
264	24	1.2	34.7	28.9	83.2
	24				
	7.5	0.07	0.85	0.52	61.2

测试数据

带载效率和性能



节电王

测试数据

节能模式下的输入功率(输出电压=~7.5 V)

修改诀窍

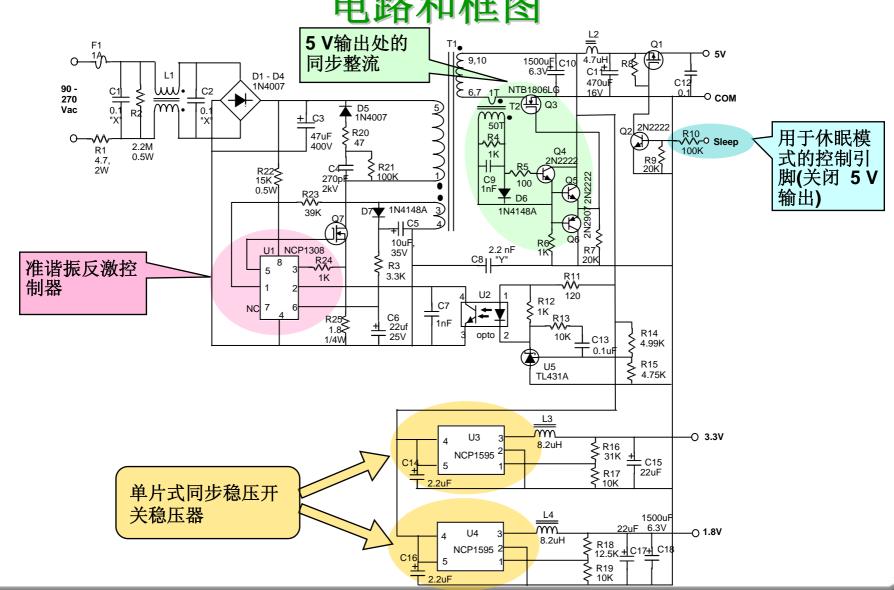
- 如果需要更高的输出,就要将输出电压从额定的24 V调节至30 V
 - 就稳压而言,需要将R31、R32、R33的电阻值调节为新的量值
 - 就过压保护(OVP)而言,ZD3、R26需要修改为不同的量值(如将 zener电压从7.5 V转变为16 V

消费类电源解决方案

节电王

8 W三输出DTA电源

- 解决方案:
 - NCP1308, NCP1595, NTB1806LG
- 目标应用:
 - 8 W, 三输出,用于DTA
 - 任何高能效机顶盒(STB)电源
- 规范:
 - 输入电压(交流): 90 V ~ 264 V
 - 输出电压(直流): 5 V / 1 A, 3.3 V / 1 A, 1.8 V / 1 A
 - 保护功能:短路(SC)、过压(OVP
 - 效率: 最低72 %. (@ 240 Vac, 满载)
 - 控制特性: 5 V输出抑制用于休眠模式操作(可选)



节电王

元件/拓扑结构的选择理据

- 高能效、低待机能耗符合能源之星有关DTA的规范
 - 有关**DTA**的更多信息,请访问能源之星的网站: http://www.energystar.gov/index.cfm?c=dta.pr_dta
- 准谐振(QR)主转换器采用NCP1308 QR控制器和 NTD02N65 MOSFET来设计
- MOSFET同步整流器工作在5 V电压
- 3.3 V和1.8 V实现在工作频率为1 MHz的NCP1595同步降压开关稳压器

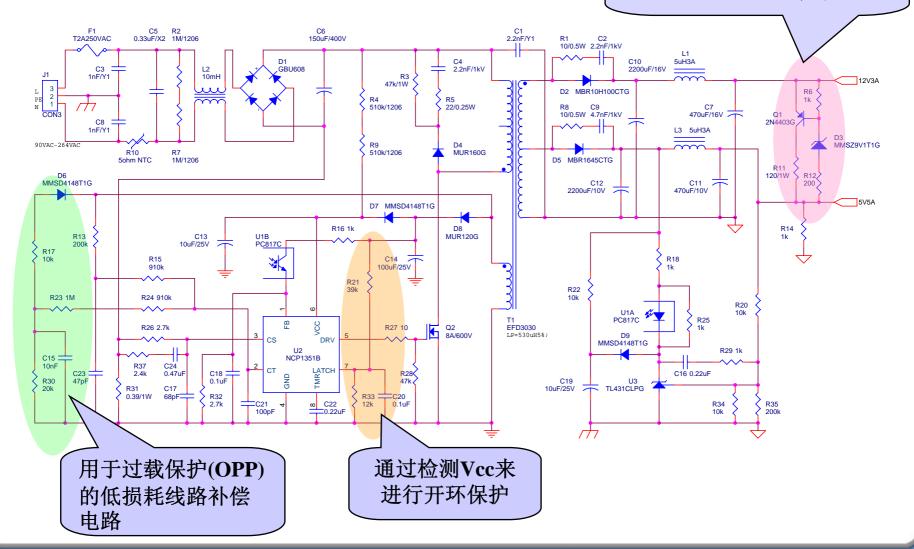
不同负载配置下的电源能效

负载配置	1.8 V 负载	3.3 V负载	5 V负载	总输出功率	总输入功率	效率
#1	1.0 A	0.5 A	0.4 A	5.45 W	7.46 W	73%
# 2	0.5 A	1.0 A	0.25 A	5.45 W	7.45 W	73%
#3	0.5 A	0.25 A	0.75 A	5.47 W	7.29 W	75%

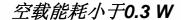
显示器电源解决方案

采用NCP1351的60 W LCD显示器电源

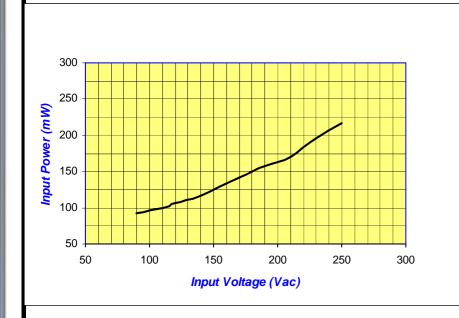
- 解决方案:
 - NCP1351B, MBR1645, MBR10H100
- 目标应用:
 - 带双输出的液晶显示器(LCD)监视器电源
 - 尺寸适合于19至21英寸应用
- 规范:
 - 输入(交流): 90 V ~ 264 V
 - 输出(直流): 5 V / 5 A, 12 V / 3 A
 - 保护功能: 短路(SC)、过载(OPP)、过压(OVP)、开环(OLP))
 - 效率: 最低84 % (@ 230 Vac, 满载)
 - 待机能耗: <0.3 W (@ 230 Vac, 空载)

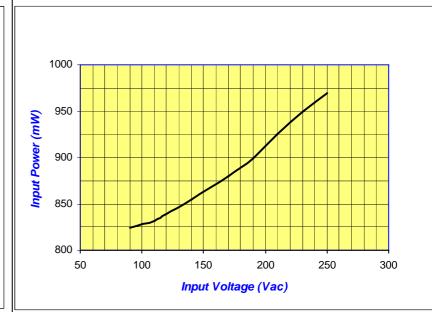

元件/拓扑结构的选择理据

- 中低端LCD显示器应用需要紧凑和具有较高性价比的解 决方案
- 需要符合高能效、低待机能耗和强大的保护功能要求
- NCP1351B特性:
 - 极佳的功能,自动恢复短路保护(SCP),自动回复
 - 固定导通时间操作可实现高能效,并减小变压器尺寸
 - 采用降频模式降低待机能耗
 - 易于为过载实现输入线路补偿


电路和框图

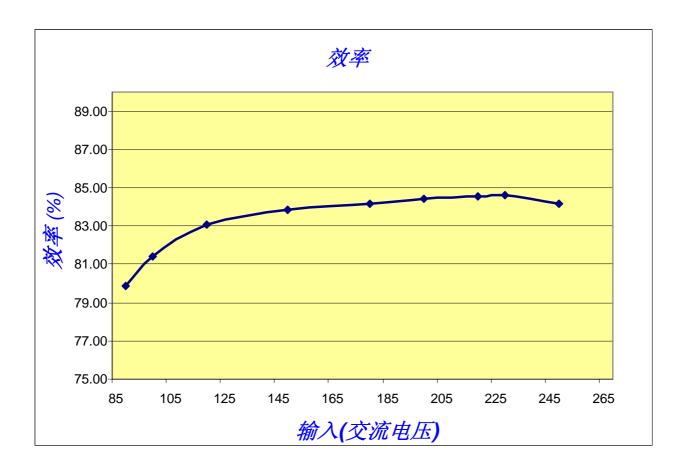
有源假负载支持更好的交叉 稳压,而不会影响效率




测试数据

负载和效率

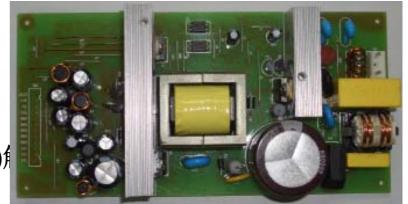
0.5 W负载时功耗小于1 W



所有输出电流为0 A

输出电流为5V 0.1A;12V 0A

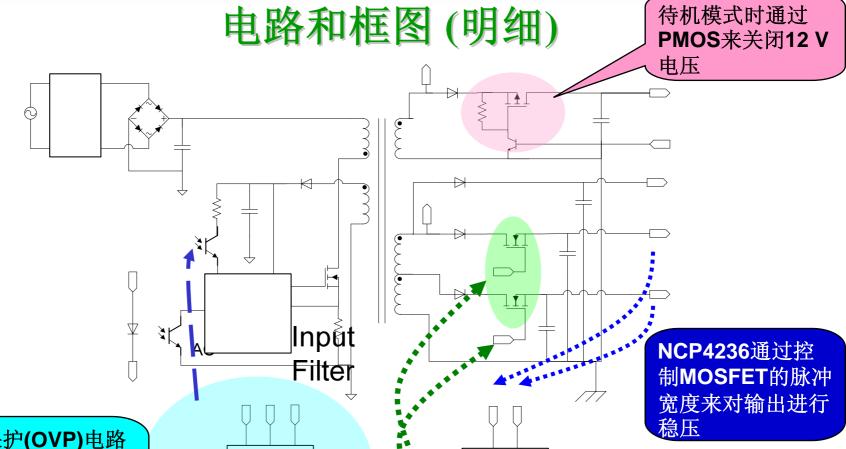
测试数据



用于20英寸液晶电视(LCD TV)的60 W电源

- 解决方案:
 - NCP1207A, NCP4326, NTD4815
- 目标应用:
 - 20英寸或更小尺寸液晶电视
 - 整合型LIPS(逆变器和电源二合一) 方案(无须辅助/待机电源电路)

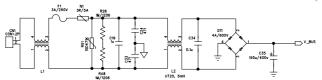
• 规范:

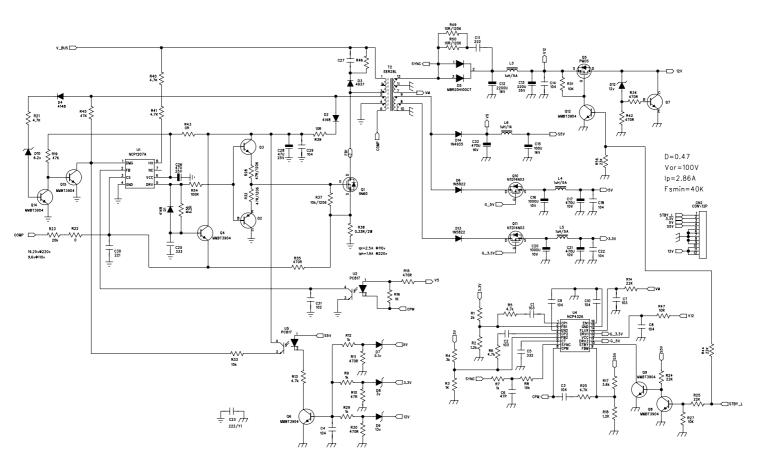

- 输入(交流): 90 V ~ 264 V
- 输出(直流): 5 V_stby / 0.5 A, 12 V / 3 A, 5 V / 1.5 A, 3.3 V / 1.5 A
- 保护功能: 短路保护(SCP)、过压保护(OVP)、短路保护
- 效率: 88% (@ 220 Vac)
- 待机能耗: <1W at 5 by @ 60 mA

元件/拓扑结构的选择理据

- 应用需要紧凑型、高集成度的解决方案
- 需要符合高能效、低待机功耗和强大的保护功能要求
- NCP1207A特性:
 - 极佳的功能,过流、过压和过载保护
 - 采用高性价比的准谐振(QR)操作,以实现高能效
 - 使用跳周期模式降低待机能耗
- NCP4326特性:
 - 多输出次级端稳压
 - 待机控制

www.onsemi.com.cn


过压保护(OVP)电路 通过触发NCP1207A 的引脚1来对所有输 出进行过压保护


 \searrow

电路和框图 (明细)

节电王

测试数据

负载和效率

所有输出都紧固稳压

线路	负载	S5 V	12 V	5 V	3.3 V	输出功 率(w)	输入功 率(w)	效率
	满载	4.97 V 0,06 A	12 V 3.5 A	4.95 V 1.5 A	3.31 V 1.5 A	54.70 W	69.3 W	79.00%
	1/2负载	4.98 V 0.06 A	12.27 V 1.75 A	4.97 V 0.75 A	3.32 V 0.75 A	28.19 W	34.3 W	82.20%
110 V	待机	4.98 V 0.06 A				0.3 W	1.23 W	24%
	满载 f	4.96 V 0,06 A	12 V 3.5 A	4.95 V 1.5 A	3.31 V 1.5 A	54.7 W	66.8 W	82.20%
	1/2负载	4.98 V 0.06 A	12.27 V 1.75 A	4.97 V 0.75 A	3.32 V 0.75 A	28 W	33.8 W	82.80%
220 V	待机	4.98 V 0.06 A				0.3 W	1.13 W	27%

修改诀窍

- 这种电路拓扑结构对于任何紧固稳压的多输出反激转换器都适用
- 它可能节省下行简单的直流-直流转换段
- 我们提供一些20到40 W机顶盒/高清DVD设计在电源解 决方案中采用了类似的电路
 - 输出配置(20 W设计)
 - 5 V_stdby / 0.1 A
 - 5 V / 3A
 - 2.5 V / 3 A

230 W双电感加单电容(LLC)液晶电视解决方案

- 解决方案:
 - NCP1606A, NCP1396A, NCP1271
 - MUR860, MBR2045, MBR20H100.
- 目标应用:
 - 32至37英寸液晶电视
 - 使用集成了24 V输入之逆变器的液晶面板

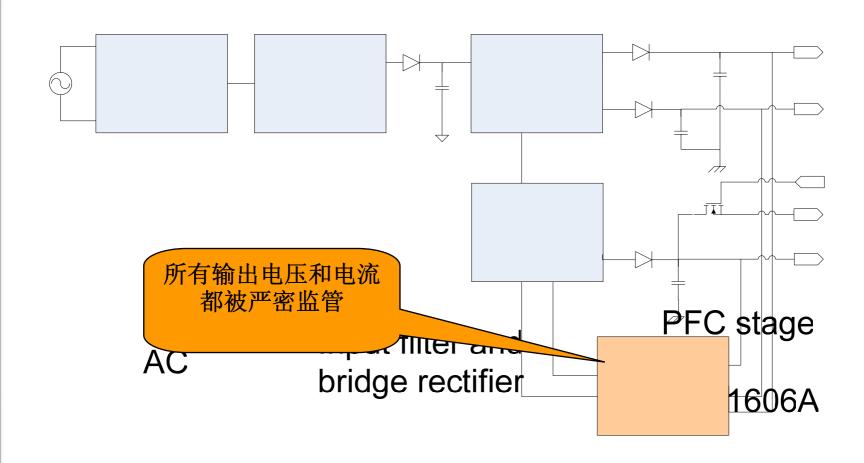
- 输入(交流): 100 V- 240 V
- 输出(直流): 5 V / 3 A, 5 V_stby / 1.5 A, 24 V / 7 A, 12 V / 4 A
- 保护功能:过流保护(OCP)、每路输出的过压保护(OVP)闩锁、过载保护(OPP)
- 效率: 最低84% @ 100 Vac, 满载
- 待机能耗: OCP,OVP, SCP, TSD, Pin 1 W @ 5 V_stby 0.1 W O/P

为何采用LLC串联谐振转换器?

- 与其它谐振拓扑结构相比,串联LLC谐振转换器工作在更 宽的输入电压和负载范围
- 元件数量有限: 谐振储能元件能够集成在单个变压器中
- 所有负载条件下零电压开关(ZVS)都可用于初级端开关
- 大负载条件下零电流开关(ZCS)可用于次级端二极管

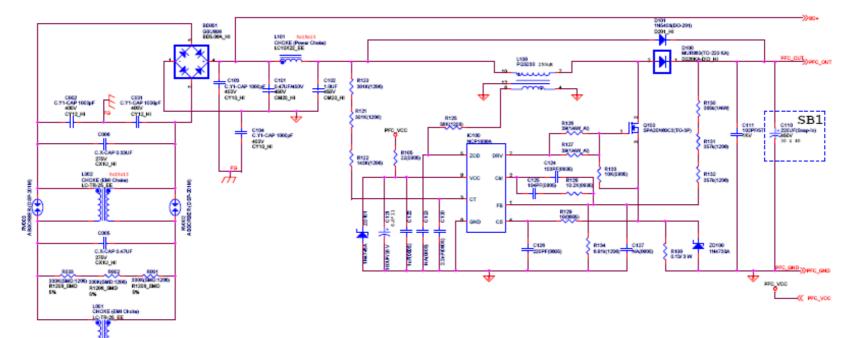
提升效率,减少EMI,高性价比

甘 电 王

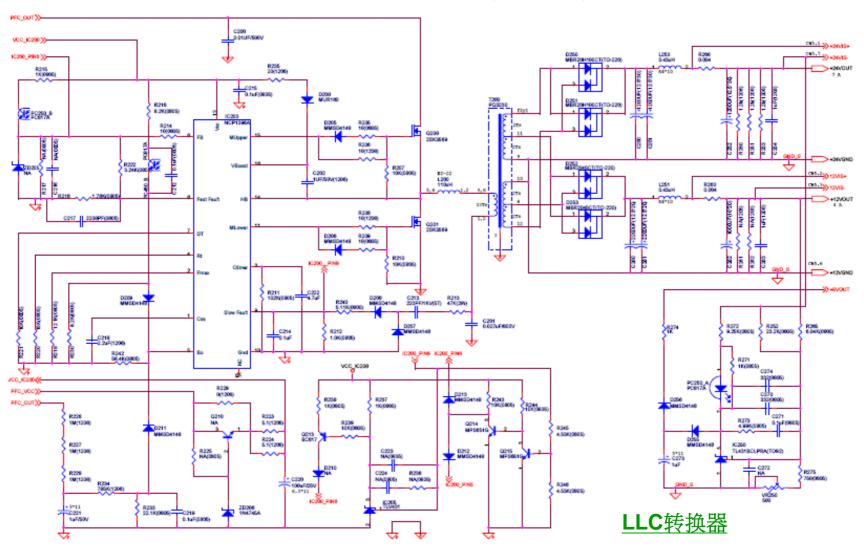

元件/拓扑结构的选择理据

- 功率因数校正(PFC)前端需要结构紧凑,但又能满足能效和 保护要求
 - NCP1606A是一款新型的低成本、功能强大、外围元件极少的解决
- LLC谐振拓扑在液晶电视市场非常流行
 - NCP1396A为MOSFET的提供不同的保护特性及高低端驱动器
- 音视频信号控制(CAVIO)和待机电源需要具有低功耗和强大的保护功能
 - NCP1271提供过压、过流和过载保护,它也有较低的待机电源

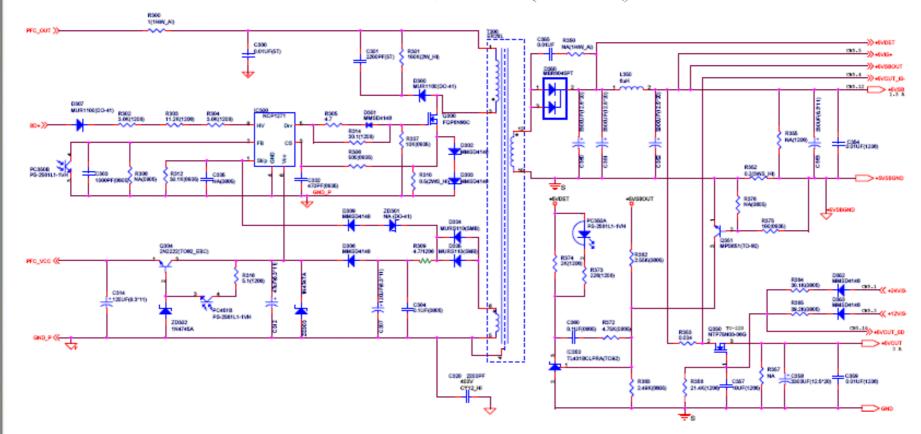
MU


电路和框图

ABSORBER (TVR1000X Swies) RV12_HI


<PCB Footprint>

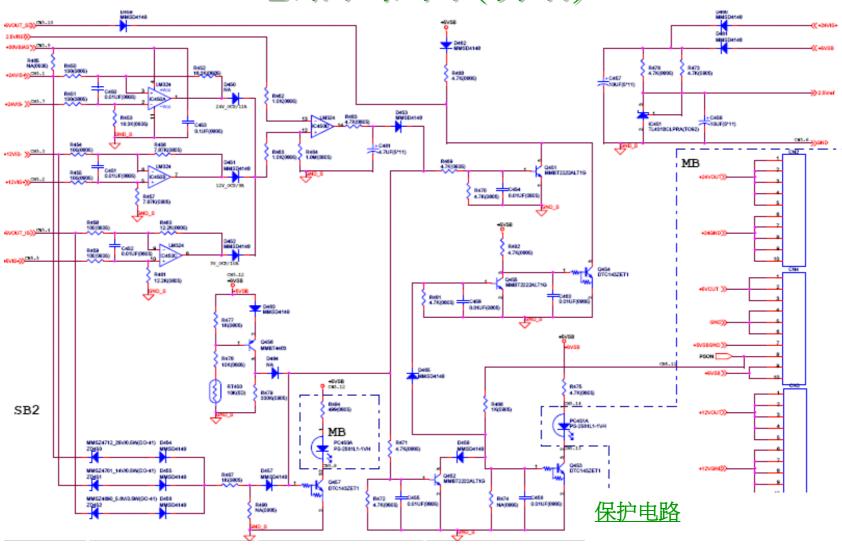
电路和框图 (明细)



输入滤波器和功率因数校正(PFC)电路

电路和框图 (明细)

电路和框图 (明细)



CAVIO 和待机电源

王 郎 节

电路和框图 (明细)

节电王

测试数据

负载和效率

线路	负载	24 V	12 V	5 V	5 V_stby	输出功率 (w)	输入功率 (w)	效率
100 V	满载	23.9 V 7 A	11.8 V 4 A	5.13 V 3 A	4.88 V 1.5 A	238.4 W	278.6 W	85.60%
	1/2 负载	23.9 V 3.5 A	11.8V 2A	5.17 V 1.5 A	5.04V 0.8 A	119.6 W	138.7 W	86.20%
	待机				5.22 V 0.08 A	0.42 W	0.62 W	67.35%
230 V	满载	23.95 V 7 A	11.8 V 4 A	5.14 V 3 A	4.89 V 1.5 A	237.9 W	264.7 W	89.87%
	1/2 负载	23.96 V 3.5 A	11.8 V 2 A	5.18 V 1.5 A	5.05 V 0.8 A	119.5 W	134.1 W	89.09%
	待机				5.23 V 0.08 A	0.42 W	0.90 W	46.67%

未来的设计挑战

- 产品能耗更低,但同时支持越来越多的功能
- 整体方案
 - 增强客户和供应商在系统级的联系
 - 缩短设计周期,以满足市场需求
 - 可升级的架构,能够适应不止一代的产品
- 设计目标
 - 高能效,同时拓展功率覆盖范围
 - 在更小的占位面积上增加功能性
 - 提供功率密度-与能效密切相关
 - 产品更轻巧

www.onsemi.com.cn

总结

- 结合元件/系统电源解决方案、标准产品和封装工艺,推 出创新的GreenPoint™参考设计(ATX 电源、适配器、 液晶电视等)
- 安森美半导体的高能效、低待机能耗解决方案
 - 使客户能够方便地针对市场需求来投放产品
 - 使安森美半导体成为公认的行业领袖
- 我们欢迎更严格的能效规范标准
 - 继续用技术来提供创新的节电芯片
 - 帮助促进节能

安森美半导体 ON Semiconductor®

谢谢!如有问题,敬请提出!