
EZ-USB General Purpose Driver Specification

2/23/99

1. INTRODUCTION ..1

1.1 OBJECTIVE OF THE SPECIFICATION ...1
1.2 INTENDED AUDIENCE..1
1.3 EZ-USB INTERFACE SUPPORT...1

2. BUILDING THE EZ-USB GENERAL PURPOSE DEVICE DRIVER ...1

3. LOADING THE EZ-USB GENERAL PURPOSE DEVICE DRIVER ..2

3.1 INF FILE BASICS...2
3.2 THE REGISTRY..3

4. USER MODE INTERFACE TO THE GPD..4

4.1 SYMBOLIC LINKS ..4
4.2 DEVICE I/O CONTROL ...4

5. I/O CONTROL CODE (IOCTL) REFERENCE ..5

5.1 STANDARD DEVICE REQUEST IOCTLS...5
5.1.1 IOCTL_Ezusb_GET_DEVICE_DESCRIPTOR..5
5.1.2 IOCTL_Ezusb_GET_CONFIGURATION_DESCRIPTOR ...6
5.1.3 IOCTL_Ezusb_GET_STRING_DESCRIPTOR...6
5.1.4 IOCTL_Ezusb_SETINTERFACE...7

5.2 DATA TRANSFER IOCTLS ...7
5.2.1 IOCTL_EZUSB_BULK_READ ...7
5.2.2 IOCTL_EZUSB_BULK_WRITE..8
5.2.3 IOCTL_EZUSB_ISO_READ ...9
5.2.4 IOCTL_EZUSB_ISO_WRITE..10
5.2.5 IOCTL_EZUSB_START_ISO_STREAM..12
5.2.6 IOCTL_EZUSB_STOP_ISO_STREAM..13
5.2.7 IOCTL_EZUSB_ READ_ISO_BUFFER..13

5.3 MISCELLANEOUS IOCTLS ...14
5.3.1 IOCTL_EZUSB_VENDOR_OR_CLASS_REQUEST..14
5.3.2 IOCTL_EZUSB_GET_CURRENT_FRAME_NUMBER...15
5.3.3 IOCTL_Ezusb_GET_PIPE_INFO ...16
5.3.4 IOCTL_Ezusb_RESETPIPE..16
5.3.5 IOCTL_Ezusb_ABORTPIPE ...16
5.3.6 IOCTL_EZUSB_GET_DRIVER_VERSION...17

5.4 EZ-USB SPECIFIC IOCTLS ...17
5.4.1 IOCTL_Ezusb_ANCHOR_DOWNLOAD...17
5.4.2 IOCTL_EZUSB_ANCHOR_DOWNLOAD...18

1. Introduction

The EZ-USB General Purpose Driver (referred to throughout this document as the GPD or the EZ-
USB GPD) is a general purpose device driver that can be used to interface with an EZ-USB based
peripheral. The driver provides a user mode interface to common USB device requests and data
transfers. The driver serves two purposes. First, it aids the device or firmware developer. Coupled
with the EZ-USB control panel, it allows a developer to test his device’s ability to perform standard
USB device requests and data transfers. Second, it provides example code for USB device driver
development. A custom driver or mini-driver can be created using the general purpose driver as a
starting point.

1.1 Objective of the Specification

The purpose of this document is to describe the interface to the EZ-USB GPD from a user mode
application perspective. User mode applications are programs like Word, Internet Explorer and
Photoshop. User mode applications have access to a wide variety of operating system services. They
can access files, manipulate data and interact with the user through the Windows GUI. However, user
mode applications are not allowed to directly access hardware. To access hardware a user mode
application must go through an intermediate agent, the device driver. Device drivers typically run in a
privileged execution mode called kernel mode. The EZ-USB GPD is a kernel mode device driver.

For those interested in understanding the inner workings of a kernel mode USB driver, the source code
for the EZ-USB GPD is provided with the EZ-USB Development Kit.

1.2 Intended Audience

The intended audience for this specification are developers who need to write a custom application to
communicate with their USB device using the EZ-USB GPD. Readers should be proficient at C
programming and should have a good understanding of USB. An appendix at the end of this document
provides sources for further information.

1.3 EZ-USB Interface Support

The EZ-USB GPD can communicate with a single device interface at a time. It will be possible to
select any interface/alternate setting that the device has, however it will not be possible to communicate
with multiple interfaces simultaneously on multi-interface devices. Support for multiple interface
devices will be handled using multiple instances of the driver. This is alluded to in the Microsoft
document on USB Plug and Play (USB Multi-Configuration Driver). At enumeration time, the EZ-
USB GPD will attempt to select Interface 0 alternate setting 0.

2. Building the EZ-USB General Purpose Device Driver

Building the GPD requires the Microsoft WDM DDK (Windows 98 DDK or Windows 2000 Beta
DDK) and Microsoft Visual C++ 5.0. The DDK is available for download from Microsoft at
http://www.microsoft.com/hwdev

The WDM DDK is only required if you plan to modify the EZ-USB GPD. If you don’t need to modify
the driver, it is available in compiled form in the file ezusb.sys.

For User mode applications, you may use any compiler that supports the Win32 functions CreateFile()
and DeviceIoControl(). The provided sample code is targeted at Microsoft Visual C++ 5.0.

3. Loading the EZ-USB General Purpose Device Driver

This section will describe the basics of how a USB device driver gets loaded and the specifics of loading
the EZ-USB GPD for your device. As always, for a detailed explanation you should consult
Microsoft’s documentation.

3.1 INF File Basics

All USB devices have a Vendor ID (VID) and a Product ID (PID) which are reported to Windows in
the device descriptor. Windows uses the VID and PID to find the appropriate device driver. The INF
file is what ties a VID/PID combination to a specific driver.

;

; FILE: EZUSB.INF

;

[Version]

signature="$CHICAGO$"

Class=USB

Provider=%Anchor%

LayoutFile=LAYOUT.INF

[Manufacturer]

%Anchor%=Anchor

[PreCopySection]

HKR,,NoSetupUI,,1

[DestinationDirs]

DefaultDestDir=11

[Anchor]

%USB\VID_0547&PID_0080.DeviceDesc%=EZUSBDEV, USB\VID_0547&PID_0080

%USB\VID_0547&PID_0080.DeviceDesc%=EZUSBDEV, USB\VID_0547&PID_1002

[ControlFlags]

ExcludeFromSelect=* ; removes all devices here from the device installer list

[EZUSBDEV]

AddReg=EZUSBDEV.AddReg

[EZUSBDEV.AddReg]

HKR,,DevLoader,,*ntkern

HKR,,NTMPDriver,,ezusb.sys

[Strings]

Anchor="AnchorChips"

USB\VID_0547&PID_0080.DeviceDesc="Anchor Chips EZ-USB Development Board (ezusb.sys)"

3.2 The Registry

An INF file is used to associate a device with a device driver the first time the device is attached to the
system. This information is then stored in the system registry so that subsequent device attachments
will complete faster and not require user interaction. Most of the interesting USB information is stored
in the system registry under the key

\HKEY_LOCAL_MACHINE\Enum\USB

The system registry can be viewed and modified using the utility regedit.exe, which is shipped with the
operating system. Use caution when modifying the registry.

4. User Mode Interface to the GPD

All User mode access to the EZ-USB GPD is through I/O Control calls. A user mode application first
gets a handle to the device driver via a call to the Win32 function CreateFile(). The user mode
application then uses the Win32 function DeviceIoControl() to submit an I/O control code and related
input and output buffers to the driver through the handle returned by CreateFile().

4.1 Symbolic Links

The EZ-USB GPD can communicate with multiple EZ-USB devices. For each EZ-USB device
attached to the host, the driver creates a symbolic link of the form ezusb-i, where i is an instance index
starting at 0. If there are 3 EZ-USB devices attached to the host, then there will exist 3 symbolic links:
ezusb-0, ezusb-1 and ezusb-2. The symbolic link name is used when calling CreateFile() to get a
handle to the device driver. What CreateFile() is really doing is getting a handle to the device object
created by the device driver. The following code sample demonstrates getting a handle to EZ-USB
device ezusb-0.

HANDLE DeviceHandle;

DeviceHandle = CreateFile("\\\\.\\ezusb-0",

GENERIC_WRITE,

FILE_SHARE_WRITE,

NULL,

 OPEN_EXISTING,

 0,

 NULL);

4.2 Device I/O Control

User mode applications use the Win32 function DeviceIoControl() to send requests to device drivers.
The following code sample demonstrates submitting a request to the EZ-USB GPD to read the device’s
USB Device Descriptor. It uses the DeviceHandle returned in the previous example.

PVOID pvBuffer = NULL;

DWORD nBytes = 0;

PvBuffer = malloc(sizeof (Usb_Device_Descriptor));

bResult = DeviceIoControl (DeviceHandle,

 IOCTL_EZUSB_GET_DEVICE_DESCRIPTOR,

 NULL, // no input buffer

 0, // input buffer size

 pvBuffer, // buffer to hold the device descriptor

 sizeof (Usb_Device_Descriptor), // size of the output buffer

 &nBytes, // actual bytes returned

 NULL); // not overlapped

5. I/O Control Code (IOCTL) Reference

The following sections describe in detail the various IOCTLs supported by the EZ-USB GPD. For
more information on CreateFile() and DeviceIoControl() consult Microsoft’s Win32 documentation.

Anchor Chips has also provided several small example programs that demonstrate user mode interaction
with the EZ-USB GPD.

The following table shows the function prototype for DeviceIoControl(). The EZ-USB GPD IOCTL
reference will use the same function argument names.

BOOL DeviceIoControl(

HANDLE hDevice, // handle to device of interest

DWORD dwIoControlCode, // control code of operation to perform

LPVOID lpInBuffer, // pointer to buffer to supply input data

DWORD nInBufferSize, // size of input buffer

LPVOID lpOutBuffer, // pointer to buffer to receive output data

DWORD nOutBufferSize, // size of output buffer

LPDWORD lpBytesReturned, // pointer to variable to receive output

// byte count

LPOVERLAPPED lpOverlapped // pointer to overlapped structure for

// asynchronous operation

);

EZ-USB GPD IOCTLs and their corresponding input/output structures are defined in the Anchor Chips
provided header file EZUSBSYS.H. Standard USB structures are defined in the file USB100.H which
is provided with the WDM DDK.

5.1 Standard Device Request IOCTLs

The standard device request IOCTLs are used to perform the standard USB device requests as defined
in Chapter 9 of the Universal Serial Bus Specification Version 1.0.

5.1.1 IOCTL_Ezusb_GET_DEVICE_DESCRIPTOR

Causes the driver to issue the USB standard device request GET_DESCRIPTOR of type DEVICE to
the device.

dwIoControlCode IOCTL_Ezusb_GET_DEVICE_DESCRIPTOR

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Pointer to a user allocated buffer to receive the device
descriptor. Must be large enough to hold the entire USB Device
Descriptor as defined in USB100.H

nOutBufferSize sizeof(USB_DEVICE_DESCRIPTOR)

5.1.2 IOCTL_Ezusb_GET_CONFIGURATION_DESCRIPTOR

Causes the driver to issue the USB standard device request GET_DESCRIPTOR of type
CONFIGURATION to the device. This request returns not only the configuration descriptor, but also
interface, endpoint and class specific descriptors.

dwIoControlCode IOCTL_Ezusb_GET_ CONFIGURATION_DESCRIPTOR

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Pointer to a user allocated buffer to receive the configuration and
additional descriptors. If the size of all descriptors exceeds the
size of this buffer, only nOutBufferSize bytes of data will be
returned. The total size of all descriptors is returned in
wTotalLength field of the configuration descriptor. Since it is
not possible to know the size of the descriptor data in advance,
call this function first with a small buffer in order to determine
the actual size of descriptor data and then call it again with an
appropriately sized buffer.

nOutBufferSize sizeof(lpOutBuffer)

5.1.3 IOCTL_Ezusb_GET_STRING_DESCRIPTOR

Read a string descriptor from the USB device.

dwIoControlCode IOCTL_Ezusb_GET_STRING_DESCRIPTOR

lpInBuffer Pointer to a GET_STRING_DESCRIPTOR_IN structure.

typedef struct _GET_STRING_DESCRIPTOR_IN

{

 UCHAR Index;

 USHORT LanguageId;

} GET_STRING_DESCRIPTOR_IN, *PGET_STRING_DESCRIPTOR_IN;

Index is the index of the desired string descriptor. LanguageId
corresponds to the Microsoft specified LANGID value and
determines the language of the string.

nInBufferSize sizeof(GET_STRING_DESCRIPTOR_IN)

lpOutBuffer Pointer to a user allocated buffer to receive the string descriptor.
If the size of the descriptor exceeds the size of this buffer, only
nOutBufferSize bytes of data will be returned. The total size of
the string is returned in the bLength field of the string descriptor.
Since it is not possible to know the size of the string descriptor in
advance, call this function first with a small buffer in order to
determine the actual size of descriptor data and then call it again
with an appropriately sized buffer.

nOutBufferSize sizeof(lpOutBuffer)

5.1.4 IOCTL_Ezusb_SETINTERFACE

Use this IOCTL to switch between different alternate settings.

dwIoControlCode IOCTL_Ezusb_SETINTERFACE

lpInBuffer Pointer to a SET_INTERFACE_IN structure.

typedef struct _SET_INTERFACE_IN

{

 UCHAR interfaceNum;

 UCHAR alternateSetting;

} SET_INTERFACE_IN, *PSET_INTERFACE_IN;

interfaceNum corresponds to the bInterfaceNumber field in the
interface descriptor of the desired alternate setting.
alternateSetting corresponds to the bAlternateSetting field in the
interface descriptor of the desired alternate setting.

nInBufferSize sizeof(SET_INTERFACE_IN)

lpOutBuffer NULL

nOutBufferSize 0

5.2 Data Transfer IOCTLs

5.2.1 IOCTL_EZUSB_BULK_READ

Read (USB IN) from the specified bulk or interrupt pipe. This IOCTL will block the calling thread until
the data transfer completes.

dwIoControlCode IOCTL_EZUSB_BULK_READ

lpInBuffer Pointer to a BULK_TRANSFER_CONTROL structure.

typedef struct _BULK_TRANSFER_CONTROL

{

 ULONG pipeNum;

} BULK_TRANSFER_CONTROL, *PBULK_TRANSFER_CONTROL;

nInBufferSize sizeof(BULK_TRANSFER_CONTROL)

lpOutBuffer Buffer to hold data read from the device.

nOutBufferSize sizeof(lpOutBuffer)

This parameter determines the total size of the USB transfer.
The transfer size must be less than 64KB.

5.2.2 IOCTL_EZUSB_BULK_WRITE

Write (USB OUT) to the specified bulk pipe. This IOCTL will block the calling thread until the data
transfer completes.

dwIoControlCode IOCTL_EZUSB_BULK_WRITE

lpInBuffer Pointer to a BULK_TRANSFER_CONTROL structure.

typedef struct _BULK_TRANSFER_CONTROL

{

 ULONG pipeNum;

} BULK_TRANSFER_CONTROL, *PBULK_TRANSFER_CONTROL;

nInBufferSize sizeof(BULK_TRANSFER_CONTROL)

lpOutBuffer Buffer of data to write to the device.

nOutBufferSize sizeof(lpOutBuffer)

This parameter determines the total size of the USB transfer.
The transfer size must be less than 64KB.

5.2.3 IOCTL_EZUSB_ISO_READ

Read (USB IN) from the specified isochronous pipe. This IOCTL will block the calling thread until the
data transfer completes. Due to a quirk in the USB host controller driver (HCD) an ISO pipe must be
reset before starting a new transfer. This can be accomplished using IOCTL_Ezusb_RESETPIPE
which is documented elsewhere in this document.

dwIoControlCode IOCTL_EZUSB_ISO_READ

lpInBuffer Pointer to an ISO_TRANSFER_CONTROL structure.

typedef struct _ISO_TRANSFER_CONTROL

{

 ULONG PipeNum;

 ULONG PacketSize;

 ULONG PacketCount;

 ULONG FramesPerBuffer;

 ULONG BufferCount;

} ISO_TRANSFER_CONTROL, *PISO_TRANSFER_CONTROL;

PipeNum is the zero based pipe number associated with the
endpoint to read from.
PacketSize is the amount of ISO data to read during each frame.
This value usually corresponds to the max packet size of the ISO
endpoint, but can be less.
PacketCount is the number of frames of ISO data to read from
the device. ISO transfers occur every USB frame (1ms). For
example, a PacketCount of 3000 would indicate 3 seconds of
ISO data. This parameter must be evenly divisible by the
product of the next two parameters that is:
(PacketCount mod (FramesPerBuffer * BufferCount)) must be
zero.
FramesPerBuffer is the number of USB frames of data to
transfer in a single URB (USB Request Block). 10 is a good
default value.
BufferCount is the number of transfer URBs to use for this
transfer. 2 is a good default value.

The last two parameters probably deserve some explanation. In
order to maintain an ISO stream, the driver must maintain at
least two sets of ISO transfer buffers, so that when one set
completes the next set of transfers can be ready to go. The
driver ping pongs between these two sets of frame buffers until
the transfer completes. BufferCount determines how many
buffer sets the driver ping pongs between, and FramesPerBuffer
determines how many frames of USB data are represented by
each of those buffers.

nInBufferSize sizeof(ISO_TRANSFER_CONTROL)

lpOutBuffer Buffer to hold data read from the device and to hold the
isochronous transfer descriptors for the transfer. The size of this
buffer should be:

(PacketCount *
(PacketSize + sizeof(USBD_ISO_PACKET_DESCRIPTOR))

Upon return, the begnning of this buffer will contain the actual
data read from the device. The actual data is followed by an
array of USBD_ISO_PACKET_DESCRIPTOR structures. This
array can be used by the caller to determine the results of the
transfer on a per packet basis.

typedef struct _USBD_ISO_PACKET_DESCRIPTOR

{

 ULONG Offset;

 ULONG Length;

 USBD_STATUS Status;

} USBD_ISO_PACKET_DESCRIPTOR, *PUSBD_ISO_PACKET_DESCRIPTOR;

nOutBufferSize size of lpOutBuffer

5.2.4 IOCTL_EZUSB_ISO_WRITE

Write (USB OUT) to the specified isochronous pipe. This IOCTL will block the calling thread until the
data transfer completes. Due to a quirk in the USB host controller driver (HCD) an ISO pipe must be
reset before starting a new transfer. This can be accomplished using IOCTL_Ezusb_RESETPIPE
which is documented elsewhere in this document.

dwIoControlCode IOCTL_EZUSB_ISO_WRITE

lpInBuffer Pointer to an ISO_TRANSFER_CONTROL structure.

typedef struct _ISO_TRANSFER_CONTROL

{

 ULONG PipeNum;

 ULONG PacketSize;

 ULONG PacketCount;

 ULONG FramesPerBuffer;

 ULONG BufferCount;

} ISO_TRANSFER_CONTROL, *PISO_TRANSFER_CONTROL;

PipeNum is the zero based pipe number associated with the
endpoint to write to.
PacketSize is the amount of ISO data to write during each frame.
This value usually corresponds to the max packet size of the ISO
endpoint, but can be less.

PacketCount is the number of frames of ISO data to write to the
device. ISO transfers occur every USB frame (1ms). For
example, a PacketCount of 3000 would indicate 3 seconds of
ISO data. This parameter must be evenly divisible by the
product of the next two parameters that is:
(PacketCount mod (FramesPerBuffer * BufferCount)) must be
zero.
FramesPerBuffer is the number of USB frames of data to
transfer in a single URB (USB Request Block). 10 is a good
default value.
BufferCount is the number of transfer URBs to use for this
transfer. 2 is a good default value.

The last two parameters probably deserve some explanation. In
order to maintain an ISO stream, the driver must maintain at
least two sets of ISO transfer buffers, so that when one set
completes the next set of transfers can be ready to go. The
driver ping pongs between these two sets of frame buffers until
the transfer completes. BufferCount determines how many
buffer sets the driver ping pongs between, and FramesPerBuffer
determines how many frames of USB data are represented by
each of those buffers.

nInBufferSize sizeof(ISO_TRANSFER_CONTROL)

lpOutBuffer Buffer to write to the device and to hold the isochronous transfer
descriptors for the transfer. The size of this buffer should be:

(PacketCount *
(PacketSize + sizeof(USBD_ISO_PACKET_DESCRIPTOR))

The begnning of this buffer will contain the data to write to the
device. The actual data is followed by an array of
USBD_ISO_PACKET_DESCRIPTOR structures. This array
can be used by the caller to determine the results of the transfer
on a per packet basis.

typedef struct _USBD_ISO_PACKET_DESCRIPTOR

{

 ULONG Offset;

 ULONG Length;

 USBD_STATUS Status;

} USBD_ISO_PACKET_DESCRIPTOR, *PUSBD_ISO_PACKET_DESCRIPTOR;

nOutBufferSize size of lpOutBuffer

5.2.5 IOCTL_EZUSB_START_ISO_STREAM

Starts an IN ISO stream which is maintained at the driver level. ISO streaming will continue until a call
is made to IOCTL_EZUSB_STOP_ISO_STREAM.

• As ISO data is read, it is copied into a buffer for retrieval from user mode via a call to
IOCTL_EZUSB_READ_ISO_BUFFER. If this buffer fills up, new data is discarded until room is
available in the buffer. Buffer size is determined by the PacketCount parameter.

• Prior to starting an ISO stream, you must reset the ISO pipe using IOCTL_Ezusb_RESETPIPE.

• The driver only supports a single ISO IN stream.

dwIoControlCode IOCTL_EZUSB_START_ISO_STREAM

lpInBuffer Pointer to an ISO_TRANSFER_CONTROL structure.

typedef struct _ISO_TRANSFER_CONTROL

{

 ULONG PipeNum;

 ULONG PacketSize;

 ULONG PacketCount;

 ULONG FramesPerBuffer;

 ULONG BufferCount;

} ISO_TRANSFER_CONTROL, *PISO_TRANSFER_CONTROL;

PipeNum is the zero based pipe number associated with the
endpoint to read from.
PacketSize is the amount of ISO data to read during each frame.
This value usually corresponds to the max packet size of the ISO
endpoint.
PacketCount determines the size of the buffer that arriving ISO
data will be copied to. For example, a PacketCount of 3000
would indicate 3 seconds of ISO data. This parameter must be
evenly divisible by the product of the next two parameters that is:
(PacketCount mod (FramesPerBuffer * BufferCount)) must be
zero.
FramesPerBuffer is the number of USB frames of data to
transfer in a single URB (USB Request Block). 10 is a good
default value.
BufferCount is the number of transfer URBs to use for this
transfer. 2 is a good default value.

The last two parameters probably deserve some explanation. In
order to maintain an ISO stream, the driver must maintain at
least two sets of ISO transfer buffers, so that when one set
completes the next set of transfers can be ready to go. The
driver ping pongs between these two sets of frame buffers until
the transfer completes. BufferCount determines how many
buffer sets the driver ping pongs between, and FramesPerBuffer

determines how many frames of USB data are represented by
each of those buffers.

nInBufferSize sizeof(ISO_TRANSFER_CONTROL)

lpOutBuffer NULL

nOutBufferSize 0

5.2.6 IOCTL_EZUSB_STOP_ISO_STREAM

Sets a flag in the driver that will stop the ISO IN stream started with
IOCTL_EZUSB_START_ISO_STREAM.

dwIoControlCode IOCTL_EZUSB_START_ISO_STREAM

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer NULL

nOutBufferSize 0

5.2.7 IOCTL_EZUSB_ READ_ISO_BUFFER

This call is used in conjuntion with IOCTL_EZUSB_START_ISO_STREAM. Once an ISO stream has
been started, this IOCTL may be used to retrieve any data that has been read.

dwIoControlCode IOCTL_EZUSB_ READ_ISO_BUFFER

lpInBuffer Pointer to an ISO_TRANSFER_CONTROL structure.

typedef struct _ISO_TRANSFER_CONTROL

{

 ULONG PipeNum;

 ULONG PacketSize;

 ULONG PacketCount;

 ULONG FramesPerBuffer;

 ULONG BufferCount;

} ISO_TRANSFER_CONTROL, *PISO_TRANSFER_CONTROL;

PipeNum ignored
PacketSize is the amount of ISO data to read during each frame.
This value usually corresponds to the max packet size of the ISO
endpoint, but can be less. Value should be identical to the value

used in the corresponding call to
IOCTL_EZUSB_START_ISO_STREAM.
PacketCount is the maximum number of packets of data to read
from the ISO buffer.
FramesPerBuffer ignored
BufferCount ignored

nInBufferSize sizeof(ISO_TRANSFER_CONTROL)

lpOutBuffer Buffer to hold data read from the device and to hold the
isochronous transfer descriptors for the transfer. The size of this
buffer should be:

(PacketCount *
(PacketSize + sizeof(USBD_ISO_PACKET_DESCRIPTOR))

Upon return, the begnning of this buffer will contain the actual
data read from the device. The actual data is followed by an
array of USBD_ISO_PACKET_DESCRIPTOR structures. This
array can be used by the caller to determine the results of the
transfer on a per packet basis.

typedef struct _USBD_ISO_PACKET_DESCRIPTOR

{

 ULONG Offset;

 ULONG Length;

 USBD_STATUS Status;

} USBD_ISO_PACKET_DESCRIPTOR, *PUSBD_ISO_PACKET_DESCRIPTOR;

nOutBufferSize size of lpOutBuffer

5.3 Miscellaneous IOCTLs

5.3.1 IOCTL_EZUSB_VENDOR_OR_CLASS_REQUEST

Sends a Vendor or Class specific request to the control endpoint.

dwIoControlCode IOCTL_EZUSB_VENDOR_OR_CLASS_REQUEST

lpInBuffer Pointer to a VENDOR_OR_CLASS_REQUEST_CONTROL
structure.

typedef struct _VENDOR_OR_CLASS_REQUEST_CONTROL

{

 // transfer direction (0=host to device, 1=device to host)

 UCHAR direction;

 // request type (1=class, 2=vendor)

 UCHAR requestType;

 // recipient (0=device,1=interface,2=endpoint,3=other)

 UCHAR recepient;

 //

 // see the USB Specification for an explanation of the

 // following paramaters.

 //

 UCHAR requestTypeReservedBits;

 UCHAR request;

 USHORT value;

 USHORT index;

} VENDOR_OR_CLASS_REQUEST_CONTROL,

*PVENDOR_OR_CLASS_REQUEST_CONTROL;

nInBufferSize sizeof(VENDOR_OR_CLASS_REQUEST_CONTROL)

lpOutBuffer Depending on the transfer direction, this field points to a buffer
of data to send to the control endpoint or to receive data read
from the endpoint. For dataless control transfers, this parameter
will be NULL.

nOutBufferSize sizeof(lpOutBuffer)

This parameter determines the total size of the data phase of the
control transfer. For dataless control transfers it should be 0.

5.3.2 IOCTL_EZUSB_GET_CURRENT_FRAME_NUMBER

Returns the current USB frame number. This IOCTL does not cause any USB transfers to occur. It
simply queries the host controller driver for the current frame number.

dwIoControlCode IOCTL_EZUSB_GET_CURRENT_FRAME_NUMBER

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Pointer to a ULONG. The current frame number is returned
here.

nOutBufferSize sizeof(ULONG)

5.3.3 IOCTL_Ezusb_GET_PIPE_INFO

Returns an Interface Information structure describing the pipes of the currently selected interface and
alternate setting.

dwIoControlCode IOCTL_Ezusb_GET_PIPE_INFO

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Pointer to a user allocated buffer to receive the Interface
Information structure. This buffer should be sufficiently large to
hold the entire structure. The interface information strucure is
defined by USBD_INTERFACE_INFORMATION in USBDI.H
which is part of the WDM DDK.

nOutBufferSize sizeof(lpOutBuffer)

5.3.4 IOCTL_Ezusb_RESETPIPE

Resets the specified pipe.

dwIoControlCode IOCTL_Ezusb_RESETPIPE

lpInBuffer Pointer to a ULONG containing the pipe number to reset.

nInBufferSize sizeof(ULONG)

lpOutBuffer NULL

nOutBufferSize 0

5.3.5 IOCTL_Ezusb_ABORTPIPE

Aborts all pending transfers on the specified pipe.

dwIoControlCode IOCTL_Ezusb_ABORTPIPE

lpInBuffer Pointer to a ULONG containing the pipe number to abort.

nInBufferSize sizeof(ULONG)

lpOutBuffer NULL

nOutBufferSize 0

5.3.6 IOCTL_EZUSB_GET_DRIVER_VERSION

Returns version information about the EZ-USB device driver.

dwIoControlCode IOCTL_EZUSB_GET_DRIVER_VERSION

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Pointer to a EZUSB_DRIVER_VERSION structure.

typedef struct _EZUSB_DRIVER_VERSION

{

 WORD MajorVersion;

 WORD MinorVersion;

 WORD BuildVersion;

} EZUSB_DRIVER_VERSION, *PEZUSB_DRIVER_VERSION;

nOutBufferSize sizeof(EZUSB_DRIVER_VERSION)

5.4 EZ-USB Specific IOCTLs

5.4.1 IOCTL_Ezusb_ANCHOR_DOWNLOAD

Downloads data to EZ-USB RAM starting at address 0.

dwIoControlCode IOCTL_Ezusb_ANCHOR_DOWNLOAD

lpInBuffer Buffer of data to download to EZ-USB RAM

nInBufferSize Size of the download buffer. Must be <= 7KB.

lpOutBuffer NULL

nOutBufferSize 0

5.4.2 IOCTL_EZUSB_ANCHOR_DOWNLOAD

Downloads data to EZ-USB RAM starting at the specified address. This IOCTL will only download to
the EZ-USB’s internal RAM.

dwIoControlCode IOCTL_EZUSB_ANCHOR_DOWNLOAD

lpInBuffer Pointer to an ANCHOR_DOWNLOAD_CONTROL structure.

typedef struct _ANCHOR_DOWNLOAD_CONTROL

{

 WORD Offset;

} ANCHOR_DOWNLOAD_CONTROL, *PANCHOR_DOWNLOAD_CONTROL;

Offset specifies the offset within EZ-USB RAM to download to.

nInBufferSize sizeof(ANCHOR_DOWNLOAD_CONTROL)

lpOutBuffer Buffer of data to download to EZ-USB RAM

nOutBufferSize size of the output buffer.

This parameter determines the size of the Anchor Download.

