

Microcont ro l le rs

XC800 fami ly

P r o g r a m m i n g t h e A n a l o g - t o - D i g i t a l
C o n v e r t e r o n X C 8 0 0 f a m i l y o f
M i c r o c o n t r o l l e r s

App l i ca t ion No te , V1 .0 , Augus t . 2008

AP08063

Edition 2008-08-27

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2008.
All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may be used in life-support devices or systems only with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

 AP08063
 Programming the ADC - XC800 family

Application Note 3 V1.0, 2008-08

AP08063

Revision History: 2008-08 V1.0

Previous Version: none

Page Subjects (major changes since last revision)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

 AP08063
Programming the ADC - XC800 family

Table of Contents Page

Application Note 4 V1.0, 2008-08

1 Introduction ...5
1.1 Overview ...5
1.2 Background ...5
1.3 Features of the ADC module...5

2 Detailed description of the ADC module ..6
2.1 Functionality of the ADC module...6
2.2 ADC Operational Process ...6
2.2.1 Conversion Request Phase ..7
2.2.1.1 Attibutes of the Request source arbiter...8
2.2.1.2 General attributes of Request sources ...9
2.2.1.3 Attributes of sequential request source...10
2.2.1.4 Attributes of parallel request source ...10
2.2.2 Conversion Phase...11
2.2.3 Result Phase...12
2.2.4 Interrupts ...13
2.2.5 External Trigger Inputs..15
2.3 How to start an ADC conversion request..16
2.3.1 Parallel Request Source: ..16
2.3.1.1 Start Parallel Request ...17
2.3.2 Sequential Request Source ..19
2.3.2.1 Start Sequential Request ..20

3 Application development using ADC module ..23
3.1 Parallel Request Source Control (Examples): ..23
3.1.1 Single Channel and Multichannel – Normal / AutoScan conversions...23
3.1.2 Single Channel and Multichannel – Normal Scan – Wait for Read ..23
3.1.3 Single Channel and Multi Channel – Autoscan – Wait for Read ..24
3.1.4 Timer interrupt H/W triggered Multichannel conversion..24
3.1.5 Timer Interrupt S/W triggered Multichannel conversion..25
3.2 Sequential Request Source Control (Examples) ..26
3.2.1 Single Channel and Multichannel Conversion – Normal Scan ...26
3.2.2 Single Channel and Multichannel Conversions – Wait for Read ..26

Appendix A ADC Register map..28

Appendix B ADC Initialization sequence ..29

Appendix C ADC for Motor Control ...31
1 Field Oriented Control of PMSM Motor...31
2 Sensorless BLDC motor control..32

Appendix C Software Examples...33

 AP08063
Programming the ADC - XC800 family

Introduction

Application Note 5 V1.0, 2008-08

1 Introduction

1.1 Overview

This application note provides a quick reference to start work with the Analog-to-Digital converter module of
the XC800 family of 8-bit Microcontrollers (XC866, XC88x and XC878). The functional description and
configuration options of the ADC module are also discussed with examples in order to give a good insight on
the usage of the module for the application needs.

1.2 Background

With Standard ADC’s, the CPU is involved in most of its control operation. The tasks like Switching between
channels, Start of conversion and Wait on ready and read out result etc., consume CPU time. Synchonizing
a standard ADC conversion to events such has PWM for noise free sampling can be tricky and require fast
PWM interrupts and possibly high CPU load.

In order to meet the real time needs of applications, an autonomous ADC module which offloads the CPU is
required. The XC800 family of microcontrollers offers a specialized ADC that is designed to meet the needs
of the motor control, power supply and other general control applications. This ADC module works
autonomously thereby reducing the CPU load. Hence the CPU can be utilized for other major tasks.

For example, in Drive applications, the ADC is used intensively for the measurement of Phase voltages and
currents. As these are fast changing signals that are corrupted by PWM, they have to be measured
accurately and quickly at the specified time synchronously to the PWM. These measured values are used in
control loops which run faster than 2-4 PWM periods, say 100-200µs. Also the ADC is used for the
measurement of temperature, Speed reference setting etc., and their sampling rate differs from the Phase
voltages and currents.

1.3 Features of the ADC module

The XC800 family of microcontrollers includes 10-bit Analog-to-Digital Converter (ADC) with up to eight
multiplexed analog input channels. The ADC uses a successive approximation technique to convert the
analog voltage levels from up to eight different sources.

Features of the ADC module include:

• Successive approximation

• 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively)

• Up to eight analog channels and four independent result registers

• Programmable Result data protection for slow CPU access (wait-for-read mode)

• Single or multiple conversion modes

• Autoscan functionality

• Limit checking for conversion results

• Data reduction filter (accumulation of up to 2 conversion results)

• Two independent conversion request sources with programmable priority

• Selectable conversion request trigger. Software or Hardware (e.g. Timer) Triggers.

• Flexible interrupt generation with configurable service nodes

• Cancel/restart feature for running conversions

• Low power modes

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 6 V1.0, 2008-08

2 Detailed description of the ADC module

2.1 Functionality of the ADC module

The functionality of the ADC module includes:

• Two different conversion request sources (sequential and parallel) with independent
registers. The request sources are used to trigger one or more conversions by software or by
external events (synchronization to PWM signals), sequencing schemes, etc.

• An arbiter that regularly scans the request sources to find the channel with the highest
priority for the next conversion. The priority of each source can be programmed individually to obtain
the required flexibility to cover the desired range of applications.

• Control registers for each of the eight channels that define the behavior of each analog input
(such as the interrupt behavior, a pointer to a result register, etc.).

• An input class register that delivers general channel control information (sample time) from a
centralized location.

• Four result registers for storing the conversion results and controlling the data reduction.

• A decimation stage for conversion results, adding the incoming result to the value already
stored in the targeted result register.

2.2 ADC Operational Process

For simplicity we say, The ADC process involves three phases namely Conversion Request Phase,
Conversion Phase and Result Handling Phase. The simple representation of the operational process is
shown in Figure 1. The functions of each phase were explained briefly in the following sections.

Figure 1 ADC Operational Process

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 7 V1.0, 2008-08

2.2.1 Conversion Request Phase

Conversion request phase consists of handling the conversion request sources, arbiter and their attibutes. In
XC800 family of microcontrollers there are two conversion request sources (Sequential and Parallel). The
sequential and parallel sources will participate in the arbitration from slot 0 and slot 1 respectively.

Sequential requests are queued approach, where requests are processed in the order in which they are
entered in the queue.

Parallel requests are grouped approach, where the user selects an arbitrary set of channels to be converted
(one bit flag for each channel to be converted). The request flags are then processed starting at the highest
numbered channel, working down to the lowest numbered channel.

The request source arbiter evaluates which analog input channel has to be converted. Therefore, it regularly
polls the two request sources (source x at slot x, x = 0 - 1) one after the other for pending conversion
requests. At the end of the round, the arbiter delivers the winning request on to the next step of process.

The request sources can be prioritized. Hence the arbiter issues the higher priority wins the arbitration if
both the request sources request conversions at the same time. If both request sources are programmed
with the same priority, the channel number specified by request source 0 will be converted first since it is
connected to arbitration slot 0. The general arbitration process is shown in Figure 2.

Figure 2 Arbitration for conversion requests

The general & specific attributes of the request sources, arbiter are explained in the following sections.

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 8 V1.0, 2008-08

2.2.1.1 Attibutes of the Request source arbiter

2.2.1.1.1 Arbitration slot Enable/Disable

Register PRAR contains bits that enable/disable the conversion request treatment in the arbitration slots.
Bits ASEN0 and ASEN1 enable/disable arbitration slot 0 and arbitration slot 1 respectively. Bit value ‘0’
disables the corresponding arbitration slot whereas bit value ‘1’ enables the corresponding arbitration slot. If
an arbitration slot is disabled, a pending conversion request of a request source connected to this slot is not
taken into account for arbitration. Bits ASEN0 and ASEN1 of PRAR register is shown in Figure 3.

Figure 3 Arbitration slot enable/disable option

2.2.1.1.2 Arbitration mode

Register PRAR contains bit ARBM and is shown in Figure 4. Bit value ‘0’ (default) selects permanent
arbitration whereas bit value ‘1’ selects the option of starting the arbitration on pending conversion request.

• Permanent arbitration:

In this mode, the arbiter will continuously poll the request sources even when there is no pending conversion
request.

• Arbitration started by pending conversion request:

In this mode, the arbiter will start polling the request sources only if there is at least one conversion pending
request.

Figure 4 Arbitration Mode

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 9 V1.0, 2008-08

2.2.1.2 General attributes of Request sources

2.2.1.2.1 Request Source priority

The request sources can be prioritized. Register PRAR contains bits that define the request source priority
and conversion start mode (this is explained in next chapter). It also contains bits that enable/disable the
conversion request treatment in the arbitration slots. In Figure1, PRIO0 bit defines the priority of the
sequential request source 0 and PRIO1 bit defines the priority of the parallel reqest source 1. Low priority is
defined by bit ‘0’ and High priority is defined by bit ‘1’.

Figure 5 Priority and Arbitration Register

2.2.1.2.2 Conversion Start Modes

At the end of each arbitration round, the arbiter will have found the request source with the highest priority
and a pending conversion request. It stores the arbitration result, namely the channel number, the sample
time and the targeted result register for further actions. In case the new conversion request has a higher
priority than the current conversion, two conversion start modes exist (selectable by bit CSMx, x = 0 - 1):

• Wait-for-Start:

In this mode, the current conversion is completed normally. The pending conversion request will be treated
immediately after the conversion is completed. The conversion start takes place as soon as possible.

• Cancel-Inject-Repeat:

In this mode, the current conversion is aborted immediately if a new request with a higher priority has been
found. The new conversion is started as soon as possible after the abort action. The aborted conversion
request is restored in the request source that has requested the aborted conversion. As a result, it takes part
in the next arbitration round.

These conversion start modes are shown in Figure 6.

Figure 6 ADC Conversion Start Modes

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 10 V1.0, 2008-08

In Figure 7, bit CSM0 defines the conversion start mode of the sequential request source 0 and bit CSM1
defines the conversion start mode of the parallel reqest source 1. Bit value ‘0’ (default) selects Wait for Start
mode whereas bit value ‘1’ selects the option of Cancel-Inject-Repeat mode.

Figure 7 Conversion Start modes

2.2.1.3 Attributes of sequential request source

The main attributes of sequential request source are mentioned here and are explained in detail in later
sections with examples.

• Trigger control

• Gate control

• Refill mode

� Discard request after conversion, or

� Place back on top of queue

• Source interrupt control (explained in section 2.2.4)

• Queue control

� Queue input

� Each queue input allows individual control of trigger, refill mode, and source interrupt

� Flush queue

2.2.1.4 Attributes of parallel request source

The main attributes of parallel request source are mentioned here and are explained in detail in later sections
with examples.

• Trigger control

• Gate control

• Autoscan mode

� Reload channel requests after last channel converted

• Source interrupt control (explained in section 2.2.4)

• Channel request control

� Channel request (one bit per channel)

� Pending status

� Load event and pending controls

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 11 V1.0, 2008-08

2.2.2 Conversion Phase

The Conversion Phase is associated with channel control register and input class register. The channel
number is the key in determining the remaining steps of the conversion process.

Each channel has its own control information that defines the target result register for the conversion result.
The only control information that is common to all channels is the sampling time defined by the input class
register (in many of Infineons 16 and 32-bit MCUs the ADCs have multiple input class registers).

The channel control register contents are shown in Figure 8.

Figure 8 Channel control register

Register CHCTRx defines the settings for the input channel x (where, x = 0 – 7).

The bitfield LCC defines the Limit checking mechanism and a detailed explanation on this can be found in
the User manuals of XC800 family of microcontrollers.

RESRSEL (Result Register Selection) bitfield defines which result register will be the target of a conversion
of this channel.

00 - Result Register 0 is selected.

01 - Result Register 1 is selected.

10 - Result Register 2 is selected.

11 - Result Register 3 is selected.

The input class register INPCR0 contains bits that control the sample time for the input channels. This is
shown in Figure 9.

Figure 9 Input Class register

The bitfield STC defines the additional length of the sample time, given in terms of fADCI clock cycles. A
sample time of two analog clock cycles is extended by the programmed value.

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 12 V1.0, 2008-08

2.2.3 Result Phase

The result phase handles the storage of the conversion result, data decimation, limit checking and interrupt
generation.

The result generation of the ADC module consists of several parts:

• Four result registers, for storing the conversion results

• A data reduction filter, for accumulating (adding) the conversion results

• A limit checking unit, comparing the conversion result to two selected boundary values (BOUND0 and
BOUND1)

• All result registers can be viewed by either Normal read view (for 8/10bit) or Accumulated read view (for
9/11bit)

• Wait for Read Mode

A detailed explanation about the result phase can be found in the User manual of the XC800 family of
microcontrollers. However, the Wait-for-Read mode is explained here.

The wait-for-read mode can be used for all request sources to allow the CPU to treat each conversion result
independently without the risk of data loss. Data loss can occur if the CPU does not read a conversion result
in a result register before a new result overwrites the previous one.

In wait-for-read mode, the conversion request generated by a request source for a specific channel will be
disabled (and conversion not possible) if the targeted result register contains valid data (indicated by its valid
flag being set). Conversion of the requested channel will not start unless the valid flag of the targeted result
register is cleared (data is invalid).

Figure 10 Result Generation

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 13 V1.0, 2008-08

2.2.4 Interrupts

The XC800 family of devices each has 2 interrupt service nodes and interrupt vector table locations that are
used by the ADC. These are referred to as service request outputs SR [1:0] that can be activated by
different interrupt sources within the ADC.

The interrupt structure of the ADC supports two different types of interrupt sources:

• Event Interrupts: Activated by events of the request sources (parallel and sequential source interrupts) or
result registers (result interrupts).

• Channel Interrupts: Activated by the completion of any input channel conversion. They are enabled
according to the control bits for the limit checking. The settings are defined individually for each input
channel.

Each of the individual interrupts that make up the Event and Channel interrupts can individually be mapped
to SR0 or SR1. For example a parallel source interrupt and a channel 4 interrupt could both be mapped to
SR0 while channel 1 and result register 3 interrupts could be mapped SR1.

The request source event interrupt, the interrupt which is generated after the completion of convertion from a
request source is shown in Figure 11.

Figure 11 Source Event Interrupt

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 14 V1.0, 2008-08

The result register interrupt generation is shown in Figure 12. This interrupt occurs when the data reducation
counter reaches (or already is) zero. Refer the user manual for more detailed explanation.

Result Reg.

Select

Digital

Result

Result Registers

Result 0

Result 1

..
.

Result

Reg.

Interrupts

..
.

Interrupt Enable

bit in each

Result control register

Result 3

Figure 12 Result register Event interrupt

The channel interrupt that occur through limit checking is shown in Figure 13. More detailed explanation on
the limit checking and boundaries can be found in the user manual.

Channel 0

Channel Control
Registers

Channel 7

Channel 1
Channel 2

Limit Check Select

Channel
Select

Digital
Result

Boundaries

Area 3

Area 2

Area 1

A

B

Boundary A

Channel
Interrupt

Boundary B

Limit Check
Control Bits

enable interrupt
per channel

Figure 13 Channel interrupt

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 15 V1.0, 2008-08

2.2.5 External Trigger Inputs

The sequential and parallel request sources each have one external request trigger input REQTRx (x = 0 -
1), through which a hardware triggered conversion request can be started. The input to REQTRx is selected
from eight external trigger inputs (ETRx0 to ETRx7) via a multiplexer depending on bit field ETRSELx. It is
possible to bypass the synchronization stages for external trigger requests that come synchronous to ADC.
This selection is done via bit SYNENx.

One fADCI period is required for synchronization between the conversion start trigger (from the digital part)
and the beginning of the sample phase (in the analog part). The BUSY and SAMPLE bits will be set with the
conversion start trigger.

Figure 14 External Trigger Input

The external trigger inputs to the ADC module are driven by events occuring in the CCU6 module (and in
T2CCU module in case XC878). This allows ADC conversions to be triggered synchronously to PWM
events.

Table 1 External Trigger Input Source

External Trigger Input CCU6 Event or T2CCU Event

ETRx0 T13 Period Match or CCT Overflow

ETRx1 T13 Compare Match or T2CC5 compare-match

ETRx2 T12 Period Match

ETRx3 T12 Compare match for channel 0

ETRx4 T12 Compare match for channel 1

ETRx5 T12 Compare match for channel 2

ETRx6 Shadow transfer event for multi-channel mode

ETRx7 Correct hall event for multi-channel mode

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 16 V1.0, 2008-08

2.3 How to start an ADC conversion request

The user has the freedom of selecting the channels for conversion and their request sources. Channels 0-7
can be requested for conversion through the sequential request source at arbitration slot 0 whereas only
Channels 4-7 can be requested for conversion through the parallel request source at arbitration slot 1.

Also the delay comparison on the ADC conversion start by hardware and software is shown in Figure 15.

f(n-1)
f(n) f(n+1)

f(n+2)

conversion

channel f

timer

hardware

triggered

conversion

analog

channel f

no delay

due to

interrupt

latency

Timer Triggered Conversion

f(n-1)
f(n) f(n+1)

f(n+2)

conversion

channel f

timer

interrupt

software

triggered

conversion

analog

channel f

delay due

to interrupt

latency

Software Triggered Conversion

Figure 15 Delay comparison on ADC conversion start

2.3.1 Parallel Request Source:

In XC800 family of microcontrollers, the parallel source can issue conversion requests for a sequence of upto
4 input channels (Channel 4-7). Each channel can be individually enabled to take part in the scan sequence.
The scan sequence always starts with the highest enabled channel number and continues towards lower
channel numbers (order defined by the channel number, each channel can be converted only once per
sequence). For example, with the parallel source a single channel (ch 4-7) conversion can be triggered via
software or hardware. Or up to 4 channels can be triggered for converision (one after the other with no
delay) via software or hardware. E.g. Ch7, Ch6, Ch5, Ch4 or Ch7, Ch5, Ch4, or Ch6, Ch4, etc.

The parallel request source consists of a conversion request control register (CRCR1), a conversion request
pending register (CRPR1) and a conversion request mode register (CRMR1). The contents of the conversion
request control register are copied (overwrite) to the conversion request pending register when a selected
load event (LDE) occurs. The type of the event defines the behavior and the trigger of the request source.

The parallel Request Source Control is depicted in Figure 16.

Figure 16 Parallel Request Source Control

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 17 V1.0, 2008-08

2.3.1.1 Start Parallel Request

The channel information for conversion should be written into the CRCR1 or CRPR1. The load event for a
parallel load can be started by one of the following ways:

2.3.1.1.1 Conversion Channel write operation to CRPR1

The conversion request control register can be written at two different addresses (CRCR1 and CRPR1).
Accessed at CRCR1, the write action changes only the bits in this register. Accessed at CRPR1, a load
event will take place one clock cycle after the write access. This automatic load event can be used to start
conversions with a single move operation. In this case, the information about the channels to be converted is
given as an argument in the move instruction. The following example triggers a single conversion on
Channel 7 via software.

Figure 17 Conversion channel write operation at CRPR1

2.3.1.1.2 Software Trigger by setting Load Event bit

Bit LDEV can be written with 1 by software to trigger the load event. In this case, the load event does not
contain any information about the channels to be converted, but always takes the contents of the conversion
request control register. This allows the conversion request control register to be written at a second address
without triggering the load event. The following example also triggers a single conversion on channel 7 via
software.

Figure 18 Software Trigget by setting Load Event bit (LDEV = 1)

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 18 V1.0, 2008-08

2.3.1.1.3 External trigger at the input line REQTR. (By Hardware)

A hardware triggered parallel conversion is done by coupling of the reload event to a request trigger input,
REQTR. A software example is shown in Figure 6 for conversion request on CCU6 T13 PM Event (Timer 13
Period Match). On a CCU6 T13 PM event, the contents of CRCR1 register will be copied to the contents of
CRPR1 register and a parallel conversion (in this example channel 7 only) will be triggered.

Figure 19 Parallel source conversion request by external CCU6 T13 PM event

2.3.1.1.4 Conversion completed and PND = 0 for Autoscan mode

After the parallel conversion(s) are completed the parallel source can be automatically triggered again using
the autoscan mode. In this case software only needs to trigger the first conversion. Successive converions
are triggered automatically. The following example enables the autoscan mode so channel 7 is converted
continuously.

Figure 20 Conversion completed and PND = 0 for Autoscan mode

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 19 V1.0, 2008-08

2.3.2 Sequential Request Source

The sequential request source at arbitration slot 0 requests one conversion after another for channel
numbers between 0 and 7. The queue stage stores the requested channel number and some additional
control information. As a result, the order in which the channels are to be converted is freely programmable
without restrictions in the sequence. The only restriction is that the length of the sequence is limited by the
number of queue stages in the sequential request source. The XC886 and XC864 have only one queue
stage, however the XC886, XC888 and XC878 each have a 4 stage queue. The additional control
information is used to enable the request source interrupt (when the requested channel conversion is
completed) and to enable the automatic refill process.

On a device with 4 queue stages (e.g. the XC878) the sequential request source can trigger up to 4
conversions in a row (triggered by hardware or software) in any order. For example a sequence like Ch 2,
Ch1, Ch7, and Ch1 (again) can be programmed into the queue.

A sequential source consists of one or more queue stages, a backup stage (QBUR0) and a mode control
register (QMR0).

The input register for the queue is the write only register QINR0. If there is still an empty queue stage (V =
0), the value written to QINR0 will be added to the queue (bit V becomes set if the queue is full). If the queue
is full the write action is ignored.

The Sequential Request Source Control is depicted in the following Figure 21.

Figure 21 Structure of Sequential Request Source

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 20 V1.0, 2008-08

2.3.2.1 Start Sequential Request

The sequential source conversion can be started by software or hardware:

2.3.2.1.1 Source Conversion Request not related to External trigger event
(software triggered conversions)

External triggers are disabled when bit EXTR=0. In this case the valid bit V = 1 directly requests the
conversion by setting the signals REQPND and REQCHNRV to 1. No conversion will be requested if V = 0.
A gating mechanism allows the user to enable/disable the conversion requests according to bit ENGT. The
V bit gets set by writing to the queue input register QINR0.

Figure 22 Source Conversion Request not related to External event

An example code for a software triggered start of sequential source conversion request for channel 7 is
shown in Figure 23.

Figure 23 Example code for Simple Sequential Source conversion start request

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 21 V1.0, 2008-08

2.3.2.1.2 Source conversion request related to External trigger event

Event triggered by Software:

An alternate way to trigger a sequential conversion request by software is to setup the channel number and
set ENGT when writing to queue input register QINRO. The conversion can then be triggered by setting bit
TREV in register QMR0.

CEV

ENTR

TREV EVOR

AND

OR

ENGT

AND

EXTR

V

REQTR

0

1

REQCHNRV

REQPND

0

1

0

1

Conversion Started

Set

Reset
0/1

0/1

1

1

External trigger (EXTR = 1) &

Gate enabled (ENGT = 1)

Software Trigger by setting bit

TREV

0/1

Figure 24 Sequential source conversion request by external trigger software event

An example code for the External Trigger by software is shown in Figure 25.

Figure 25 Example code for sequential source conversion request by software event

 AP08063
Programming the ADC - XC800 family

Detailed description of the ADC module

Application Note 22 V1.0, 2008-08

Event triggered by CCU6 event or T2CCU event (Hardware Triggered Conversions):

The external trigger event signal REQTR, which can be set by CCU6 or T2CCU (XC878 only) events, can
also trigger a sequential conversion (bit ENTR = 1 and V=1 must also be set). The conversion will not be
requested if V=0. V is set when the queue is not empty. The exact source of the trigger is specified by the
ADC_ETRCR register and the MIS_CON register.

CEV

ENTR

TREV EVOR

AND

OR

ENGT

AND

EXTR

V

REQTR

0

1

REQCHNRV

REQPND

0

1

0

1

Conversion Started

Set

Reset

1

1

1

1

External trigger (EXTR = 1) &

Gate enabled (ENGT = 1)

External Trigger by CCU6 or

T2CCU Hardware event

1

1

1

Figure 26 Sequential source conversion request by external trigger hardware event

An example code for Sequential source conversion request of external trigger event by T2CCU hardware
event is shown in Figure 27.

ETR00 is selected for Sequential Source

External Hardware event by T2CCU

External Trigger enabled

Figure 27 Sequential source conversion request by T2CCU hardware event

 AP08063
Programming the ADC - XC800 family

Application development using ADC module

Application Note 23 V1.0, 2008-08

3 Application development using ADC module

3.1 Parallel Request Source Control (Examples):

3.1.1 Single Channel and Multichannel – Normal / AutoScan conversions

7 7 7 7

3 3 3 3

7 7 7 7

3 3 3 3

7 6 5 4

3 2 1 0

7 6 5 4

3 2 1 0

7 6 5 4

3 2 1 0

7 6 5 4

3 2 1 0

Figure 28 Single and Multichannel Normal/Autoscan conversions

The single (left diagram) and multichannel (right diagram) ADC conversions in normal and autoscan mode
are shown in Figure 28.

For a single channel or multichannel conversion the channel number(s) for conversion is configured in
CRCR1 register. There is one bit in this register for each of the channels that are allowed for parallel
conversions (ch 7 – ch 4). A software or hardware event must trigger the conversion(s). This can be done
either by setting the bit LDEV in CRMR1 by software or by using a CCU6 external hardware event [In case of
XC878 a T2CCU external hardware event also possible]. Alternatively software can write the channel
number for conversion to CRPR1 instead of the CRCR1 register and this will automatically start a conversion
request in the next clock cycle.

In normal scan mode, for every new conversion request a trigger event should occur. But in autoscan mode
the conversion request trigger operation is needed only to trigger the first conversion. And this can be done
by any of the above mentioned procedures. And in case of CCU6, the user can opt for the single shot mode
of Timer T13.

In this example wait for read mode is not enabled so the newly converted data will overwrite old data in the
result register irrespective of whether the data was previously read or not.

3.1.2 Single Channel and Multichannel – Normal Scan – Wait for Read

7 7 7 7

3 3 3 3

7
3

7 6 5 4

3 2 1 0

7 6 5 4

3 2 1 0

7 6 5 4

3 2 1 0

7 6 5 4

3 2 1 0

Figure 29 Single and Multi Channel Normal Scan – Wait for Read Mode

 AP08063
Programming the ADC - XC800 family

Application development using ADC module

Application Note 24 V1.0, 2008-08

In Single channel Wait for read mode, if the result is not read from the result register, then the next
conversion is not possible even if the conversion request is triggered. The conversion is possible only after
the result was read.

In Multichannel conversion, if the result register of a channel is not read then that channel and the following
channel conversions are not possible in the next conversion cycle. However the conversions of higher
numbered channels are possible. In the above example the result register 2 of channel 6 is not read and
therefore in the next scan sequence the analog to digital conversion of channel 6, 5 and 4 are not possible
whereas the channel 7 conversion is possible. Similarly if the result register 3 of ADC channel 7 is not read
then the conversion of all other channels is not possible.

3.1.3 Single Channel and Multi Channel – Autoscan – Wait for Read

7 7 7 7

3 3 3 3

7 6 5 4

3 2 1 0

7 7

3 2 3

7 7

3 3

7 6

3 2
5 4

1 0

Figure 30 Autoscan conversion modes

For Autoscan conversion, the very first time the channel conversion information has to be written at the
CRPR1 (start conversion) or CRCR1 (with setting the LDEV bit in CRMR1). Once this is done, the Parallel
source will continuously scan the specified channels. The result of each conversion will be written to the
result registers and there is the possibility of data loss if the CPU cannot read each result. To avoid data
loss, the user can select the wait-for-read option which will halt the next ADC channel conversion till the data
is read by the CPU from the result register.

3.1.4 Timer interrupt H/W triggered Multichannel conversion

7 6 5 4

3 2 1 0

7 5 4

3 1 0

5 4
1 0

7 6 5 4

3 2 1 0

Figure 31 Timer triggered Multichannel conversion (CCU6 Timer 13 Period Match event)

In this example every CCU6 Timer 13 Period match the contents of the CRCR1 register will be copied to the
CRPR1. A conversion will occur on the requeseted channels in order of channel number (highest channel
number first).

 AP08063
Programming the ADC - XC800 family

Application development using ADC module

Application Note 25 V1.0, 2008-08

3.1.5 Timer Interrupt S/W triggered Multichannel conversion

7 6 5 4

3 2 1 0

7 5 4

3 1 0

7 6 5 4

3 2 1 0

Figure 32 Software Triggered Multichannel conversion

On CCU6 Timer 13 Period match interrupt, the software trigger is used for the purpose of the conversion
request start. Writing the channel conversion information to the register CRPR1 will lead to a write operation
at register CRCR1 and data will be copied to the CRPR1 in the next immediate clock cycle with the
automatic trigger event. On the otherhand writing the channel conversion information to the register CRCR1
needs the manual trigger by software and this can be done by setting the LDEV bit in the CRMR1 register.

 AP08063
Programming the ADC - XC800 family

Application development using ADC module

Application Note 26 V1.0, 2008-08

3.2 Sequential Request Source Control (Examples)

3.2.1 Single Channel and Multichannel Conversion – Normal Scan

7 5 2 1

3 2 1 0

7 5 2 1

3 2 1 0

7 5 2 1

5
2

5
2

7 5 2 1

7 5 2 1

3 2 1 0

7 5 2 1

3 2 1 0

7 5 2 1

5
2

2
1

7 5 2 1

5
2

2
1

5
2

5
2

Figure 33 Sequential source single channel and multichannel conversion – Normal scan

The single channel and multichannel conversions of sequential source is shown in Figure 33.

In example 1, the sequential source conversion is requested for channels 7, 5, 2 and 1 in sequence. The
queue stage stores the channel conversion information. The conversion will take place in the order in which
the conversion is requested.

In the same example, the sequential source conversion is requested for channels 7, 5, 2 and 1 in sequence
with refill process enabled for channel 5. After the completion of conversions for 7, 5, 2 and 1, the channel
conversion for channel 5 will be initiated continuously thereafter as the refill process is enabled.

In example 2, the sequential source conversion is requested for channels 7, 5, 2 and 1 in sequence with refill
process enabled for channels 5 and 2. After the completion of conversions for 7, 5, 2 and 1, the channel
conversion for channels 5 and 2 will be initiated continuously thereafter as the refill process is enabled.

3.2.2 Single Channel and Multichannel Conversions – Wait for Read

7 7 7 7

Sequential

source

3 3 3 3

result

register

CPU can read when it has time

Normal scan - Single Channel

Conversion request

7
3

write result

Read result

Sequential

source

result

register

Normal scan - Multi Channel

Conversion request

7 5 2 1

3 2 1 0

write result

7 5 2 1

3 2 1 0

7 5 2 1

3 2 1 0

7 5 2 1

3 2 1 0

write result write result write result

Read result Read result Read result Read result

CPU can read when it has time

Figure 34 Sequential source single and multi channel conversion – Wait for Read mode

 AP08063
Programming the ADC - XC800 family

Application Note 27 V1.0, 2008-08

In Single channel Wait for read mode, if the result is not read from the result register, then the next
conversion is not possible even if the conversion request is triggered. The conversion is possible only after
the result was read.

In Multichannel conversion, if the result register of a channel is not read then the following conversion
requests will be ignored. In the above example the result register 2 of channel 5 is not read and therefore in
the next scan sequence the conversion of channel 7 will happen whereas for 5, 2 and 1 conversion are not
possible. This is shown in Figure 34.

.

 AP08063
Programming the ADC - XC800 family

Appendix A ADC Register map

Application Note 28 V1.0, 2008-08

Appendix A ADC Register map

The ADC SFRs are located in the standard memory area (RAMP=0) and are organized into 7 pages. The
ADC_PAGE register is located at address D1H. It contains the page value and page control information.
The addresses of the ADC SFRs are listed below.

Table 2 SFR Address List for Pages 0-3

Address Page 0 Page 1 Page 2 Page 3

CAH GLOBCTR CHCTR0 RESR0L RESRA0L

CBH GLOBSTR CHCTR1 RESR0H RESRA0H

CCH PRAR CHCTR2 RESR1L RESRA1L

CDH LCBR CHCTR3 RESR1H RESRA1H

CEH INPCR0 CHCTR4 RESR2L RESRA2L

CFH ETRCR CHCTR5 RESR2H RESRA2H

D2H - CHCTR6 RESR3L RESRA3L

D3H - CHCTR7 RESR3H RESRA3H

Table 3 SFR Address List for Pages 4-7

Address Page 4 Page 5 Page 6 Page 7

CAH RCR0 CHINFR CRCR1 -

CBH RCR1 CHINCR CRPR1 -

CCH RCR2 CHINSR CRMR1 -

CDH RCR3 CHINPR QMR0 -

CEH VFCR EVINFR QSR0 -

CFH - EVINCR Q0R0 -

D2H - EVINSR QBUR0/QINR0 -

D3H - EVINPR - -

 AP08063
Programming the ADC - XC800 family

Appendix B ADC Initialization sequence

Application Note 29 V1.0, 2008-08

Appendix B ADC Initialization sequence

The following steps are meant to provide a general guideline on how to initialize the ADC module. Some
steps may be varied or omitted depending on the application requirements:

Step 1) Configure global control functions:

a. Select conversion width (GLOBCTR.DW)

b. Select analog clock fADCI divider ratio (GLOBCTR.CTC)

Step 2) Configure arbitration control functions:

a. Select priority level for request source x (PRAR.PRIOx)

b. Select conversion start mode for request source x (PRAR.CSMx)

c. Enable arbitration slot x (PRAR.ASENx)

d. Select arbitration mode (PRAR.ARBM)

Step 3) Configure channel control information:

a. Select limit check control for channel x (CHCTRx.LCC)

b. Select target result register for channel x (CHCTRx.RESRSEL)

c. Select sample time for all channels (INPCR0.STC)

Step 4) Configure result control information:

a. Enable/disable data reduction for result register x (RCRx.DRCTR)

b. Enable/disable event interrupt for result register x (RCRx.IEN)

c. Enable/disable wait-for-read mode for result register x (RCRx.WFR)

d. Enable/disable valid flag reset by read access for result register x (RCRx.VFCTR)

Step 5) Configure interrupt control functions:

a. Select channel x interrupt node pointer (CHINPR.CHINPx)

b. Select event x interrupt node pointer (EVINPR.EVINPx)

Step 6) Configure limit check boundaries:

a. Select limit check boundaries for all channels (LCBR.BOUND0, LCBR.BOUND1)

Step 7) Configure external trigger control functions:

a. Select source x external trigger input (ETRCR.ETRSELx)

b. Enable/disable source x external trigger input synchronization (ETRCR.SYNENx)

Step 8) Setup sequential source:

a. Enable conversion request (QMR0.ENGT)

b. Enable/disable external trigger (QMR0.ENTR)

Step 9) Setup parallel source:

a. Enable conversion request (CRMR1.ENGT)

b. Enable/disable external trigger (CRMR1.ENTR)

c. Enable/disable source interrupt (CRMR1.ENSI)

d. Enable/disable autoscan (CRMR1.SCAN)

Step 10) Turn on analog part:

a. Set GLOBCTR.ANON (wait for 100 ns)

 AP08063
Programming the ADC - XC800 family

Appendix B ADC Initialization sequence

Application Note 30 V1.0, 2008-08

Step 11) Start sequential request:

a. Write to QINR0 (with information such as REQCHNR, RF, ENSI and EXTR)

Step 12) Start parallel request:

a. Write to CRCR1 (no load event) or CRPR1 (automatic load event) the channels to be
converted

b. Generate a load event (if not already available) to trigger a pending conversion request

Step 13) Wait for ADC conversion to be completed:

a. The source interrupt indicates that the conversion requested by the source is completed.

b. The channel interrupt indicates that the corresponding channel conversion is completed
(with limit check performed).

c. The result interrupt indicates that the result (with/without accumulation) in the corresponding
result register is ready and can be read.

Step 14) Read ADC result

 AP08063
Programming the ADC - XC800 family

Appendix C ADC for Motor Control

Application Note 31 V1.0, 2008-08

Appendix C ADC for Motor Control

1 Field Oriented Control of PMSM Motor

In order to estimate the rotor position by a single shunt measurement, the PWM pattern generation and the
triggering of the ADC for current measurement must be very fast and accurate. Any jitter in the triggerpoint
will influence the actual rotor’s angle estimation. As a result, the total harmonic distortion of the sinusoidal
current signals will increase (see ApNote ap0805910_Sensorless_FOC.pdf for details). The ADC provides in
total four result registers, from which two are used to hold the appropriate DC-link current values. The 10 bit
ADC is configured in a way that the measurement result of channel 3 and 4 is stored in result register 2 and
3, respectively. This requires the DC-link current to be available at both channels. As a result, the ADC
conversion result is stored in separate result registers and can be used for calculations at any time
independent of the modulation angle.

Figure 35 Field Oriented Control – ADC Channel usage

The ADC conversions are consecutively started every second period of the modulation. The first
measurement is triggered by the compare match of CC63 and sampled by ADC channel 3. The second
measurement by ADC channel 4 is triggered by the period match of T13. ADC channel 3 is used to measure
the positive currents (segment b of in Figure 36), channel 4 measures the negative ones (segment e).
Sampling is triggered in the center of each segment. Please refer to Figure 35 for detailed timing of the
current measurement. This method requires very fast switching and sampling times in order to ensure a
proper current measurement. The time slot for the phase current measurement is limited by the sum of
sampling time Tsample and deadtime Tdeadtime. Due to this restriction, the current can not be measured at
the crossing of two sectors of the space vector modulation. Therefore the minimum time for the voltage
space vector is limited to the minimum time for current measurement. Here, the measurements of ADC
channel 3 and 4 are evaluated by reading the result register 0 and 1.

Figure 36 Voltage Space Vector – Sector A

 AP08063
Programming the ADC - XC800 family

Appendix C ADC for Motor Control

Application Note 32 V1.0, 2008-08

2 Sensorless BLDC motor control

The main task in the case of Sensorless BLDC operation is the zero crossing detection using the ADC. This
requires that the A/D converter samplings are synchronized with the PWM. This can be achieved with the aid
of the external trigger feature of the A/D converter. Several events of CCU6 can be used to start the
sampling and hold of A/D conversion, such as Timer 12/13 compare match and period match. In this
example Timer T12 is used to measure the commutation time and T13 is used for PWM generation. Upon
every Timer 13 period match, the corresponding AD channel is triggered to measure back emf voltage and
generate a interrupt. In this ADC interrupt service routine, the captured voltage is compared with half the dc
rail voltage. If the voltage value falls into the range of half the dc rail voltage considering some margin, then
the calculation for one half of the time between two zero crossings will be conducted.

T12PM_ISR: Timer 12 period match interrupt service routine, in which commutation is conducted.

ADC_ISR: ADC interrupt service routine, which is triggered by Timer 13 period match. In this ISR, if correct
zero-crossing is detected, Timer 12 period will be modified accordingly, to predict next commutation point.

cz: period from commutation to zero-crossing.

zc: period from zero-crossing to commutation.

Figure 37 Sensorless BLDC operation – ADC triggering

 AP08063
Programming the ADC - XC800 family

Application Note 33 V1.0, 2008-08

Appendix C Software Examples

Refer the additional examples available with the Application note:

The examples are provided for XC878 microcontroller and grouped as follows:

1. Sequential request source

2. Parallel request source

3. Combined sequential & parallel request source

http:/ /www.inf ineon.com

Published by Infineon Technologies AG

