
Microcont ro l le rs

XC866/XC886/XC888

E E P R O M E M U L A T I O N

App l i ca t ion No te , V1 .0 , Oc t . 2007

AP08057

Edition 2007-11-20

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2007.
All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

 AP08057
 EEPROM Emulation with XC800

Application Note 3 V1.0, 2007-09

AP08057

Revision History: 2007-10 V1.0

Previous Version: none

Page Subjects (major changes since last revision)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

 AP08057
EEPROM Emulation XC800

Table of Contents Page

Application Note 4 V1.0, Nov-07

1 INTRODUCTION.. 5

2 IMPORTANT FLASH PARAMETERS .. 5

2.1 DATA SHEET INTERPRETATION .. 5
2.1.1 Data retention versus Endurance versus Size... 5
2.1.2 Specification of the Data Flash... 6
2.1.3 Hardware Error Correction Coding (ECC) ... 8

3 APPLICATION SPECIFIC REQUIREMENTS... 10

4 IMPLEMENTATION OF A REAL-TIME EXAMPLE... 11

4.1 EEPROM EMULATION CONCEPT .. 11
4.1.1 The Basic Problem.. 11
4.1.2 The Size and Update Rate of the Data-set .. 12
4.1.3 Emulation Algorithms ... 12
4.1.4 Running the Application ... 14

4.2 EMULATION SCENARIO – EXAMPLE A ... 16
4.3 EMULATION SCENARIO – EXAMPLE B.. 19
4.4 EMULATION SCENARIO – EXAMPLE C.. 22
4.5 APPLICATION STATE MACHINE.. 26
4.6 COMMON FLOWCHARTS OF THE EXAMPLES... 27

4.6.1 Main Routine .. 27
4.6.2 Interrupt Service Routine of Timer 0 .. 28

4.6.2.1 Application Relevant States ..28
4.6.2.2 States for Programming ..29
4.6.2.3 States for Erasing ..30

4.6.3 Non Maskable Interrupt Service Routine.. 31
4.6.4 External Interrupt ... 31

4.7 INDIVIDUAL FLOWCHARTS FOR EXAMPLE A.. 32
4.7.1 PROGRAMMING_DATA()... 32
4.7.2 IdentSector() ... 33
4.7.3 IdentWL().. 34

4.8 INDIVIDUAL FLOWCHARTS FOR EXAMPLE B.. 35
4.8.1 PROGRAMMING_DATA()... 35
4.8.2 IdentWL().. 36
4.8.3 IdentSector() ... 37

4.9 INDIVIDUAL FLOWCHARTS FOR EXAMPLE C.. 38
4.9.1 PROGRAMMING_DATA()... 38
4.9.2 IdentWL().. 38
4.9.3 IdentSector() ... 39

5 TESTING AND DEBUGGING... 40

6 GLOSSARY.. 41

7 SOURCES AND LINKS .. 41

 AP08057
EEPROM Emulation with XC800

 Important Flash Parameters

Application Note 5 V1.0, Nov-07

1 Introduction

Many MCUs do not contain on-chip EEPROM. To gain EEPROM functionality without the cost of an external
EEPROM, EEPROM emulation, sometimes called Flash Emulated EEPROM (FEE) is often used. This
application note gives an example for an EEPROM emulation algorithm for the XC866 and XC88x’s flash
modules. The XC866/XC88x devices each have two different types of flash modules. The PFLASH or
Program Flash is intended to be used to store code and constants with typical flash write/erase cycles and
retention times. The DFLASH or Data Flash can also be used for code and constants but has some special
features which make it more suitable for EEPROM emulation.

2 Important Flash Parameters

From XC866/XC88x data sheet some important flash parameters have to be considered. Values like data
retention, endurance and failure rate have to be discussed. Flash-module specific values like minimum size
for an erase, minimum programming width or gate disturb are important for the algorithm. Last but not least
the specific timing for erase and programming have impact on hardware resources like external capacitors
and timers. The factors mentioned above are not isolated, they influence each other. Together all of the
factors must match the application specific requirements.

2.1 Data Sheet Interpretation

2.1.1 Data retention versus Endurance versus Size

In general dealing with flash-memories involves statistics and likelihood of failures in flash contents. This
includes all kind of failures where the read out value is different from the originally programmed value.
Practically the failure-rate cannot be zero and is influenced by several effects. The data sheet shows some
cornerstones of a multi-dimensional matrix. The values stated are characterized in the product qualification
process according to the automotive AEC_Q100 standard. “Error-free” or “Zero-Defect” in this context means
that the error rate for data retention is lower than 1 ppm (parts per million) for the stated maximum cycle
figures over time and size for the data flash bank.

Generally it can be said that the lower the endurance (number of program and erase cycles) the longer the
“error-free” data retention (guaranteed time where the flash cell keeps its memory after cycling). Under the
assumption that the programming and erasing sequence is correct, the retention related failure rate for a
single flash cell is dependent on temperature over time (programming, erasing and storage) and the number
of cycles. The temperature influence is non-linear and can hardly be adjusted within an application. Therefore
the values for the data flash EEPROM emulation are specified over the whole temperature range. To get the
total failure rate of a cycled flash block, the cell failure rate has to be multiplied by the numbers of flash cells in
this block (linear dependency). In other words, if the endurance is increased, the numbers of flash cells have
to be reduced to get a “zero-defect” data retention over a certain time.

The values given in the data sheet for “Data Retention” mean Retention After Cycling (RAC). For most
applications this is a very unrealistic case as the cycling is usually distributed over the product lifetime. As an
example a device is cycled in its first year 10k times, in the second year another 10k times etc. and after 10
years operating time the full number of allowed cycles is exhausted but also the device is at its end of life. This
more realistic scenario relaxes the flash specification (retention and failure rate) very much. Nevertheless
RAC-specification is the worst case which is required for a robust specification.

Another relaxing factor is that the dataset size is usually much smaller than the totally emulated flash memory.
But the failure rate is always calculated with the total size. This means that the application is on the safe side
and there is some headroom left.

 AP08057
EEPROM Emulation with XC800

 Important Flash Parameters

Application Note 6 V1.0, Nov-07

Use Case Retention Endurance Size

Program Flash (PFLASH)

 20 years 1,000 cycles up to max. program
memory

Data Flash (DFLASH)

I 20 years 1,000 cycles 4096 bytes

II 5 years 10,000 cycles 1024 bytes

III 2 years 70,000 cycles 512 bytes

IV 2 years 100,000 cycles 128 bytes

Table 1 EEPROM Use Cases I - IV: different retention versus endurance and size

Table 1 shows the specified Retention versus Endurance and Size for the XC866/XC88x flash modules. This
table should be interpreted as follows:

For a retention time of 20 years, up to 4096 bytes can be cycled up to 1000 times.

For a retention time of 5 years, up to 1024 bytes can be cycled up to 10000 times.

For a retention time of 2 years, up to 128 bytes can be cycled up to 100000 times or up to 512 bytes can be
cycled up to 70000 times.

2.1.2 Specification of the Data Flash

The data flash bank consists of the flash cell array, the read amplifiers, the charge pumps and the digital flash
interface to the CPU core. The programming of a wordline (WL) is done by a hardware “assembly buffer”
which consists of 32 bytes. The CPU has to write the data to this buffer and the address of the WL to be
programmed. After triggering the programming state machine, the charge pumps power up and after reaching
the final voltage level, all 32 bytes of a WL are programmed at once. After that the charge pumps power down
again. While the charge pumps are active, a read access to the flash bank is not possible. The programming
process takes time and stresses the device, i.e. there is physical limit for the number of programming cycles.
The erase cycle works in a very similar way with the same restrictions. Reliability cannot be guaranteed when
using the device above these limitations. Therefore it is very important that these limits are understood by the
user who implements an EEPROM algorithm.

a) Erased State
The erased state of a flash cell is ZERO. After programming a ONE to a cell, only an erase can bring
it back to ZERO. Writing a second time to the same cell with a ZERO does not change the ONE. But a
ZERO can always be programmed to a ONE.

b) Minimum Program Width
The minimum program width is one WL. This is because there is just one 32 byte wide assembly
buffer which is copied all at once to the WL. For the DFLASH there exists an additional feature
compared to the PFLASH. It is allowed to have two “gate disturbs”. This means that the WL can be
written two times. Hence this results in a “virtual minimum program width” of one byte. Examples:

• 1
st
 write to lower 16 bytes of a WL (assembly buffer: upper 16bytes containing all ZEROS),

2
nd

 write to upper 16 bytes of the same WL (assembly buffer: lower 16 bytes either
unchanged or all ZEROS).

• 1
st
 write one byte of a WL followed by the 2

nd
 write of remaining 31 bytes of the same WL with

ZEROS or unchanged value to the previously programmed byte.

c) Maximum Program Width
The maximum program width is one WL (32 bytes).

 AP08057
EEPROM Emulation with XC800

 Important Flash Parameters

Application Note 7 V1.0, Nov-07

d) Minimum Erase Width
The minimum erase width is one sector, which is a multiple number of WLs. The DFLASH consists of
10 sectors with different sizes.

• Sec 9-6 have 4 WLs each (4x32 = 128 bytes)

• Sec 5-4 have 8 WLs each (8x32 = 256 bytes)

• Sec 2-3 have 16 WLs each (16x32 = 512 bytes)

• Sec 1-0 have 32 WLs each (32x32 = 1024 bytes)

e) Maximum Erase Width
The complete flash module can be erased all at once. Multiple sectors can be erased all at once.

f) Maximum Endurance for a Single Flash Cell
The maximum allowed endurance for a single flash cell is 100k cycles. This value is the basis for all
further considerations regarding endurance. A single flash cell cannot be programmed or erased due
to the minimum program and erase widths, e.g. one wordline for programming and one complete
sector for erase (see above). Therefore the architecture of the flash array has to be regarded.

g) One Flash Cycle
One Flash Cycle is defined as the programming of a sector followed by an erase of the sector.
Following example:

• One cycle for SEC9 can be

� one to eight write accesses as the SEC9 has four WLs

� followed by one erase

h) Number of Flash Sector Erases
The maximum number of erase cycles per sector is defined to 100k times (same as f)

i) Number of Flash Bank Erases
The maximum number of erase cycles per flash bank is defined to 300k times.

j) Number of Flash Bank Programmings
The maximum number of programming cycles per flash bank is defined to 2500k times.

k) Programming Time
The programming time is ~2.6ms.

l) Erase Time
The erase time is ~102ms.

m) Aborted Erase
An ongoing Erase can be aborted under defined circumstances. An Aborted Erase counts as one
Cycle.

n) Combined Use Cases
It is allowed to combine the Use Cases of Table 1 with certain restrictions. To reach the “Zero-Defect”-
failure rate for the whole data flash, each Use Case can be initiated only one time. The combination of
the Use Cases must not violate the boundary conditions given in a) – m). This means e.g. that Use
Cases II + III + IV can be used at the same time as long as they all use different sectors. Whereas
cycling two times Use Case IV even in two different sectors would violate the “Zero-Defect” definition.
Here the overall failure rate would be doubled.

Notice that the specification of Table 1 limits the number of bytes that can be cycled, not the number of
sectors. For example the 5 year / 10k cycles / 1024 byte spec could be applied many different memory areas
including:

Sectors 4-9 (total of 1k bytes) – 10k cycles could include 60k sector erases

 AP08057
EEPROM Emulation with XC800

 Important Flash Parameters

Application Note 8 V1.0, Nov-07

Sector 2-3 (total of 1k bytes) – 10k cycles include 20k sector erases

Sector 1 (1k bytes) – 10k cycles could include 10k sector erases

Sector 0 (1k bytes) – 10k cycles could include 10k sector erases

Examples:

� If a retention of 20 years is required, a flash size of 4 Kbytes can be cycled up to 1000 times (from
Table 1).

� If an endurance of 100k cycles is needed, the maximum number of bytes is 128; for this a data
retention of 2 years is guaranteed. If more than 128 bytes have to be cycled the endurance has to
be reduced; alternatively a new sector can be used with another 100k cycles – but this would
double the failure rate.

� A retention of 3 years with an endurance of 70k is outside the specified limits, i.e. the failure rate is
too high according to “Zero-Defect” definition. To achieve the desired retention time and endurance
we can use the 5 years / 10k cycles / 1 Kbyte specification. This specification says that up to 1k
Byte of flash can be cycled up to 10k times with a retention time of 5 years. We can cycle 7
sectors 10k times each we could emulate 70k cycles and still meet the specification as long as only
1k bytes are used. The following is an example of how this can be done:

o cycle Sec9 10k times, then Sec8 another 10k times, then Sec7, Sec6 etc… until Sec3 is
cycled (for a total of 70k cycles). Take care that the sum of all bytes is not higher than the
specified limit of 1 Kbyte, i.e. 4*128 (sectors 9-6)+ 2*256 (sectors 5-4) + 1*512 (sector 3) is
bigger than 1 Kbyte. Therefore reduce the number of used bytes from Sec 4/5 to 128 and from
Sec3 to 256.

� Example for multiple sets of data with different requirements: first set of NVM data needs a
retention of 2 years / 70k cycles / 512 bytes (dataset size is 16 bytes) and second set of NVM
data needs 5 years retention / 5k cycles / 1024 bytes (dataset size is 128 bytes alternating in two
sectors for recundancy).

o 2 years / 70k cycles / 512 bytes
This can be implemented with Sec 6, 7, 8, 9 each with 4WLs (128 bytes). Each sector can be
written up to 8 times, each sector can be erased up to 70k times. This results in
4 sectors * 70k erases = 280k sector erases for the DFLASH bank (this is below the 300k limit
per bank, OK) and
2 programs per WL * 4 WL per sector * 4 sectors * 70k cycles = 2240k programming cycles for
the DFLASH bank (< the 2500k limit per bank, OK).

o 5 years / 10k cycles / 2*512 bytes
In addition to the above data set it is allowed to have two other sectors, e.g. Sec 2, 3, each with
16WLs (512 bytes) with the following cycling:
2 sectors * 5k erases = 10k sector erases (280k + 10k = 290k total erases per bank, still OK)
and
1 write per WL * 16 WL per sector * 5k cyles * 2 sectors = 160k.which in totals 2240k + 160k =
2400k programming cycles per DFLASH bank which is in spec.

2.1.3 Hardware Error Correction Coding (ECC)

The XC866/88x flash modules have an on-chip hardware error correction. This is a digital failure detection and
correction mechanism based on the Hamming-Code principle. The implementation is an 8bit + 4bit Hamming
Code, i.e. every data byte consists of 12 bits, 8-bits of user data + 4 hidden bits with the ECC Hamming Code.
Note that the hamming code is hidden and doesn’t count toward the advertised size of the flash module. So if
a part is described as having 8k bytes of flash, there is actually 8k bytes of user flash + 4k bytes of ECC
Hamming Code. Physically the 4 ECC bits are distributed within the 12 bit word. If a byte is read or written 12

 AP08057
EEPROM Emulation with XC800

 Important Flash Parameters

Application Note 9 V1.0, Nov-07

bits are always handled internally. The Hamming Code is calculated by the flash interface before it is written to
the flash cell array and is decoded upon a read. If a single bit error happens within any 12-bit read (8-bit user
data or even the 4-bit Hamming Code itself) the scheme can always detect and even correct this error. In this
case the ECC-error will be signaled (together with the failing address) and an NMI interrupt can be triggered if
enabled. This feature gives an additional safety margin and can be used for the EEPROM algorithm.

The effectiveness of the ECC can be easily shown with following example for 16k bytes of code memory:

� Without ECC the likelihood for a corrupted code is 1 Bit out of 131072 Bits (16k*8bits).

� With ECC the likelihood for a corrupted code is 2 Bits out of 12 Bits, as all other failures can be
corrected.

 AP08057
EEPROM Emulation with XC800

 Application Specific Requirements

Application Note 10 V1.0, Nov-07

3 Application Specific Requirements

Every application has its specific requirement and therefore an EEPROM algorithm has to be developed
individually. No single algorithm can fit all applications. The following guideline describes how the different
requirements can be implemented with the XC800 flash.

A few questions regarding the applications boundary conditions have to be answered upfront. Below is a
typical questionnaire that can help to make the requirements clearer. Here the example “Operation Hour
Counter” is given. This example program keeps track of how long the device has been operating. Most of the
time the MCU is idle (either in power down mode or off). The MCU periodically wakes up to update the
operation time variable in emulated EEPROM and then goes back to sleep. The active time is very short (a
few days) compared to the product lifetime (many years). If the operating hours exceed a limit the application
signals that it needs service / maintenance. Examples for such applications can be found in automotive body
control modules (intelligent actuators) or in industrial tooling equipment.

EEPROM Emulation Questionnaire

 Question Answer

1 When is the emulation needed?

a Only after powering up/down? No, always when application is running.

b Application can wait (is stalled) while
programming or erasing (polling method)?

No, application cannot wait.

c Is real-time operation critical? Yes, application has to run. Programming
and Erasing should run in background.
Interrupts have to be processed in real-time.

2 What happens during power failure?

a Can a power failure be excluded while
programming or erasing?

No, power failure is possible.

b Can a power failure be detected while
programming or erasing?

Yes, by using the Early Warning Feature for
VDDP or other external hardware together
with ADC

c Should the algorithm be tearing-safe, i.e. no
data loss from a power loss?

Yes, if supply voltage drops, the actual
value has to be programmed resp. the old
value must not be lost.

3 Which safety level is needed?

a Keep the last dataset in another sector? Yes, the last valid count value must be
available as backup dataset.

b Keep one basic data-set in PFLASH for
having a fallback-setup?

No, not possible as application is time-
keeping.

c Double buffering of every new data-set? No.

4 Dataset size and endurance/retention?

a Minimum dataset of non-volatile bytes? < One WL.

b Number of programming cycles and required
retention.

Maximum operation time is about 250
(2500/25000) hours with granularity of 1
(10/100) second and a retention of 2 years.

Table 2 EEPROM Emulation Questionnaire for example “Operation Hour Counter”

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 11 V1.0, Nov-07

From this questionnaire the emulation scenario can be developed. Several solutions are possible.

• The dataset size fits into one WL.

• The update rate is 1 sec for a max. time of 250 hours which results in 250*3600 = 900k
programming cycles.

• Using four sectors (SEC9 – SEC6) each with 4 WLs and writing only one time per WL results in 900k
program cycles / 4 sectors = 225k programming cycles per sector and in 225k program cycles / 4
WL = 56250 erase cycles per sector (one sector erase after all 4 WL are written). The desired
retention time is 2 years.

• The total emulated flash size is 4*128 bytes = 512 bytes.

• Specification Check: 2 years / 70k cycles / 512 bytes
� max 300k programming cycles per sector (here 225k)
� max 70k erase cycles per sector (here 56250)
� max 300k erase cycles per flash bank (here 4 sectors*56250 = 225k)
� max 2500k programming cycles per flash bank (here 900k)
� max size is 4*128 bytes = 512

4 Implementation of a Real-time Example

4.1 EEPROM Emulation Concept

4.1.1 The Basic Problem

Every EEPROM emulation technique has the problem that data has to be stored in a non-volatile data
memory. Usually the data memory is a bytewise organized RAM and data can be written or overwritten with
one write-access. If the non-volatile memory is flash-based the access mechanism for reading, writing or
changing is different than for RAM. The device specific flash-architecture usually allows bytewise reading,
while writing is possible in units of several bytes (here one WL) and erasing in even bigger portions (here one
sector). In any case the software has to handle this particular flash-architecture. The first problem is that old
data cannot be overwritten like in a RAM. The new data has to be stored

a) either in another memory location

b) or the old data has to be erased before it can be updated.

Both will generate a second problem:

a) if the address of the data is changing, an algorithm is needed to find the actual valid data (even after a
power loss);

b) in the other case, an upfront erase will erase more data than it should (an entire sector); this means
that the active data-set is usually much smaller than the size of the memory that it occupies.

The starting point for any EERPOM emulation algorithm is to decide how many bytes of flash are required to
store the data set(s). The next question is the cycling rate, i.e. endurance/retention of this section of flash. If
the numbers for such a cycling data-set are clear, an emulation algorithm can be developed according to the
specific flash architecture. If there is more than one data-set the whole algorithm can be very complex.
Practically software will face a combination of both problems.

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 12 V1.0, Nov-07

4.1.2 The Size and Update Rate of the Data-set

A few examples for different data-set sizes are given below. By varying the data retention different update
rates are possible. In Table 3, Example A shows 3 ways to emulate 31 bytes of data. The first way gives
1120k writes with 2 years retention, the second method is for 160k writes with 5 years retention and the third
method gives 16k writes with 20 years retention. All methods for example A use a total of 512 bytes of flash
and 4 sectors. The last column gives the maximum possible flash size for a failure rate below 1 ppm. The
other examples can be interpreted the same way.

Example Data-set
Size

(up to)

Number of
Writes

(update rate)

Retention

Total Flash
Size Required
for Emulation

Number
of Erases

Remarks

1,120k 2 years 4x70k

160k 5 years 4x10k A 31 bytes

16k 20 years

512 bytes
in 4 sectors

4x1k

700k 2 years 2x70k
1
)

100k 5 years 2x10k B 95 bytes

10k 20 years

1024 bytes
in 2 sectors

2x1k

280k 2 years 4x70k

40k 5 years 4x10k C 127 bytes

4k 20 years

512 bytes
in 4 sectors

4x1k

Table 3 Different size of data-sets results in different update rates

1
) Here the failure rate would be bigger than 1 ppm. According to Table 1 70k cycles for 2 years are limited to

512 bytes, see also paragraph 2.1.2 n).

4.1.3 Emulation Algorithms

Different solutions are possible for the same problem. Here a very simple algorithm is demonstrated based on
the round robin principle. This is easy to understand and the endurance calculation is simple. The algorithm
does not need much computing performance but it requires a large amount of flash memory.

Real-time Compliance

The algorithm is embedded in a real-time system, i.e. there is an operating system timer which gives the tick
for the different application states. The states for the EEPROM emulation are changed with this tick. This
makes the emulation algorithm easy to adapt to any interrupt driven application.

The trigger event for a data-set update is usually a command or a signal. To simplify the application there are
two possibilities here:

• external signal (e.g. pushbutton on pin 1.6)

• internally generated signal (set/reset port 1.6 periodically by timer interrupt)

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 13 V1.0, Nov-07

This event triggers the emulation software state machine and the new data-set values are stored in the flash
memory.

The Buffer Capacitor

It is assumed that the long erase time cannot be buffered by an external capacitor in case of sudden power
drop. But it has to be assured that there is enough time to finish the programming step (~2.6ms). The XC800
family has a internal comparator that can trigger a NMI when VDDP is below 4V. When VDDC (the output of
the internal voltage regulator that supplies the core) is below 2.3V a second PreWarning (VDDCPW) NMI can
be generated, and when VDDC is less than 2.1V a brown-out reset occurs. The minimum voltage drop across
the internal regulator (VDDP-VDDC) is approx. 0.5V. Therefore following calculation is done:

(1) Q = I * t = C*U,

• where C = 47uF buffer capacitor on VDDP,

• where I = 20mA total current consumption of the device on VDDP,

• where U = 1.2V voltage drop of VDDP from the point where the device first recognizes the
drop (VDDP = 4.0V) until the programming is no longer possible due to a quickly approaching
brown-out (at VDDP = 4.0V-1.2V = 2.8V � VDDC ~= 2.8V-~0.5V = ~2.3V).

• note: here typical values are taken. In case of power fail detection while programming is in
progress, it is recommended that some power saving modes are entered immediately. This
will lengthen the critical time and might reduce the required buffer capacitor size.

(2) t = C * U / I = 47 uF * (4V – 2.8V) / 20mA = 2.82 ms

Indication Bytes

An incompletely erased sector (due to power fail) might appear fully erased upon the next power up. But the
retention time of the erased state cannot be guaranteed. There must be a method to detect a completely
erased sector. Here the algorithm confirms an erased sector by writing a special “confirm erase indication”
byte to the highest address of the sector. If this information is not found in the sector, it has to be erased
before it can be written.

The algorithm also needs a mechanism to distinguish the most recent actual data from old data. This
mechanism has to work after a power up as well, where information from volatile memories (pointers,
variables in RAM) cannot be used. Therefore the highest byte of each WL is used to indicate if a WL is
already programmed - “programmed indication”.

By using a special trick, the information “confirm erase indication” and “programmed indication” can be
combined in one byte. This trick is using the fact that DFLASH allows a second gate disturb on a WL. This
means that two write accesses are allowed on a single WL. The first write access will write the “confirm erase
indication” byte (value 0x80) to the highest sector address after a successful erase of the sector. If data is also
written to that WL (second write access � gate disturb), the highest address is written with the “programmed
indication” byte (value 0x81). This gives the software the necessary information about:

• the free sectors which can be programmed

• the actual dataset which is always the one which has the value 0x81 with the lowest sector address

• a full sector to be erased

The values 0x80 and 0x81 are selected especially by using the Hamming-Code of the hardware error
correction (ECC) in a proper way. Otherwise two bytes would be needed to store the same information. By
knowing the Hamming-Coding it is possible to overwrite a value 0x80 with 0x81. Other values might lead to an
ECC-event.

Round Robin Principle
The data-sets are written consecutively in a descending address order. If the last WL of the last sector is
programmed the algorithm wraps around and starts again with the first sector (highest address). Once a
sector is “full” and the next sector contains new data, the full sector(s) will be erased and confirmed. It is

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 14 V1.0, Nov-07

possible that the erase step is aborted because of immediate read/write request of new data or due to sudden
power loss. In this case the erase is aborted and the partially erased sector will not be confirmed and has to
be erased again.

The Search Functions

a) IdentSector()
This function searches for the sector with the actual most recent data and for full sectors that have to be
erased. It also recognizes if a sector erase still has to be confirmed or if there is no valid data in a sector.

b) IdentWL()
This function gets the “actual sector” information from IdentSector() and searches for the actual WL within this
sector. It checks if the sector is full and calculates the address of the WL that has to be programmed next.

Both functions have to be adapted to the requirements of the specific model.

The Flash Timer Interrupt
The flash module is supported by a hardware timer which ensures the proper timing for “programming”,
“erase” and “aborted erase”. The overflow-bit can generate an NMI interrupt. Inside the function
INT_viNmiIsr() several global bits have to be handled which interact with the emulation software state
machine.

The Emulated Data-set
Within the application “Operation Hour Counter” there exists only one data-set which is cycled. Example A
uses just one WL where in Example B and C multiple WLs are used (see Table 3). The non-volatile variables
in the dataset can be used for debugging purpose and plausibility checks like the following:

• count power loss events to prove the tear safe feature

• verify if every update trigger leads to successful programming

• check if relation between program and erase counts are as expected

Variable Name Meaning Length Position

ulCountVal Measures low time of P1.6 in T0 periods (pushbutton) 4 0 – 3

ulEraseCount Counts erase events 4 4 – 7

ucAbortEraseCount Counts aborted erase events 1 8

ulProgCount Counts programming events (every WL) 4 9 – 12

ucAA not used 1 13

uiVDDPPreWarnCnt Can be used to count power loss events 2 14 – 15

ulFallEdgeCnt Counts falling edges on P1.6 4 16 – 19

ulRiseEdgeCnt Counts rising edges on P1.6 4 20 – 23

ulWritingCycles Counts programming events (every data-set / Operating
Seconds)

4 24 – 27

uiECCCnt Can be used to count ECC_NMI events 2 28 – 29

ucIndProg Not used 1 30

ucIndErase Indicator Byte 1 31

Table 4 Contents of the emulated data-set; the position is the byte address within the WL

4.1.4 Running the Application

The examples can be downloaded to a target application such as a starterkit. For each example there is two
versions, one for the XC866 and one for XC886/888 family. The count state of the operation seconds is

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 15 V1.0, Nov-07

displayed on P3. Alternatively interesting values can be printed to the COM-port (only coded for Example A).
With this it is easy to do some experiments like pressing RESET or cycling power.

Figure 1 Screenshot of the MTTY window for Example A

Figure 2 Screenshot of a debug session with uVision

SEC7

0x80: confirmed
erased

0x81: WL
programmed

Count
Values

Program 4 values, 1 per WL
then

Erase Sector

0x...200 erase sec9
0x...100 erase sec8
0x... 080 erase sec7
0x... 040 erase sec6

0x0100 erase sec8

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 16 V1.0, Nov-07

4.2 Emulation Scenario – Example A

Idea Cycle one WL through four sectors in a round robin

Used Sectors Sec 9 – 6 (128 bytes (4 WL) each, total size 512 bytes)

Data-set 1 WL � max. 31 Data bytes (+ Indicator Byte)

IndicatorByte shows the status of a WL, the upper most IndicatorByte in a sector
also shows the erase status of the sector

One Flash Cycle
(for endurance calculation)

4x Program, 1x Erase

Data-set Update Program Erase Aborted Erase Note

Min. Time 1x 1 - + algorithm

Max. Time w/o Aborted Erase 2x 1x - + algorithm

Max. Time w/ Aborted Erase 2x 1x 1x + algorithm

Table 5 Overview Example A

Program flow: assumption: used sectors are successfully erased & confirmed

(1) program first WL of the first sector (starting with highest address WL in Sec 9)

(2) next data update: program 2nd WL (in descending order)

(3) next data update: find the WL with the actual data and program the next WL

(4) if sector is full (all 4 WL are programmed) � program first WL of next sector & erase old
sector(s) & confirm erase

(5) if last sector is full (Sec 6) � repeat step (1) to (4)

Meaning of
Indicator Byte

Position Value Interpretation

0x00 sector is erased but not yet confirmed

0x80 sector is erased & confirmed

0x81 WL is programmed
Conf & Prog highest byte of a sector

other corrupted data � sector to be erased

0x00 WL is not programmed

0x81 WL is programmed Prog highest byte of a WL

other corrupted data � sector to be erased

Table 6 Meaning of the Indicator Byte for the Search Functions

The following gives a graphical overview of the emulation scenario for “Example A”. For simplification only two
sectors are shown. The details can be taken from an EXCEL spreadsheet “emulation_exA.xls”.

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 17 V1.0, Nov-07

>>>>> pointer to WL2Read DB29 actual data

>>>>> pointer to WL2Prog DB29 old data

>>>>> pointer to Sec2Erase 0xXX corrupted data

0x80 indicator Prog&Conf

���� ������ ������ 	
��
���

Indicator

Conf & Prog DB30 DB29 DB28 DB2 DB1 DB0 	����

Indicator

Prog DB30 DB29 DB28 DB2 DB1 DB0 	����

Indicator

Prog DB30 DB29 DB28 DB2 DB1 DB0 	����

>>>>>
Indicator

Prog DB30 DB29 DB28 DB2 DB1 DB0 	����

Figure 3 Fully programmed Sector 9 with Indicator Bytes, WL124 contains the valid data

Emulation Steps for Example A

0xAFFF 0xAFE0

SEC9 >>>>> 0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL127

>>>>> 0x00 WL126

0x00 WL125

0x00 WL124

SEC8 0x80 WL123

0x00 WL122

0x00 WL121

0x00 WL120

0xAF1F 0xAF00
Figure 4 First time write any valid data to the upper most WL of SEC9, after SEC9 and SEC8 are

successfully erased and confirmed

0xAFFF 0xAFE0

SEC9 0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL127

>>>>> 0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL126

>>>>> 0x00 WL125

0x00 WL124

SEC8 0x80 WL123

0x00 WL122

0x00 WL121

0x00 WL120

0xAF1F 0xAF00

Figure 5 First data-set update

0xAFFF 0xAFE0

SEC9 0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL127

0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL126

0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL125

>>>>> 0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL124

SEC8 >>>>> 0x80 0x00 0x00 0x00 0x00 0x00 0x00 WL123

0x00 0x00 WL122

0x00 0x00 WL121

0x00 0x00 WL120

0xAF1F 0xAF00

Figure 6 Data-set update; SEC9 is now fully programmed and SEC8 has to be used for next data

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 18 V1.0, Nov-07

0xAFFF 0xAFE0

SEC9 >>>>> 0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL127

0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL126

0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL125

0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL124

SEC8 >>>>> 0x81 DB30 DB29 DB28 DB2 DB1 DB0 WL123

>>>>> 0x00 0x00 WL122

0x00 0x00 WL121

0x00 0x00 WL120

0xAF1F 0xAF00

Figure 7 SEC9 can be erased as it contains old data only

0xAFFF 0xAFE0

SEC9 0x80 WL127

0x00 WL126

0x00 WL125

0x00 WL124

SEC8 >>>>> 0x80 DB30 DB29 DB28 DB2 DB1 DB0 WL123

>>>>> 0x00 0x00 WL122

0x00 0x00 WL121

0x00 0x00 WL120

0xAF1F 0xAF00

Figure 8 SEC9 is now confirmed erased and ready for new data

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 19 V1.0, Nov-07

4.3 Emulation Scenario – Example B

Idea Cycle three WLs through two sectors in a round robin

Used Sectors Sec 3 – 2 (512 bytes (16 WL) each, total size 1024 bytes)

Data-set 3 WL � max. 95 Data bytes (+ Indicator Byte)

IndicatorByte shows the status of a WL, the upper most IndicatorByte in a sector
also shows the erase status of the sector

One Flash Cycle
(for endurance calculation)

15x Program, 1x Erase (for 5 data-sets)

Data-set Update Program Erase Aborted Erase Note

Min. Time 3x - - + algorithm

Max. Time w/o Aborted Erase 4x
(first data-set)

1x - + algorithm

Max. Time w/ Aborted Erase 5x 1x 1x + algorithm

Table 7 Overview Example B

Program flow: assumption: used sectors are successfully erased & confirmed

(1) first program three WLs of the first sector in descending order (starting with highest
address WL-1, here Sec3 WL94-92), use the last byte as “Prog Indicator” (0x81) which
indicates that data-set is successfully programmed

(2) program “Conf Indicator”(0x81) to the highest address WL of the sector in a fourth
programming access (only necessary for first dataset per sector); this indicates that the
sector is not empty

(3) next data update: program the next 3 WLs in descending order (here WL 91-89)

(4) repeat until sector is fully programmed (5x dataset can be programmed)

(5) if sector is full continue with next sector and erase if first dataset after successful
programming

Meaning of
Indicator Byte

Position Value Interpretation

0x00 sector is erased but not yet confirmed

0x80 sector is erased & confirmed

0x81 sector is programmed
Conf & Prog highest byte of a sector

other corrupted data � sector to be erased

0x00 WL/dataset is not programmed

0x81 dataset is programmed Prog highest byte of a WL

other corrupted data � sector to be erased

Table 8 Meaning of the Indicator Byte for the Search Functions

The following gives a graphical overview of the emulation scenario for “Example B”. For simplification only one
sector is shown. The details can be taken from an EXCEL spread-sheet “emulation_exB.xls”.

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 20 V1.0, Nov-07

0x80 indicator

DB29 old data

0x00 erased

DB29 actual data
0x00 not used

���� ������ ������ 	
��
���
Sector not used not used not used not used not used not used 	��� --> Info WL

DB31 DB30 DB29 DB28 DB2 DB1 DB0 	���
DB63 DB62 DB61 DB60 DB34 DB33 DB32 	��� Data Block 1

Block DB94 DB93 DB92 DB65 DB64 DB63 	���
DB31 DB30 DB29 DB28 DB2 DB1 DB0 	���
DB63 DB62 DB61 DB60 DB34 DB33 DB32 	��� Data Block 2Indicator Data

Block DB94 DB93 DB92 DB65 DB64 DB63 	���
DB31 DB30 DB29 DB28 DB2 DB1 DB0 	���
DB63 DB62 DB61 DB60 DB34 DB33 DB32 	��� Data Block 3Indicator Data

Block DB94 DB93 DB92 DB65 DB64 DB63 	���
DB31 DB30 DB29 DB28 DB2 DB1 DB0 	���
DB63 DB62 DB61 DB60 DB34 DB33 DB32 	��� Data Block 4

Block DB94 DB93 DB92 DB65 DB64 DB63 	���
DB31 DB30 DB29 DB28 DB2 DB1 DB0 	���
DB63 DB62 DB61 DB60 DB34 DB33 DB32 	��� Data Block 5

Block DB94 DB93 DB92 DB65 DB64 DB63 	���

������ ������

Figure 9 Fully programmed sector

0x80 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL95 --> Info WL

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL94

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL93 Data Block 1

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL92

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL91

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL90 Data Block 2
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL89

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL88
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL87 Data Block 3

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL86
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL85

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL84 Data Block 4
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL83

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL82
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL81 Data Block 5

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL80

Figure 10 Erased and confirmed sector

0x81 0x00 0x00 0x00 0x00 0x00 0x00 4th WL WL95 --> Info WL

DB31 DB30 DB29 DB28 DB2 DB1 DB0 1st WL WL94

DB63 DB62 DB61 DB60 DB34 DB33 DB32 2nd WL WL93 Data Block 1

0x81 DB94 DB93 DB92 DB65 DB64 DB63 3rd WL WL92

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL91
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL90 Data Block 2
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL89
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL88
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL87 Data Block 3
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL86
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL85
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL84 Data Block 4
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL83
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL82
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL81 Data Block 5
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL80

Figure 11 First data-set update and writing sector indicator

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 21 V1.0, Nov-07

0x81 0x00 0x00 0x00 0x00 0x00 0x00 WL95 --> Info WL

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL94

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL93 Data Block 1

0x81 DB94 DB93 DB92 DB65 DB64 DB63 WL92

DB31 DB30 DB29 DB28 DB2 DB1 DB0 1st WL WL91
DB63 DB62 DB61 DB60 DB34 DB33 DB32 2nd WL WL90 Data Block 2
0x81 DB94 DB93 DB92 DB65 DB64 DB63 3rd WL WL89
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL88
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL87 Data Block 3
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL86
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL85
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL84 Data Block 4
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL83
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL82
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL81 Data Block 5
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL80

Figure 12 Second data-set update

0x81 0x00 0x00 0x00 0x00 0x00 0x00 WL95 --> Info WL

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL94

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL93 Data Block 1

0x81 DB94 DB93 DB92 DB65 DB64 DB63 WL92

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL91
DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL90 Data Block 2
0x81 DB94 DB93 DB92 DB65 DB64 DB63 WL89
DB31 DB30 DB29 DB28 DB2 DB1 DB0 1st WL WL88
DB63 DB62 DB61 DB60 DB34 DB33 DB32 2nd WL WL87 Data Block 3
0x81 DB94 DB93 DB92 DB65 DB64 DB63 3rd WL WL86
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL85
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL84 Data Block 4
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL83
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL82
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL81 Data Block 5
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 WL80

Figure 13 Third data-set update

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 22 V1.0, Nov-07

4.4 Emulation Scenario – Example C

Idea Cycle four WLs through four sectors in a round robin

Used Sectors Sec 9 – 6 (128 bytes (4 WL) each, total size 512 bytes)

Data-set 4 WL � max. 127 Data bytes (+ Indicator Byte)

IndicatorByte shows the status of a Sector

One Flash Cycle
(for endurance calculation)

4x write (complete sector in 4 steps), 1x erase

Data-set Update Program Erase Aborted Erase Note

Min. Time 4x - - + algorithm

Max. Time w/o Aborted Erase 5x
(first data-set)

1x - + algorithm

Max. Time w/ Aborted Erase 5x 1x 1x + algorithm

Table 9 Overview Example C

Program flow: assumption: used sectors are successfully erased & confirmed

(1) program the four WLs of the first sector in ascending order (starting with lowest address)
and write 0x81 to the highest sector address

(2) second data update: program the next sector

(3) third data update: program the next sector and erase & confirm the previous two sectors

(4) repeat with (2)

Meaning of
Indicator Byte

Position Value Interpretation

0x00 sector is erased but not yet confirmed

0x80 sector is erased & confirmed

0x81 WL is programmed
Conf & Prog highest byte of a sector

other corrupted data � sector to be erased

Table 10 Meaning of the Indicator Byte for the Search Functions

The following gives a graphical overview of the emulation scenario for “Example C”. The details can be taken
from an EXCEL spread-sheet “emulation_exC.xls”.

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 23 V1.0, Nov-07

Figure 14 First data-set update, three erased & confirmed sectors

0xAFFF 0xAFE0

SEC9 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL127

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL126

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL125

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL124

SEC8 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL123

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL122

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL121

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL120

0xAF1F 0xAF00

SEC7 0x80 WL119

WL118

WL117

WL116

0xAE9F 0xAE80

SEC6 0x80 WL115

WL114

WL113

WL112

0xAE1F 0xAE00

Figure 15 Second data-set update, two erased & confirmed sectors

0xAFFF 0xAFE0
SEC9 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL127

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL126
DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL125
DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL124

SEC8 0x80 WL123
WL122
WL121
WL120

0xAF1F 0xAF00

SEC7 0x80 WL119
WL118
WL117
WL116

0xAE9F 0xAE80

SEC6 0x80 WL115
WL114
WL113
WL112

0xAE1F 0xAE00

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 24 V1.0, Nov-07

0xAFFF 0xAFE0

SEC9 0x80 DB30 DB29 DB28 DB2 DB1 DB0 WL127

WL126

WL125

WL124

SEC8 0x80 WL123

WL122

WL121

WL120

0xAF1F 0xAF00

SEC7 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL119

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL118

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL117

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL116

0xAE9F 0xAE80

SEC6 0x80 WL115

WL114

WL113

WL112

0xAE1F 0xAE00

Figure 16 Third data-set update followed by an erase of the old two sectors

0xAFFF 0xAFE0

SEC9 0x80 DB30 DB29 DB28 DB2 DB1 DB0 WL127

WL126

WL125

WL124

SEC8 0x80 WL123

WL122

WL121

WL120

0xAF1F 0xAF00

SEC7 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL119

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL118

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL117

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL116

0xAE9F 0xAE80

SEC6 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL115

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL114

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL113

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL112

0xAE1F 0xAE00
Figure 17 Fourth data-set update

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 25 V1.0, Nov-07

0xAFFF 0xAFE0

SEC9 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL127

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL126

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL125

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL124

SEC8 0x80 WL123

WL122

WL121

WL120

0xAF1F 0xAF00

SEC7 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL119

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL118

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL117

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL116

0xAE9F 0xAE80

SEC6 0x81 DB126 DB125 DB124 DB98 DB97 DB96 WL115

DB95 DB94 DB93 DB92 DB66 DB65 DB64 WL114

DB63 DB62 DB61 DB60 DB34 DB33 DB32 WL113

DB31 DB30 DB29 DB28 DB2 DB1 DB0 WL112

0xAE1F 0xAE00
Figure 18 Fifth data-set update with round robin, SEC6 / 7 can be erased, SEC8 ready for programming

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 26 V1.0, Nov-07

4.5 Application State Machine

The whole process is divided into a finite number of states. A diagram of this finite state machine (FSM) is
shown below. The general procedure is as follows: after initialization of the device a search for the most
recent actual data is performed and the corresponding variables are set accordingly, then the FSM is entered.
As soon as a new programming request comes in (‘Signal’ 1�0�1) the FSM steps through the “EEPROM
Emulation States”. The states IDLE, COUNTING, STOPPED, ERROR, POWERDOWN are standard “User
Application States” and do not belong to the EEPROM emulation algorithm itself. Additional states can be
easily added.

The FSM is implemented in the interrupt service routine of Timer 0. For all three examples the FSM is
designed identically only the state PROGRAMMING_DATA varies slightly. In the following sections the
common routines are described first then each example has its own chapter for its specific
PROGRAMMING_DATA implementation. The states POWERDOWN and ERROR are not implemented.

Figure 19 State Diagram of the “Operation Hour Counter” with EEPROM Emulation

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 27 V1.0, Nov-07

4.6 Common Flowcharts of the Examples

4.6.1 Main Routine

Figure 20 Endless loop for handling powerdown and wakeup

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 28 V1.0, Nov-07

4.6.2 Interrupt Service Routine of Timer 0

4.6.2.1 Application Relevant States

Figure 21 User Application States within T0 Interrupt Service Routine

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 29 V1.0, Nov-07

4.6.2.2 States for Programming

Note: PROGRAMMING_DATA differs for each example

���������	
�

���
�������

�������������

������
������������

���������������������

������
�� ��
�!

��������
�������

"������������
##����	
�

�����"�$���

������

�����
##����

	
�

������

%�&

������
�� ��

�!'
��

������
��(���)

"�����������*�
"*�	
�

������������+

�����"�$���

������

�������*��&���(���)

"�$��������,

���
�������

������
��������������

$�������-�����������.�����$�����

������
�� ��
�!

��������
�������

"������������
##�������+

�����
##����

���+

������

%�&

������
�� ��

�!'
��

"��������	�*

"�$��������

/�)�'

"�������

������������+

%�&

��������
��(����!

"����������������	
�

%�&

��

�������

"�$�*��&�

'

������
��(���)

"��������	�*

%�&

��
���� ����

��'

������
��(�--

"����������������	
�

0������������

%�&

��

Figure 22 Programming States within T0 Interrupt Service Routine for Example C

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 30 V1.0, Nov-07

4.6.2.3 States for Erasing

Figure 23 Erasing States within T0 Interrupt Service Routine

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 31 V1.0, Nov-07

4.6.3 Non Maskable Interrupt Service Routine

Figure 24 NMI Service Routine for Flash Timer and VDDP Prewarning

4.6.4 External Interrupt

Figure 25 External signal as trigger event for dataset update

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 32 V1.0, Nov-07

4.7 Individual Flowcharts for Example A

4.7.1 PROGRAMMING_DATA()

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 33 V1.0, Nov-07

4.7.2 IdentSector()

�����
$�"�$���1����� ���
�$�

�������2�"�$���1����� ���
��2�

��
�$�����)23)

�����"�$���

"�$��������4

"�$�*��&����)

"�$��������)

�$"�$�����������)

����������&��&�$���)

"�$�� ��%���)

����
�����
�� �!

+��$����

����������	
�

"�$�����,

/)�'

%�&

%�&

��
�$�����)23! ��
�$�����)2))��

+���������&��&�$���!

0������"�$�����

0������"�$�*��&�

�$"�$�������(������

�������*��&���(���!

�����������������

0������"�$�*��&�

��
��2�����)23! ��
��2�����)23)

%�&

��

0������"�$�����
0������"�$�����

0������"�$�*��&�

%�&

��

%�&

��

����
�����
 �
"�#����

$��������
�����
 �
"�#�����%��&�
��%����#�#

$��������
��
����� �!

�
��' �����#�#�
������������
�

����
���
�(��
�
�)�����

�
��' ����
�#�#����
#��'#
�
����
�

��

��

������

�� ���
������
����)

0������"�$�*��&�
%�&

��

�(
�������#���
#

�����
����
�
(����#����
#"#������� ��
�&��
#�����
��

���&�$���&�.��5����

6���������'

0�������$
$������

�����1����	������!

%�&

"�$�� ��%���

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 34 V1.0, Nov-07

4.7.3 IdentWL()

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 35 V1.0, Nov-07

4.8 Individual Flowcharts for Example B

4.8.1 PROGRAMMING_DATA()

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 36 V1.0, Nov-07

4.8.2 IdentWL()

��������&��������&�$����

���
��2

��
��2����)23!

�������

+��$����

������

�

%�&

��

0��������������

0����������������

������������!

�����78������&�$���� ���
��2

��
��2����)23!

%�&

��

0��������������

�����������������

�����98������&�$���� ���
��2

��
��2����)23!

%�&

��

0��������������

�����������������

�����!)8������&�$���� ���
��2

��
��2����)23!

%�&

0��������������

�����������������

��
��2����)23)

������

*#�#��

�+���
����� �!

*#�#��

�+���
����� �!

*#�#��

�+���
����� �!

�� �����!48������&�$���� ���
��2

��
��2����)23!

%�&

0��������������

�����������������

*#�#��

�+���
����� �!

�� �����!:8������&�$���� ���
��2

*#�#��

�+������
�� �!�
����
���� �!

0��������������

�����������������

�
��, &����)�����	��&#���&��

%����#�������
)��&������
��
-��#��&����#�������"�
����.�

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 37 V1.0, Nov-07

4.8.3 IdentSector()

�������
�$�

�������
��2�

��
�$�����)23)

�����"�$���

"�$���������

"�$�*��&����)

�$"�$�����������)

����
�����
�� �!

+��$����

����������	
�

"�$������--

/)�'

%�&

��
�$�����)23! ��
�$�����)2))��

0�������$
$������

%�&

�$"�$�������(������

�����������������

0������"�$�*��&�

$�����&�$��������' ��
��2�����)23!

��

%�&

0������"�$�*��&�

0�������$
$������
%�&

��
%�&

��

����
�����
 �
"�#����

����
���
��
)'

� ����

�
%��&���� !�
	��

$��������
��
%��&���%����#�#

$��������
��
����� �!�
#��'#
��#�#�
�
����������
����
�

����
���
�(��
�
�)�����

�
��' ����
�#�#����
#��'#
�
����
�

������

��

��

���
������
����)

0������"�$�*��&�%�&

��

�(
�������#���
#

�����
����
�
(����#����
#"#������� ��
�&��
#�����
��

%�&

���&�$���&�.��5����

6���������'
��

0�������$
$������

�����1����	������!

������������!

%�&

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 38 V1.0, Nov-07

4.9 Individual Flowcharts for Example C

4.9.1 PROGRAMMING_DATA()

4.9.2 IdentWL()

�������

0��������������

0����������������

������

 AP08057
EEPROM Emulation with XC800

 Implementation of a Real-time Example

Application Note 39 V1.0, Nov-07

4.9.3 IdentSector()

 AP08057
EEPROM Emulation with XC800

 Testing and Debugging

Application Note 40 V1.0, Nov-07

5 Testing and Debugging

Real-time Debugging is quite tricky especially if timers cannot be suspended (see chapter On-Chip Debug
Support in the corresponding Users Manual, note: XC886/888 is more advanced than XC866). The on-chip
debug support (OCDS) module is monitor based, i.e. a debug request forces the program counter (PC) to
point to the BootROM and triggers an NMI interrupt. The BootROM routines handle the request and
communicates via JTAG/UART to the debugger. All interrupts are disabled while executing the monitor
routines. The CPU executes the debug monitor functions and debug data is handled in an extra monitor RAM.

The flash timer triggers an NMI interrupt as well and interferes with the OCDS. Therefore breaking (breakpoint
or single step) an ongoing programming/erase steps causes problems. Usually the NMI-break is reached but
the debug session crashes with the next session (see erratum OCDS_XC8.009 for XC866). For XC866 family
a tricky workaround is that the NMI request flags have to be handled manually when debugger hits the break
inside the NMI-ISR.

No problems occur when breaking inside the T0 interrupt states.

 AP08057
EEPROM Emulation with XC800

 Sources and Links

Application Note 41 V1.0, Nov-07

6 Glossary

AEC Automotive Excellence Council

DFLASH Data Flash

ppm parts per million

EEPROM Electrical Erasable and Programmable Read Only Memory

ECC Error Correction Code

FSM Finite State Machine

ISR Interrupt Service Routine

NMI Non Maskable Interrupt

NVM Non-Volatile Memory

OCDS On-chip Debug Support

PC Program Counter

PFLASH Program Flash

ppm parts per million

RAC Retention After Cycling

Sec / SEC Sector

WL Wordline

7 Sources and Links

Users Manual, Data Sheet & Errata Sheets XC866

Users Manual, Data Sheet & Errata Sheets XC886/888

ApHint_XC8_05_0001-0006 – FlashApHints on StarterKit CD XC866 and XC888, CD contents on
www.infineon.com/cms/en/product/channel.html?channel=db3a304312dc768d0112e23122300536

www.infineon.com/XC866 � Services for Engineers

www.infineon.com/XC888 � Services for Engineers

http:/ /www.inf ineon.com

Published by Infineon Technologies AG

