

Appl icat ion Note, V1.0, Oct. 2006

Microcontrol lers

XC800 Family
RMAP and Paging
in Interrupt Events

AP08053

Edition 2006-10
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION
OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY
ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY
DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT
LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY
THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

AP08053
RMAP and Paging in Interrupt Events

XC800 Family

Revision History: V1.0, 2006-10
Previous Version(s):
none
Page Subjects (major changes since last revision)

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com
Application Note V1.0, 2006-10

mailto:mcdocu.comments@infineon.com

AP08053
RMAP and Paging in Interrupt Events

Overview
1 Overview
In the XC800 architecture, the Special Function Registers (SFRs) occupy the direct
internal data memory space in the range 80H to FFH. However, the 128-SFR range is less
than the total number of registers required and therefore address extension mechanisms
are used to increase the number of addressable SFRs. The address extension
mechanisms include:
• Mapping
• Paging

This document is intended to provide users of the Infineon XC800 family with guidelines
on how to use the address extension mechanisms to improve code efficiency.
Application Note 4 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Mapping
2 Address Extension by Mapping
The SFR can reside in two areas in the memory: the standard (non-mapped) SFR area
and the mapped SFR area. Each area supports the same address range 80H to FFH
bringing the number of addressable SFRs to 256. In order to access the mapped SFR
area, the SFR bit in SYSCON0.RMAP must be set. Alternatively, the standard SFR area
can be accessed by clearing bit RMAP.

In summary, accessing a mapped SFR will require the following steps:
1. Set RMAP
2. Access the SFR
3. Clear RMAP

Since every mapped SFR access can be interrupted by a higher priority interrupt, there
might be a problem if an interrupt comes between step 1 and step 2. The code within the
interrupt service routine will clear the RMAP bit if it needs to access the standard SFR
area.
There are two methods to avoid the problem:

a) Block the interrupt globally before accessing the RMAP and enable globally after
accessing RMAP or

b) Save the RMAP in every interrupt service routine, i.e. push RMAP on stack, modify
RMAP accordingly and pop it back from stack.

SYSCON0
System Control Register 0 Reset Value: 04H

7 6 5 4 3 2 1 0

0 IMODE 0 1 0 RMAP

r rw r r r rw

The function of the shaded bit is not described here

Field Bits Type Description
RMAP 0 rw Special Function Register Map Control

0 Accessed to non-mapped(standard) special
function register area.

1 Accessed to mapped special function register
area.
Application Note 5 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Mapping
Method (b) is preferred because disabling the interrupts globally can increase interrupt
latency and might result in the loss of an interrupt event.

Examples for mapped peripherals:
WDT, UART1, T21, MDU, CORDIC, OCDS, Flash Routines (read and write)

Solution with method a:
refresh_WDT () {
EA=0; //block interrupts globally
SYSCON0 |= 0x01; //set RMAP to access WDT register
WDTCON |= 0x02; //refresh
SYSCON0 &=~0x01; //clr RMAP
EA=1; //disable interrupts globally
}

Solution with method b:
refresh_WDT () {
SYSCON0 |= 0x01; //set RMAP to access WDT register
WDTCON |= 0x02; //refresh
SYSCON0 &=~0x01; //clr RMAP
}

ISR_1 () {
push(SYSCON0); //save RMAP status on stack
SYSCON0 &=~0x01; //clr RMAP as an example for modification
... //code in interrupt service routine
pop(SYSCON0); //restore RMAP status from stack
}

Note: Keil provides the following intrinsic functions for C51 in intrins.h to push and pop
registers to and from the stack:

extern void _push_ (unsigned char _sfr);
extern void _pop_ (unsigned char _sfr);
Application Note 6 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Paging
3 Address Extension by Paging
The 256-SFR range is less than the total number of SFR needed by the on-chip
peripherals. In order to meet this demand, some of these peripherals have a built-in local
address extension mechanism, where additional address lines are added to decode the
SFR of the peripheral kernel.

In order to access a register located in a different page, the bitfield PAGE bits in the page
register can be programmed and the current page is left to access the new page. It
should be noted that each peripheral that supports paging has it's own page register.
Accessing a page will require the following steps:
1. Set the page register Page bits
2. Access the module SFR

If an interrupt occurs between step 1 and step 2, and the interrupt must access a register
located in another page, the current page setting must be saved, the new one
programmed and finally, the old page restored after the interrupt service routine (ISR) is
served.

The following example will illustrate the actions taken in an ISR.
1. Store RMAP
2. Set RMAP = 0 (all page registers reside in the standard SFR area)
3. Store current page setting
4. Program new page
5. Access module SFR
6. Other interrupt task
7. Restore old page setting
8. Restore RMAP

In all cases, the current page setting of the page registers must be saved before they are
modified so that they can be restored to their original page when exited from the ISR.
The most direct way to do this is to save the page registers to the stack. However, this
method of saving the page registers to the stack is inefficient and it is especially
significant with short ISR. It will not only increase the latency of the ISR but also makes
use of the limited amount of stack space.

The XC800 architecture provides a more efficient mechanism to save and modify the
current page setting without using the stack. This paging mechanism contains two
Application Note 7 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Paging
storage bits (4 storage containers) for the save and restore action. By indicating which
storage bit field should be used in parallel to the new page value, a single write operation
can save the current page setting and program a new page value. The above example
is thus simplified by combining step 3 and step 4.

With this mechanism, a certain number of interrupt routines or other routines can do
page changes without storing the formerly used page information. This will make the
program simpler and faster. As a result, this mechanism will significantly improve the
performance of a short ISR.

The page register has the following definition.

MOD_PAGE
Page Register for module MOD Reset Value: 00H

7 6 5 4 3 2 1 0

OP STNR 0 PAGE

w w r rw

Field Bits Type Description
PAGE [2:0] rw Page Bits

When written, the value indicates the new page
address.
When read, the value indicates the currently active
page.

STNR [5:4] w Storage Number
This number indicates which storage bit field is the
target of the operation defined by bit OP.
If OP = 10B,
the content of PAGE is saved in STx before being
overwritten with the new value.
If OP = 11B,
the content of PAGE is overwritten by the content of
STx. The value written to the bit positions of PAGE is
ignored.

00 ST0 is selected.
01 ST1 is selected.
10 ST2 is selected.
11 ST3 is selected.
Application Note 8 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Paging
3.1 Using the Storage Containers
The paging mechanism provides a depth of four storage containers (ST0 - ST3) when
there could be six levels of priorities. These levels (arranged according to the priority with
6 being the highest) are as follows:
1. Main
2. Interrupt level 0
3. Interrupt level 1
4. Interrupt level 2
5. Interrupt level 3
6. Non-maskable interrupt (NMI)

The main refers to routines that run prior to any interrupts and can be interrupted by any
of the interrupts. The four interrupt levels (level 0 – 3) are four priority levels where each
interrupt source can be programmed to. An interrupt that is currently being serviced can
only be interrupted by a higher-priority interrupt, but not by another interrupt of the same
or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any
other interrupt request. In any case, the NMI always has the highest priority (above level
3) and its priority level cannot be programmed.

OP [7:6] w Operation
0X Manual page mode. The value of STNR is

ignored and PAGE is directly written.
10 New page programming with automatic page

saving. The value written to the bit positions of
PAGE is stored. In parallel, the former content
of PAGE is saved in the storage bit field STx
indicated by STNR.

11 Automatic restore page action. The value
written to the bit positions PAGE is ignored
and instead, PAGE is overwritten by the
content of the storage bit field STx indicated by
STNR.

0 3 r Reserved
Returns 0 if read; should be written with 0.

Field Bits Type Description
Application Note 9 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Paging
For any of the six levels mentioned above, the storage number should be unique at each
level to avoid being overwritten by a different storage number when it is interrupted by a
higher priority interrupt that is accessing the same module. Users must also ensure that
the storage numbers within the ISRs are changed accordingly when the interrupt priority
levels are changed.

Although there are six levels of priority as mentioned above, the main routine need not
make use of the storage container mainly because it always has to open the correct page
prior to accessing the module SFR and therefore it is not required to restore a previous
page setting. This leaves us with five levels of interrupts and four storage containers. If
all priority levels are used in an application, then not every interrupt level can have its
own storage container. A workaround is to make use of the stack as the extended
storage container. The ISR may also call functions that will modify the page registers. If
these functions are shared by ISRs of different priority levels then these functions can
be interrupted. It is therefore necessary to save and restore the page registers that will
be modified in these functions. In such cases, the stack should be used as the storage
container as the storage number of the page registers can be overwritten by a higher
priority ISR calling the same function.

In summary:
• All the page registers modified in an ISR must be saved.
• The storage container should be unique at each interrupt level.
• The storage numbers within the ISRs must be changed accordingly when the

interrupt priority levels are changed.
• No storage container is necessary for the main level.
• Stack can be used as the extended storage container.
• Page registers modified in functions called by the ISRs should use the stack as the

storage container if the functions are shared among different priority level ISRs.

The example below will illustrate why it is necessary to use a different container for every
interrupt level.

Main:
SCU page set as 1
Interrupt by level 0 ISR
Access ID register
…

ISR level 0:
Application Note 10 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Paging
Save current SCU page in storage 0 (ST0) and open SCU page 0 (SCU
page 1 in ST0)
Interrupt by level 1 ISR
Access IRCON1 register
Restore SCU page from ST0

ISR level 1:
Save current SCU page in storage 1 (ST1) and open SCU page 3 (SCU
page 0 in ST1)
Interrupt by level 2
Access IRCON3 register
Restore SCU page from ST1

ISR level 2:
Save current SCU page in storage 2 (ST2) and open SCU page 0 (SCU
page 3 in ST2)
Interrupt by level 3
Access IRCON2 register
Restore SCU page from ST2

ISR level 3:
Save current SCU page in storage 3 (ST3) and open SCU page 1 (SCU
page 0 in ST3)
Interrupt by NMI
Access PMCON0 register
Restore SCU page from ST3

NMI:
Save current SCU page in storage stack
Open SCU page 1
Access PLL_CON register
Restore SCU page from stack

Consider the case where NMI makes use of the storage container used in ISR level 1
(storage 1).
NMI:
Save current SCU page in storage 1 (ST1)and open SCU page 1 (SCU
page 1 saved in ST1)
Access PLL_CON
Restore SCU page in ST1
Application Note 11 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Paging
The pages will be restored correctly as the program returns from ISR at level 3 and level
2. However, the ISR at level 1 will restore SCU page 1 instead of SCU page 0 as the
storage has been overwritten in the NMI routine. As a result, the ISR at level 0 will access
the wrong module SFR. Although such scenarios are rare in a real application, caution
must be exercised when handling the storage containers to avoid corruption of the page
registers.

It may be appropriate for the interrupt at the lowest priority level to make use of the stack
as the extended storage container since they are the least critical ones and therefore the
latency may be more relaxed. It may also depend on other factors such as the number
of page registers to save (stack space) and also the number of routines at that priority
level (more routines mean more code).

3.2 Coding Examples
A page can be set active by writing directly to page register’s page field (bits 0 - 2) with
all other bits set to 0. The examples below show how SCU page 1 and PORT page 2 are
set active.
SCU_PAGE = 0x01;
PORT_PAGE = 0x02;

The next example will illustrate how to save the current page of SCU_PAGE register into
the storage bit field ST1 indicated by the STNR (bits 4 and 5) field and then restore it.
//SCU_PAGE was set to page 1
SCU_PAGE = 0x93 //open SCU page 3 and save SCU page 1 into ST1.

//OP = 10, STNR = 01 (ST1), PAGE = 011
//… access module SFR in SCU page 3
SCU_PAGE = 0xD0 //restore page saved in ST1. OP = 11, STNR = 01

//(ST1)
//SCU_PAGE restored to page 1

A macro is defined in main.h to open and save a page when code is generated from
DAVE:
#define SFR_PAGE(pg, op) pg+op

Hence the above example can be written as:
//SCU_PAGE was set to page 1
SFR_PAGE(SCU_PAGE=3, 0x90);//open SCU page 3 and save SCU

//page 1 into ST1.
Application Note 12 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Paging
//OP = 10, STNR = 01 (ST1), PAGE = 011
//… access module SFR in SCU page 3
SFR_PAGE(SCU_PAGE=0, 0xD0);//restore page saved in ST1. OP = 11,

//STNR = 01 (ST1)
//SCU_PAGE restored to page 1

DAVE generated codes may save the current page to the storage every time a new page
is written. At the main level, this is not necessary, however, it does not matter if you
assign storage for it since the new page is always written prior to an access to the
module SFR. It is only critical at ISR levels where the routines have to restore the page
prior to the interrupt.
my_routine () {
//SCU_PAGE was set to page 0
SFR_PAGE(SCU_PAGE=1, 0xB0);//open SCU page 1 and save SCU page 0

//into ST3.
//OP = 10, STNR = 11 (ST3), PAGE = 001

… level 3 interrupt comes at this point!
//page is restored correctly although ST3 was corrupted in ISR_3()
//access module SFR on SCU page 1
PMCON0 = 0;
}

ISR_3 () {
push(SYSCON0); //save RMAP status on stack
SYSCON0 &=~0x01; //clr RMAP in order to access the standard

//memory where the SCU_PAGE registers
//reside.

SFR_PAGE(SCU_PAGE=3, 0xB0); //open SCU page 3 and save current
//SCU page into ST3.
//OP = 10, STNR = 11 (ST3), PAGE = 011
//overwrites ST3 in my_routine ()

//access module SFR on SCU page 3
IRCON3 = 0;
… other code in interrupt service routine
SFR_PAGE(SCU_PAGE=3, 0xF0);//restore SCU page from ST3

//OP = 11, STNR = 11 (ST3), PAGE =
//ignore

//SCU page restored to page 1
pop(SYSCON0); //restore RMAP status from stack
}

Application Note 13 V1.0, 2006-10

AP08053
RMAP and Paging in Interrupt Events

Address Extension by Paging
Saving a page register to the stack will be very direct. Using the above example,
my_routine () {
//SCU_PAGE was set to page 0
SFR_PAGE(SCU_PAGE=1, 0xB0);//open SCU page 1 and save SCU page 0

//into ST3.
//OP = 10, STNR = 01 (ST1), PAGE = 011

… level 3 interrupt comes at this point!
//access module SFR of SCU page 1
PMCON0 = 0;
}

ISR_3 () {
push(SYSCON0); //save RMAP status on stack
SYSCON0 &=~0x01; //clr RMAP in order to access the standard

//memory where the SCU_PAGE registers
//reside.

push(SCU_PAGE); //save SCU_PAGE in stack
SFR_PAGE(SCU_PAGE=3, 0x00); //Open SCU page 3 without saving the

//current page.
//access module SFR on SCU page 3
IRCON3 =0
… other code in interrupt service routine
pop(SCU_PAGE); //SCU page restored to page 1
pop(SYSCON0); //restore RMAP status from stack
}

Application Note 14 V1.0, 2006-10

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

http://www.infineon.com

	1 Overview
	2 Address Extension by Mapping
	3 Address Extension by Paging
	3.1 Using the Storage Containers
	3.2 Coding Examples

