我的PCB设计经验 -------------------------------------------------------------------------------- http://eda.sdedu.net 2004-6-12 15:21:13 阅读次数: 作为一个电子工程师设计电路是一项必备的硬功夫,但是原理设计再完美,如果电路板设计不合理性能将大打折扣,严重时甚至不能正常工作。根据我的经验,我总结出以下一些PCB设计中应该注意的地方,希望能对您有所启示。 不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于protel界面风格与windows视窗接近,操作习惯也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。) 原理图设计是前期准备工作,经常见到初学者为了省事直接就去画PCB板了,这样将得不偿失,对简单的板子,如果熟练流程,不妨可以跳过。但是对于初学者一定要按流程来,这样一方面可以养成良好的习惯,另一方面对复杂的电路也只有这样才能避免出错。 在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会出现看似相连实际未连(电气性能上)的情况。如果不用相关检测工具检测,万一出了问题,等板子做好了才发现就晚了。因此一再强调按顺序来做的重要性,希望引起大家的注意。 原理图是根据设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 1.制作物理边框 封闭的物理边框对以后的元件布局、走线来说是个基本平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但这里一定要注意精确,否则以后出现安装问题麻烦可就大了。还有就是拐角地方最好用圆弧,一方面可以避免尖角划伤工人,同时又可以减轻应力作用。以前我的一个产品老是在运输过程中有个别机器出现面壳PCB板断裂的情况,改用圆弧后就好了。 2.元件和网络的引入 把元件和网络引人画好的边框中应该很简单,但是这里往往会出问题,一定要细心地按提示的错误逐个解决,不然后面要费更大的力气。这里的问题一般来说有以下一些: 元件的封装形式找不到,元件网络问题,有未使用的元件或管脚,对照提示这些问题可以很快搞定的。 3.元件的布局 元件的布局与走线对产品的寿命、稳定性、电磁兼容都有很大的影响,是应该特别注意的地方。一般来说应该有以下一些原则: (1)放置顺序 先放置与结构有关的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK功能将其锁定,使之以后不会被误移动。再放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等。最后放置小器件。 (3)注意散热 元件布局还要特别注意散热问题。对于大功率电路,应该将那些发热元件如功率管、变压器等尽量靠边分散布局放置,便于热量散发,不要集中在一个地方,也不要高电容太近以免使电解液过早老化。 4.布线 布线原则 走线的学问是非常高深的,每人都会有自己的体会,但还是有些通行的原则的。 ◆高频数字电路走线细一些、短一些好 ◆大电流信号、高电压信号与小信号之间应该注意隔离(隔离距离与要承受的耐压有关,通常情况下在2KV时板上要距离2mm,在此之上以比例算还要加大,例如若要承受3KV的耐压测试,则高低压线路之间的距离应在3.5mm以上,许多情况下为避免爬电,还在印制线路板上的高低压之间开槽。)   ◆两面板布线时,两面的导线宜相互垂直、斜交、或弯曲走线,避免相互平行,以减小寄生耦合;作为电路的输人及输出用的印制导线应尽量避兔相邻平行,以免发生回授,在这些导线之间最好加接地线。   ◆走线拐角尽可能大于90度,杜绝90度以下的拐角,也尽量少用90度拐角   ◆同是地址线或者数据线,走线长度差异不要太大,否则短线部分要人为走弯线作补偿   ◆走线尽量走在焊接面,特别是通孔工艺的PCB   ◆尽量少用过孔、跳线   ◆单面板焊盘必须要大,焊盘相连的线一定要粗,能放泪滴就放泪滴,一般的单面板厂家质量不会很好,否则对焊接和RE-WORK都会有问题   ◆大面积敷铜要用网格状的,以防止波焊时板子产生气泡和因为热应力作用而弯曲,但在特殊场合下要考虑GND的流向,大小,不能简单的用铜箔填充了事,而是需要去走线   ◆元器件和走线不能太靠边放,一般的单面板多为纸质板,受力后容易断裂,如果在边缘连线或放元器件就会受到影响   ◆必须考虑生产、调试、维修的方便性 对模拟电路来说处理地的问题是很重要的,地上产生的噪声往往不便预料,可是一旦产生将会带来极大的麻烦,应该未雨绸缎。对于功放电路,极微小的地噪声都会因为后级的放大对音质产生明显的影响;在高精度A/D转换电路中,如果地线上有高频分量存在将会产生一定的温漂,影响放大器的工作。这时可以在板子的4角加退藕电容,一脚和板子上的地连,一脚连到安装孔上去(通过螺钉和机壳连),这样可将此分量虑去,放大器及AD也就稳定了。 另外,电磁兼容问题在目前人们对环保产品倍加关注的情况下显得更加重要了。一般来说电磁信号的来源有3个:信号源,辐射,传输线。晶振是常见的一种高频信号源,在功率谱上晶振的各次谐波能量值会明显高出平均值。可行的做法是控制信号的幅度,晶振外壳接地,对干扰信号进行屏蔽,采用特殊的滤波电路及器件等。 需要特别说明的是蛇形走线,因为应用场合不同其作用也是不同的,在电脑的主板中用在一些时钟信号上,如 PCIClk、AGP-Clk,它的作用有两点:1、阻抗匹配 2、滤波电感。 对一些重要信号,如 INTELHUB架构中的HUBLink,一共13根,频率可达233MHZ,要求必须严格等长,以消除时滞造成的隐患,这时,蛇形走线是唯一的解决办法。 一般来讲,蛇形走线的线距>=2倍的线宽;若在普通PCB板中,除了具有滤波电感的作用外,还可作为收音机天线的电感线圈等等。 5.调整完善 完成布线后,要做的就是对文字、个别元件、走线做些调整以及敷铜(这项工作不宜太早,否则会影响速度,又给布线带来麻烦),同样是为了便于进行生产、调试、维修。 敷铜通常指以大面积的铜箔去填充布线后留下的空白区,可以铺GND的铜箔,也可以铺VCC的铜箔(但这样一旦短路容易烧毁器件,最好接地,除非不得已用来加大电源的导通面积,以承受较大的电流才接VCC)。包地则通常指用两根地线(TRAC)包住一撮有特殊要求的信号线,防止它被别人干扰或干扰别人。 如果用敷铜代替地线一定要注意整个地是否连通,电流大小、流向与有无特殊要求,以确保减少不必要的失误。 6.检查核对网络 有时候会因为误操作或疏忽造成所画的板子的网络关系与原理图不同,这时检察核对是很有必要的。所以画完以后切不可急于交给制版厂家,应该先做核对,后再进行后续工作。 7.使用仿真功能 完成这些工作后,如果时间允许还可以进行软件仿真。特别是高频数字电路,这样可以提前发现一些问题,大大减少以后的调试工作量。 PCB抄板密技 第一步,拿到一块PCB,首先在纸上记录好所有元气件的型号,参数,以及位置,尤其是二极管,三机管的方向,IC缺口的方向。最好用数码相机拍两张元气件位置的照片。 第二步,拆掉所有器件,并且将PAD孔里的锡去掉。用酒精将PCB清洗干净,然后放入扫描仪内,启动POHTOSHOP,用彩色方式将丝印面扫入,并打印出来备用。 第三步,用水纱纸将TOP LAYER 和BOTTOM LAYER两层轻微打磨,打磨到铜膜发亮,放入扫描仪,启动PHOTOSHOP,用彩色方式将两层分别扫入。注意,PCB在扫描仪内摆放一定要横平树直,否则扫描的图象就无法使用。 第四步,调整画布的对比度,明暗度,使有铜膜的部分和没有铜膜的部分对比强烈,然后将次图转为黑白色,检查线条是否清晰,如果不清晰,则重复本步骤。如果清晰,将图存为黑白BMP格式文件TOP.BMP和BOT.BMP。 第五步,将两个BMP格式的文件分别转为PROTEL格式文件,在PROTEL中调入两层,如过两层的PAD和VIA的位置基本重合,表明前几个步骤做的很好,如果有偏差,则重复第三步。 第六,将TOP。BMP转化为TOP。PCB,注意要转化到SILK层,就是黄色的那层,然后你在TOP层描线就是了,并且根据第二步的图纸放置器件。画完后将SILK层删掉。 第七步,将BOT。BMP转化为BOT。PCB,注意要转化到SILK层,就是黄色的那层,然后你在BOT层描线就是了。画完后将SILK层删掉。 第八步,在PROTEL中将TOP。PCB和BOT。PCB调入,合为一个图就OK了。 第九步,用激光打印机将TOP LAYER, BOTTOM LAYER分别打印到透明胶片上(1:1的比例),把胶片放到那块PCB上,比较一下是否有误,如果没错,你就大功告成了。 电脑电源问题全面解答.电源原理分析 一、电源的重要性: 电源的功能是很关键的,因为它为PC的各个部件提供动力。鉴于电源对PC的安全性和可靠性的重要作用,所以必须了解电源的功能和限制,以及电源可能出现的故障和解决方法。    二、电源分类:(七类) 过时的 现代的 PC/XT、AT/Desk、AT/Tower、Baby-AT(全尺寸AT的短缩版本) LPX(PS/2、比Baby-AT更小)、ATX、SFX(small form factor、用于Micro-ATX主板、90W~145W)   ATX尺寸:150*140*86MM,SFX尺寸:125*100*63.51MM   三、电源各组电压的功能:   电源全称:恒电压半桥式正向变换开关电源(脉宽调制PWM控制他激式直流开关电源)以+5V为基准电压。AT电源:+5V、-5V、+12V、-12V;ATX电源:于AT电源基础上增加+3.3v、+5VSB、PS-ON(信号)。   1、+5V(红色线):转换各种逻辑电路。   2、+12V(黄色线):驱动磁盘驱动器马达和所有风扇(例外:笔记本电脑的风扇使用+5V或+3.3V)。   3、+3.3V(橙色线):为CPU、主板、PCI(Peripheral Component Interconnect 外部设备互连)总线、I/O控制电路供电。   4、+5VSB(Stand By、紫色线):负责远程电源的启动(大于720mA,主板启动只要0.01A)。   5、PS-ON(绿色线):负责操作系统管理电源的开关,是一种主板信号,和+5VSB一起统称为软电源。小于1V时开启电源、大于4.5V时关闭电源,实现软件开关机、网络远程唤醒功能(设置唤醒时间、通过键盘开机)。(和GND接电线短接就可启动电源)   6、-5V(白色线):(负电压很少使用、如SFX去掉了-5V)   7、-12V(蓝色线):   PG信号(Power Good、灰色线、+5V信号(+3.0~+6.0V)):系统启动前,电源(电源打开后0.1秒~0.5秒发出该信号)进行内部检查和测试,测试通过则发给主板一个信号,故电源的开启受控于主板上的电源监控部件。PG信号非常重要,即使各路输出都正常,如果没有PG信号,主板还是无法工作;如果PG信号的时序不对,也会开不机。    四、电源版本:   1、ATX1.01版:1995年7月(Intel),激活电流+5VSB为100mA,推荐使用500 mA。   2、2.01版:1997年2月,激活电流+5VSB为720mA,推荐使用1A。   3、2.03版:1998年12月,激活电流+5VSB为1A, 推荐使用2A。   4、ATX12V(P4 CPU):2000年2月,p4和p14主板增强供电,+3.3v>18a或+5>24a。   五、电源功率计算   功率=电压*电流,每组输出电压和电流相乘后,将乘积相加后得出电源输出的总功率。   以某品牌电源300PA为例:   3.3v*10a+5v*18a+12v*6a*5vsb*1.2a=201w    六、耗电量计算(市面主流配置为例) CPU(intel 1.7G P4) 55W 主板(P4) 25W 光驱(52速) 25W 硬盘(60G 7200转) 20W 显卡(TNT2 32M) 15W 合计 140W   ISA(Industry Standard Architecture工业标准体系)标准规定:系统中每个插槽的最大耗电量为+5V为2.0A,+12V为0.175A.以技展00PA为例,+5V电压同时可带9个ISA设备和+12V电压同时可带35个ISA设备。故一个200W的电源足够使用了。   七、 电源的认证   国内:1、CCEE(Certificate of Conformity for Electrical Equipment电工产品安全认证、俗称长城认证、认证标准GB 4943-95和GB/T 14717-93)   2、EMI认证(电磁传导干扰分为EMI-A级工业用标准和EMI-B、认证标准GB9254-98)   国外:1、UL(美国)、CE(欧共体)、CSA(加拿大)、TUV/VDE(德国)、NEMKO(挪威)(以上认证相当于国内的安全认证)   2、FCC-B级认证(针对整个系统进行的认证)   八、电源的技术规范:   1、MTBF(Mean Time Between Failure平均故障间隔时间):100000小时(24小时工作11年半)。   2、输入电压范围:对110V为90V~135V 对220V为180V~270V(举例说明宽频电源此说法不科学、电压过低点不亮显示器)。   3、保持时间(输入断电后,电源输出还能保持在一定范围内的时间):15~25MS。   4、过压保护:+3.3v过压点为+4.6v,+5v过压点为+7.0V, +12v过压点为+15.6V。 过流保护:+5V输出过流保护点:150W:22.34A, 200W:25.36A, 250W:32.45A。 短路保护:任何一路输出端对地短路时(输出阻抗小于0.1Ω),电源能自动保护。   5、效率(输出功率与输入功率的比值):65%~85%。   6、输入冲击电流:小于7.0A。   7、对地泄漏电流:小于3.5mA。   8、电源开启时间(当全部电压达到正常稳定值时其时间):不得大于100mS。   9、PF信号(Power Fail Signal):当输入电源关断后,从PG信号下降到0.4v时开始,到+5v输出低于4.75v的时间应大于1mS。   10、抗电强度:电源于1分钟内应承受1500V交流或2200V直流的绝缘抗电强度测试。   11、机械噪声:低于50db(风扇转速为2500转/分钟为中速,温控风扇于普通风扇基础上加一热敏电阻、技展电源为温控电路(做于PCB上,由IC、三极管和二极管等形成);风扇的功率常见的为1.2w=0.1a*12v,空载时风扇声音均匀且较小、加负载后声音会增大)   九、电源选购技巧:   1、重量:看重量(不太科学,但实用),同等条件下越重越好。   2、电源输出线和电源线:越粗越好(很小的电阻都会产生压降损耗即阻抗)。电源横截面积为0.75平方毫米(通过CCEE认证线即国标线。一般用美式线)。   3、散热片的材质:好电源都采用铝或铜散热片,而且面积较大,厚度很厚。   4、滤波电容:好电源高压滤波电容一般为470uf或680uf。 十、电源常见问题:   1、无法开机   a、PS-ON始终为高电平(大于4.5v)。   b、POWER按键失灵。   c、电源主电路损坏。   d、负载存在短路(主板和机箱五金接触短路,例机箱箱外试好机后放入机箱后就不 亮)。   e、空载进入保护状态。   2、无法关机   a、CMOS设定关机有一延时时间(delay time),按住电源POWER按键数秒才能关机、不能实现瞬间关机,属于正常现象。   b、POWER按键失灵;   c、主板上的电源控制电路故障,PS-ON信号恒为高电平。   d、关不了键盘电源(键盘的Number Lock指示灯在主机关闭后是亮的),这是将CMOS 里的键盘开机功能打开了,属于正常现象。   e、关不了显示器。如果显卡或显示器中有一个部分不支持DPMS(Display Power Management Signaling显示器电源管理信号),在主机关闭后显示器指示灯亮,屏幕上仍有白色光栅,属于正常现象。   3、自行开机或重新启动   两大类:主板问题,电源问题   第一类:(主板问题):a、在CMOS设置中将开机功能设为"Enabled"。     b、某些主板具有来电自动开机功能(即插上交流电后,机器便会自动启动)。     c、兼容性问题(主板和显示卡不兼容)。   第二类:(电源问题)在CMOS中已关闭了定时开机和来电自动开机功能后,机器还会自行开机,这是硬件故障:     a、 电源本身的抗干扰能力差,交流电源接通瞬间产生的干扰使其主回路开始工作。     b、+5VSB电压低,使主板送不出应有的高电平,而总是为低电平,这样机器不仅会自行开机,还会关不掉。     c、来自主板的PS-ON信号质量较差,特别在通电瞬间,该信号由低电平变为高电平的延时过长,直到主电源准备好了以后,该信号仍示变为高电平,使ATX电源主回路误导通。     d、兼容性问题(电源和显卡不兼容等)。   4、休眠与唤醒功能异常   不能进入休眠状态或休眠后不能唤醒:   a、休眠开关的连接是否正确,开关是否失灵。   b、PS-ON的电压值是否正常(休眠状态应为低电平(0.8V以下),唤醒后应为高电平(2.2V以上)。   5、噪声问题   a、电源高转速风扇所引起的噪声。   b、外界干扰(手机、显示器、音频线、主板的插槽问题、音箱本身发出的辐射)。   c、电源的EMI控制电路失灵。   十一、处理电源问题的步骤:   共三步,先软件、后硬件的的原则   第一步:检查CMOS设置是否正确,排除因设置不当造成的假故障。   第二步:检查ATX电源中的辅助电源和主电源是否正常。   第三步:检查主板的电源监控电路是否正常。   十二、电源烧坏配件问题:   电源出现故障发生烧坏配件问题只有一种情况会出现:电源的输出电压偏高、超过其输出的最大值。   1、出现烧坏主板和CPU问题:重点检查+3.3V是否超过+3.465V。   2、出现烧坏硬盘、光驱、DVD和刻录机问题:重点检查+5.0V是否超过+5.25V,+12.0V是否超过+12.6V。   3、如果电源的各组输出都正常的条件下发生烧坏配件问题,只能寻找其它方面的原因 计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。 对ATX电源控制电路的工作原理进行了较详细的阐述,望能对广大维修者有所帮助。 一、ATX型电源电路的组成及工作原理 ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。请参照图1和ATX电源电路原理图。 1.辅助电源电路 只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。 Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。 Q15饱和期间,T3二次绕组输出端的感应电势为负,整流管截止,流经一次绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。当Q15由饱和转向截止时,二次绕组两个输出端的感应电势为正,T3储存的磁能转化为电能经BD5、BD6整流输出。其中BD5整流输出电压供Q16三端稳压器7805工作,Q16输出+5VSB,若该电压丢失,主板就不会自动唤醒ATX电源启动。BD6整流输出电压供给IC1脉宽调制TL494的12脚电源输入端,该芯片14脚输出稳压5V,提供ATX开关电源控制电路所有元件的工作电压。 2.PS-ON和PW-OK、脉宽调制电路 PS-ON信号控制IC1的4脚死区电压,待机时,主板启闭控制电路的电子开关断开,PS-ON信号高电平3.6V,IC10精密稳压电路WL431的Ur电位上升,Uk电位下降,Q7导通,稳压5V通过Q7的e、c极,R80、D25和D40送入IC1的4脚,当4脚电压超过3V时,封锁8、11脚的调制脉宽输出,使T2推动变压器、T1主电源开关变压器停振,停止提供+3.3V、±5V、±12V的输出电压。 受控启动后,PS-ON信号由主板启闭控制电路的电子开关接地,IC10的Ur为零电位,Uk电位升至+5V,Q7截止,c极为零电位,IC1的4脚低电平,允许8、11脚输出脉宽调制信号。IC1的输出方式控制端13脚接稳压5V,脉宽调制器为并联推挽式输出,8、11脚输出相位差180度的脉宽调制控制信号,输出频率为IC1的5、6脚外接定时阻容元件的振荡频率的一半,控制Q3、Q4的c极所接T2推动变压器初级绕组的激励振荡,T2次级它激振荡产生的感应电势作用于T1主电源开关变压器的一次绕组,二次绕组的感应电势经整流形成+3.3V、±5V、±12V的输出电压。 推动管Q3、Q4发射极所接的D17、D18以及C17用于抬高Q3、Q4发射极电平,使Q3、Q4基极有低电平脉冲时能可靠截止。C31用于通电瞬间封锁IC1的8、11脚输出脉冲,ATX电源带电瞬间,由于C31两端电压不能突变,IC1的4脚出现高电平,8、11脚无驱动脉冲输出。随着C31的充电,IC1的启动由PS-ON信号控制。 PW-OK产生电路由IC5电压比较器LM393、Q21、C60及其周边元件构成。 待机时IC1的反馈控制端3脚为低电平,Q21饱和导通,IC5的3脚正端输入低电位,小于2脚负端输入的固定分压比,1脚低电位,PW-OK向主机输出零电平的电源自检信号,主机停止工作处于待命休闲状态。受控启动后IC1的3脚电位上升,Q21由饱和导通进入放大状态,e极电位由稳压5V经R104对C60充电来建立,随着C60充电的逐渐进行,IC5的3脚控制电平逐渐上升,一旦IC5的3脚电位大于2脚的固定分压比,经正反馈的迟滞比较器,1脚输出高电平的PW-OK信号。该信号相当于AT电源的PG信号,在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PW-OK电源完好的信号后启动系统。在主机运行过程中若遇市电掉电或用户关机时,ATX开关电源+5V输出端电压必下跌,这种幅值变小的反馈信号被送到IC1组件的电压取样放大器同相端1脚后,将引起如下的连锁反应:使IC1的反馈控制端3脚电位下降,经R63耦合到Q21的基极,随着Q21基极电位下降,一旦Q21的e、b极电位达到0.7V,Q21饱和导通,IC5的3脚电位迅速下降,当3脚电位小于2脚的固定分压电平时,IC5的输出端1脚将立即从5V下跳到零电平,关机时PW-OK输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘磁头来不及移至着陆区而划伤硬盘。 3.自动稳压控制电路 IC1的1、2脚电压取样放大器正、负输入端,取样电阻R31、R32、R33构成+5V、+12V自动稳压电路。当输出电压升高时(+5V或+12V),由R31取得采样电压送到IC1的1脚和2脚基准电压相比较,输出误差电压与芯片内锯齿波产生电路的振荡脉冲在PWM比较器进行比较放大,使8、11脚输出脉冲宽度降低,输出电压回落至标准值的范围内,反之稳压控制过程相反,从而使开关电源输出电压稳定。IC1的电流取样放大器负端输入15脚接稳压5V,正端输入16脚接地,电流取样放大器在脉宽调制控制电路中没有使用。 二、关于+5VSB、PS-ON、PW-OK控制信号 ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。 +5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。 PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。 PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。电源输出插头如图-3所示. 三、电源的检测 脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。上述操作亦可作为选购ATX开关电源脱机通电验证的方法。 四、电源的维修 我们已经知道计算机开关电源的工作原理。只要将交流电源(220V)接通,全桥或二极管(图-4、 图-5 将交流电(220V)整流成为高电压的脉冲直流电,再经过电容(图6)滤波后成为300V的高压直流电压,而后进入控制电路。此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器(图7)的初级。在高频变压器的次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电压。其中,控制电路是必不可少的部分。 它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下一些电子元件,故障率最高;如限流电阻、热敏电阻(NTC)、整流桥或整流二极管,其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏。 当计算机电源出故障时,怎样着手检修呢?通过对多台电源的维修,总结出了对付电源常见故障的方法。一是用万用表测量脉宽调制器TL494的4脚电压,它是保护电路的关键测试点。二是从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。具体操作原则是: 1、在断电情况下,“望、闻、问、切” 由于检修电源要接触到220V电压,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的 短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝(图-8)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,应重点检查。 此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。 用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管Q1、Q2击穿。 然后检查直流输出部分。脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。 2、加电检测 在通过上述检查后,就可通电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端、开关三极管、电源保护电路以及电源的输出电压、电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量TL494的4脚电压,正常值应为0.4V以下,若测得电压值为+4V以上,则说明电源的处于保护状态下,应重点检查产生保护的原因。 另外,+5VSB是供主机系统在ATX待机状态时的电源,所以当电源一加入市电220V后,+5VBS端就应有+5V电压输出的特点,可先检测这一点电压的有无,若有+5V电压说明辅助电源是好的,故障在主控电源电路中,应在主控电源电路中查明故障的原因。由于接触到高电压,建议没有电子基础的朋友要小心操作。