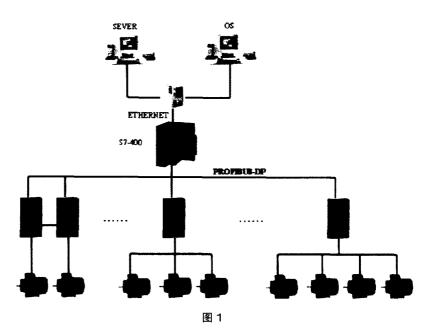
变频器钢管加工领域的应用

文/张海龙・江西江特电气集团有限公司

本文介绍了施耐德ATV71 变频器在钢管加工工艺辅传动上的应用。

1 引言

本文以M340 辅传动为例,说明施耐 德ATV71 变频器在冶金行业钢管加工工艺 中的应用。


2 项目介绍

M340项目是一条热连轧管线,该项目的顺利实施具有重要意义;其电气设备的应用对后续的轧管工艺控制有标尺作用。

3 系统介绍

在M340 辅传动中,变频器主要是用在辊道、翻料机和冷床中。

如图1所示,在整个项目中,按照工艺流程划分为定径、矫直、探伤等工艺段,每一工艺段设置—PLC,PLC通过Profibus 挂接各负载应用的变频器,对变频器进行控制,各工艺段PLC 通过以太网把数据传送至上位监控系统进行监控。

4 工艺及变频器应用

4.1 主要工艺流程

工艺流程(如图2)。

4.2 辊道电机变频器选型及应用

根据Φ340轧管管体重、惯性大的特点,在同一段辊道中,其辊道首尾两组

短时内很小,更换一个倍率开关,没再出 现过此类故障。

故障实例4:在数控系统为840D的数控磨床上出现X轴在手动模式和自动模式下间断出现有25060:轴1%转速设定限制报警,NC停止,通道有效状态被复位现象。停车手动单试X轴多次,动作都正常。这也是一个偶发故障,在故障出现过程中从NC诊断菜单下service display/service drive项目中,观察pos.act.Val.meas.sys.1和pos.act.Val.meas.sys.2的值相差比较大,说明执行机构和电机之间跟随性较差,机电不同步。拆除电机,检查电


机接手连接部分,发现在接手谐波齿轮后 固定轴承套的一个螺丝松动,导致轴承有 一定的窜动量,紧固螺丝,重新安装,开 车后机床工作正常。

4 经验总结

在日常数控机床故障处理中,应该遵循两条原则,一是充分调查故障现场,观察故障现象,掌握第一手材料。通过询问操作工,查看故障记录,报警信息及信号状态等,如果条件允许,可以亲自操作机床动作,模拟故障出现的过程。二是认真

分析故障原因,判断故障点范围。分析问题一定要全面,当数控系统某一部分出现故障,故障原因有可能机械、液压或其它地方引起的,而不是数控系统本身,尽可能把故障原因罗列出来,进行筛选,逐一排查,切不可盲目动手。

总之,数控机床的故障分析与处理方法很多,故障也千奇百怪,这要求我们维修与维护人员要对机床的机械、液压、数控与电器系统、甚至于加工工艺与加工过程都要有熟练的掌握和了解,这样才能更好的分析问题,发现问题,保障数控机床高精度、高效率的工作。□

的启动、停止速度不能过快, 避免因滑 动摩擦而使钢管表面被划伤。根据这一 特点及现场的工艺要求,变频器的选型 及采取的应用策略是:同一段中首组变 频容量在原有基础上放大容量、延长启 动时间,避免启停过快产生滑动摩擦。 尾组变频器采用一恒定的低速,制动方 式采用直流制动(在低速段直流制动较制 动电阻的制动效果明显)。中间所有组的 速度逐级降低。以达到组与组之间速度 的相对平稳。

根据客户提供的马达清单和马达的 自身性能特点分析和校正,针对电机的 性能分析, 在配置变频器时, 我们按照 成都无缝设计研究院的设计容量配置相 应变频器(参照如下)

Ie = K(N*In)

Ie —— 变频器额定电流

K —— 比例系数, 一般取1.1~1.3

N —— 电机台数

In — 电机额定电流

完全能满足各区辊道段的工艺要求。

4.3 翻料电机变频器选型及应用

翻料机均采用YTSZ 型变频电机, 根据电机的自身性能特点分析和校正, 其力矩能达到2倍过载,在2倍力矩过载 的情况下,其工作电流为额定电流的1.7 倍,加之翻料机有启动力矩大、响应快 速的负载特性, 在加入变频的过载余量 的情况下保障变频器能达到电流1.7 倍的 过载要求,即力矩达到2倍过载,我们 按照成都无缝设计研究院的设计容量对 应变频器按照重载类选择,以满足各翻 料机工艺的要求。

根据翻料机要求快启快停及定位准 确的工艺特点要求,在控制的策略上, 我们加入制动单元和制动电阻,利用 ATV71 优异的制动逻辑控制并通过在PLC 程序中加入延时程序, 在没有编码器的 前提下,通过在现场调试其时间延时程 序的参数来达到翻料机的"准确定位" 和"快速制动",实现翻料机对钢管的 "轻拿轻放",既保障了精整区整条自 动生产线的正常运行,又避免了机械冲 击对钢管造成的损伤。

4.4 冷床电机变频器选型及应用

冷床电机的变频器配置有一拖二及 双驱两种方式,对变频器选型采用放大 一挡的方式。

冷床双驱同轴钢性连接, 主从控 制, 主机采用速度控制, 跟随PLC 给定 速度; 主机对从机进行转矩, 从机对主 机进行转矩跟随, 共同驱动冷床设备, 可正反转。

控制方式可采用电压开环矢量控制 SVC U, 能满足工艺要求。

如采用带编码器的电流闭环矢量控 制FVC,控制精度更佳。在闭环速度控制 下,一般采用IP方式,通过调整SPG和SIT 参数匹配来避免主从电机因力矩不平衡 而产生的振荡。

5 ATV71 系列变频器性能及 powersuit 调试软件

5.1 ATV71 系列变频器性能

ATV71系列变频器具备优异的性能, 具体表现在:

- 极强的过力矩性能: ATV71 可达 170%60s 和220%2s, 特别适合翻料机要求 高力矩的应用。
- ATV71 系列变频器具有多种控制 方式,可以设定为: VF 控制、开环矢量 控制、闭环矢量控制等, 闭环矢量控制 的性能最好。辊道因采用多台电机并联 只能采用VF 方式,翻料机采用开环矢量

控制。

- ATV71 支持多种通讯协议,内置 Modbus 和Canopen, 本应用采用Profibus - DP 方式。
- ATV71 变频器全系列均带具备存 储参数功能和同时显示多种参数的中文 面板,方便调试。
- ATV71 变频器具备极强的环境适 应力,不降容允许温度为50℃,降容可 达60℃,特别适应冶金等环境温度较高 的应用场合。
- ATV71变频器具备极强的超宽工 作电压, 380V的ATV71允许输入电压范围 是380V-15%~480V+10%, 且允许电压 跌落50%。
- ATV71 变频器大于15KW 均带内置 电抗器和EMC 滤波器。
- ATV71 变频器全系列标准多种应 用宏,标配起重应用宏,实现完整的报 闸逻辑控制。

5.2 Powersuit 调试软件

ATV71系列变频器可用软件Powersuit 进行参数设定。该软件提供下列参数功

- 菜单索引的参数存取
- 参数组读及写
- 将现有的参数组复制到同系列的 其它装置上
 - 打印参数组
- 过控制字进行操作(开关量命 令、如开/关命令)及施加给定值
- 通过状态字进行观察(整流器工 作状态反馈信号) 及读出实际植
 - 读出故障信号和报警信号

6 结束语

M340连轧管机组工程新建冷床区辅 助传动调速系统项目采用施耐德ATV71交 流矢量控制变频器,系统满足工艺要求, 运行稳定可靠,投入使用至今得到了用 户的一致好评, 我们使用施耐德变频器 在该领域非常成功,值得工程技术人员 学习推广应用。□

参考文献:

ATV71 变频器产品目录(2007.03) 施耐德电气公司

ATV71 异步电机变频器编程手册 施 耐德电气公司