
IAR Systems Day - ARM Tech Con 2010

10:30am - 11:20 am

ARM Microcontroller Debug and Trace Infrastructure
Rob Cosaro, NXP and Anders Lundgren, IAR Systems

11:30am - 12:20 pm

Taking Trace to the Next Level
Shane Titus, SEGGER and Lotta Frimanson IAR Systems

2:30pm - 3:20 pm

Important Technology Factors for Energy Efficient

Microcontroller Design
Raman Sharma, Energy Micro and Anders Lundgren, IAR Systems

3:30pm - 4:20pm

Debugging in the Power Domain
Lotta Frimanson, IAR Systems and Anders Lundgren, IAR Systems

4:30pm - 5:20pm

The Inefficiency of C++, Fact or Fiction?
Anders Lundgren, IAR Systems

IAR Systems

Anders Lundgren

Lotta Frimanson

Debugging in the power domain

• Introduction to power debugging

• The technique behind

• Optimizing code for power

• Demonstration of power debugging features

•

Agenda

The third dimension

2010-11-15 4

Code size
Execution speed

Power consumption

Compiler power optimization

• Maximizing idle time reducing power consumption

• The faster a task is executed, the more time can be spent in a low power

mode.

• Optimizing for power is very similar to optimizing for speed

High priority task

Medium priority task

Low priority task

idle task will enter a

low power mode

Push of a button Push of a button

What is power debugging?

• The technology for power debugging is based on the ability to

sample the power consumption and correlate each sample

with the program's instruction sequence and hence with the

source code.

• Source code debugger that visualizes power consumption

data both statically and dynamically in different views.

• Provides a view of the power profile of an application.

Adding power measurement to the debugger

Who needs it?

• Applications where long battery life-time is important

but also all systems that want to minimize the power

consumption.

• Power consumption has traditionally been a design goal

that only hardware developers have been able to

influence, using power tools like multimeter and

oscilloscope.

• But in an active system, the power consumption is also

dependent on how the hardware is used and controlled

by software.

• Provides a tool for software developers.

Agenda

• Introduction to power debugging

• The technique behind

• Optimizing code for power

• Demonstration of power debugging features

Case study: Cortex-M3/M4

How does it work?

• The PC sampling facility in the DWT module available in the ARM Cortex-

M3/M4 cores is used.

• It samples the PC (Program Counter) periodically around 5000 times per

second and triggers an ITM packet for each sample taken.

• The ITM is the formatter for events originating from the DWT. It

packetizes the events and timestamps them.

• The debug probe, samples the power consumption of the device using an

AD converter.

• By time stamping the sampled power values and the PC samples it is

possible for the debugger to present power data on the same time axis as

graphs like interrupt log and variable plots, and to correlate power data to

source code.

How does it work?

 PC (program counter)

 PC sample clock

 power value (mA)

 ADC clock

 ∆T

Board versus chip level power measurement

• Board level

o measures total system power

o non-intrusive using JTAG pin-19

• Chip level

o measures power at MCU VDD pins

o intrusive

Chip level power measurement

Pros Cons

Board level o easy to use, plug n‟ play with

IAR boards using J-Link Ultra

o includes the power of all

components

o power reading distorted by non-

relevant components

o slow response due to voltage

regulators and big capacitors

Chip level o “fast” response

o can easily see how code

changes affects MCU VDD

power

o needs multiple channels to get

system effects (MCU, SDRAM, …)

o difficult to gain access to chip

VDD feed, sometimes jumpers,

otherwise cut PCB traces or de-

solder pins.

What we did

IAR J-Link Ultra

Power
Sampling

Debug
API

Power
API

IAR Embedded
Workbench

PCB

ARM
Cortex

Power on
Pin19

Power

JTAG /

SWO

Power

JTAG /

SWO

Power

JTAG /

SWO

J-Link Ultra

• New J-Link debug probe from IAR systems

• USB high speed (480 Mbit/s)

• ARM7/ARM9/ARM11/Cortex-M0/M1/M3/M4/A5/A8/A9

core supported, JTAG and SWD.

• Max. JTAG speed 25 MHz

• Max SWO speed 48MHz

o Serial and Manchester decoding

• Optional 5V power on JTAG pin 19

• Power sampling on pin-19 at 1mA resolution

• Power sampling at 10 kHz (firmware upgrade)

Power sampling performance

• J-Link

o resolution: 7mA

o accuracy: ~30mA

• J-Link Ultra

o resolution: 1mA

o accuracy: a few mA

• The sampling frequency is today around 100Hz

• EWARM 6.10 will sample at 10kHz

o typical board level frequency response is ~1000Hz.

Power debugging features

• Visualization with Power graph in Timeline

window

o Provides a visual view of the applications

power profile

• Statistical power profiling; energy percentage, average, min and max values

are provide in the Function Profiler window

o Identifies the functions that consume most power in the application.

• Correlation to program counter and by that with the running application.

o Double click in the Power graph to find the corresponding source

code.

• Power log window provides textual log of all power samples together with

timestamp and program counter.

Target

Board

CPU

GND

GND

VDD

Shunt resistor

Twisted pair of wires

Analog

Probe

20-pin Analog

The next step – higher resolution

Sample frequency: 50 kHz

Resolution: a few µA

Accuracy: a few µA

IAR J-Link
Ultra

JTAG

USB

Agenda

• Introduction to power debugging

• The technique behind

• Optimizing code for power

• Demonstration of power debugging features

Optimizing code for power

• Identifying unnecessary energy consumption in a system is

difficult.

• Typically it is not explicit flaws in the source code that is

exposed, but rather opportunities to tune how the hardware

is utilized.

• Sometimes, however, it may involve what might be described

as pure bugs.

DMA vs polled I/O

• DMA has traditionally been used to increase transfer speed.

• In the MCU world there are a large number of DMA techniques to

increase flexibility, speed, and to lower power consumption.

• In some architectures the CPU can even be put into sleep mode during

the DMA transfer.

• Power debugging allows the developer to experiment and see directly in

the debugger what effects these DMA techniques will have compared to a

traditional CPU driven polled approach.

• To avoid floating inputs it is a common design

practice to tie unused MCU I/O pins to ground.

• If the software by mistake configures one of the
grounded I/O pins as a logical „1‟ output,

a current as high as 25mA may be drained on

that pin.

• This high unexpected current is easily observed by reading the current

value from the power graph; it is also possible to find the corresponding

erratic initialization code by looking at the power graph at application

startup.

• A similar situation will arise if an I/O pin is designed to be an input and is

driven by an external circuit, but the software incorrectly configures the

input pin as output.

Finding conflicting hardware setup

Analog interference

• Mixing analog and digital circuits on the same board has its own challenges

and board layout and routing becomes important to keep the analog noise

at a low level.

• Software design can also affect the quality of the analog measurements.

Performing I/O activity, for example pulsing a stepper motor, at the same

time as sampling analog signals can cause spikes giving wrong AD converter

samples.

Waiting for device status

Common mistakes that could cause unnecessary power to be

consumed:

• Poll loop to wait for a status change of for example a peripheral device.

 while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY);

 Use low power mode and interrupt instead!

• Software delay as a for or while loop

 i = 10000;

 do i--;

 while (i != 0);

 Use HW timer with low power mode!

Low power mode diagnostics

• Many embedded applications spend most of their time waiting for

something to happen; receiving data on a serial port, watching an I/O pin

change state, or waiting for a time delay to expire.

• Many microprocessors have a number of different low power modes, in

which different parts of the processor can be turned off when they are not

needed.

• By placing it in a low power mode during the idle time, the battery life can

be extended by orders of magnitude.

• In a task-oriented design the idle task is the perfect place to implement

power management.

• A power debugging tool can be very useful when elaborating with different

low-level modes.

CPU frequency

• Power consumption in a CMOS MCU is theoretically given by the formula:

 P = f x U^2 x k

 where: f is the clock frequency

 U is the supply voltage

 k is a constant

• Reducing the clock frequency will give a proportional reduction of power

consumption.

• On the other hand a high clock frequency will increase the time spent in

low power mode.

• The power data in the debugger will help the developer chose the

operating frequency that gives the lowest power consumption.

Interrupt handling

• Power debugging can be used to discover an extraordinary increase in

power consumption.

• An example involving interrupts can illustrate a situation when it is

difficult to identify that a system consumes unnecessary energy.

Need to review whether it is worth to spend extra clock cycles to turn on and

off peripherals in a situation like this.

Agenda

• Introduction to power debugging

• The technique behind

• Optimizing code for power

• Demonstration of power debugging features

The demonstration setup

• EFM32 Gecko Development

kit from Energy Micro

• J-Link on-board from

SEGGER

• IAR Embedded Workbench

for ARM

3.3V VDDcore

The demo application

• Burst waveform generator

for low-frequency marine

sonar system

• Flexible burst waveform by

using inverse FFT

• Two selectable waveforms

• 10 kHz sampling rate

• 100 ms burst length

• 0 – 500ms repetition rate

The demo flow

• Initial attempt

• Serious bug (lots of

power consumed here)

• Hot spot in RAM

• Clock frequency change

• Low power mode EM2

between bursts

• Low power mode EM1

between samples

Demonstration

Thank You!

