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ABSTRACT
A small monitor program for the MSP430F1xx and MSP430F4xx microcontrollers that
incorporate at least one integrated USART provides a facility for examining the device
memory and updating the flash contents with new application code via a universal
synchronous/asynchronous receive/transmit (USART) peripheral interface. A personal
computer (PC) and a terminal emulation package are all that is required to access the
device memory. The monitor allows field updates of system firmware without the need
to provide access to the JTAG signals or to the GPIO pins used by the bootstrap loader
(BSL).
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1 Introduction

2 Monitor Operation

2.1 Configuring the Terminal Emulation Program

2.2 Starting the Monitor

Introduction

The monitor is a small program that provides a facility for examining and modifying memory via a MSP430
universal synchronous/asynchronous receiver/transmitter (USART) port. A PC with a terminal emulation
program, such as TeraTerm, HyperTerminal®, or minicom, can be used to communicate with the
MSP430-based system. The monitor occupies two segments of the MSP430 main flash memory. The
monitor is designed to have minimal impact on the operation of the end application. The monitor uses no
MSP430 interrupts and reserves no processor resources beyond the two 512-byte flash segments.

There are several options for the monitor that can be selected by editing a header file. These include:

• Which MSP430 family device the monitor is to run on
• How interrupts are handled
• Which USART port is used for communication
• Whether the monitor or the user application runs first following a system reset
• Whether or not a password is required to erase flash memory
• Whether or not the monitor can dump MSP430 memory contents
• Whether or not commands and data received via USART are echoed to the terminal

Section 3 contains instructions for selecting the monitor build options.

The monitor code as provided assumes that a 32,768-Hz crystal is connected to the LFXT1 oscillator, as
ACLK is the source for the USART baud rate clock (BRCLK).

The monitor and sample application provided were built using IAR Embedded Workbench™ for MSP430
(KickStart edition).

The terminal emulation must be configured for 9600-bps operation with eight data bits, one stop bit, no
parity, and no flow control. The terminal program should also be configured to insert at least a 1-ms
inter-line and to send line end (Ctrl-M, 0x0D) with line feed. The monitor normally echoes each received
character back to the terminal, but this can be changed as a build option.

The monitor can be built to run following a device reset or to run when it is invoked by the application. This
is a build-time selectable option.

When the monitor starts, it disables the watchdog timer (WDT), configures the flash timing generator, and
configures the USART for 9600-bps operation with eight data bits, one stop bit, and no parity. The next
operation depends upon whether the monitor or the application runs first.

If the monitor is built to run at system reset, Timer_A is configured to overflow in approximately 2 seconds
and is started. The monitor next transmits a ? prompt on the USART and enters a loop that checks the
USART receive flag and the Timer_A overflow flag.

If any character is received on the USART before Timer_A overflows, control is transferred to the monitor
main loop, in which it waits for a character to be received from the terminal. If Timer_A overflows before a
character is received on the USART, the monitor stops Timer_A and attempts to transfer control to a user
application. It first checks the application's reset vector to see if it has been programmed. If the vector has
been programmed, control transfers to the instruction that is addressed by the reset vector. If the vector is
blank, control returns to the monitor main loop.

If application is configured to run at reset, the monitor is started when the application transfers control to
the monitor. In this case, Timer_A is not configured or started, and the monitor enters the main loop.
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2.3 User Commands

2.3.1 Generate a Flash Checksum

2.3.2 Display MSP430 Memory

Monitor Operation

The monitor responds to five commands, as shown in Table 1. Each command is a single upper-case
character. Any characters that are not valid commands are echoed to the terminal program but are
ignored. All commands and hexadecimal values must be entered in upper case. When hexadecimal
values are entered, anything other than a valid hexadecimal character (0–9 or A–F) is treated as a
delimiter.

Table 1. Monitor Commands

COMMAND PARAMETER ACTION

C None Checksum: Calculate a checksum across the user available main memory

Start address and countD Display memory: Dump memory contents beginning at the specified address(hexadecimal)

Password, start address,E Erase flash: Erase user flash memorystop address

G None Go: Execute loaded application.

I Segment Erase info memory: Erase information memory segment A or B

Update flash: Program the flash memory using the contents of an MSP430-TXTU Text file formatted program file

The C (checksum) command instructs the monitor to generate a modulo-65536 sum of the contents of the
main flash memory that are available for the application. The checksum is transmitted to the terminal as a
four-character hexadecimal number and can be used to verify the validity of the loaded program.

The D (display memory) command begins a dump of memory contents to the terminal. The command
syntax is: D <start address> <word count>.

Both the start address and count are entered as hexadecimal values. The data are returned as the
hexadecimal address of the first word followed by the contents of eight consecutive words presented as
four-character hexadecimal values, as shown in Figure 1.

The D command is followed by the starting address. If a valid 16-bit address is not received, the address
defaults to the start of the available flash memory. If no word count is entered, the monitor displays a line
of eight words and pauses until another character is received. If the received character is Q (quit) the
monitor returns to the command prompt. If it is any other character, the monitor transmits the contents of
the next eight words to the terminal. The monitor also returns to the command prompt if the memory
address reaches the end of the available flash memory.

Figure 1 shows a request to display eight words starting at address 0x1500.

? D 1500 8
1500 E0F2 0003 0021 4130 0020 4031 0A00 12B0

Figure 1. Memory Dump Command Example

The memory address range 0x0000–0x0200, which includes the special function registers and peripherals,
cannot be displayed.
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2.3.3 Erasing Flash Memory

2.3.3.1 Password Protection Disabled

2.3.3.2 Password Protection Enabled

2.3.4 Running the Loaded Application

2.3.5 Erasing the Information Flash

2.3.6 Updating Flash Memory

Monitor Operation

The E (erase memory) command can erase the entire main flash memory except for the two segments
that contain the monitor program itself, or it can erase only a specified range of memory. The erase
command can be password protected to reduce the chance of inadvertently erasing the flash memory.

If the password protection is not enabled, upon receiving an E command, the monitor looks for a start
address and end address for the memory to be erased. If a valid start address is not entered, the monitor
erases the entire user flash. If a valid start address is entered without a valid end address, the monitor
erases from the start address to the end of user flash.

Upon detecting the E command, the monitor prompts for the password, which is a 16-bit value stored in
the first word before the application's interrupt vector table. If the next four characters received are not the
ASCII representation of the password, the monitor returns to the command prompt without erasing the
flash. When the flash is fully erased, the password value is always 0xFFFF.

If the received password matches the calculated password, the monitor prompts for a start address and an
end address. If the addresses entered do not represent a valid address range for the main flash, the
monitor returns to the command prompt. The start address must be greater than or equal to the start
address of the main flash available for applications. The end address must be less than or equal to the
end address of the available flash and must be greater than or equal to the start address.

The flash memory is erased by segment, so that when valid addresses are entered, the segment
containing the start address, the segment containing the end address, and any segments in between are
erased.

The G (Go) command has no argument. It transfers control to the entry point of a loaded application by
making an indirect branch to the instruction addressed by the application's reset vector located at 0xFBFE.
If the vector is blank (0xFFFF), the monitor returns to the main loop and issues another prompt.

The I (Erase Information Flash) command erases one of the 256-byte segments of information flash,
either segment A or B. The only valid argument is the segment name. The segment that is erased is
echoed to the terminal.

The U (Update) command initiates programming of the flash memory using data received via the USART.
The update function expects to receive flash data in the MSP430-TXT format produced by the IAR linker.
Instructions on preparing an application for use with the monitor program are provided in Section 3.

While executing the update function, the monitor responds to only two commands, which are described in
Table 2. Note that these commands are a part of the MSP430-TXT file and are automatically generated by
the IAR linker.

Table 2. Flash Update Commands

COMMAND DESCRIPTION OPERATION

@ Receive address Sets the destination address in flash

q Quit Terminate flash programming
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2.3.6.1 Setting Flash Address

2.3.6.2 Receiving Flash Data

2.3.6.3 Terminating Flash Update

Monitor Operation

Upon recognizing the U command, the monitor enters the flash programming function and waits to receive
a flash address, delimited by the @ character.

If the next character received is not @, the monitor returns to the main loop and issues a prompt. If an @
is received, the monitor scans the input for a 16-bit hexadecimal flash address. If an invalid character
(anything other than 0–9 or A–F) is received as one of the next four characters, the flash programming
function terminates, and the monitor returns to the main loop.

If a valid hexadecimal number is received, it is checked against the bounds of flash memory available for
the application, which ranges from the top of segment 2 (0xFBFF) to the beginning of segment n. The
boundaries are determined based upon the processor variant specified in the TargetDefs.h header file. If
the received address is outside the range of available flash, the flash programming terminates, and the
monitor returns to the main loop.

Once a valid address has been received, the monitor scans the input from the USART for
hexadecimal-encoded byte data. Two valid hexadecimal characters (0–9, A–F) must be received
consecutively to be recognized as a valid byte. Any number of non-hexadecimal characters other than @
or q may be received between bytes and are echoed to the terminal and ignored. Byte data can also be
sent with no delimiting characters.

As each byte is received, it is stored in a buffer in RAM. When the monitor detects a linefeed character,
the contents of the buffer memory are copied to flash.

The monitor tests each byte immediately before writing a new value. If the byte is not blank, the monitor
issues a NB error message and terminate programming. The remaining file contents are ignored.

The monitor also checks each byte after it is written. If the value read back does not match the value
written, the monitor issues an ERR error message and terminate programming. The remaining file
contents are ignored.

If an @ is received, the monitor expects a new flash address. If a valid address is received following the
@, the monitor sets the new destination address and continues writing received values to flash. If a valid
address is not received, the flash programming terminates, and the monitor returns to the main loop.

If the monitor receives a q (0x61) at any time during the flash programming procedure, the programming is
terminated, and the monitor returns to the main loop.
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2.3.6.4 Loading an Application Using HyperTerminal

3 Building the Monitor and Applications

3.1 Monitor Options

Building the Monitor and Applications

The following procedure can be used to load an application into flash using the HyperTerminal program
that is supplied with most versions of the Windows® operating systems.

1. Start HyperTerminal.
2. From the HyperTerminal menu, select File→Properties. In the pop-up dialog box, select the correct

serial port in the Connect Using dropdown list, then click the Configure button.
3. In the pop-up dialog box, configure the serial port for 9600 bits/second, eight data bits, no parity, one

stop bit, and Xon/Xoff flow control. Click OK.
4. Ensure that the PC serial port is connected to the MSP430 USART with the appropriate cable and line

circuits. Power up or reset the MSP430 microcontroller. If the flash monitor is loaded and the terminal
is correctly connected and configured, a ? prompt appears on the terminal screen.

5. Ensure that the text transfer settings match what is expected by the monitor program. To do that, click
on ASCII Setup on the Settings dialog page. Check the box labeled Send line ends with line feeds, and
also specify a delay of 50 milliseconds in the Line Delay input field.

6. Make sure that the memory ranges used by the application to be loaded have been erased. If
necessary, erase the flash.

7. At a ? prompt, enter U. Then from the HyperTerminal menu, select Transfer→Send Text File.
8. In the pop-up dialog box, select the MSP430-TXT formatted file to be loaded and click OK.

The content of the file is echoed back to the terminal as it is received. When the flash update is complete,
the monitor returns to the main loop and issues a prompt.

The monitor was designed to have minimum impact on the application to be loaded. The monitor does not
reserve any processor resources other than two flash segments.

There are several options for building the monitor and applications:

• The monitor can be built for any MSP430F1xx or MSP430F4xx family variant with at least one USART.
• For target devices with two USARTs, either USART0 or USART1 may be used.
• The monitor can occupy flash segments 0 and 1, or it can be placed in the first two 512-byte segments

in flash.
• The application and monitor can be built separately or simultaneously.

The source files required to build the monitor are described in Table 3.

Table 3. Monitor Source Files

FILE NAME DESCRIPTION

flash_monitor.s43 Assembly language source code for the monitor program

Header file used to set the build options for building the monitor for a particular target board. It is used to
select:

• MSP430 target device
• Serial port used for communication with the hostTargetDefs.h
• Whether or not memory contents can be dumped to the terminal
• Whether the monitor or application starts first
• Whether or not a password is required to erase user flash

Contains macros to calculate memory boundaries for the target device selected, and for selection of theflash_monitor.h serial port
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3.1.1 Major Options

3.1.1.1 Selecting the Target Device

3.1.1.2 Selecting the USART

3.1.1.3 Memory Placement

Building the Monitor and Applications

The monitor build options are controlled by #define statements in the header file TargetDefs.h (see
Figure 2). The following paragraphs discuss the control of the options.

// TargetDefs.h for setting monitor build options

#define CHIP F169 // Target is MSP430F169
#define MEMDUMP 1 // Allow memory dump
#define SERIAL_PORT_1 // Use USART1
#define ECHO 1 // Echo all USART input to terminal
#define DELAY_START 1 // If defined, the monitor runs first at reset
#define PASSWORD 1 // Enable password protection
#define DIRECT_INTERRUPTS // if defined, the monitor is placed in low flash

// if undefined, the monitor is placed in high flash

Figure 2. Sample TargetDefs.h

The major options are the target device, the USART to be used, and where the monitor is to be placed in
memory. The minor options include whether or not the monitor is able to display MSP430 memory,
whether the monitor or the application runs first at startup, whether or not the flash erase is password
protected, whether or not terminal input is echoed on the USART, and whether or not a startup banner is
displayed.

The target device is selected by the #define CHIP statement in TargetDefs.h. CHIP should be defined as
the generic part number suffix as defined in TargetDefs.h. For example, to build the monitor to run on the
MSP430F169, the chip definition line should be #define CHIP F169.

The USART that is used is selected by the #define SERIAL_PORT_x statement. Defining
SERIAL_PORT_0 selects USART0 and defining SERIAL_PORT_1 selects USART1.

The monitor uses two 512-byte segments of the MSP430's main flash. These can be either segments 0
and 1, which are at 0xFFC0–0xFFFF in all MSP430 devices, or at the lowest two 512-byte segments,
typically segments n and n – 1, where n depends upon the total flash memory size.

Each approach has advantages and disadvantages. When the monitor is located in high memory, the
interrupt vector table is in a common segment with the monitor program. Because the flash can only be
erased in segments, this means the interrupt vector table must contain fixed values. To accommodate
this, an extra level of indirection is required to respond to an interrupt. The interrupt vectors point to a table
of indirect jumps located at the bottom of segment 1. Instructions in this table branch to the actual interrupt
service routines (ISRs) by loading the PC from a secondary interrupt vector table located at the end of
segment 2 (0xFBE0–0xFBFF). This adds an extra three CPU clock cycles to the interrupt response time.
The advantage of this approach is that the monitor cannot erase the interrupt vector table, because the
primary vector table is collocated with the monitor in flash segment 0. The monitor cannot erase its own
program segments, so it cannot be rendered inaccessible by loading a faulty application, assuming that
the application itself does not erase the flash memory. With this approach, the monitor should always be
accessible by way of a reset.

When the monitor is located in low memory, the interrupt vector table at 0xFFE0–0xFFFF points directly to
the application's ISRs. This eliminates the additional three-cycle interrupt response time, but it requires
that the interrupt vector table be reprogrammed each time a new application is loaded. If an application is
loaded with an invalid vector table, or if the application cannot transfer control to the monitor program, the
only way to reprogram the processor may be via the ROM bootloader or via the JTAG port.
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3.1.2 Minor Options

3.1.2.1 Enabling Display of MSP430 Memory

3.1.2.2 Terminal Echo

3.1.2.3 Password Protection for Flash Erase

3.2 Building Applications

3.2.1 Applications Written in C

Building the Monitor and Applications

To place the monitor in low memory, the TargetDefs.h should contain the line
#define DIRECT_INTERRUPTS. If this line is deleted or commented out, the monitor is placed in
segments 0 and 1. This also sets the bounds of the flash available to the application.

If MEMDUMP is non-zero, the user is able to display MSP430 memory contents. If MEMDUMP is
undefined or defined as zero, the memory display is disabled.

If ECHO is defined as non-zero, the monitor transmits back each character received on the USART. To
disable this feature, leave ECHO undefined or defined as zero.

The password-protection scheme provides some protection against unintentionally erasing the flash. It
does not provide flash security, nor is it intended to be hacker proof. It does, however, make it less likely
that an operator will inadvertently erase the flash memory.

When password protection is enabled, the monitor prompt for a 16-bit password when the E (erase flash)
command is entered. The received password is checked against a 16-bit value stored immediately before
the application's interrupt vector table. If the entered value does not match the stored value, the monitor
returns to the command prompt.

Applications that are to be run or loaded by the monitor can be written either in assembly language or C.
The monitor is designed to have minimum impact on the application. The only consideration that needs to
be made in coding is whether the monitor is to be entered from the application. If the monitor does not run
at reset, the application must be able to start the monitor. This can be done by branching to the monitor's
reset vector. This is defined as a public symbol (Reset), so that its absolute address can be found in the
linker map file generated when the monitor is built.

The main requirements when building an application that is loaded by the flash monitor are:

• Do not use (or erase) the flash segments occupied by the monitor.
• Generate an output file in the MSP430-TXT format.
• Provide a way to enter the monitor from the application, if the monitor does not run first at reset.

For C applications, the required modifications can be made by modifying the linker command file to
change the available memory limits and the placement of the interrupt vector table.

For the IAR linker, the changes are made in the section of the linker command file following this comment:

// -------------------------------------------------------------------
// ROM memory (FLASH)
// -------------------------------------------------------------------
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3.2.2 Applications Written in Assembly Language

Building the Monitor and Applications

Range of flash memory must be changed to reserve the two main flash segments occupied by the monitor
and, if the monitor is to reside in high memory, the application's interrupt vector program must be placed
at the end of the user flash. Figure 3 shows the IAR linker command file for the MSP430F169,
msp430f169.xcl, modified to build an application for use with the flash monitor located in segments 0 and
1.

// Code

-Z(CODE)CSTART=1100-FBDF
-Z(CODE)CODE=1100-FBDF

// Constant data

-Z(CONST)DATA16_C,DATA16_ID,DIFUNCT,CHECKSUM=1100-FBDF

// Interrupt vectors

-Z(CONST)INTVEC=FBE0-FBFF
-Z(CONST)RESET=FBFE-FBFF

Figure 3. Example Linker Command File

The –Z(CODE) statements define memory segments that the linker will use for placing code. For the
MSP430F169, the available memory range is from 0x1100–0xFBDF.

The –Z(CONST) statement defines memory segments that the linker will use for placing data.

The 32-byte INTVEC segment is used for the interrupt vectors, and the 2-byte RESET segment is used for
the reset vector.

After modifying the linker command file, the program is built with memory usage that is compatible with the
monitor program.

Be sure not to overwrite the IAR-provided linker command file with the modified linker command file.

It is also necessary to change the default project options to use the modified linker command file and to
generate the MSP430-TXT formatted output file. If the generate extra output option is selected, the linker
generates both a binary executable file that the debugger can load into flash via the JTAG emulator and
the text formatted file that the monitor can use.

• In the Linker category, select the Extra Output tab. Check the Generate Extra Output File box and the
Override Default box. Enter the desired output file name. Select MSP430-TXT from the Output Format
dropdown list.

• Select the Config tab. In the Linker Command File area, check the Override Default box and enter the
pathname for the modified linker command file.

When building assembly language applications, it is common practice to define the interrupt vectors using
the assembler ORG and DW directives. When building applications that are compatible with the monitor, it
is only necessary to place the interrupt vectors at the top of flash segment 2 (0xFBE0–0xFBFF), rather
than at the top of flash segment 0.
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4 Building the Monitor Program

5 Demonstration Application

6 References

Building the Monitor Program

The monitor program and application can be built separately or together. For initial flash programming, it is
usually convenient to build the monitor and the application as a single binary file, which can be stored in
the flash using the JTAG emulator. Then the monitor can be used to erase the application flash and load
updates via the USART.

In order to build the application and monitor as a single program, it is only necessary to add the monitor
source file (flash_monitor.s43) to the project and make sure that the monitor header files (TargetDefs.h
and flash_monitor.h) are in the include path.

If the monitor program is built and stored in the flash as a stand-alone program, it will always run at reset.

A demonstration program is included in the source files for the monitor program. This program is based on
the FET demonstration program FET140_UART15_9600.c. As provided, it is targeted for the
MSP430F169 and runs as is on the SoftBaugh DIr169 evaluation board.[4]

The demonstration program initializes the USART and Timer_A and enters LPM3 until an interrupt occurs.

Timer_A is configured to generate interrupts at a 0.5-Hz rate. The Timer_A ISR toggles Port1 bit 0. On
most of the TI MSP-FET target boards and on the the SoftBaugh DIr169 board, this turns an LED on or
off.

The USART ISR copies each received character from the receive buffer to the transmit buffer. It also
checks each received character to determine if it is a ^C character (0x03 or ETX). When an ETX character
is received, the application transfers control to the monitor via an inline assembly statement that indirectly
loads the PC from the WarmStart address, in this case 0xFC40.

The files required to build the demonstration application are described in Table 4.

Table 4. Demonstration Application

FILE NAME DESCRIPTION

monitor_demo_app.c C source file modified based on fet140_uart15_9600.c

IAR MSP430F169 linker command file modified as described in Section 3.2.1 for compatibility with thelnk430f169_boot.xcl resident monitor

1. MSP430x1xx Family User's Guide (TI literature number SLAU049)
2. MSP430 IAR Assembler Reference Guide (IAR EW Help Menu)
3. IAR Linker and Library Tools Reference Guide (IAR EW Help Menu)
4. SoftBaugh, Inc. DIr169 demonstration board schematic

(http://www.softbaugh.com/ProductPage.cfm?strPartNo=DIr169)
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