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Abstract

Joint angle determination for robots with flexible links
can be difficult. Inertial orientation tracking combined
with RF positioning provides an accurate method for
determining end effector orientation and location. The
same technology could also be used to determine human
posture for the purpose of inserting humans in synthetic
environments. Orientation filters based upon Euler
angles suffer from singularities. This paper describes
the design, implementation, and preliminary testing of
an inertial tracking system using a “complementary”
filter based upon quaternions. This filter is capable of
tracking a rigid body through all orientations and is
more efficient than those based on Euler angles. Results
of qualitative tests of a prototype inertial angle tracking
device are presented.

Background

 Precise control of a robot manipulator requires
accurate determination of end effector location and ori-
entation. Due to link flexing and bending, this is often
difficult. This problem could be solved using a hybrid
inertial tracking technology currently being developed
at the Naval Postgraduate School for the purpose of
inserting humans into a networked synthetic environ-
ment (SE). The location and orientation of an end effec-
tor could be ascertained in the same way as the body
posture of a tracked human. Just as the body posture of
the tracked human could be used to precisely control the
visual and audio queues of given to a user of a SE, so
too could the orientation and location of an end effector
be used to precisely control a robot manipulator.

Tracking systems currently in widespread use
include optical, magnetic, and acoustic systems [19].
These systems typically have fairly high latency, mar-
ginal accuracy, moderate noise levels, shadowing prob-
lems, and limited range. The primary reason for most of
these problems is the dependence of these systems on a
transmitted “source” to determine orientation and loca-
tion information. This source may be transmitted by
body based beacons or received by body based sensors.
Either way, limited range, shadowing problems and sus-
ceptibility to interference makes such sourced systems
unfit for tracking multiple users in a large working vol-
ume. The largely “sourceless” nature of inertial orienta-
tion tracking makes possible a full body tracking system
that avoids the problems associated with current tech-
nologies.

Inertial orientation tracking is based upon the
same methods and algorithms as those used for missiles,

aircraft, and ships. Inertial angle tracking involves plac-
ing multiple Magnetic Angular Rate Gravity (MARG)
sensor units on the human body. Each MARG sensor
contains three orthogonal rate sensors, three orthogonal
accelerometers and three orthogonal magnetometers.
Integration of angular rate sensor data provides the
information necessary to calculate an orientation for
each human body segment. Drift and scale factor correc-
tions to these orientations are made continuously based
upon accelerometer and magnetometer inputs. Body
posture is determined based entirely on limb orientation
and length. Complex kinematic routines are not neces-
sary [9].

The inherent noise. manufacturing defects, and
measurement errors associated with low cost inertial
sensors make it impossible to accurately determine loca-
tion for more than a very short period [10]. Thus, a com-
plete inertial body tracking system must be a hybrid.
Positioning of the user's icon within the VE must be
accomplished through the use of a long range position-
ing system to locate a single body reference point. Radio
Frequency (RF) positioning systems are very fast and
long range by their nature [2]. Recent advances in RF
systems technology makes possible translational three
degree of freedom (DOF) tracking accuracy of a few
millimeters at ranges of up to 100 meters [8]. Difficul-
ties due intermittent reception of RF positioning infor-
mation could be avoided by navigating inertially in
between updates.

Human body tracking using inertial sensors
requires an attitude estimation filter capable of tracking
in all orientations. Singularities associated with Euler
angles make them unsuitable for use in body tracking
applications. Quaternions are an alternate method of ori-
entation representation gaining popularity in the graph-
ics community [22]. They are an extension of complex
numbers and include one real and three “imaginary”
parts. Quaternion rotation is more efficient than the use
of transformation matrices and does not involve the use
of trigometric functions. This paper describes the
design, implementation, and preliminary testing of an
attitude estimation filter based upon quaternions.

A Quaternion Attitude Filter
Figure 1 is a block diagram for a complemen-

tary quaternion-based attitude estimation filter. The fil-
ter takes inputs from a nine axis MARG sensor. Its
output is a unit quaternion representation of the orienta-
tion of the tracked object, . The inputs are from a
three-axis angular rate sensor (p, q, r), a three-axis
accelerometer (h1, h2, h3), and a three-axis magnetome-
ter (b1, b2, b3). 
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In an error free, noiseless world, angular rate data
could be processed to obtain a rate quaternion using the
relationship 

(1)

where the indicated product is a quaternion product and the
superscript B means measured in body coordinates [4]. Sin-
gle integration of  would produce a quaternion which
describes orientation quaternion. However, in an environ-
ment containing noise and errors, the output of angular rate
sensors tends to drift over time. Thus, rate sensor data can
only be used to determine orientation for relatively short
periods unless this orientation is continuously corrected
using “complementary” data from additional sensors.

Accelerometers measure the combination of
forced linear acceleration and the reaction force due to
gravity. That is,

(2)

Since most real-life objects do not experience constant lin-
ear acceleration, when averaged over time accelerometers
return a gravity vector or the local vertical. Thus, acceler-
ometer outputs can be used to correct orientation relative to
a vertical axis.

Similarly, magnetometers measure the local mag-
netic field in body coordinates. This information can be
used to correct rate sensor drift errors in the horizontal
plane. 

Parameter Optimization
Combining filter inputs can be regarded as a

parameter optimization problem with the goal of minimiz-

ing modeling error. The closer the estimated orientation to
the actual orientation, the smaller the modeling error.
Through iteration and calculations based on the magnitude
and direction of modeling errors, orientation estimations
become increasingly accurate. Theoretically, when the
modeling error is zero, the estimated orientation is equal to
the actual orientation.

The accelerometer returns the local vertical, nor-
malized to a unit vector h. The magnetometer returns the
direction of the local magnetic field, b, also normalized to a
unit vector. These two vector quantities expressed in body
coordinates as pure imaginary unit quaternions are

(3)
Combining the non-zero elements of Eq. (3) pro-

duces a 6 x 1 vector representing the actual measurements
taken by the accelerometers and magnetometers.

(4)
Gravity in earth coordinates is always down and

can be expressed as the down unit vector in quaternion form
as

(5)
The local magnetic field in earth coordinates, once

determined and normalized, is expressed in unit quaternion
form as

(6)
Eq. (5) and Eq. (6) are transformed from earth

fixed coordinates to body coordinates through quaternion
multiplication with the estimated orientation,  by [26]
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Figure 1: Quaternion-Based Attitude Filter [1]
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(7)
Combining the non-zero or imaginary part of Eq.

(7) into a single 6 x 1 “computed measurement vector” pro-
duces 

(8)
Eq. (4) represents the measured gravity vector and

magnetic field. Eq. (8) is the computed gravity vector and
magnetic field found using Eq. (7) and is based upon the
best estimate of the current orientation. The difference
between the actual measurements and the computed mea-
surement is the error vector or modeling error

(9)
In viewing Eq. (9), note that if  in Eq. (7)

and there is no measurement noise, the difference between
the measured and computed values, , will equal the
zero vector.

The square of the filter modeling error is termed
the “criterion function”

(10)

In the current version of the filter,  is minimized
using Gauss-Newton iteration. This method is based on lin-
earized least squares regression analysis where  is con-
sidered a vector of data points and  is a vector to be
fitted to those points. The full correction step to the mea-
sured rate quaternion is [17]

(11)

where X is defined as

(12)

Eq. (11) treats m and n as if they are perfect mea-
surements of forced linear acceleration and the local mag-
netic field. In dealing with data corrupted by noise, a scalar
multiplier  is used.

(13)

where . In the absence of noise,  would be set to

nearly one. Very noisy or inaccurate measurements would
demand that the scalar multiplier  be given a value closer
to zero. For a discrete approximation to a continuous time
filter, referring to Figure 1

(14)

Thus, for discrete time step integration, the next estimate of
orientation would be

 

(15)

In the continuous time domain, Eq. (15) becomes

(16)

Linearization
Figure 2 is a time domain signal flow graph

(SFG)[14] of the linearized quaternion attitude estimation
filter. The inputs n1 and n2 are maneuver induced noise and
rate sensor noise respectively. The basis for linearization is
the assumption that in the absence of measurement noise
the computation of  is exact and therefore

(17)

This assumption would be exact only if y depended linearly
on q, which it does not.

Application of Mason’s formula [14] to Figure  2,
produces

(18)

where p-1 is the time integration operator [14]. Thus, with
correct initial conditions, in the absence of noise,

(19)

regardless of the value of k. This means that, under the lin-
earization assumptions, Figure 1 is a complementary filter
[3] since, for all k, if n1 and n2 are zero, then .
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Figure 2: Signal Flow Graph for Linearized System [15]
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Noise Response
Applying Mason’s formula to noise disturbances

n1 and n2 in Figure 2, produces the following low pass filter
transfer functions.

(20)

(21)

Eq. (20) and Eq. (21) can be used to find an optimal k value
in Eq. (16) based upon power spectral density functions for
both the noise signals and actual maneuvering behavior of
the tracked object. Unfortunately, this information will
rarely be available, so ad hoc “tuning” of k is more likely to
succeed in practical circumstances [27].

Response to Initial Condition Errors
Eq. (19) assumes that  has been correctly initial-

ized. In order to understand how an erroneous 
approaches  over time consider the following static
sensor scenario. Suppose the sensor is mounted in a static
fixture so that all euler angles are zero and thus

(22)

Assume that the unit quaternion  is incorrect and is repre-
sented by

(23)

where all  are small quantities. In the absence of motion
and noise,  and both n1 and n2 equal zero. There-
fore, Figure  2 can be simplified to Figure  3 as follows:

Based on Figure 3, the initial value for  is

(24)

Since the first component of  in Eq. (24) will always be
zero, it can be assumed that the first component of Eq. (22)
will remained unchanged and  will take on the form

 (25)

Figure 4 is a Laplace transform SFG for the scalar
. From the application of Mason’s formula it follows that

(26)

Employing the inverse Laplace transform produces the
result

(27)

Equivalent results apply for  and . This
implies that any transient errors in  resulting from errone-
ous initialization will persist for a time inversely propor-
tional to k. Specifically

(28)

and for any disturbance , the resulting errors in the x
component of  will be

(29)
Thus, it can be predicted that any error will be reduced to
37% of the initial value by the time . Similar results
apply to  and . 

Since the nonlinear simulation results, shown in
Figure 5, are in close agreement with linear theory, the
validity and value of linearization is established [12]. This
theory provides a framework under which to choose filter
gains [7]. White noise simulation shows noise reduces
accuracy, but the filter still works well [7].

Bias Effects
Integration of a biased angular rate signal will

cause a steady state error in a complementary filter. To
reduce this effect, following the approach described in [21],
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an initial estimate for bias can be calculated by averaging
rate sensor output prior to maneuvering and then tracking
the time-varying bias with a very long time constant, low
pass filter.

From Figure 6 

(30)

which is the equation for a highpass filter with a 3db cutoff
at

(31)

Based on the high-pass nature of Eq. (30), it can be
seen that the addition of bias estimation to the quaternion
filter means it will no longer be complementary [3]. This is
evident since constant rotation rates will over time be elim-
inated from . Thus, k must be greater than zero in
Eq. (16) in order to detect these rates. In [21] it is shown
that this effect can be minimized by applying the constraint

(32)

Note, however, that if k is too large, the filter may
become unstable or too much maneuver induced error will
appear in . Thus, for a given kbias, it can be expected there
will be an optimal k value.

 From Eq. (28), it can be seen that k should not be
too small if the filter is to converge in a reasonable time
period. On the other hand,  must be larger than the
maneuver time constant, , in order to adequately
suppress maneuver noise. Combining this result with Eq.
(32) leads to the qualitative requirement

(33)
or

(34)

This result in addition to Eq. (17) provides guide-
lines for the selection of “reasonable” values for k and .
With power spectral density functions for , n1 and n2, a
Kalman filtering approach [3] could be used for this prob-
lem. In the absence of such statistical information, gain val-
ues may be selected through experimental “tweaking” of
the scalar gain, k, in laboratory studies.

Sensor Design
The prototype MARG sensors used in this

research were custom built. No significant attempt was
made to produce a very small sensor. Ease of use and con-
struction were the overriding factors affecting sensor

design. Each sensor was constructed using off-the-shelf,
low cost components. 

The primary sensing components are a microma-
chined 3-axis accelerometer [5], a 3-axis magnetometer
[13] and three miniature angular rate sensors [25]. These
sensor components are housed in a light-weight case sur-
rounded by foam to prevent shock damage and to provide a
a stable temperature environment for the rate sensors (Fig-
ure 7). Each sensor package measures 10.7 x 5 x 3.7 cm,
with foam coverage. The analog output of the sensor is con-
nected to a breakout header via a ribbon cable. Output
range is 0-5 vdc. The power requirement of the sensors is
12 vdc at approximately 50 milliamperes.  

Sensor output is translated from analog to digital
by a 16 bit data acquisition card [20] physically inserted
into the PCI slot of a a standard Pentium II PC.

System Implementation
The angle sensing system is implemented using

the C++ programming language and the Visual C++ 5.0
compiler. The filter and visual simulation software run on a
single standard Pentium PC under the Windows 95 operat-
ing system. Design was completed using the Unified Mod-
eling Language (UML) [6]. The code follows object
oriented paradigms and is designed to be the building block
for a body suit using multiple inertial sensors. [7]

Experimental Results
Initial quantitative testing of the system was com-

pleted using a Hass rotary tilt table [11]. The table has two
degrees of freedom and is capable of positioning to an accu-
racy of 0.001 degrees at rates ranging from 0.001 to 80
degrees/second. In order to mitigate any possible magnetic
field effects generated by the servos of the tilt table, the
sensor package was mounted on a non-ferrous extension
above the table. The extension was approximately the
length of a normal human fore-arm.

The preliminary test procedure consisted of
repeatedly cycling the sensor through various angles of roll,
pitch and yaw at rates ranging from 10 to 30 deg./sec. After
each motion, the table was left static for approximately 15
seconds. Filter update rate was 55 Hz throughout the tests.
Figure 8 is a typical result. The overall smoothness of the
plot shows excellent dynamic response. Accuracy was mea-
sured to be within one degree. The small impulses which
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can be observed each time motion is initiated are hypothe-
sized to be linear acceleration effects exaggerated by the
“whipping” motion of the extension on which the sensor
was mounted. It is expected that calibration of the filter
scale and gain values will reduce this effect and improve
accuracy and dynamic response further. In qualitative tests,
the quaternion filter exhibited no difficulty in tracking ori-
entations in which pitch angles equaled or exceeded 90
degrees.

Human Limb Segment Tracking

The primary thrust of ARO sponsored research in
human modeling was to build an articulated model of a
human based on quaternions. Four different methods can be
used to animate the resulting model. These include key-
frame animation with interpolation between key frames,
procedural animation based on scripted motion, user con-
trolled animation using a mouse and direct input of unit
quaternion data from a quaternion filter object. Control
types included forward kinematics with Euler angles, for-
ward kinematics with quaternions and simple algebraic
inverse kinematics. This multitude of control types allowed
study and comparison of the various representations in
terms of efficiency and singularities.

The central component of the model as it relates to
inertial tracking is called the localMatrix object. The orien-
tation of each of the 16 body segments of the human model
are defined in an instance of the localMatrix object. In addi-
tion these instances supply conversion functions for three
types of rotation methods: Euler angles, quaternions and
vector-angle pair [24].

When used in conjunction with quaternion filter
orientation data there is no need for inverse kinematics to
apply the inputs. Instead, quaternion filter outputs are
applied directly to each individual segment. This is possible
because the filter supplied data is in earth fixed coordinates.
Thus, each segment is orientated independently and is not
affected by the transformations of those joints connected to
its ends. It is only necessary to insure that the ends of
adjoining segments remain connected at their shared joint.
Using a simple substitution matrix, quaternions are applied
directly to the graphics pipeline. The quaternion system
doesn’t use any trigonometric functions and requires just 16

matrix multiplications. Figure 9 shows motion tracking
using inertial data processed by a quaternion attitude filter.
The two MARG sensors used can be seen in each figure.
One is for the upper arm, ant the other for the fore arm [24].

In a large scale networked virtual environment, it
is often necessary to dead reckon entities between updates.
To this end, algorithms for the interpolation of quaternions
are also included in the model. These algorithms allow for
the dead reckoning of human limb segments [24].

Future Work
The primary goal of this research is to produce a

full body motion tracking system and to integrate this sys-
tem into a networked virtual environment. The inertial
angle tracking software and prototype sensors described in
this paper are the first step. Included in the areas of future
work are sensor size reduction, application of optimal filter
theory to the filter software, body suit design and develop-
ment, RF positioning system development, and large scale
network integration.

The primary concerns in the design of the current
prototype sensor were ease of use and construction. Exten-
sive effort was not devoted to size reduction. Future sensors
must be much smaller to be of practical use. Current plans
call for integrating the Analog Devices Accelerometers
with the rate sensors and magnetometers on a surface
mount printed circuit board. Micromachined replacements
for the angular rate sensors are also being investigated. Pos-
sible candidates include those developed by Bosch GmbH
for skid control in Damiler-Benz automobiles [23].

The current filter design is not optimal. Lack of
statistical data in the form of power spectral density func-
tions for both maneuver and measurement noise currently
prevents the use of optimal filtering techniques in this
application. Future versions of the filter may also employ
rigid body dynamics as a “process model” to further smooth
orientation estimates [3]. 

In order to track humans in a VE, it will be neces-
sary to outfit them with body suits. Each suit must incorpo-
rate multiple inertial trackers, at least one position tracker,
and an electronics unit capable of processing sensor data.
This sensor data would be packaged into a serial bit-stream
for wireless transmission to a base unit. Calibration, avoid-
ance of user encumbrance, and sensor attachment will be
primary concerns.

Inertial information from small, low-cost sensors
can only be used to reliably estimate orientation. To com-
plete the full body tracking system, positioning system
information for location of a single reference point on the
body must be integrated with the angle information pro-
vided by the inertial sensors. The excellent ranging capabil-
ities, esistance to interference, and code division
multiplexing characteristics of spread-spectrum RF make it
a promising choice for this application [2]. 

 Networked virtual environments suffer from the
limitations of both bandwidth and processing power. Cur-
rent simulation protocols do not well support articulated
humans as entities. Work needs to be completed to facilitate
insertion of high-resolution humans. This goal requires that
a better understanding of encapsulation of gesture data be
developed. Efficient transmission methods must also be
devised.

Figure 8: 45 Degree Roll Excursions at 10 deg/sec
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Conclusions

Due to its lack of continuous dependence on an
external source, hybrid inertial body tracking has the poten-
tial of avoiding the shortcomings associated with current
technologies. This paper describes a quaternion attitude fil-
ter designed for inertial tracking of human limb segment
orientation. Inertial tracking also offers a method of accu-
rately determining robot arm end effector position and ori-
entation when individual links flex or bend. Filter error
correction is done by Gauss-Newton iteration based on lin-
earized least squares regression analysis. The filter is com-
plementary if bias compensation effects are not considered.
Brief descriptions of a prototype inertial sensor and system
software implementation are presented. Preliminary
dynamic test results of the inertial tracking system are also
described. The final portion of the paper outlines the work
which will be required to produce a full body motion track-
ing system and integrate this system into a networked vir-
tual environment.
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