基于 DSP 的变压器绕组变形在线监测系统设计

(1、西南交通大学电气工程学院,四川 成都 610031 2、湖北宜都市供电公司,湖北 宜都 443300)

摘 要:介绍了一种基于 DSP 处理器的变压器绕组变形在线监测系统,在变压器短路电抗与变压器绕组变形的关系基础上,提出 了利用电压电流法在线监测变压器绕组变形的方法,分析了在线监测系统软硬件结构,为设备投入实际运行提供了帮助。 关键词:绕组变形;电压电流法;DSP

1 前言

电力变压器是变电站运行中最为重要的 电气设备,因此有必要对变压器的状态进行 跟踪监测。在变压器的各组件中,变压器绕组 由于经常受到短路电流冲击或运输过程碰撞 而变形,是发生故障较多的组件之一,所以在 线监测变压器绕组状态具有重要的意义。现 有的关于变压器绕组变形的检测均为离线检 测,并不能及时有效的检测出变压器的绕组 变形。本文介绍了一种基于 DSP 的变压器绕 组在线监测系统,分析了测量原理和软硬件 结构设计方法。

2 测量原理

变压器的绕组变形和变压器的短路电抗 变化有着密切的关系。近年来,国家对66台 油浸变压器进行了短路试验,其中55台短路 电抗变形很少, 吊装检查也没有发现绕组的 变形, 另外 11 台短路电抗出现了较大变化, 吊装检查出现了绕组变形。大量实验表明,采 用短路电抗法对变压器绕组变形进行检查是 一种有效的方法。在此基础上设计了变压器 绕组变形的在线监测系统。

变压器的短路电抗的测量可以通过在变 压器原副边测量电压电流实现。本文以单向 双绕组变压器为研究对象展开研究, 在线监 测的测量原理如图 1 所示。

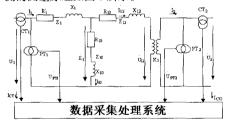


图 1 变压器短路电抗在线测量原理图

变压器变比为 K;电压互感器 PT、电流 互感器 CT₁ 的变比分别为 K_{rd} 和 K_{cr}1;电压互 感器 PT2、电流互感器 CT2 的变比分别为 Krz 和 K_{C12} ; 一次侧电阻、电抗、阻抗分别为 $R_1 \setminus X_1$ 和 Z₁;二次侧电阻、电抗、阻抗在一次侧折合 值分别为 R12、X12 和 Z12; 励磁电阻、电抗、阻抗 分别为 R10、X10 和 Z10;一次侧端电压为 U1;二 次侧端电压为 U2; 二次侧端电压在一次侧的 折合值为 U12;一次侧感应电势为 E1;一次测 电流为 1;二次测电流为 12;二次测电流在一 次侧折合值为 I₁₂。根据变压器等效电路图, X_{sh}=X₁+X₁₂,X_{sh}为变压器的短路电抗。根据在 线测量原理图,可得:

$$U_1 - U_{12} = I_1(R_1 + jX_1) + I_{12}(R_{12} + jX_{12})$$
 (1)式两端同时除以 I_1 得到:

$$\frac{U_1 - U_{12}}{I_1} = (R_1 + jX_1) + \frac{I_{12}}{I_1} (R_{12} + jX_{12})$$
对于两次测量结果可得到:

第一次:

$$\frac{U_1^A - U_{12}^A}{I^A} = (R_1 + jX_1) + \frac{I_{12}^A}{I^A}(R_{12} + jX_{12})$$
 (3)

第二次:

$$\frac{U_1^B - U_{12}^B}{I_1^B} = (R_1 + jX_1) + \frac{I_{12}^B}{I_1^B} (R_{12} + jX_{12}) \quad (4)$$

由于 U/、I/A、U/B、I/B 为已知可测量量,其 中 $U_{12}^{A}=KU_{2}^{A}$, $I_{12}^{A}=I_{2}^{A}/K$, $U_{12}^{B}=KU_{2}^{B}$, $I_{12}^{B}=I_{2}^{B}/K$, 而 U₂A, I₂A, U₂B, I₂B 是可测量的。这样联立 (3)和 (4)可求得 R_1+jX_1 和 $R_{12}+jX_{12}$,这样就可以得 到短路阳抗:

$$Z_{5} = Z_1 + Z_{12} = R_1 + R_{12} + j(X_1 + X_{12})$$
 (5) 所以短路电抗值可表示为:

$$X_{sh} = X_1 + X_{12} = \text{Im}(Z_{sh})$$
 (6)

因此通过在不同的负载下分两次测量电 压电流, 可较为准确的得到变压器的短路电 抗。一旦变压器短路电抗发生变化(3%),此 时可认为变压器绕组发生了变形。

3 硬件系统设计

变压器绕组变形在线监测系统的硬件包 括前端的数据采集系统和上位机, 其中前端 数据采集系统分为信号变送、信号调理、数据 处理以及与上位机的通信。首先,变压器电压 电流互感器二次侧采集到的电压电流信号需 要通过变送器变送信号得到后续模块支持的 电信号。其次,通过低通滤波电路滤除信号中 的高频分量,然后数据供 AD 转换模块进行 转换。最后,DSP 把采集到的信号进行处理和 相关计算,得到相关数据,同时把得到的数据 通过通信电路传送到上位机。



图 2 变压器短路电抗硬件原理图 3.1 信号变送

经过电压电流互感器的电压电流信号并 不适合用后续模块使用,需要电量变送器把 电压变送到数据采集系统相适应的电压。该 系统选用了 WB 系列电量变送器,该电量变 送器精度高,抗干扰能力强,满足现场复杂环 境需要。

3.2 信号调理

信号调理单元由低通滤波和 AD 转换模 块构成。现场采集来的电压电流信号含有部 分高次谐波, 现场采用二阶巴特沃斯低通滤 波器滤除。虽然部分 DSP 芯片自带 AD 转换 功能,但转换精度效率有一定的局限性,所以 现场 AD 转换模块采用 MAX125 芯片,它是带 同步采样保持器的具有 14 位精度的 AD 转 换器件,满足在线监测系统精度要求。

3.3 数据处理系统

现场数据处理单元采用 DSP 数字信号 处理器,DSP 具有强大的数据处理能力和很 高的运行速度。它完成对在线监测数据的处 理,并把信息传送给上位机。本系统采用 TI 公司 TMS320C30 芯片。为了使 DSP 能有效工 作,必须配置合理的最小系统电路,同时现场 需要存储大量的数据, 所以需要进行存储器 的扩展。

3.4 通信接口

DSP 与上位机的通信采取 RS232 通信, 利用 DSP 的串行通信引脚连接 RS232 通信 收发器进行电平转换,将 TTL 电平转换为 RS232 通信允许的电平。上位机通过其 RS232接口(9针串口引脚)进行数据的收发。

4 软件系统设计

软件系统分为 DSP 主程序以及上位机 程序。DSP 主程序调试平台 CCS 提供了配置、 建立、调试、跟踪和分析程序的工具,它便于 实时、嵌入式信号处理程序的编制和测试,加 速了开发进程,提高工作效率。DSP 主程序包

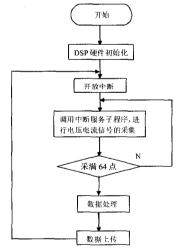


图 3 变压器绕组变形在线监测 DSP 主程序

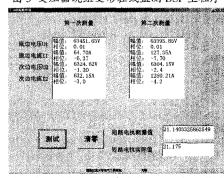


图 4 变压器绕组变形在线监测上位机主界面

磁传动技术在阀门制造中的应用

(渤海石油职业学院 科研处,河北 任丘 062552)

摘 要·对于输送易燃易爆或有毒的气液管线来讲,安全生产至关重要。传统阀门普遍存在着阀杆与填料之间介质渗漏问题,因此 会给安全生产带来很大的危害。运用磁传动技术研制的新型磁耦合无渗漏阀门,其阀体是一个完整的密封体,其中密封件基本不 产生磨损,因此使用寿命长且无渗漏,为安全生产提供了可靠保证。 关键词:磁传动;阀门;永磁体;泄压孔

1 引言

我国的天然气生产正值快速发展时期, 应用范围不断扩大,炼油厂、化工厂也在不断 扩建,其输送气体、液体的管线需要大量各种 阀门。特别是上述产业多是输送易燃、易爆或 有毒的气体、液体,需要阀门绝对无渗漏才能 保证安全。对于传统阀门,阀杆与安装在阀盖 内的填料之间易产生介质渗漏, 因此会给安 全生产带来很大的危害。"磁耦合截止阀"出 现后,较有效的解决了阀门的渗漏问题,但仍 然存在不足之处。如:结构较复杂,又不甚合 理,加工难度大,而且仍然容易造成阀杆与阀 瓣、阀瓣与阀孔之间密封面的磨损,影响使用 寿命。

笔者将磁传动技术应用在阀门制造中, 为上述产业提供一种结构简单,开关灵活,使 用寿命长的新型磁耦合无渗漏阀门, 为企业 的安全生产提供可靠保证。

2 关键技术

2.1 磁传动技术

磁传动技术是彻底解决密封问题的唯一 途径,它根据磁力耦合器的结构原理,无接触 的传递转矩,即在内外磁体之间增加一个隔 离套,将输送介质与外界完全隔开,从而达到 绝对密封无渗漏的目的。

将磁传动技术引用到阀门中来。使阀门 开关所需要的力和力矩通过磁隔离传动方式 从外部传递给内部。由于这种传递方式的内 部和外部是完全隔离的, 因此可以彻底解决 以往阀门的渗漏问题。

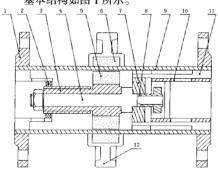
2.2 随动开关机构

对现有阀门的开关机构加以改造,充分 利用管线传送介质的压力,采用随动开关机 构,用以提高阀门开关的灵活性和可靠性。

2.3 转动转变为平动

将阀杆的转动转变为平动,减少密封面 的磨损,延长阀门的使用寿命。

3 技术方案


3.1 基本结构

该新型无渗漏阀门主要包括:阀体、安装

在阀体内的阀座、阀瓣、阀杆及阀杆套、通过 磁耦合与阀杆相联的手轮等部件。其结构外 形就相当一个两端装有法兰的圆筒,圆筒外 套有手轮。与常规阀门相比较,新型磁耦合无 渗漏阀门有以下结构特征:

- 3.1.1 阀体是完整的封闭体,阀座安装在 阀体内的一端,阀座侧面设有介质通孔。
- 3.1.2 阀杆在靠近阀座端,具有泄压孔, 另一端安装有扶正片, 阀杆相对阀瓣可在轴 向上移动 1-10mm 距离, 阀杆和阀瓣分别装 有密封件。
- 3.1.3 阀杆套套装在阀杆上,通过螺纹与 阀瓣的封堵相联接,磁块支架固定在阀杆套 上,内磁块装在其上的磁块槽内。
- 3.1.4 手轮和支架连接成一体,支架套装 在阀体外面,外磁块装在手轮支架的磁块槽

基本结构如图 1 所示。

1.法兰 2.扶正片 3.阀杆套 4.阀杆 5.内磁体 6.外磁体 7.阀瓣 8.泄油孔

9. 阀体 10. 介质通孔 11. 阀座 12. 手轮 图 | 新型磁耦合无渗漏阀门基本结构示意图

运用磁传动技术研制的新型磁耦合无渗 漏阀门,其阀体是一个完整的密封体,其中密 封件基本不产生磨损, 因此使用寿命长且无 渗漏,为安全生产提供可靠保证。

3.2 材料选择

磁块:NdFeB 永磁体:

阀体: 非磁性材料制作, 如无磁不锈钢 OCr18Ni9,1Cr18Ni9Ti;

磁块槽:非磁性材料制作,如无磁不锈钢 OCr18Ni9 \1Cr18Ni9Ti:

阀杆:OA19-2、HPb59-1-1。

4 技术指标

场强峰值:≥5000Gs;

磁场梯度:≥3000Gs/cm;

工作温度:-30~150℃。

5 现场试验结果

样机在中国石油华北油田公司进行了现 场试验,结果表明:

- 5.1 阀体是一个完整的封闭体,通过磁 耦合实现阀门的开启和关闭,结构更为简单 合理,不会在阀体上产生介质渗漏。
- 5.2 采用了阀杆套和阀杆两体的套装结 构,使杆体只作直线移动,有效的减轻了阀杆 与阀瓣、阀瓣与阀座间密封件的磨损,延长了 阀门的使用寿命。
- 5.3 由于具有泄压机构,阀门开、关灵 活。

6 结论

- 6.1 将磁传动技术应用到阀门制造领域 后,将极大的提高输送气、液管线的安全可靠 性,确保在阀门这一环节绝对没有渗漏,这对 输送易燃易爆或有毒的气液管线来讲, 安全 生产得到保证,对环境大气也减少污染,因此 社会效益显著。
- 6.2 当前输送气液管道的截止阀门价格 较高,新型无渗漏阀门的使用寿命明显提高, 较以往截止阀门相比节省了大量设备购置费 和维护资金。

参考文献

[1] SY/T 6470-2000, 输油气管道通用阀门 操作、维护、检修规程[S].

[2] GB/T 13927-92,通用阀门 压力试验[S].

作者简介:孟海军,男,工程师,主要从事 石油机械研究。

含以下几个模块:硬件初始化、开放中断、数 据采集、数据处理、数据上传等。

上位机程序可用 Delphi 软件编制,建立 环境友好的人机界面, 主要完成对现场数据 采集单元上传数据实时数据的分析、诊断、打 印数据以及建立变压器绕组状态数据库。 旦变压器绕组状态出现异常,可随时警告。

图中显示的是一个三相变压器的 A 相电 压电流采集情况,根据测量原理两次在不同 负载的测量值通过计算得到 A 相的短路电 抗实际值,该值与短路电抗理论值大小相比 较,得到不同的在线诊断策略。上位机软件在 windows 操作系统上经过调试运行,能顺利完 成变压器绕组变形诊断的基本功能, 为投入

变电站的实际运行有一定的帮助。

5 结论

本文提出了一种基于 DSP 处理器的变 压器绕组变形在线监测系统。文中提出的电 压电流法理论上能够准确的采集变压器的电 压电流信号,通过公式推导得到短路电抗。由 于短路电抗与变压器绕组结构之间有着密切 的联系, 所以该方法能够有效的检测出变压 器绕组的变形。DSP 处理器具有强大的数字 信号处理能力,现场数据采集单元精度较高, 抗干扰能力较强,DSP 主程序设计合理,得到 的数据合理可信,上位机软件界面友好,便于 操作人员直观的掌握变压器绕组状态。

参考文献

[1]曾刚远.测量短路电抗是判断绕组变形的 有效方法.变压器,1998,35(8):13-17

[2]徐大可,汲胜昌,李彦明.变压器绕组变形 在线监测的理论研究. 高电压技术,2000,26 (3):16-18

[3]肖登明,电力设备在线监测与故障诊断,上 海交通大学出版社.2005

[4]杨长春.Delphi 程序设计教程(第2版).清 华大学出版社,2001

作者简历:刘锐,男,1986-,湖北宜昌人, 西南交通大学电力系统及其自动化专业硕 士,从事电力系统分析和电气设备在线监测 方面的研究