
Codec Engine Algorithm Creator
User’s Guide

Literature Number: SPRUED6C
September 2007

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improve-
ments, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applica-
tions using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate
design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may
be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products
in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely
at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

iii

This is a draft version printed from file: pref.fm on 9/25/07

Preface

About This Book
The intended audience for this document is the Algorithm Creator, who
creates an algorithm/codec for use by Codec Engine server integrators
and application developers.

This manual may also be used by Server Integrators who want to
package a non-xDM algorithm for use in a Codec Server.

This manual tells what steps the Algorithm Creator should take to
package an algorithm for Codec Engine usage.

Additional Documents and Resources
You can use the following sources to supplement this user’s guide:

❏ Codec Engine API Reference.
CE_INSTALL_DIR/docs/html/index.html

❏ Codec Engine SPI Reference Guide.
CE_INSTALL_DIR/docs/spi/html/index.html

❏ Configuration Reference Guide.
CE_INSTALL_DIR/xdoc/index.html

❏ Example Build and Run Instructions.
CE_INSTALL_DIR/examples/build_instructions.html

❏ Codec Engine Application Developer’s Guide (SPRUE67)

❏ Codec Engine Server Integrator's Guide (SPRUED5)

❏ xDAIS-DM (Digital Media) User Guide (SPRUEC8)
❏ TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
❏ TMS320 DSP Algorithm Standard API Reference (SPRU360)
❏ TMS320 DSP Algorithm Standard Developer’s Guide (SPRU424)
❏ TMS320 DSP Algorithm Standard Demonstration Application

(SPRU361)
❏ XDC User’s Guide and other XDC documents.

XDC_INSTALL_DIR/doc/index.html

iv

 Notational Conventions

Notational Conventions
This document uses the following conventions:

❏ Program listings, program examples, and interactive displays are
shown in a special typeface. Examples use a bold version
of the special typeface for emphasis; interactive displays use a bold
version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts,
command output, error messages, etc.).

❏ Square brackets ([and]) identify an optional parameter. If you use
an optional parameter, you specify the information within the
brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

❏ This manual uses an icon like the one to the left to identify information
that is specific to a particular type of system. For example, this icon
identifies information that applies if you are using Codec Engine on a
dual-processor GPP+DSP system.

Trademarks
The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments
include: TI, DaVinci, XDS, Code Composer, Code Composer Studio,
Probe Point, Code Explorer, DSP/BIOS, RTDX, Online DSP Lab,
DaVinci, TMS320, TMS320C54x, TMS320C55x, TMS320C62x,
TMS320C64x, TMS320C67x, TMS320C5000, and TMS320C6000.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds.

Solaris, SunOS, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc.

All other brand, product names, and service names are trademarks or
registered trademarks of their respective companies or organizations.

GPP+DSP

v

This is a draft version printed from file: ce_alg_authorTOC.fm on 9/25/07

Contents

1 Packaging Overview .1-1
This chapter provides an overview of the packaging model used for Codec Server applications.
1.1 Overview. .1-2
1.2 Getting Started .1-3

1.2.1 XDCPATH Environment Variable. .1-3
1.2.2 Editing user.bld. .1-4

1.3 Building a Package. .1-5
1.4 Creating a Release Package .1-7

2 Developing an xDM Codec .2-1
This chapter describes how to package an xDAIS-DM algorithm for use in Codec Server applica-
tions.
2.1 Overview. .2-2

2.1.1 What’s in a Codec Package? .2-2
2.2 Creating Package Files .2-3

2.2.1 package.xdc File .2-4
2.2.2 package.xs File .2-5
2.2.3 package.bld File .2-6
2.2.4 <MODULE>.xdc File .2-6
2.2.5 <MODULE>.xs File .2-7

3 Supporting Non-xDM Algorithms .3-1
This chapter describes how to create stubs and skeletons to allow non-xDM algorithms to be used
remotely in Codec Server applications.
3.1 Overview. .3-2

3.1.1 Tasks .3-2
3.1.2 Roles and Interactions .3-3

3.2 Core Algorithm Interface Requirements .3-4
3.3 Creating Codec Engine Extensions .3-5
3.4 Designing a New Application Interface. .3-5

3.4.1 Creation and Deletion APIs .3-6
3.4.2 Processing Function APIs .3-7

3.5 Developing Stubs and Skeletons .3-9
3.5.1 Developing Codec Engine Stubs .3-9
3.5.2 Developing Skeletons for CE Extensions. .3-14

3.6 Binding Stubs and Skeletons to Framework Extensions .3-19

Contents

vi

3.7 Packaging and Configuring the Core Algorithm . 3-20
3.8 Non-xDM Stub and Skeleton Example: SCALE . 3-22

1-1

Chapter 1

Packaging Overview

This chapter provides an overview of the packaging model used for
Codec Server applications.

1.1 Overview. 1–2

1.2 Getting Started. 1–3

1.3 Building a Package . 1–5

1.4 Creating a Release Package. 1–7

Topic Page

Overview

1-2

1.1 Overview

The Codec Engine framework is designed to work with any xDAIS-
compliant algorithm that is delivered in a custom RTSC (Real-Time
System Component) package. This user guide explains how to package
a xDAIS-compliant algorithm, also referred to as a codec, so that it is
consumable by the Codec Engine's Configuration Kit.

For those algorithms that implement the xDAIS Digital Media (xDM)
interface, the RTSC packaging is a straight-forward procedure, as
explained in Chapter 2 of this guide. The Codec Engine framework
natively supports an application programming interface—the VISA API—
which the application programmer uses to instantiate and use xDM-
compliant algorithms.

A xDAIS algorithm that does not implement the xDM interface may still be
used within the Codec Engine framework. However, this requires some
advanced development work, which involves creating an extension
package with custom stub and skeleton functions. Chapter 3 provides
detailed instructions along with an example, the SCALE API and
SCALE_TI algorithm.

This guide does not describe how to design and implement the actual
xDAIS- or xDM-compliant algorithms. For additional information on
developing xDAIS or xDM algorithms see the xDAIS-DM (Digital Media)
User Guide (SPRUEC8).

For details on Codec Engine and Codec Server development, see the
following documents:

❏ Codec Engine Application Developer's Guide (SPRUE67)

❏ Codec Engine Server Integrator's Guide (SPRUED5)

Getting Started

Packaging Overview 1-3

1.2 Getting Started

To build custom Codec Engine Configurations, TI provides the Codec
Engine Configuration Kit which is based on Texas Instruments' RTSC
(Real-Time System Component) technology, utilizing the XDC (eXpress
DSP Component) foundational tools. This toolkit is also called the XDC
Configuration Kit.

The XDC Configuration Kit enables embedded and DSP developers to
automate their target content configuration, optimization, delivery,
building, and testing.

The easiest strategy for creating a package for your algorithm or codec
is to make a copy of an example package and modify it to meet your
needs. This manual uses the files in the
ti.sdo.ce.examples.codecs.viddec_copy and
ti.sdo.ce.examples.codecs.scale packages, which are provided with the
Codec Engine distribution as a starting point.

Each example package directory contains a makefile, which invokes the
xdc command to build the package. Additionally, the file xdcpaths.mak is
provided in a common folder and referenced by each makefile for global
XDC paths and other installation settings.

To use the XDC tools, you must configure the following:

❏ XDCPATH environment variable (by editing xdcpaths.mak)

❏ build targets (by editing user.bld)

❏ codegen tools and setting for each target (by editing user.bld)

Documentation for XDC is provided with the XDC tools. Go to the
xdctools_#_##/doc subdirectory and open the index.html file for a list of
and links to XDC documentation. For example, the xdc.html file contains
man page information about the xdc command line and the environment
variables it recognizes.

1.2.1 XDCPATH Environment Variable

The XDCPATH environment variable contains a list of directories that
contain packages. This path is used to locate packages that are used by
the package being built.

By default, Codec Engine's XDCPATH is defined in
CE_INSTALL_DIR/examples/buildutils/xdcrules.mak to use the
definition of the XDC_PATH environment variable. XDC_PATH is
defined in the CE_INSTALL_DIR/examples/xdcpaths.mak file.

Getting Started

1-4

Therefore, to set XDCPATH, you should edit the xdcpaths.mak file. This
file contains definitions of where the Codec Engine, DSP/BIOS, XDC
tools, and individual Codec Engine packages are located.

The xdcpaths.mak file is included by the individual makefiles for all
example codecs, servers, and applications. Open the xdcpaths.mak file
in a text editor. Uncomment lines and edit the directory paths to specify
where the installations for the following components are located. Use full,
absolute paths.

❏ CE_INSTALL_DIR. Codec Engine location.

❏ BIOS_INSTALL_DIR. DSP/BIOS location.

❏ XDC_INSTALL_DIR. XDC tools location.

If your Codec Engine distribution does not include a cetools directory, you
may also need to define the following variables:

❏ XDAIS_INSTALL_DIR. xDAIS location (xDAIS 5.00 or greater).

❏ DSPLINK_INSTALL_DIR. DSP/BIOS Link location.

❏ CMEM_INSTALL_DIR. CMEM location.

❏ FC_INSTALL_DIR. Framework Components location.

Most build problems occur if one of these *_INSTALL_DIR variables is
incorrect. Make sure there are no extra spaces, that every individual path
(segment separated by the semicolon) is correct, character for character.

Full paths are recommended for use in the XDCPATH environment
variable. Relative paths are likely to cause problems. If used, relative
paths are treated as relative to the package being built rather than the
directory where the xdc command is invoked. Thus, a relative path refers
to a different location for each package being built.

1.2.2 Editing user.bld

The config.bld script is run prior to all build scripts. It sets defaults for
targets and platforms. It then attempts to find a user.bld script that sets
the property rootDir which is used to locate the code generation tools for
each target as well as setting other properties to override the default
settings in config.bld.

You should edit the CE_INSTALL_DIR/examples/user.bld file as follows:

❏ Set rootDir to point to your installation of the TI DSP code generation
tools for your platform.

Building a Package

Packaging Overview 1-5

❏ Add new target definitions if necessary. Refer to the target definition
format from the CE_INSTALL_DIR/packages/config.bld file. You
must also define the rootDir for that target.

For example, the default file contains the following settings for the
C64P platform (where "remarks" evaluates to a number of related
compiler options):

 var C64P = xdc.useModule('ti.targets.C64P');

 C64P.platform = "ti.platforms.evmDM6446";

 C64P.ccOpts.prefix += " --mem_model:data=far " + remarks;

You can modify these settings, or create settings for a platform other
than C64P.

❏ Add any new targets to the list of available targets by editing the
following Build.targets list to include an additional target. Comment
out any targets for which you do not want to build.

 Build.targets = [

 C64P,

 MVArm9,

 Linux86,

];

1.3 Building a Package

You deliver a codec that is to be consumable by the Codec Engine as a
"package". A package corresponds to a directory that contains all the files
required for an independent component plus metadata about that
component.

Each package has a unique name that reflects its directory name. For
example, "ti.sdo.ce.audio" is the name of a package that must be in a
directory whose path ends with "/ti/sdo/ce/audio". Packages may be
nested within another package. "Package repositories" are directories
that contain one or more packages.

A package places its metadata in a sub-directory named "package". This
sub-directory contains generated metadata files. A package also always
contains a file named “package.xdc”, which declares the package’s name
and an optional compatibility key. This key is used to ensure compatibility
between packages.

Building a Package

1-6

The following five types of files are required to form a package:

❏ Package definition files:

■ package.xdc. Defines the package by specifying its contents
(that is, modules), and notes any packages that this package
depends upon.

■ package.xs. Provides the JavaScript implementation of the
methods declared or inherited in package.xdc. (required only
when there are methods to implement)

❏ Module definition files. For each MODULE declared in package.xdc
there must be a MODULE.xdc file, and optionally a MODULE.xs file:

■ MODULE.xdc. Defines the module by specifying its contents:
variables and methods.

■ MODULE.xs. Provides the JavaScript source code for any
methods declared in MODULE.xdc (required only when there are
methods to implement).

❏ Package build script for configuring and building the package:

■ package.bld. Describes the steps required to build and release
the package. Contains JavaScript instructions for building any
libraries, object files, or executables that are part of the package,
and specifications of what goes into a release package.

Additionally, any source and header files needed to build the artifacts and
any pre-built files to be included in a release package must be included
in the package directory.

Once the package directory contains the required contents and the
required environment variables have been set, you can build the package
with the following command:

% xdc

To simplify the task of creating RTSC packaging for an xDM codec, we
recommend making a copy of an example package and modifying it to
meet your needs. Each example package directory contains a makefile,
which invokes the xdc command to build the package using the
xdcpaths.mak for global XDC paths and other installation settings. In this
case the xdc command can be indirectly issued via the following
command:

% gmake

Creating a Release Package

Packaging Overview 1-7

1.4 Creating a Release Package

Once a buildable package exists, use the following command to create a
.tar file containing the binary distributions of the package.

% xdc release

The package build script, package.bld, is executed when the package
producer builds the package. This script names the releases and
specifies the files to be included in each.

The generated tar file contains the binary distribution of the package,
which includes all the files required for RTSC tools to recognize the
package. It also includes any additional files or directories that are
specified in package.bld by setting the optional Pkg.otherFiles attribute.
The binary files (libraries and executables) built using the package.bld
script are automatically included in any release and do not have to be
explicitly listed in Pkg.otherFiles.

The default name of the created tar file is obtained from the package
name, replacing the periods (.) with underscores (_).

The source or header files used in the package build process are not
included in a release package, unless you explicitly add them using
Pkg.otherFiles. For example, by adding the following line to package.bld,
all files in the src and include directories and the file readme.txt are
released:

Pkg.otherFiles = [

 'src', /* the whole src subdirectory */

 'include', /* the whole include subdirectory */

 'readme.txt',

];

In order to include a library, legacy.lib, which was built outside the
package using a legacy build system, you can copy the library into the
package directory and include it in Pkg.otherFiles in the package.bld file.

Pkg.otherFiles = [

 'legacy.lib',

 'readme.txt',

];

1-8

2-1

Chapter 2

Developing an xDM Codec

This chapter describes how to package an xDAIS-DM algorithm for use
in Codec Server applications.

2.1 Overview. 2–2

2.2 Creating Package Files . 2–3

Topic Page

Overview

2-2

2.1 Overview

This chapter explains how to package an xDAIS-DM compliant codec to
make it consumable by the Codec Engine's Configuration Kit. By
following these instructions, an algorithm can be used in a Codec Server.

This manual does not describe how to create an xDAIS-DM compliant
codec. For information on xDAIS-DM (also called "xDM"), see the
xDAIS-DM (Digital Media) User Guide (SPRUEC8).

The easiest strategy for creating a package for your algorithm or codec
is to make a copy of an example package and modify it to meet your
needs. This chapter uses the files in the
ti.sdo.ce.examples.codecs.viddec_copy package provided with the
Codec Engine distribution as a starting point.

2.1.1 What’s in a Codec Package?

The following figure illustrates the contents of a codec package. In this
example, the vendor "VEND" delivers a VISA compliant codec module
"MOD" as a XDC package.

The package you distribute contains the compiled library file, two .xs files,
and two .xdc files. The .xs and .xdc files provide metadata about the
package. The source code for the package is shown in brackets to the
right of the library icon. You are not required to distribute the source files
with a package, though you can choose to if you wish.

Figure 2–1 Package Contents

 vend.xdmcodecs.mod

mod_vendor.lib symbol: MOD_VEND_MOD

=
modImpl.{c,asm,…}
mod_vend.h
mod_vend_priv.h
+ package.bld

package.xs

MOD_VEND.xdc
MOD_VEND.xs

package.xdc

Creating Package Files

Developing an xDM Codec 2-3

2.2 Creating Package Files

As an example, we look at the files in the
ti.sdo.ce.examples.codecs.viddec_copy package provided in the Codec
Engine's "examples" repository. This codec implements the
ti.sdo.ce.video.IVIDDEC interface. That is, it is an xDAIS-DM compliant
Video Decoder. Its "decoding" simply passes data through; input buffers
are copied to output buffers.

The following files are required in a released package. Filenames in bold
are files you edit. Other files are generated when you build the codec.

❏ package.xdc. Package’s static properties. For example, name and
dependencies. See Section 2.2.1.

❏ package.xs. Package properties that can vary across platforms and
configurations. For example, library name. See Section 2.2.2.

❏ VIDDEC_COPY.xdc. Codec’s static properties. For example, xDM
class, IALG Fxn table, and IDMA Fxn table. The filename will differ
for your codecs. See Section 2.2.4.

❏ VIDDEC_COPY.xs. Codec properties that can vary across platforms
and configurations. The filename will differ for your codecs. For
example, stack size. See Section 2.2.5.

❏ viddec_copy.a##. The compiled library for the codec for a particular
platform.

The following additional files are required in order to build the package. If
you want to enable consumers of your codec to rebuild the package, your
release should also include these files.

❏ package.bld. The package’s build/release script. This defines the
contents of the release. See Section 2.2.3.

❏ viddec_copy_ti.h and viddec_copy_ti.priv.h. Public and private
header files. The filenames will differ for your codecs.

❏ viddec_copy.c. The xDAIS-DM implementation of the codec.

❏ makefile. The file used to build the codec. For the examples, this file
includes the xdcpaths.mak file and the xdcrules.mak file.

Creating Package Files

2-4

The following files are generated when you build the codec, and you
should not modify them. You should also not modify any files that begin
with "." or any files in the "package" subdirectory, since these are all
automatically generated.

❏ .xdcenv.mak. This file is generated during builds. It describes the
user’s environment when the package was built.

❏ package.mak. This file is generated from package.bld.

❏ viddec_copy.a##.mak. The build file for a particular target and
release. These files are generated from package.bld.

❏ .dlls, .executables, .interfaces, .libraries. These files provide
information about the build. These files are all generated during
builds; you should not modify them with a text editor.

❏ "package" directory. These files are used by the XDC Configuration
Kit. The files in this directory are all generated during builds; you
should not modify them with a text editor.

2.2.1 package.xdc File

The package.xdc file defines the package's static properties such as its
name and any dependencies.

For example, the package.xdc file for the viddec_copy codec references
its dependency on the video portion of the xDM VISA APIs as follows:

requires ti.sdo.ce.video;

It then uses the following statements to specify that the name of the
package is "ti.sdo.ce.examples.codecs.viddec_copy" and that this
package contains a single Module called "VIDDEC_COPY".

package ti.sdo.ce.examples.codecs.viddec_copy {
 module VIDDEC_COPY;
}

Creating Package Files

Developing an xDM Codec 2-5

2.2.2 package.xs File

The package.xs file specifies package properties that can vary across
platforms and configurations. For example, the default package.xs file for
the VIDDEC_COPY example sets the library name as follows:

function getLibs(prog)

{

 /* "mangle" program build attrs to directory name */

 var name = "lib/viddec_copy.a" + prog.build.target.suffix;

 if (prog.build.target.isa == "64P") {

 /* return the library name: name.a<arch> */

 print(" will link with " + this.$name + ":" + name);

 }

 else {

 name = "";

 }

 return (name);

}

The getLibs() function returns the library name that the package exports.
The XDC build system calls this special function—whenever an XDC
application "uses" a package—to link against the package library
matching the program's configuration. The exported library does not have
to be built using the housing package's build script. It can be built with any
legacy build system and placed into the package.

Note that in the previous example, the getLibs() function returns a library
only if you are currently building a DSP server or a DSP standalone
Codec Engine application. It does not return a library if you are building
an ARM application. This is what the following if() statement in the
function does:

if (prog.build.target.isa == "64P") {

The string "64P" is a code for DSP target binaries. (ARM target binaries
have a different code, "MVArm9".) If you are building an ARM application
and this codec package gets consumed, the condition above is false and
the getLibs() return an empty library name—which is what you want when
you don't provide any libraries for the ARM.

If you develop codecs only for the DSP, it is important to have this same
if() block in your getLibs() function. Note that the example codecs contain
libraries for both the DSP and for the ARM, so they don't have this if()
clause.

Creating Package Files

2-6

2.2.3 package.bld File

The package.bld file defines the build-related attributes for the package.
For example, it specifies whether to build a "debug" or "release" version.

This file does not need to be shipped with the package. It should be
shipped if a release variant of the codec is "rebuildable".

If you are converting the package.bld file from the VIDDEC_COPY
example, change the following array to list the source files for your codec:

var SRCS = ["viddec_copy.c", "other source file", ...];

Also, change the following line to reference your codec library:

Pkg.addLibrary("lib/viddec_copy", targ).addObjects(SRCS);

See the XDC User’s Guide which is installed with the XDC tools at
XDC_INSTALL_DIR/doc/XdcUsersGuide.pdf for information about items
that may be configured in the package.bld file.

In this file, Pkg.attrs.profile may be any of the following:

❏ "debug"

❏ "release"

The targets (for example, x86 Linux, C64P, and MVARM9) come from the
config.bld file. You can modify the user.bld file to add your own targets.
The user.bld file is in the CE_INSTALL_DIR/examples directory.

2.2.4 <MODULE>.xdc File

This is the module declaration and definition file.

You should rename the VIDDEC_COPY.xdc file to match the module
name you used in the package.xdc file. This file declares that this module
is a codec that can be incorporated into a Codec Engine server. That is,
it specifies the codec’s name, type, and any additional properties you
want to declare.

By inheriting ti.sdo.ce.video.IVIDDEC in the following line,
VIDDEC_COPY declares that it is a VISA video decoder algorithm. This
allows the Codec Engine to automatically supply default stubs and
skeletons for transparent execution of DSP codecs by the GPP.

metaonly module VIDDEC_COPY inherits ti.sdo.ce.video.IVIDDEC

Creating Package Files

Developing an xDM Codec 2-7

In addition to declaring the type of algorithm, this file uses the following
statement to declare the external symbol required by xDAIS to identify
the algorithm’s implementation functions.

/*!

 * ======== ialgFxns ========

 * name of this algorithm's xDAIS alg fxn table

 */

override readonly config String ialgFxns =

 "VIDDECCOPY_TI_VIDDECCOPY";

If the codec uses DMA, you must also specify the idma3Fxns vtable
symbol’s name in this file.

2.2.5 <MODULE>.xs File

This is the module’s implementation.

Rename the VIDDEC_COPY.xs file to match the module name you used
in the package.xdc file. This file should contain the implementation of any
methods declared in VIDDEC_COPY.xdc. By analogy, the *.xs file is to
its corresponding *.xdc file as a *.c file is to a *.h file.

This file defines codec properties that can vary across platforms and
configurations.

It implements the functions specified in the ti.sdo.ce.ICodec interface.
These functions enable the configuration tool to validate user-supplied
configuration parameters. For example, the default VIDEEC_COPY.xs
file specifies the stack size for the thread running this codec.

function getStackSize(prog)

{

 if (verbose) {

 print("getting stack size for " + this.$name

 + " built for the target " + prog.build.target.$name

 + ", running on platform " + prog.platformName);

 }

 return (1024);

}

2-8

3-1

Chapter 3

Supporting Non-xDM Algorithms

This chapter describes how to create stubs and skeletons to allow non-
xDM algorithms to be used remotely in Codec Server applications.

3.1 Overview. 3–2

3.2 Core Algorithm Interface Requirements . 3–4

3.3 Creating Codec Engine Extensions. 3–5

3.4 Designing a New Application Interface . 3–5

3.5 Developing Stubs and Skeletons. 3–9

3.6 Binding Stubs and Skeletons to Framework Extensions 3–19

3.7 Packaging and Configuring the Core Algorithm 3–20

3.8 Non-xDM Stub and Skeleton Example: SCALE 3–22

Topic Page

Overview

3-2

3.1 Overview

Codec Engine (CE) provides an easy-to-use application interface—
VISA—for multi-media developers to integrate and deploy compliant
codecs. All VISA-compliant codecs internally use a xDAIS/xDM-
compliant algorithm core. CE uses the core algorithm's generic IALG
interface to dynamically create and destroy codec instances. CE uses the
codec's xDM interface to call specific processing and control functions.

This chapter shows how to extend CE by adding new VISA-like APIs for
remotely accessing xDAIS algorithms that do not implement the xDM
interface. It also presents techniques for developing a custom media
application layer interface, which seamlessly integrates non-xDM
algorithms into the extended CE framework.

An extension example, SCALE, illustrates the concepts in this chapter.
This example is provided in the ti.sdo.ce.examples.codecs.scale
package, which is found in the CE_INSTALL_DIR/examples repository.

In order to use a CE extension, such as SCALE, a GPP client application
uses the existing CE interfaces (Engine APIs) to configure and open a
processing engine. It then uses new SCALE APIs to create, delete and
drive "scale" algorithms.

3.1.1 Tasks
The tasks for developing a CE extension can be broken down as follows:

❏ Create core algorithm interface. See Section 3.2.
■ xDAIS IALG interface required for standard instance creation

and deletion.
■ IMOD xDAIS extension providing core processing and control

functions.
❏ Create CE extension layer. See Section 3.3.

■ New MOD application framework API and library. See Section
3.4.

■ CE RPC layer for remote processing on a dual-processor target.
See Section 3.5.
◗ Client-side: custom MOD stub interface. See Section 3.5.1.
◗ Server-side: custom MOD skeleton interface. See Section

3.5.2.
❏ Perform CE packaging and configuration.

■ Configuring engine, binding skeleton interface. See Section 3.6.
■ MOD packaging. See Section 3.7.

Overview

Supporting Non-xDM Algorithms 3-3

3.1.2 Roles and Interactions

Figure 3–1 provides a high-level overview of the interactions between a
GPP client application, Codec Engine and a remote (DSP) server running
xDAIS-compliant algorithms.

Figure 3–1 Overview of GPP / DSP Interactions

In Figure 3–1, the roles of stubs and skeletons in remote calls to an
xDAIS DSP algorithm are shown. The numbers in the figure correspond
to the following actions:

1) The GPP-side application makes an algorithm MOD_process() call.

2) Codec Engine (CE) forwards this call and its arguments to the GPP-
side algorithm stub.

3) The stub places the arguments in a compact inter-CPU message and
replaces all GPP-side (virtual address) pointer values with DSP-side
(physical address) values. This is called "marshalling" the
arguments.

4) CE delivers the message to the DSP-side algorithm skeleton.

5) The skeleton unmarshals the arguments and calls the actual xDAIS
algorithm's process() function.

6) On the way back, the skeleton marshals any return arguments,
places them in a message, and the stub unmarshals them for the
application.

msg

GPP DSP

Shared memory

alg stub + CE CE + alg skeleton

Application xDAIS alg

MOD_process(), , process*(), ,

* IMOD function

1

2

3 4

5

6

Core Algorithm Interface Requirements

3-4

In Codec Engine, memory shared by the GPP and DSP is not cached on
the GPP, but is cached on the DSP. The skeleton must manage the
cache by invalidating the cache area occupied by the input and output
buffers before the xDAIS process() call and by flushing the output buffers'
cache area after the xDAIS process() call.

Technically, the process() and control() function prototypes on the GPP
side do not need to be the same as those of the xDAIS algorithm.
However, if they are not the same, the API layer becomes more
complicated, and is beyond the scope of this document.

3.2 Core Algorithm Interface Requirements

The core algorithm interface must be compliant with TI's TMS320 DSP
Algorithm Standard (xDAIS). For details, see the following documents:
❏ TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
❏ TMS320 DSP Algorithm Standard API Reference (SPRU360)
❏ TMS320 DSP Algorithm Standard Developer’s Guide (SPRU424)

Additionally, to be able to operate in a dual-processor environment, the
interface must support remote calls. The xDM interface is an example of
a remote callable API. Remote calling within the CE framework currently
imposes the following restrictions:

❏ Creation parameters cannot contain client-side address references.

❏ Each argument's operational semantics must be specified as either
In, Out, or In/Out.

❏ Arguments passed to algorithm methods—for example, process()
and control()—must be serializable.This means:
■ Each address reference passed in an argument must be explicit

and must point to a client-provided memory location whose size
can be determined by parsing the provided run-time arguments.

■ Each address reference passed in an Out or In/Out argument
must be aligned with respect to cache line sizes and must have
a size that is a multiple of the cache-line size.

■ The sizes of all arguments must be fixed or computable by
parsing the run-time arguments.

Client applications must ensure that all data passed to algorithm
processing functions by reference are:
❏ contiguously allocated
❏ located within a shared memory segment
❏ aligned with respect to cache line sizes and have a size that is a

multiple of the cache-line size.

Creating Codec Engine Extensions

Supporting Non-xDM Algorithms 3-5

3.3 Creating Codec Engine Extensions

The Codec Engine VISA APIs provide uniform synchronous procedure
call semantics for client applications. When the server is "local", the calls
are true local procedure calls. However, when the server is "remote",
Codec Engine provides a classic Remote Procedure Call (RPC)
abstraction.

Section 3.4 describes how to develop a VISA-like application interface to
support non-xDM algorithms. These extended APIs facilitate VISA-like
easy-to-use creation, deletion, and processing operations for both local
and remote server configurations.

Then, Section 3.5.1 and Section 3.5.2 describe how to develop the CE
stubs and skeletons that implement the RPC abstraction in a remote
configuration.

3.4 Designing a New Application Interface

You should create a new API module that can be delivered to the client
application as a separate, configurable package that extends (and
leverages) the Codec Engine framework. This section uses the SCALE
extension example provided in the toolkit to explain the key concepts
required to create such a package.

The SCALE example provides a new application interface with contains
the following core functions: SCALE_create, SCALE_delete,
SCALE_process, and SCALE_control. These functions are used to
create and delete local or remote "scale" codec instances and to process
data using the algorithm.

The CE extension package, "ti.sdo.ce.examples.extensions.scale",
implements the SCALE APIs and provides a configuration interface
module, ISCALE, which extends ti.sdo.ce.ICodec to support remote
operation and to configure stubs and skeletons. More details on ISCALE
and stubs and skeletons are provided in Section 3.5.1 and Section 3.5.2.

Designing a New Application Interface

3-6

3.4.1 Creation and Deletion APIs

The easiest APIs to define and implement are the create and delete APIs,
since these are fairly generic and can simply invoke the VISA_create and
VISA_delete functions. Follow these guidelines for seamless integration:

❏ Algorithm Handle. All algorithm handles used should be compatible
with the VISA_Handle type.

❏ Algorithm Creation Parameter. Creation parameters must extend
IALG_Params. The first field contains the size of the structure
definition; the rest can be arbitrary non-pointer elements.

❏ Engine_Handle. The Engine_Handle argument to VISA_create
must be to an open engine which contains references to the core
algorithm package.

❏ Algorithm Name. The name argument to VISA_create must match
the string used to configure the algorithm in the engine.

❏ Codec Name. The fully-qualified module name of the codec in the
extension package must be passed as the last argument to
VISA_create.

The source code for the SCALE_create and SCALE_delete APIs, which
follows, shows how to implement them using VISA APIs.

/* ======== SCALE_create ======== */

SCALE_Handle SCALE_create(Engine_Handle server,

 String name, SCALE_Params *params)

{

 SCALE_Handle visa;

 if (params == NULL) {

 params = &SCALE_PARAMS;

 }

 visa = VISA_create(server, name, (IALG_Params *)params,

 sizeof (_SCALE_Msg), "extensions.scale.ISCALE");

 return (visa);

}

/* ======== SCALE_delete ======== */

Void SCALE_delete(SCALE_Handle handle)

{

 VISA_delete(handle);

}

Designing a New Application Interface

Supporting Non-xDM Algorithms 3-7

3.4.2 Processing Function APIs

To create processing function APIs, you create custom functions that use
the public core algorithm interface of the xDAIS-compliant (but non-xDM)
codec. When implementing these functions, use the following VISA APIs:

❏ VISA_getAlgFxns

❏ VISA_getAlgHandle

❏ VISA_enter, VISA_exit

First, use the VISA_Handle returned by the create call (for example,
SCALE_create) to obtain the actual algorithm instance handle and the
algorithm's IALG interface function table. Use these to call the core
algorithm’s processing functions. It is possible, although not
recommended, for the framework APIs to have different arguments than
those of the core algorithm interface.

The technique recommended here allows the same API implementation
to be used for both local and remote invocation. When the application
configures the codec as "remote", the VISA layer routes the call to the
remote algorithm instance using stubs and skeletons that must be
provided as part of the CE extension package. (see Section 3.5) When
configured as "local", the processing call is a function call to the actual
algorithm instance.

Calls to an algorithm's processing functions must be bracketed with
VISA_enter and VISA_exit calls using the instance handle. These calls
allow the VISA layer to perform the necessary instance activation and
deactivation that may be necessary for xDAIS algorithms.

Designing a New Application Interface

3-8

For example, the SCALE_process function is implemented as follows:

/* ======== SCALE_process ======== */

XDAS_Int32 SCALE_process(SCALE_Handle handle,

 XDAS_Int8 *inBuf, XDAS_Int8 *outBuf,

 SCALE_InArgs *inArgs, SCALE_OutArgs *outArgs)

{

 XDAS_Int32 retVal = SCALE_EFAIL;

 if (handle) {

 ISCALE_Fxns *fxns =

 (ISCALE_Fxns *)VISA_getAlgFxns((VISA_Handle)handle);

 ISCALE_Handle alg =

 VISA_getAlgHandle((VISA_Handle)handle);

 if (fxns && (alg != NULL)) {

 VISA_enter((VISA_Handle)handle);

 retVal = fxns->process(alg, inBuf, outBuf,

 inArgs, outArgs);

 VISA_exit((VISA_Handle)handle);

 }

 }

 return (retVal);

}

Developing Stubs and Skeletons

Supporting Non-xDM Algorithms 3-9

3.5 Developing Stubs and Skeletons

This section describes how to provide a VISA-like RPC abstraction for
remote calls. It assumes you have a xDAIS-compliant algorithm, for
which you would like to create a remote-callable API.

When the client GPP application calls the process or control API on a
remote server, the call and its arguments must be encoded as a message
and sent to the remote server where the actual call is dispatched to the
core algorithm instance. The process of delivering the function
arguments to the remote dispatcher is typically called "marshalling". A
client-side "stub" function acting as a proxy for the remote server
performs the marshalling.

On the server side, the Codec Engine’s dispatcher, called a "skeleton",
unmarshals the arguments and calls the appropriate core algorithm's
processing function(s) to serve the request.

The skeleton then marshals the result and output arguments of the actual
computation back to the waiting client application stub, which
subsequently unmarshals and returns result and output arguments back
to the client as if it were an ordinary procedure call.

3.5.1 Developing Codec Engine Stubs

For each process or control call, you must create a separate "stub"
function. The signature of each stub function must match the signature of
the extended API.

The following outline shows the work the stub function must perform.
Details and example code are provided with matching sequence
numbers after this list.

1) Define a new VISA "message" type used for marshalling and
unmarshalling call arguments used by both stubs and skeletons.

2) Marshal the call and its arguments using the VISA "message":

a) Create the new "message" using VISA APIs.

b) Set the function-ID (VISA header command ID).

c) Marshalling: Translate address references passed as arguments
from the client's address space to the server's address space.

d) Copy all IN, IN/OUT, and mapped address references in OUT
arguments to the message.

3) Dispatch the call to the server using VISA_call and block until the
server's reply message arrives.

Developing Stubs and Skeletons

3-10

4) Unmarshal the returned arguments:

a) Ensure or translate all returned output address references back
to the client's address space from the server's address space.

b) Copy OUT arguments from MSG.

5) Free any acquired VISA messages.

6) Return the results of remote computation.

The details of stub processing requirements are as follows:

1) Define a new VISA "message" type used for marshalling and
unmarshalling call arguments used by both stubs and
skeletons.

The new message type will be used in VISA_call() communication by CE.
The first member of the struct type must be a VISA_MsgHeader type. The
remaining fields should explicitly list each argument to all possible
callable functions.

The VISA_MsgHeader structure includes a field for defining the
command-id. This command-id is used to specify the purpose of the
remote procedure call. You should create unique command-ids for each
remote callable function in the extended framework interface.

Developing Stubs and Skeletons

Supporting Non-xDM Algorithms 3-11

The following code from the SCALE example illustrates the types used:

#include <ti/sdo/ce/visa.h>

#include <scale.h>

#define _SCALE_CPROCESS 0

#define _SCALE_CCONTROL 1

/* MSGQ message for marshalling/unmarshalling arguments */

typedef struct {

 VISA_MsgHeader visa;

 union {

 struct {

 XDAS_Int8 *inBuf;

 XDAS_Int8 *outBuf;

 SCALE_InArgs inArgs;

 SCALE_OutArgs outArgs;

 } process;

 struct {

 SCALE_Cmd id;

 SCALE_DynamicParams params;

 } control;

 } cmd;

} _SCALE_Msg;

2(a) Marshalling: Create the "message" using VISA APIs.

Use VISA_allocMsg() to acquire a communication message that CE has
associated with the remotely created algorithm instance. For example:

VISA_Handle visa = (VISA_Handle)h;

_SCALE_Msg *msg;

/* get a message appropriate for this algorithm */

if ((msg = (_SCALE_Msg *)VISA_allocMsg(visa)) == NULL) {

 return (SCALE_ERUNTIME);

}

2(b) Marshalling: Set the function-ID (VISA header command ID).

Use the VISA header of the IPC message to indicate the type of the
remote function that is being marshalled. For example:

/* Specify the processing command the skeleton should do */

msg->visa.cmd = _SCALE_CPROCESS;

Developing Stubs and Skeletons

3-12

2(c) Marshalling: Translate the address references passed as
arguments from the client's address space to the server's
address space.

Use the Codec Engine Memory_getBufferPhysicalAddress() API to
translate each address reference. After the calls, check for valid mapped
addresses.

For example:

/* inBuf is a pointer, so we have to convert it */

msg->cmd.process.inBuf =

 (XDAS_Int8 *)Memory_getBufferPhysicalAddress(inBuf,

 inArgs->inBufSize, NULL);

if (msg->cmd.process.inBuf == NULL) {

 retVal = SCALE_ERUNTIME;

}

2(d) Marshalling: Copy all IN, IN/OUT, and mapped address
references in OUT arguments to the message.

Some things to remember:

All arguments must be passed by value.

All address references must be mapped to the server's address space
and stored in the message.

Data referenced by any pointer argument must not contain any
"unmapped" address references.

The same message structure (format) must be used by both the skeleton
and the stub.

3) Dispatch the call to the server using VISA_call() and block
until the server's reply message arrives.

Use the Codec Engine VISA_call() API to synchronously send the
message containing marshalled arguments to the skeleton and wait for
its completion.

VISA_call() returns the error or success code returned by the skeleton
dispatcher's call function.

When VISA_call() returns successfully, the VISA message header’s
status field contains the actual result returned by the core algorithm
function.

Developing Stubs and Skeletons

Supporting Non-xDM Algorithms 3-13

For example, after the following call, msg.status contains the result
returned by the algorithm. If the call was successful, this same value is
returned as retVal.

/* send message to the skeleton and wait for completion */

retVal = VISA_call(visa, (VISA_Msg *)&msg);

Note that the "message" returned by the msg argument in VISA_call is
not necessarily the same msg reference that was passed to the call.
Therefore, any address references relative to the message base that was
obtained prior to VISA_call are invalid after VISA_call returns, and must
be re-calculated before accessing the message contents.

4(a) Unmarshal: Ensure or translate all returned output address
references back to the client's address space from the server's
address space.

Use the Codec Engine Memory_getBufferVirtualAddress() API to
translate address references from the remote processor's physical
address space to the client's virtual address space. After the calls, you
should check for valid mapped addresses.

The SCALE example does not return any address references to the
client, so the following example is from the actual xDM video decoder
stubs.

/* pointers in outArgs.displayBufs are physical; convert */

for (i = 0; i < outArgs->displayBufs.numBufs; i++) {

 outArgs->displayBufs.bufs[i] =

 Memory_getBufferVirtualAddress(

 (UInt32)(outArgs->displayBufs.bufs[i]),

 outArgs->displayBufs.bufSizes[i]);

}

4(b) Unmarshal: Copy OUT arguments from the message.

Remember:

All arguments must be passed by value.

All address references in IN/OUT or OUT arguments must be mapped to
the client's address space.

Data referenced by an IN/OUT or OUT pointer argument must not contain
any address references that are not "unmapped" to the client's address
space.

The same message structure (format) must be used by both the skeleton
and the stub.

Developing Stubs and Skeletons

3-14

5) Free any acquired VISA messages.

Use the VISA_freeMsg() API to release the communication message
resources that CE associated with the remotely created VISA object. For
example:

VISA_freeMsg(visa, (VISA_Msg)msg);

6) Return the results of remote computation.

When VISA_call() executes successfully, the return value from the
VISA_call is the actual result returned by the core algorithm function.

For example:

/* send message to the skeleton and wait for completion */

retVal = VISA_call(visa, (VISA_Msg *)&msg);

...

return(retVal);

3.5.2 Developing Skeletons for CE Extensions

Codec Engine provides a basic mechanism to deliver the stub's
marshalled arguments to the remote algorithm instance’s skeleton. The
"skeleton" is the remote side (DSP-side) of the RPC. The skeleton
defines its interface via a SKEL_Fxns struct with three function pointers.
This structure is defined in skel.h as follows:

/*

 * ======== SKEL_Fxns ========

 */

typedef struct SKEL_Fxns {

 SKEL_CALLFXN call;

 SKEL_CREATEFXN apiCreate;

 SKEL_DESTROYFXN apiDestroy;

} SKEL_Fxns;

When you implement a skeleton, the extension package must provide a
global SKEL_Fxns symbol containing pointers to these three functions:
call, apiCreate and apiDestroy.

The "call" function is executed only on the DSP side; it is ultimately the
DSP-side handler for the GPP-side VISA_call() API, and handles
processing functions. The "apiCreate" and "apiDestroy" functions,
however, should be implemented independently of whether they run on
the GPP or DSP (because they'll run on both). This enables CE to easily

Developing Stubs and Skeletons

Supporting Non-xDM Algorithms 3-15

support "local" codecs—that is, codecs that run on the same processor
as the application (in the DM644x case, this is the GPP)—as well as
remote codecs.

Here is an outline of the work the skeleton’s "call" function must perform.
Details and example code are provided with matching sequence
numbers after this list.

1) Select the dispatch function by parsing the command-id in the
message header.

2) Unmarshal "processing" function arguments.

a) Cache invalidate all buffers, including the IN, IN/OUT, and OUT
buffers.

b) Construct an actual argument list for the target function by
parsing the dispatch message.

3) Call the core xDAIS algorithm interface function.

4) Marshal return arguments into the reply message.

a) Cache writeback the OUT and IN/OUT buffers.

b) Copy OUT arguments back to the reply message.

5) Send the reply message back to the caller.

Note: This section includes descriptions of cache operations for
IN/OUT buffers for a CE extension. It is important to note that the
xDM specification provides only for IN and OUT buffers. IN/OUT
buffers are not allowed for xDM-compliant algorithms, but you may
use them for proprietary interfaces.

Developing Stubs and Skeletons

3-16

The details of skeleton processing requirements are as follows:

1) Select the dispatch function by parsing the command-id in the
message header.

The signature of the skeleton function is defined in the ti.sdo.ce.skel
interface. For example:

#include <ti/sdo/ce/skel.h>

...

/* ======== call ======== */

static VISA_Status call(VISA_Handle visaHandle,

 VISA_Msg visaMsg)

{

 _SCALE_Msg *msg = (_SCALE_Msg *)visaMsg;

 SCALE_Handle handle = (SCALE_Handle)visaHandle;

 . . .

 /* call the requested SCALE func by parsing message */

 switch (msg->visa.cmd) {

 case _SCALE_CPROCESS: {

 . . .

 }

 case _SCALE_CCONTROL: {

 . . .

 }

 }

2(a) Unmarshal: Cache invalidate IN, IN/OUT, and OUT buffers.

Marshalled address references have already been mapped to the
server's address map, so no additional address mapping is needed.

Compute the "size" of each data region passed as an address-reference
using the current arguments.

When client-side data references are mapped to server side "cached"
memory addresses, any memory block that is being referenced in an IN,
IN/OUT, or OUT buffer must be invalidated using the ce.osal.Memory
package function: Memory_cacheInv(). This is necessary to prevent
reading potentially stale data from server-side cache.

Developing Stubs and Skeletons

Supporting Non-xDM Algorithms 3-17

For example:

/* unmarshal inBuf and outBuf */

inBuf = msg->cmd.process.inBuf;

outBuf = msg->cmd.process.outBuf;

/* invalidate cache for input and output buffers */

Memory_cacheInv(inBuf, msg->cmd.process.inArgs.inBufSize);

Memory_cacheInv(outBuf, msg->cmd.process.inArgs.outBufSize);

2(b) Unmarshal: Construct an actual argument list for the target
function by parsing the dispatch message.

Remember:

All arguments must be passed by value.

All address references have already been mapped to the servers's
address space by the stub.

The same message structure (format) must be used by both the skeleton
and the stub.

3) Call the core xDAIS algorithm interface function.

Use the dispatched VISA handle and extended APIs to call the process
or control functions. For example:

static VISA_Status call(VISA_Handle visaHandle,

 VISA_Msg visaMsg)

{

 _SCALE_Msg *msg = (_SCALE_Msg *)visaMsg;

 SCALE_Handle handle = (SCALE_Handle)visaHandle;

 . . .

 /* make the process call */

 msg->visa.status = SCALE_process(handle, inBuf, outBuf,

 &(msg->cmd.process.inArgs),

 &(msg->cmd.process.outArgs));

4(a) Marshal return arguments: Cache writeback OUT and IN/OUT
buffers.

Compute the "size" of each data region passed as address-reference
using the current arguments.

When client-side data references are mapped to server-side "cached"
memory addresses, any memory block that is being referenced in an
OUT buffer or an IN/OUT argument must be written back using the

Developing Stubs and Skeletons

3-18

ce.osal.Memory package function Memory_cacheWb(). This is
necessary to update the contents of shared external memory from
modified server cache lines.

For example:

/* writeback output buffer */

Memory_cacheWb(outBuf, msg->cmd.process.inArgs.outBufSize);

4(b) Marshal return arguments: Copy OUT arguments back to the
reply message.

The return value of the process or control API must be stored in the VISA
message header's "status" field.

Also, any IN/OUT and/or OUT arguments must be copied to the VISA
message by value.

For example:

/* make the process call */

msg->visa.status = SCALE_process(handle, inBuf, outBuf,

 &(msg->cmd.process.inArgs),

 &(msg->cmd.process.outArgs));

5) Reply message returned back to the caller.

The algorithm's status and OUT arguments stored in the message (step
4b above) are passed back to the GPP-side stub automatically by the CE
framework. The following sample code shows the GPP-side stub using
the return code from VISA_call() and de-referencing outArgs from the
returned message:

/* send message to the skeleton and wait for completion */

retVal = VISA_call(visa, (VISA_Msg *)&msg);

/* copy out the outArgs */

*outArgs = msg->cmd.process.outArgs;

. . .

return (retVal);

Binding Stubs and Skeletons to Framework Extensions

Supporting Non-xDM Algorithms 3-19

3.6 Binding Stubs and Skeletons to Framework Extensions

The codec extension configuration must include a meta-only interface
that is derived from the ti.sdo.ce.ICodec interface.

Configure the skeleton functions by defining a global symbol of type
SKEL_Fxns. This contains the extension skeleton function pointers and
overrides the ICodec configuration interface's serverFxns attribute with
the name of the SKEL_Fxns symbol.

Similarly, you should export the stub functions using a global symbol
containing the core algorithm interface function table whose module (that
is, non-IALG) functions are set to the addresses of the stub functions.
This symbol's name is used to override the ICodec configuration
interface's stubFxns attribute.

The SCALE example defines one such configuration interface, ISCALE,
which follows:

/*!

 * ======== ISCALE ========

 * Scale Codec Configuration interface

 */

metaonly interface ISCALE inherits ti.sdo.ce.ICodec

{

 override readonly config String serverFxns = "SCALE_SKEL";

 override readonly config String stubFxns = "SCALE_STUBS";

 override readonly config Int rpcProtocolVersion = 1;

}

The SCALE_SKEL and SCALE_STUBS structures point to the stub and
skeleton functions:

/* ======== SKEL_Fxns ======== */

typedef struct SKEL_Fxns {

 SKEL_CALLFXN call;

 SKEL_CREATEFXN apiCreate;

 SKEL_DESTROYFXN apiDestroy;

} SKEL_Fxns;

SCALE_Fxns SCALE_STUBS = {

 {&SCALE_STUBS, NULL, NULL, NULL, NULL, NULL, NULL, NULL,

 NULL}, process, control,

};

Packaging and Configuring the Core Algorithm

3-20

3.7 Packaging and Configuring the Core Algorithm

Figure 3–2 shows the roles of components (also called "packages") and
their files in creating custom stubs and skeletons.

Figure 3–2 Components Used in Stub and Skeleton Creation

We start with the original xDAIS SCALE algorithm library, scale_ti.lib, and
create an XDC package, called ti.sdo.ce.examples.codecs.scale, around
it. (We build the library from the .c/.h files and the build script,
package.bld, but we could also add a pre-built scale_ti.lib to the
package.) The package.xs file implements the getLibs() method, which
the XDC tools will query and utilize when generating a list of libraries to
link into the final executable. The package.xdc file defines the name of
the package (ti.sdo.ce.examples.codecs.scale), as well as the Module
which the package contains (SCALE_TI). This Module is implemented in
SCALE_TI.xdc. This Module implements the
ti.sdo.ce.examples.extensions.scale.ISCALE interface and names the
xDAIS function table (SCALE_TI_SCALE).

examples/codecs.scale examples/extensions.scale

scale_ti.lib symbol: SCALE_TI_SCALE

=
scale_ti_impl.c
scale_ti.h
scale_ti_priv.h
+ package.bld

package.xs

SCALE_TI.xdc
SCALE_TI.xs

package.xdc

scale.lib
symbol: SCALE_SKEL
symbol: SCALE_STUBS

=
scale.c
_scale.h
scale_stubs.c
scale_skel.c
+ package.bld

package.xs

ISCALE.xdc

package.xdc

scale.h

examples/servers.all_codecs

all.cfg

examples/apps.scale

app.c

remote.cfg

legend: means "references" relationship

Packaging and Configuring the Core Algorithm

Supporting Non-xDM Algorithms 3-21

The stubs and skeletons package—
ti.sdo.ce.examples.extensions.scale—contains the stubs/skeletons
library. This is a separate package to allow other scale algorithms to use
the same stubs and skeletons. This package contains the
implementation of 1) the processor-independent API, 2) the GPP stubs,
and 3) the DSP-side skeletons. (We build the library from .c/.h files and
package.bld, but the library could be pre-built.) The package.xs file again
implements getLibs() so that the XDC tools can obtain the appropriate
library to link into the executable. The package.xdc file defines the name
of the package (ti.sdo.ce.examples.extensions.scale), and the Modules
which the package implements (ISCALE). The Module is implemented in
ISCALE.xdc, which configures the stub and skeleton function tables
(SCALE_STUBS and SCALE_SKEL).

On the DSP side, the ti.sdo.ce.examples.servers.all_codecs example
simply names the ti.sdo.ce.examples.codecs.scale.SCALE_TI module in
its configuration script and the codec is automatically added and
configured.

On the GPP side, the app.c file in the ti.sdo.ce.examples.apps.scale
package, includes ti/sdo/ce/examples/extensions/scale/scale.h so that it
can call the SCALE_create(), SCALE_process(), and SCALE_control()
functions. The remote.cfg file, which is the configuration file for the GPP
application, names the ti.sdo.ce.examples.codecs.scale.SCALE_TI
module.

Non-xDM Stub and Skeleton Example: SCALE

3-22

3.8 Non-xDM Stub and Skeleton Example: SCALE

An extension example, SCALE, illustrates the concepts in this chapter.
This example is included in the standard CE distribution. Figure 3–3
shows the role of stub and skeleton files in the remote algorithm
process() call.for the SCALE example.

Figure 3–3 Stub and Skeleton Files in SCALE Example

GPP DSP Application xDAIS alg

SCALE_process(h, *inBuf, *outBuf,
 inArgs, outArgs)
{
 fxns = VISA_getAlgFxns(h);
 fxns->process(h, inBuf, outBuf,
 inArgs, outArgs);
}

static process(h, *inBuf, *outBuf,
 inArgs, outArgs)
{
 SCALE_msg *msg = VISA_allocMsg(…);

 msg->inBuf = virtual-to-physical(inBuf);
 msg->outBuf = virtual-to-physical(outBuf);
 msg->inArgs = inArgs;

 VISA_call(h, msg);

 outArgs = msg->outArgs;

static call(h, msg)
{
 *inBuf = msg->inBuf;
 *outBuf = msg->outBuf;

 invalidate-cache(inBuf, msg->inBufSize);
 invalidate-cache(outBuf, msg->outBufSize);

 SCALE_process(h, inBuf, outBuf,
 &msg->inArgs, &msg->outArgs);

 writeback-cache(outBuf, msg->outBufSize);
}

SCALE_process(h, *inBuf, *outBuf,
 inArgs, outArgs)
{
 fxns = VISA_getAlgFxns(h);
 fxns->process(h, inBuf, outBuf,
 inArgs, outArgs);
}

SCALE_process() SCALE_TI_process()

scale.c scale.c

scale_stubs.c scale_skel.c
CE CE

msg

inBuf outBuf

Non-xDM Stub and Skeleton Example: SCALE

Supporting Non-xDM Algorithms 3-23

The GPP-side application calls the SCALE_process() function, which is
defined in the header file scale.h. The file scale.c implements this
function, which calls, through a function pointer, the function table
configured into the application. In the case of local codecs, this function
pointer is the algorithm's IALG function table. In the case of remote
codecs, this function pointer is the interface's stub function table. The
stubs are implemented in scale_stubs.c.

The stub allocates a message of type SCALE_msg (defined in file
_scale.h) and marshals the arguments—it copies scalar values and
stores virtual-to-physical translations of the inBuf and outBuf pointers to
the message. It then calls Codec Engine’s VISA_call() function to deliver
the message to the SCALE skeleton on the DSP.

The skeleton, in its call() function, invalidates the DSP cache for the
areas occupied by the input and output buffer, then makes the
SCALE_process() call. This call, which is implemented in the same
scale.c file that on the GPP initiates the message marshalling and
transfer, this time resolves to calling the xDAIS algorithm's
SCALE_TI_process() function. Any output arguments from the algorithm
are written to the original message used to communicate across the CPU
boundary.

Upon returning from the function, the SCALE skeleton writes back the
cache for the outBuf area (only), and then returns. Codec Engine, which
called the skeleton, sends the response back to the GPP. The response
is the same message that was received, except that the "output" part of
its contents may have been changed by the algorithm and/or the
skeleton. The SCALE stub, when VISA_call returns back with the
message, unmarshals the output arguments and returns to the caller.

3-24

Index-1

This is a draft version printed from file: ce_alg_authorIX.fm on 9/25/07

Index

A
addLibrary method 2-6
address

GPP vs. DSP 3-4
translating 3-12

allocate message 3-11
API interface 3-5
apps.scale package 3-21
arguments

passing 3-12
skeletons 3-15
stub 3-9

ARM target 2-5

B
BIOS_INSTALL_DIR environment variable 1-4
.bld files 2-3
Build.targets list 1-5

C
cache 3-4

alignment and size 3-4
invalidate 3-16

CE_INSTALL_DIR environment variable 1-4
CMEM directory 1-4
CMEM_INSTALL_DIR environment variable 1-4
codec

VISA vs. extensions 3-2
Codec Engine

directory 1-4
interactions 3-3

codecs.scale package 3-20
command-id 3-10
config.bld file 1-4
copy codecs 2-3
create APIs 3-6

D
debug version 2-6
delete APIs 3-6
directories

environment variables 1-4
package 2-4

DSP target 2-5
DSP/BIOS directory 1-4
DSP/BIOS Link directory 1-4
DSPLINK_INSTALL_DIR environment variable 1-4

E
eXpress Dsp Components (XDC) 1-3
extensions.scale package 3-5, 3-21

F
FC_INSTALL_DIR environment variable 1-4
Framework Components directory 1-4

G
generated files 2-4
getLibs() function 2-5

H
header files 2-3

I
ialgFxns table 2-7
ICodec interface 2-7
idma3Fxns table 2-7
In arguments 3-4
In/Out arguments 3-4

Index-2

 Index

L
library 2-3, 3-21
Link directory 1-4

M
makefile 1-3, 2-3
marshalling 3-3, 3-9
Memory_cacheInv function 3-16
Memory_cacheWb function 3-18
Memory_getBufferPhysicalAddress function 3-12
Memory_getBufferVirtualAddress function 3-13
message

allocating 3-11
freeing 3-14

message type 3-10
metadata 1-5
MODULE.xdc file 2-6
MODULE.xs file 2-7

O
Out arguments 3-4

P
package 1-5

building 1-3
dependencies 2-4
directory 2-4
name 2-4
roles 3-20

package.bld file 2-3, 2-6
package.mak file 2-4
package.xdc file 2-3, 2-4
package.xs file 2-3
packages

apps.scale 3-21
codecs.scale 3-20
extensions.scale 3-5, 3-21
servers.all_codecs 3-21

paths 1-4
relative vs. absolute 1-4

R
relative vs. absolute paths 1-4
release version 2-6
remote calls 3-4
Remote Procedure Call (RPC) 3-5

requires statement 2-4
return value 3-18
RTSC 1-2, 1-3

S
SCALE example 3-2, 3-22
serializable 3-4
servers.all_codecs package 3-21
skeletons 3-1, 3-9

actions performed 3-15
role 3-3
signatures 3-16

stack size 2-7
status field 3-18
stubs 3-1, 3-9

actions performed 3-9
role 3-3

T
target, selecting 2-6

U
user.bld file 1-4

V
version, selecting 2-6
VISA APIs 2-4, 3-5
VISA_allocMsg function 3-11
VISA_call function 3-10, 3-12

return value 3-18
VISA_create function 3-6
VISA_delete function 3-6
VISA_freeMsg function 3-14
VISA_Handle type 3-6
VISA_MsgHeader type 3-10

X
xDAIS

directory 1-4
documents 3-4

XDAIS_INSTALL_DIR environment variable 1-4
xDAIS-DM 2-2
xdc command 1-3
XDC Configuration Kit 1-3
.xdc files 2-3

Index-3

Index

XDC tools 1-3
directory 1-4

XDC User’s Guide 2-6
XDC_INSTALL_DIR environment variable 1-4
.xdcenv.mak file 2-4
XDCPATH environment variable 1-3

xdcpaths.mak file 1-3
xdcrules.mak file 1-3
xDM 2-2

adding interface 3-2
.xs files 2-3

Index-4

	Codec Engine Algorithm Creator User’s Guide
	Preface
	Contents
	Packaging Overview
	1.1 Overview
	1.2 Getting Started
	1.2.1 XDCPATH Environment Variable
	1.2.2 Editing user.bld

	1.3 Building a Package
	1.4 Creating a Release Package

	Developing an xDM Codec
	2.1 Overview
	2.1.1 What’s in a Codec Package?

	2.2 Creating Package Files
	2.2.1 package.xdc File
	2.2.2 package.xs File
	2.2.3 package.bld File
	2.2.4 <MODULE>.xdc File
	2.2.5 <MODULE>.xs File

	Supporting Non-xDM Algorithms
	3.1 Overview
	3.1.1 Tasks
	3.1.2 Roles and Interactions

	3.2 Core Algorithm Interface Requirements
	3.3 Creating Codec Engine Extensions
	3.4 Designing a New Application Interface
	3.4.1 Creation and Deletion APIs
	3.4.2 Processing Function APIs

	3.5 Developing Stubs and Skeletons
	3.5.1 Developing Codec Engine Stubs
	3.5.2 Developing Skeletons for CE Extensions

	3.6 Binding Stubs and Skeletons to Framework Extensions
	3.7 Packaging and Configuring the Core Algorithm
	3.8 Non-xDM Stub and Skeleton Example: SCALE

	Index

