
Codec Engine Application Developer
User's Guide

Literature Number: SPRUE67D
September 2007

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improve-
ments, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applica-
tions using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate
design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may
be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products
in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely
at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

iii

This is a draft version printed from file: pref.fm on 9/25/07

Preface

About This Book
The Codec Engine is a set of APIs that you use to instantiate and run
xDAIS algorithms. A VISA interface is provided as well for interacting with
xDM-compliant xDAIS algorithms.

The intended audience for this document is the embedded-OS
application developer treating the DSP-side of DaVinci as a black box
represented by an API.

Additional Documents and Resources
You can use the following sources to supplement this user’s guide:

❏ Codec Engine Server Integrator User's Guide (SPRUED5)
❏ Codec Engine Algorithm Creator User's Guide (SPRUED6)

❏ Codec Engine Application (API) Reference Guide.
CE_INSTALL_DIR/docs/html/index.html

❏ Configuration Reference Guide.
CE_INSTALL_DIR/xdoc/index.html

❏ Example Build and Run Instructions.
CE_INSTALL_DIR/examples/build_instructions.html

❏ xDM API Reference. XDAIS_INSTALL_DIR/docs/html/index.html

❏ DaVinci EVM Home at Spectrum Digital:
http://c6000.spectrumdigital.com/davincievm/revc/

❏ TI Linux Community for DaVinci Processors:
http://linux.davincidsp.com

❏ xDAIS-DM (Digital Media) User Guide (SPRUEC8)
❏ TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
❏ TMS320 DSP Algorithm Standard API Reference (SPRU360)
❏ TMS320 DSP Algorithm Standard Developer’s Guide (SPRU424)
❏ TMS320 DSP Algorithm Standard Demonstration Application

(SPRU361)

iv

 Notational Conventions

Notational Conventions
This document uses the following conventions:

❏ Program listings, program examples, and interactive displays are
shown in a special typeface. Examples use a bold version
of the special typeface for emphasis; interactive displays use a bold
version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts,
command output, error messages, etc.).

❏ Square brackets ([and]) identify an optional parameter. If you use
an optional parameter, you specify the information within the
brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

❏ This manual uses an icon like the one to the left to identify information
that is specific to a particular type of system. For example, this icon
identifies information that applies if you are using Codec Engine on a
dual-processor GPP+DSP system.

Trademarks
The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments
include: TI, DaVinci, XDS, Code Composer, Code Composer Studio,
Probe Point, Code Explorer, DSP/BIOS, RTDX, Online DSP Lab,
DaVinci, TMS320, TMS320C54x, TMS320C55x, TMS320C62x,
TMS320C64x, TMS320C67x, TMS320C5000, and TMS320C6000.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds.

Solaris, SunOS, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc.

All other brand, product names, and service names are trademarks or
registered trademarks of their respective companies or organizations.

GPP+DSP

v

This is a draft version printed from file: codec_engineTOC.fm on 9/25/07

Contents

1 Codec Engine Overview .1-1
This chapter introduces the Codec Engine.
1.1 What is the Codec Engine? .1-2
1.2 Why Should I Use It? .1-3
1.3 Where Does the Codec Engine Fit into My Architecture? .1-4
1.4 What Are the User Roles? .1-6

1.4.1 Algorithm Creator .1-6
1.4.2 Server Integrator .1-7
1.4.3 Engine Integrator .1-8
1.4.4 Application Author .1-8

1.5 Where Can I Get More Information? .1-10

2 Installation and Setup .2-1
This chapter describes steps you may need to perform for installation and setup.
2.1 Installing Codec Engine .2-2
2.2 Packages and Repositories .2-2
2.3 Directory Structure .2-3

3 Using the Sample Applications .3-1
This chapter describes how to test the sample applications provided with the Codec Engine.
3.1 Overview. .3-2
3.2 Building Applications .3-2
3.3 Running Applications .3-3

4 Using the Codec Engine APIs .4-1
This chapter describes how to use the Codec Engine APIs in an application.
4.1 Overview. .4-2
4.2 The Core Engine APIs .4-3

4.2.1 Codec Engine Setup Code. .4-4
4.2.2 Opening an Engine. .4-5
4.2.3 Closing an Engine .4-6
4.2.4 Getting Memory and CPU Information from an Engine4-7
4.2.5 Getting Information About Algorithms Configured into an Engine4-7

4.3 The VISA Classes: Video, Image, Speech, Audio .4-9
4.3.1 VISA API Setup Code .4-9
4.3.2 Creating an Algorithm Instance .4-9

Contents

Contents -vi

4.3.3 Deleting an Algorithm Instance .4-10
4.3.4 Controlling an Algorithm Instance .4-11
4.3.5 Processing Data with an Algorithm Instance .4-13
4.3.6 Overriding a Remote Algorithm's Priority and Memory Requests 4-14

4.4 The Server APIs .4-17
4.4.1 Getting a Server Handle. .4-17
4.4.2 Getting Memory Heap Information .4-18
4.4.3 Reconfiguring the DSP Server's Algorithm Heap .4-19

4.5 What Happens to DSP Memory Issues? .4-22
4.5.1 Buffer Handling and Shared Memory Maps .4-22
4.5.2 Memory Fragmentation .4-23
4.5.3 Cache Alignment .4-24
4.5.4 Cache Coherence .4-25

4.6 What Happens to DSP Real-Time Issues? .4-28
4.6.1 Transaction Latency .4-28
4.6.2 Multi- vs. Uni-Processor Performance .4-28
4.6.3 Local Performance .4-28

4.7 What About Codec Engine Debugging?. .4-29
4.7.1 Codec Engine Debugging from the ARM on ARM+DSP Systems.4-29
4.7.2 Codec Engine Debugging on a DSP-only System .4-30

4.8 What About Software Trace? .4-31
4.8.1 Configuring TraceUtil at Design Time .4-32
4.8.2 Supporting TraceUtil in Your Application's C Code 4-33
4.8.3 Configuring the DSP Server for DSP/BIOS Logging 4-33
4.8.4 Configuring the DSP Server To Redirect Trace Output4-33
4.8.5 Configuring TraceUtil at Application Start Time .4-34
4.8.6 Controlling Trace at Run-Time Through a Named Pipe4-35
4.8.7 Trace Mask Values. .4-37

5 Integrating an Engine .5-1
This chapter describes how the Engine Integrator should configure an Engine for use by the ap-
plication developer.
5.1 Overview. .5-2
5.2 A Reusable Example .5-3

5.2.1 Advanced Engine Creation. .5-4
5.3 Understanding Engine Configuration Syntax .5-5

5.3.1 Framework Components Configuration .5-6

1-1

Chapter 1

Codec Engine Overview

This chapter introduces the Codec Engine.

1.1 What is the Codec Engine? . 1–2

1.2 Why Should I Use It?. 1–3

1.3 Where Does the Codec Engine Fit into My Architecture? 1–4

1.4 What Are the User Roles? . 1–6

1.5 Where Can I Get More Information? . 1–10

Topic Page

What is the Codec Engine?

1-2

1.1 What is the Codec Engine?

From the application developer’s perspective, the Codec Engine is a set
of APIs that you use to instantiate and run xDAIS algorithms. A VISA
interface is provided as well for interacting with xDM-compliant xDAIS
algorithms.

The API is the same for all of the following situations:

❏ The algorithm may run locally (on the GPP) or remotely (on the DSP).

❏ The system may be a GPP+DSP, DSP-only, or GPP-only system.

❏ All supported GPPs and DSPs have the same API.

❏ All supported operating systems have the same API. For example,
Linux, PrOS, VxWorks, DSP/BIOS, and WinCE.

This manual uses an icon like the one to the left to identify information
that is specific to a particular type of system. For example, this icon
identifies information that applies if you are using Codec Engine on a
dual-processor GPP+DSP system.

xDM is the eXpressDSP Algorithm Interface Standard for Digital Media.
It is sometimes referred to as xDAIS-DM.

Any xDM algorithm is compliant with the eXpressDSP Algorithm Interface
Standard (xDAIS). Additionally, it implements the xDAIS-DM (xDM)
interface, an extension to the xDAIS standard that provides support for
digital media encoders, decoders, and codecs. The xDM specification
defines APIs for digital media codecs by class, with extensions defined
for video, imaging, speech, and audio codec classes.

The xDM interfaces divide codec algorithms into four classes: Video,
Image, Speech, and Audio (VISA). VISA reflects this xDM interface. One
set of APIs is provided per codec class. Thus, MP3 can be replaced with
WMA without changing the application source code. Only the
configuration needs to be changed.

The Codec Engine also supports real-time, non-intrusive visibility into
codec execution. It provides APIs for accessing memory and overall CPU
usage statistics and execution trace information.

The Codec Engine runtime is supplied in binary form. Thus, application
libraries built with same Codec Engine release are always compatible.

GPP+DSP

Why Should I Use It?

Codec Engine Overview 1-3

1.2 Why Should I Use It?

The Codec Engine is designed to solve some common problems
associated with developing system-on-a-chip (SoC) applications. The
most significant problems include:

❏ Debugging in a heterogeneous processor environment can be
painful. There are multiple debuggers and complex bootstrapping.

❏ Different implementations of the same algorithm, such as MP3, have
different APIs. Changing to a more efficient algorithm involves
significant recoding.

❏ Portability issues are compounded with two processors. You may
want to port to a different board with a newer DSP or a newer GPP.

❏ Some algorithms may run on either the GPP or the DSP. To balance
system load, “low complexity” algorithms can run on a GPP, but the
definition of “low” changes over time. If changing the location where
the algorithm runs were easy, you wouldn’t have to weigh
performance issues against the difficulty of changing the application.

❏ For market success, most applications need to support multiple
codecs to handle the same type of media. For example, an
application might need to support three or four audio formats.

❏ Programmers with a GPP (general-purpose processor) view typically
don’t want to have to learn to be DSP programmers. And, they don’t
want to have to worry about a DSP’s complex memory management
and DSP real-time issues.

The Codec Engine addresses these problems by providing a standard
software architecture and interfaces for algorithm execution. The Codec
Engine is:

❏ Easy-to-use. Application developers specify what algorithm needs
to be run, not how or where.

❏ Extensible and configurable. New algorithms can be added by
anyone, using standard tools and techniques.

❏ Portable. The APIs are target, platform, and even codec
independent.

GPP+DSP

Where Does the Codec Engine Fit into My Architecture?

1-4

1.3 Where Does the Codec Engine Fit into My Architecture?

The application code (or the middleware it uses) calls the Codec Engine
APIs. Within the Codec Engine, the VISA APIs use stubs and skeletons
to access the core engine and the actual codecs, which may be local or
remote.

The following figure shows the general architecture of an application that
uses the Codec Engine. It also shows the user roles involved in creating
various portions of the application. See Section 1.4, What Are the User
Roles? for more on user roles.

The application (or middleware it uses) calls the core Engine APIs and
the VISA APIs. The VISA APIs use stubs to access the core engine SPIs
(System Programming Interfaces) and the skeletons. The skeletons
access the core engine SPIs and the VISA SPIs. The VISA SPIs access
the underlying algorithms.

Codec Engine Runtime

Video Encode
stubs

Video Encode
stubs

C
ore Engine SPIs

C
ore Engine SPIs

Core Engine
Runtime

VISA SPIsVISA SPIsVISA SPIs

VISA APIsCore Engine APIs

MP4 Encode
VC1 Encode

MP4 Encode
VC1 Encode

Video Encode
skeleton

Video Encode
skeleton

Application
media middleware

Application
media middleware

Role 4:
Application

Author

Role 3:
Engine

Integrator

Role 2:
Server

Integrator

Role 1:
Algorithm
Creator

Where Does the Codec Engine Fit into My Architecture?

Codec Engine Overview 1-5

The following figure is a modification of the previous diagram that shows
how this architecture is distributed in a GPP+DSP system. In this
example, yellow portions run on the GPP, and grey portions run on the
DSP. That is, the video encoder skeleton and the video encoder codecs
are on the DSP and the application and video encoder stubs are on the
GPP.

Since Codec Engine is flexible, alternate diagrams could be shown for
GPP-only and DSP-only systems.

GPP+DSP

Codec Engine Runtime

Application

Video Encode
stubs

Video Encode
stubs

C
ore Engine SPIs

C
ore Engine SPIs

VISA SPIsVISA SPIs

DSP Server

app processor

DSP Server

app processor

Core Engine
Runtime

VISA APIsCore Engine APIs VISA APIsCore Engine APIs

MP4 Encode
VC1 Encode

MP4 Encode
VC1 Encode

Video Encode
skeleton

Video Encode
skeleton

…

media middleware

What Are the User Roles?

1-6

1.4 What Are the User Roles?
The Codec Engine has several customer use cases, from application
developers to codec authors. In some cases, these roles may be played
by a single person. In other development environments, a different
developer may be assigned each role. This topic describes the primary
roles that Codec Engine users will play.

Because Codec Engine is very portable and configurable and can run in
many different environments, the descriptions of these roles are
intentionally generalized. When applicable, specific hardware and
software environments are described after the general descriptions.

This document describes the APIs available to the Application Author.
Other documents are referenced for the other roles.

1.4.1 Algorithm Creator
The Algorithm Creator is responsible for creating an xDAIS algorithm and
providing the necessary packaging to enable these algorithms to be
consumed and configured by Codec Engine.

If the codec is xDM-compliant, Codec Engine's VISA APIs support
remote execution without additional support. However, if the codec is not
xDM-compliant and the codecs support remote execution, the Algorithm
Creator should supply Codec Engine skeletons and stubs.

The Algorithm Creator uses xDAIS and the XDC Tools. Using these, the
Algorithm Creator generates a codec library with the IALG and optional
IDMA3 interface symbols exported. This person also creates an XDC
module that implements the ti.sdo.ce.ICodec interface.

The Algorithm Creator hands a released Codec package to the Server
Integrator. This package includes a module that implements
ti.sdo.ce.ICodec, as well as the libraries that contain the algorithm's
implementation.

The Algorithm Creator uses the following resources:
❏ Codec Engine Algorithm Creator User's Guide (SPRUED6)
❏ Codec Engine SPI Reference Guide.

CE_INSTALL_DIR/docs/spi/html/index.html
❏ xDAIS-DM (Digital Media) User Guide (SPRUEC8)
❏ xDM API Reference. XDAIS_INSTALL_DIR/docs/html/index.html
❏ TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
❏ TMS320 DSP Algorithm Standard API Reference (SPRU360)
❏ TMS320 DSP Algorithm Standard Developer’s Guide (SPRU424)
❏ Example codecs

What Are the User Roles?

Codec Engine Overview 1-7

1.4.2 Server Integrator

To support Engines with remote codecs, a Codec Server must be
created. The Codec Server integrates and configures the various
components necessary to house the codecs (e.g. DSP/BIOS, Framework
Components, DSP/BIOS Link drivers, codecs, Codec Engine, etc.) and
generates an executable.

There are two configuration steps that the Codec Server Integrator must
perform, one to configure DSP/BIOS (through a Tconf script) and one to
configure "the rest" of the components (through XDC configuration of
Framework Components, DSP/BIOS Link, Codec Engine, etc).

The Server Integrator receives the various Codec packages from
Algorithm Creators. This person uses Codec Engine and its dependent
packages (DSP/BIOS, DSKT2, etc) along with the XDC Tools to create
the following:

❏ A server configuration file (.cfg)

❏ A server DSP/BIOS configuration file (.tcf)

❏ A simple main() routine to do minimal initialization

❏ A DSP executable created by executing the configuration scripts and
compiling the output. This executable is a Codec Server.

The Server Integrator hands the DSP executable to the Engine Integrator
(preferably as a Codec Server package. The Server Integrator should
also provide a list of the codecs in the Codec Server, as well as
documentation about how they've been configured (for example, thread
priorities and resource configuration).

The Server Integrator uses the following resources:

❏ Codec Engine Server Integrator's Guide (SPRUED5)

❏ Configuration Reference Guide.
CE_INSTALL_DIR/xdoc/index.html

❏ Example Codec Servers

On GPP-only and DSP-only platforms the Codec Server is not used, so
this role is not required.

GPP+DSP

What Are the User Roles?

1-8

1.4.3 Engine Integrator

The Engine Integrator defines various Engine configurations. This
includes the names of the Engines, as well as the codecs and their
names within each Engine, whether each codec is local or remote relative
to the application, which groups each codec should be integrated into (for
environments which support resource sharing), the name of the Codec
Server image if a particular Engine contains remote codecs, etc. This is
done via an XDC configuration script (*.cfg).

This script, when run, generates code and build instructions appropriate
for the configuration.

The Engine Integrator receives the name of a Codec Server and a list of
the codecs it contains from the Server Integrator. Using these, this
person creates an Engine configuration file (.cfg) that may reference a
Codec Server.

On DSP-only and/or GPP-only platforms, the Codec Server is not used,
and all codecs will be configured to run locally (that is "local:true").

The Engine Integrator hands the Engine configuration file to the
Application Author.

The Engine Integrator uses the following resources:

❏ Chapter 5 of this manual, Integrating an Engine.

❏ Configuration Reference Guide.
CE_INSTALL_DIR/xdoc/index.html

❏ Example Build and Run Instructions.
CE_INSTALL_DIR/examples/build_instructions.html

❏ Example configuration scripts (*.cfg)

1.4.4 Application Author

The application uses the Codec Engine APIs (Engine_, VISA, and other
utility APIs) to create/delete preconfigured Engine instances,
create/delete and interact with codecs, acquire buffers appropriate for the
codecs, etc.

Since Codec Engine doesn't perform any I/O, the application is
responsible for handling I/O. This includes such task as file access (for
example, open/read/write/seek/close) and driver interaction (for
example, open/close/ioctl and buffer management).

The Application Author is responsible for building the application code
and for linking "the appropriate content" into the executable image.

What Are the User Roles?

Codec Engine Overview 1-9

The Application Author receives the following:

❏ Various Codec packages from Algorithm Creators

❏ A Codec Server DSP executable from the Server Integrator if codec
will run on a DSP

❏ An Engine config file (.cfg) from the Engine Integrator

The Application Author writes application code, generates output from
the Engine configuration file (.c and .xdl output files) using the XDC Tools,
and compiles the application code and generated files. This person then
links the files, including the generated linker command file (.xdl) into an
executable. The end result is the application executable.

The process for generating an application executable is highly dependant
on the application's operating system. If the application runs on the DSP
using DSP/BIOS, for example, a .tcf file is needed to configure the
DSP/BIOS kernel as well. If the application runs on Linux, the application
does not need to configure the operating system.

In addition to this manual, the Application Author uses the following
resources:

❏ Codec Engine API Reference.
CE_INSTALL_DIR/docs/html/index.html

❏ Example Build and Run Instructions.
CE_INSTALL_DIR/examples/build_instructions.html

1.4.4.1 Editing a DSP/BIOS Configuration Script

For DSP-only applications, the Application Author creates a static
DSP/BIOS configuration in a .tcf file, as described in the DSP/BIOS Tconf
User’s Guide (SPRU007) and the DSP/BIOS online help. The syntax
used in Tconf configurations is based on JavaScript.

To create a .tcf file for an application, follow these steps:

1) Copy local.tcf from one of the example applications located at
CE_INSTALL_DIR/examples/apps. This configuration file, in
combination with the app_common.tci and bios.tci files that it
imports, statically configures several aspects of the DSP/BIOS
kernel, such as:
■ base DSP/BIOS kernel
■ memory section names, sizes, and locations
■ platform-specific attributes such as clock rates
■ task manager and dynamic heap allocation
■ ’C64x+ L1 cache and its corresponding memory segment

DSP-only

Where Can I Get More Information?

1-10

You can learn more about these modules and attributes in the
DSP/BIOS online help or the C6000 DSP/BIOS API Reference
(SPRU403).

2) Optionally open this .tcf file with a text editor.

3) Make any changes your application requires and save the file. You
can add your own non-Codec Engine configuration items here if you
need to add your own functionality for the application.

1.5 Where Can I Get More Information?

The release_notes*.html file at the top of the Codec Engine installation
provides general information, information about changes in the latest
version, devices supported and validation information, known issues, and
links to online documentation provided with the Codec Engine. The
online documentation provided with the Codec Engine is as follows:

❏ Codec Engine API Reference.
CE_INSTALL_DIR/docs/html/index.html

❏ Codec Engine SPI Reference Guide.
CE_INSTALL_DIR/docs/spi/html/index.html

❏ Configuration Reference Guide.
CE_INSTALL_DIR/xdoc/index.html

❏ Example Build and Run Instructions.
CE_INSTALL_DIR/examples/build_instructions.html

For information about xDM, see the xDAIS-DM (Digital Media) User
Guide (SPRUEC8).

For platform-specific help, see the Getting Started Guide for your
platform.

2-1

Chapter 2

Installation and Setup

This chapter describes steps you may need to perform for installation and
setup.

2.1 Installing Codec Engine . 2–2

2.2 Packages and Repositories . 2–2

2.3 Directory Structure . 2–3

Topic Page

Installing Codec Engine

2-2

2.1 Installing Codec Engine

The Codec Engine may have already been installed on your system as
part of a larger installation. For example, the DVSDK software installation
installs the Codec Engine in the codec_engine_#_## subdirectory of the
main DVSDK software directory.

If you have downloaded the Codec Engine as a standalone piece of
software, follow these instructions:

1) Copy the codec_engine_#_##.tar.gz file to the directory where you
want to install the software (where #_## is the version number).

2) Unzip the file with an unzip utility.

3) Open the release_notes*.html file at the top level of the installation.

4) Follow the steps to build and run Codec Engine examples.

2.2 Packages and Repositories

Codec Engine is delivered as a set of "packages". A package
corresponds to a directory that contains all the files required for an
independent component plus metadata about that component.

Each package has a unique name that reflects its directory name. For
example, "ti.sdo.ce.audio" is the name of a package that must be in a
directory whose path ends with "/ti/sdo/ce/audio". Packages may be
nested within another package. "Package repositories" are directories
that contain one or more packages.

A package places its metadata in a sub-directory named "package". This
sub-directory contains metadata files that you do not need to be
concerned with unless you are creating your own packages. A package
also always contains a file named “package.xdc”, which declares the
package’s name and an optional compatibility key. This key is used to
ensure compatibility between packages.

As an application developer using the Codec Engine, the main reason
you should be aware of packages is to understand the #include paths you
need to use for header files. These paths are relative to a package
repository. The package repositories used by the Codec Engine are part
of the "package path", which matches the sequence of –I options you
need to pass to the compiler when compiling source files that use a
module in the Codec Engine. Since packages all have unique names,
even if they are in different repositories, the #include statement tells you
which package contains a particular header file.

Directory Structure

Installation and Setup 2-3

The Codec Engine distribution contains several package repositories:

❏ The core set of Codec Engine packages are in a repository named
"packages". This corresponds to the CE_INSTALL_DIR/packages
directory.

❏ The examples are distributed in a separate repository named
"examples". This corresponds to the CE_INSTALL_DIR/examples
directory.

❏ Some distributions of Codec Engine include a third repository
containing a collection of dependant packages for convenience. This
repository is named "cetools.packages", which corresponds to the
CE_INSTALL_DIR/cetools/packages directory.

The XDC Tools provide an xdcpkg command (in the
XDC_INSTALL_DIR/bin directory) that identifies all the packages in a
directory. For example:

xdcpkg –a –l .

2.3 Directory Structure

The top-level directories within the Codec Engine installation are as
follows:

❏ cetools. Contains DSP Link and other TI tools used by the Codec
Engine. Some distributions of the Codec Engine contain dependent
components in this location. Other distributions expect the
dependent components to have been installed separately.

❏ docs. Contains documentation files.

❏ examples. Contains a number of example applications.

❏ package. Contains package-related metadata files. You do not need
to use this directory unless you are creating packages.

❏ packages. The Codec Engine packages. The /ti/sdo/ce subdirectory
(that is, the ti.sdo.ce package) contains the VISA APIs and the stubs
and skeletons that enable remote invocation of the VISA APIs. The
/ti/sdo/ce/osal subdirectory contains the OS abstraction layer.

❏ xdoc. Contains documentation files for the packages in the Codec
Engine distribution.

2-4

3-1

Chapter 3

Using the Sample Applications

This chapter describes how to test the sample applications provided with
the Codec Engine.

3.1 Overview. 3–2

3.2 Building Applications . 3–2

3.3 Running Applications . 3–3

Topic Page

Overview

3-2

3.1 Overview

The CE_INSTALL_DIR/examples repository contains a collection of
example packages demonstrating the various use cases that Codec
Engine users may develop. These example packages fall into the
following categories:

❏ Codecs. Contains the codecs distributed with the Codec Engine.
These are in the ti.xdais.dm.examples and
ti.sdo.ce.examples.codecs namespace. (Note that the codecs in the
ti.xdais.dm.examples namespace are copies of those distributed with
xDAIS 5.20+.)

❏ Extensions. Contains a scale example that extends the VISA API.
These are in the ti.sdo.ce.examples.extensions namespace.

❏ Servers. Contains two pre-configured and pre-linked Codec Servers
(see Section 1.4.2, Server Integrator). These are in the
ti.sdo.ce.examples.servers namespace.

❏ Applications. Contains example applications. These are in the
ti.sdo.ce.examples.apps namespace.

The "copy" encoders/decoders replicate data rather than
compressing/decompressing it. This is for simplicity in the examples. The
Codec Engine distribution includes copy encoders/decoders for audio,
image, speech, and video data for both xDM 0.9 and xDM 1.00.

The two pre-configured Codec Servers are: all_codecs and video_copy.
If you are using the DVSDK, you use these pre-configured Codec
Servers when evaluating the board and learning to use the Codec
Engine. Note that the memory maps that these Codec Servers are
configured with matches that of the DVSDK.

See the CE_INSTALL_DIR/examples/build_instructions.html file for a full
list of examples and links to details about them.

3.2 Building Applications

To build the example applications provided with the Codec Engine, follow
the steps in the CE_INSTALL_DIR/examples/build_instructions.html file.
These steps may change in different versions of the Codec Engine, so
you should review this document whenever you upgrade to a new
version.

In general, you will optionally make a copy of the examples tree, edit the
user.bld file to specify the locations of your tools, edit various makefiles,
and then build the examples.

Running Applications

Using the Sample Applications 3-3

3.3 Running Applications

To run the example applications provided with the Codec Engine, follow
the steps in the CE_INSTALL_DIR/examples/build_instructions.html file.
This document provides platform-specific and version-specific steps for
running applications.

3-4

4-1

Chapter 4

Using the Codec Engine APIs

This chapter describes how to use the Codec Engine APIs in an
application.

4.1 Overview. 4–2

4.2 The Core Engine APIs . 4–3

4.3 The VISA Classes: Video, Image, Speech, Audio. 4–9

4.4 The Server APIs . 4–17

4.5 What Happens to DSP Memory Issues? . 4–22

4.6 What Happens to DSP Real-Time Issues? 4–28

4.7 What About Codec Engine Debugging? . 4–29

4.8 What About Software Trace? . 4–31

Topic Page

Overview

4-2

4.1 Overview

The Codec Engine has Core Engine APIs and VISA APIs. The following
table shows the Core Engine API modules:

In addition to modules that perform setup and teardown activities, a
memory abstraction module provides support for applications that use
Codec Engine in a GPP+DSP system.

The following table shows the VISA API modules:

The VISA interfaces provided with CE 1.20 include support for both the
xDM 0.9 and xDM 1.0 interfaces. The "x" suffixes in Table 4–2 represent
a version of the interface. In xDM 0.9, the suffix was omitted; in xDM 1.0,
it is "1".

Copy codecs complying with the xDM 1.0 interfaces are provided with the
xDAIS 5.21 product. CE 1.20 utilizes those codecs in some of its
examples. For example, the video1_copy example utilizes the VIDENC1
and VIDDEC1 VISA interfaces to communicate with those copy codecs.

Table 4–1 Codec Engine Modules

Description
Module
Abbreviation Package Name Header File(s) See Section

Initialization function CERuntime_ ti.sdo.ce CERuntime.h Section 4.2.1

Codec Engine Runtime Engine_ ti.sdo.ce Engine.h Section 4.2

OS Abstraction Layer for memory Memory_ ti.sdo.ce.osal Memory.h Section 4.5

GPP+DSP

Table 4–2 Codec Engine Modules

Description
Module
Abbreviation Package Name Header File(s)

Video Encoder Interface VIDENCx_ ti.sdo.ce.video videnc.h

Video Decoder Interface VIDDECx_ ti.sdo.ce.video viddec.h

Image Encoder Interface IMGENCx_ ti.sdo.ce.image imgenc.h

Image Decoder Interface IMGDECx_ ti.sdo.ce.image imgdec.h

Speech Encoder Interface SPHENCx_ ti.sdo.ce.speech sphenc.h

Speech Decoder Interface SPHDECx_ ti.sdo.ce.speech sphdec.h

Audio Encoder Interface AUDENCx_ ti.sdo.ce.audio audenc.h

Audio Decoder Interface AUDDECx_ ti.sdo.ce.audio auddec.h

The Core Engine APIs

Using the Codec Engine APIs 4-3

The package name corresponds to the path your application must use to
reference the header file it includes to use a particular module. For
example, the speech encoder module, SPHENCx, has a package name
of ti.sdo.ce.speech(x). The #include statement for this module is (where
x is a version-based suffix):

#include <ti/sdo/ce/speechx/sphencx.h>

Your application uses the Engine module to open and close instances of
the Codec Engine. You can also use this module to get information about
memory use and CPU loading. See Section 4.2, The Core Engine APIs.

Once your application has opened an instance of the Codec Engine, you
use the modules in the VISA packages (for example, VIDENC for video
encoding) to create instances of various algorithms. Using the handle for
the algorithm instance you create, you then use the same module to run
or otherwise control the algorithm. See Section 4.3, The VISA Classes:
Video, Image, Speech, Audio.

Reference documentation for the Codec Engine APIs is installed with the
Codec Engine software at CE_INSTALL_DIR/docs/html. This chapter
provides an overview of the APIs and how you use them. For details
about the calling syntax, see the reference documentation.

4.2 The Core Engine APIs
The Codec Engine has a "core" module called "Engine". Your application
uses this module to open and close Engine instances. Multi-threaded
applications must either serialize access to a shared Engine instance or
create a separate Engine instance for each thread.

Note: Be aware that Engine handles are not thread-protected. Each
thread that uses an Engine instance should perform its own
Engine_open() call and use its own Engine handle. This protects each
Engine instance from access by other threads in a multi-threaded
environment.

You can also use the Engine module to get information about memory
use and CPU loading.

The APIs for the Engine module are:

❏ Engine_open(). Open an Engine.

❏ Engine_close(). Close an Engine.

❏ Engine_getCpuLoad(). Get Server's CPU usage in percent.

The Core Engine APIs

4-4

❏ Engine_getLastError(). Get the error code of the last failed
operation.

❏ Engine_getUsedMem(). Get Engine memory usage.

❏ Engine_getNumAlgs(). Get the number of algorithms in an Engine.

❏ Engine_getAlgInfo(). Get information about an algorithm.

After opening an Engine, you create algorithm instances using the VISA
APIs described in Section 4.3.

Reference documentation for the Codec Engine APIs is installed with the
Codec Engine software at CE_INSTALL_DIR/docs/html. For details
about the calling syntax, see the reference documentation.

4.2.1 Codec Engine Setup Code

An application that will use the Codec Engine should include the following
header files, where these directory paths are relative to the package path,
which includes CE_INSTALL_DIR and XDC_ROOT.

#include <xdc/std.h>

#include <ti/sdo/ce/Engine.h>

#include <ti/sdo/ce/CERuntime.h>

In addition, the application must include the header file for any VISA
modules it uses. For example:

#include <ti/sdo/ce/audio/auddec.h>

Notice that the paths to the header files exactly correspond to the
package paths shown in Table 4–2, Codec Engine Modules.

All applications that use the Codec Engine must run CERuntime_init.
Typically, this is run from the application’s main() function.

In addition, when building a GPP+DSP application that uses Codec
Engine, you must load the dependent modules DSP/BIOS Link and
CMEM (a contiguous memory allocator). To see how this is done,
examine the examples/apps/system_files/davinci/loadmodules.sh file.
See the build_instructions.html file for details.

GPP+DSP

The Core Engine APIs

Using the Codec Engine APIs 4-5

4.2.2 Opening an Engine

When you open an Engine, you specify the name of the Engine you want
to open. For example:

static String engineName = "auddec";

Engine_Handle ce;

Engine_Error errorcode;

ce = Engine_open(engineName, NULL, &errorcode);

Note: Be aware that Engine handles are not thread-protected. Each
thread that uses an Engine instance should perform its own
Engine_open() call and use its own Engine handle. This protects each
Engine instance from access by other threads in a multi-threaded
environment.

Engines are configured by your Engine Integrator, who decides which
algorithms to configure and build into each Engine. See Chapter 5,
"Integrating an Engine" for information the Engine Integrator needs to
create such Engines.

For example, on dual CPU systems such as the DM644x device,
algorithms may run locally (on the GPP) or "remotely" (on the DSP). For
remote algorithms, the Engine transparently uses a "DSP Server" and the
DSP Link transport to run the high-MIPS algorithms. Here, the first call to
Engine_open() results in the following underlying actions:

❏ Power ON the DSP (if support is available and configured via the
ti.sdo.ce.osal.Global configuration).

❏ Call the Link APIs needed to initialize the DSP and the transport:
PROC_Setup(), PROC_Attach(), POOL_Open(), PROC_Load(),
PROC_Start(), and MSGQ_TransportOpen().

❏ Perform the initial handshakes from the GPP side to the remote
dispatcher on the DSP.

The Engine_open() function allows you to pass an Engine_Attrs structure
to the Engine. This type is defined in Engine.h, which is included by the
application. Currently, this structure allows you to specify a string procID
of the processor that runs the Engine’s DSP Server. This is only needed
if there is more than one processor that can provide the same server and
that is currently being used. The default procID is 0.

typedef struct Engine_Attrs {

 String procId;

} Engine_Attrs;

GPP+DSP

The Core Engine APIs

4-6

If the Engine_Handle returned by Engine_open() is NULL, the Engine
could not be opened. If the errorcode parameter is non-NULL, the
Engine_Error value is set to one of the following values:

❏ Engine_EOK. Success.
❏ Engine_EEXIST. Name does not exist.
❏ Engine_ENOMEM. Can't allocate memory.
❏ Engine_EDSPLOAD. Can't load the DSP.
❏ Engine_ENOCOMM. Can't create a communication connection to

the DSP.
❏ Engine_ENOSERVER. Can't locate the Server on the DSP.
❏ Engine_ECOMALLOC. Can't allocate a communication buffer.

Your application can handle this error. For example:

ce = Engine_open(engineName, NULL, &errorCode);

if (ce == NULL) {

 printf("Error: could not open engine \"%s\";

 Error code %d.\n", engineName, errorCode);

}

4.2.3 Closing an Engine

To close an Engine instance and free memory it uses, your application
should call Engine_close(). For example:

Engine_close(ce);

You should do this only after you have deleted any algorithm instances
created for this Engine and freed any buffers or other memory related to
the algorithm instances.

For example, given the DM644x-based example described in the
previous section with remote algorithms performed on the DSP, the last
call to Engine_close() results in the following underlying actions:

❏ Call the Link APIs needed to "finalize" the DSP and the transport:
MSGQ_TransportClose(), PROC_Stop(), POOL_Close(),
PROC_Detach(), and PROC_Destroy().

❏ Power OFF the DSP (if support is available and configured via the
ti.sdo.ce.osal.Global configuration).

GPP+DSP

The Core Engine APIs

Using the Codec Engine APIs 4-7

4.2.4 Getting Memory and CPU Information from an Engine

You can use the Engine_getUsedMem() function to get information about
memory used by an Engine instance. The value returned is the total
amount of memory (in MAUs) currently allocated from the available
heaps. Note that this value may vary between calls, depending upon DSP
Server activity. For example, when the first algorithm is instantiated on
the DSP Server, data structures in addition to those needed for the
individual algorithm instance may be allocated. This extra memory is
allocated "when first needed" and remains allocated with its global state
retained even after this algorithm is deleted. The memory is not re-
allocated on subsequent allocations of this or other algorithms on the
DSP Server.

In addition to Engine_getUsedMem(), there are Server APIs for getting
information about the memory usage of individual heaps on the DSP. See
Section 4.4 for a description of these functions.

You can use the Engine_getCpuLoad() function to get the DSP Server’s
CPU usage as an integer from 0 to 100. This value indicates the
percentage of time the DSP Server is processing measured over a period
of approximately 1 second. If the load is unavailable, a negative value is
returned.

4.2.5 Getting Information About Algorithms Configured into an Engine

An application may determine the number of algorithms configured into
an Engine and their properties, such as the name of the algorithm and
whether it is local or remote.

The number of algorithms can be obtained with the following API:

Engine_Error Engine_getNumAlgs(String name, Int *numAlgs)

The parameter, "name", is the name of the Engine. This function returns
the following values:

❏ Engine_EOK. Success. In this case, *numAlgs returns the number of
algorithms configured into the Engine.

❏ Engine_EEXIST. There is no Engine with the given name.

GPP+DSP

The Core Engine APIs

4-8

Once the number of algorithms in the Engine is known, the application
can iteratively call the function Engine_getAlgInfo() to obtain information
about each of the algorithms. The information is put into the
Engine_AlgInfo structure, which is defined as follows:

typedef struct Engine_AlgInfo {

 Int algInfoSize; /* Size of this structure */

 String name; /* Name of algorithm */

 String *typeTab; /* inheritance hierarchy */

 Bool isLocal; /* if TRUE, run locally */

} Engine_AlgInfo;

The first field of the Engine_AlgInfo structure, "algInfoSize", must be set
by the application to the size of this structure; it will be used to support
future enhancements to this structure. The following example shows the
usage of these APIs (error checking has been left out for readability):

Int numAlgs, i;

Engine_AlgInfo algInfo;

Engine_Error err;

err = Engine_getNumAlgs("audio_copy", &numAlgs);

for (i = 0; i < numAlgs; i++) {

 err = Engine_getAlgInfo(name, &algInfo, i);

 printf("alg[%d]: name = %s typeTab = %s local = %d\n",

 i, algInfo.name, *(algInfo.typeTab), algInfo.isLo-
cal);

}

The output may look like the following:

 alg[0]: name = auddec_copy typeTab = ti.sdo.ce.audio.IAUDDEC local = 0

 alg[1]: name = audenc_copy typeTab = ti.sdo.ce.audio.IAUDENC local = 0

The field, typeTab, is actually a NULL-terminated array of strings giving
the inheritance hierarchy. In this example, we printed out the first string
only.

The return values of Engine_getAlgInfo() are the following:

❏ Engine_EOK. Success.

❏ Engine_EEXIST. There is no Engine with the given name.

❏ Engine_EINVAL. The algInfoSize field of the Engine_AlgInfo object
passed to this function does not match the size of the Engine_AlgInfo
object in the Codec Engine library.

❏ Engine_ENOTFOUND. The index of the algorithm is out of range.

The VISA Classes: Video, Image, Speech, Audio

Using the Codec Engine APIs 4-9

4.3 The VISA Classes: Video, Image, Speech, Audio

For the encoder and decoder sides of each of the VISA classes, the
following APIs are provided, where MOD is the module prefix:

❏ MOD_create. Create an instance of this type of algorithm.

❏ MOD_process. Execute the "process" method in this instance of the
algorithm.

❏ MOD_control. Execute the "control" method in this instance of the
algorithm.

❏ MOD_delete. Delete the specified instance of this type of algorithm.

4.3.1 VISA API Setup Code

For each VISA API module your application uses, you should include the
appropriate header file. For example, the following statement includes
the header file for the audio decoder API module. The directory path is
relative to the CE_INSTALL_DIR/packages package repository.

#include <ti/sdo/ce/audio/auddec.h>

4.3.2 Creating an Algorithm Instance

To create an algorithm instance within an Engine, you use the *_create()
function for the appropriate VISA encoder or decoder module. For
example:

Engine_Handle ce;

AUDDEC_Handle dec;

static String decoderName = "auddec_copy";

/* allocate and initialize audio decoder on the Engine */

dec = AUDDEC_create(ce, decoderName, NULL);

In this function, the first argument—ce—is the Engine_Handle returned
by the Engine_open() function.

The second argument—decoderName—is a string that identifies the type
of algorithm to create. These strings are part of the configuration created
by your system integrator.

The VISA Classes: Video, Image, Speech, Audio

4-10

The third argument allows you to specify parameters to use when
instantiating the algorithm. These parameters control aspects of
algorithm behavior. The parameter structure is different for each VISA
encoder or decoder class. For example, the audio decoder parameter
structure is as follows:

typedef struct IAUDDEC_Params {

 XDAS_Int32 size; /* Size of this structure */

 XDAS_Int32 maxSampleRate; /* Max sampling freq in Hz */

 XDAS_Int32 maxBitrate; /* Max bit-rate in bits per sec */

 XDAS_Int32 maxNoOfCh; /* Max number of channels */

 XDAS_Int32 dataEndianness; /* Endianness of input data */

} IAUDDEC_Params;

This function returns a handle that other functions use to access the
algorithm instance.

4.3.3 Deleting an Algorithm Instance

To delete an algorithm instance and free the memory it uses, your
application should call MOD_delete(). For example:

/* tear down the codec and Engine */

AUDDEC_delete(dec);

You should do this only after you have freed any buffers or other memory
related to the algorithm instance.

The VISA Classes: Video, Image, Speech, Audio

Using the Codec Engine APIs 4-11

4.3.4 Controlling an Algorithm Instance

You can control and query the capabilities of an algorithm using the
module’s *_control() function.

For example, the following code uses the AUDDEC_control() function to
query a decoder to verify that the decoder accepts one input buffer,
returns one output buffer, and uses buffer sizes that can handle
NSAMPLES bytes of data.

#define NSAMPLES 1024

#define IFRAMESIZE (NSAMPLES * sizeof(Int8)) /* raw (in) */

#define OFRAMESIZE (NSAMPLES * sizeof(Int8)) /* decoded */

static Char inBuf[IFRAMESIZE];

static Char outBuf[OFRAMESIZE];

XDM_BufDesc inBufDesc;

XDM_BufDesc outBufDesc;

XDAS_Int32 status;

XDAS_Int32 bufSizes = NSAMPLES;

IAUDDEC_DynamicParams decDynParams;

IAUDDEC_Status decStatus;

/* prepare "global" buffer descriptor settings */

inBufDesc.numBufs = outBufDesc.numBufs = 1;

inBufDesc.bufSizes = outBufDesc.bufSizes = &bufSizes;

/* Query the decoder */

status = AUDDEC_control(dec, XDM_GETSTATUS, &decDynParams,

 &decStatus);

if (status != AUDDEC_EOK) {

 /* failure, report error and exit */

 printf("decode control status = %ld\n", status);

 return;

}

/* Validate decoder codec will meet buffer requirements */

if ((inBufDesc.numBufs > decStatus.bufInfo.maxNumInBufs) ||

 (sizeof(inBuf) > decStatus.bufInfo.maxInBufSize[0]) ||

 (outBufDesc.numBufs > decStatus.bufInfo.maxNumOutBufs) ||

 (sizeof(outBuf) > decStatus.bufInfo.maxOutBufSize[0])) {

 /* failure, report error and exit */

 printf("Error: decoder codec feature conflict\n");

 return;

}

The VISA Classes: Video, Image, Speech, Audio

4-12

In the AUDDEC_control() function example, the first argument—dec—is
the handle to the algorithm returned by the AUDDEC_create() function.

The second argument is a command ID constant from xdm.h. The
options are:

❏ XDM_GETSTATUS. Queries the algorithm and fills a structure that
contains status information about the capabilities of the algorithm.

❏ XDM_SETPARAMS. Sets the run-time dynamic parameters of the
algorithm.

❏ XDM_GETPARAMS. Gets the current settings of the run-time
dynamic parameters of the algorithm.

❏ XDM_RESET. Resets the algorithm. This may run an initialization
function or a special function to recover after an error or data loss.

❏ XDM_SETDEFAULT. Sets all parameters to their defaults.

❏ XDM_FLUSH. Handles end of stream conditions. Forces algorithm to
output data without additional input. The recommended sequence is
to call the *_control() API with XDM_FLUSH and then make repeated
calls to the *_process() API.

❏ XDM_GETBUFINFO. Queries the algorithm instance regarding the
properties of its input and output buffers.

For more about xDM, see the xDAIS-DM (Digital Media) User Guide
(SPRUEC8).

The third argument is the address of a dynamic parameter structure that
is used if you specify the XDM_SETPARAMS or XDM_GETPARAMS
command codes. This structure is different for each of the VISA encoder
and decoder modules.

The fourth argument is the address of a status structure that is used if you
specify the XDM_GETSTATUS command code. This structure is also
different for each of the VISA encoder and decoder modules.

The VISA Classes: Video, Image, Speech, Audio

Using the Codec Engine APIs 4-13

4.3.5 Processing Data with an Algorithm Instance

You can run an algorithm using the module’s *_process() function.

For example, the following code continues the example in the previous
section. It uses the AUDDEC_process() function to read frames from "in",
decode the audio, and write the output to "out".

Int n;

XDM_BufDesc inBufDesc;

XDM_BufDesc outBufDesc;

IAUDDEC_InArgs decInArgs;

IAUDDEC_OutArgs decOutArgs;

/* prepare "global" buffer descriptor settings */

inBufDesc.numBufs = outBufDesc.numBufs = 1;

inBufDesc.bufSizes = outBufDesc.bufSizes = &bufSizes;

decInArgs.size = sizeof(decInArgs);

...

/* Read complete frames from in, decode and write to out */

for (n = 0; fread(inBuf, sizeof (inBuf), 1, in) == 1; n++) {

 XDAS_Int8 *src = inBuf;

 XDAS_Int8 *dst = outBuf;

 /* prepare "per loop" buffer descriptor settings */

 inBufDesc.bufs = &src;

 outBufDesc.bufs = &dst;

 decInArgs.size = sizeof(decInArgs);

 decInArgs.numBytes = sizeof(inBuf);

 /* decode the frame */

 status = AUDDEC_process(dec, &inBufDesc, &outBufDesc,

 &decInArgs, &decOutArgs);

 if (status != AUDDEC_EOK) {

 printf("frame %d: decode status = %ld\n", n, status);

 }

 /* write to file */

 fwrite(dst, sizeof (outBuf), 1, out);

}

printf("%d frames decoded\n", n);

The VISA Classes: Video, Image, Speech, Audio

4-14

In this AUDDEC_process() function example, the first argument—dec—
is the handle to the algorithm returned by the AUDDEC_create() function.

The second and third arguments for the audio decoder module (and for
most other VISA modules) provide the address of a buffer descriptor
structure of type XDM_BufDesc. This type has the following structure
definition:

typedef struct XDM_BufDesc {

 XDAS_Int8 **bufs;

 XDAS_Int32 numBufs;

 XDAS_Int32 *bufSizes;

} XDM_BufDesc;

The fourth and fifth arguments for the audio decoder module (and for
most other VISA modules) provide the address of input and output
arguments for the algorithm. This structure is different for each of the
VISA encoder and decoder modules.

4.3.6 Overriding a Remote Algorithm's Priority and Memory Requests

4.3.6.1 Overriding the Algorithm's Configured Priority

In some situations, an application developer may want to run multiple
instances of a remote codec at different priorities. As an example,
suppose you want to run two instances of the sample audio encoder copy
codec: one at priority 4, the other at priority 5. The server containing this
codec is originally configured with the audio encoder running at priority 4,
as shown in the following configuration code (assuming that
Server.MINPRI is 1):

Server.algs = [

 {name: "audenc_copy", mod: AUDENC_COPY, threadAttrs: {

 stackMemId: 0, priority: Server.MINPRI + 3}

 },

 ...

];

The VISA Classes: Video, Image, Speech, Audio

Using the Codec Engine APIs 4-15

It may seem that the solution to this problem is to configure the DSP
server by adding another audio encoder with the new priority and a
different name to the list of server algorithms, as follows:

Server.algs = [

 /* Audio copy encoder configured with priority 4 */

 {name: "audenc_copy", mod: AUDENC_COPY, threadAttrs: {

 stackMemId: 0, priority: Server.MINPRI + 3}

 },

 /* Audio copy encoder configured with priority 5 (WRONG)*/

 {name: "audenc_copy_2", mod: AUDENC_COPY, threadAttrs: {

 stackMemId: 0, priority: Server.MINPRI + 4}

 },

 ...

];

However, this generates an error when trying to rebuild the server, since
the generated UUIDs for these two codecs, determined by the mod
(AUDENC_COPY) configuration parameter, will be identical. Since it is
the UUID, and not the codec name, that is passed internally from the
ARM application to the DSP server to instantiate the codec, these two
codecs would be indistinguishable. Therefore, this method will not work.

The correct way to create a codec with a priority other than the one
configured in the DSP server, is through the name parameter passed to
the MOD_create() API, where MOD, is one of the VISA modules. The
name will be the codec name with the overriding priority appended to it,
separated with a ":". For example, to run the audio encoder shown above
at priority 5, pass the name "audenc_copy:5" to AUDENC_create(). The
following code fragment creates two audio copy encoders running at
different priorities (error checking is left out for readability).

 Engine_Handle ce;

 AUDENC_Handle enc;

 AUDENC_Handle enc_high;

 ce = Engine_open("audio_copy", NULL, NULL);

 /* Create codec at the configured priority */

 enc = AUDENC_create(ce, "audenc_copy", NULL);

 /* Create second instance of codec, overriding the

 * configured priority with a priority of 5 */

 enc_high = AUDENC_create(ce, "audenc_copy:5", NULL) ;

The VISA Classes: Video, Image, Speech, Audio

4-16

4.3.6.2 Overriding an Algorithm's Memory Requests

It is possible to ignore a codec's requests for placement of allocated
buffers and force all of the codec's memory requests to be allocated in
the external heap mapped to the DSKT2 module's ESDATA configuration
parameter.

This is also done by appending to the codec name passed to the
MOD_create() function. To override memory placement requests,
append ":1" to the name after the adjustment for priority. For example, the
names below passed to AUDENC_create() have the following meanings:

❏ "audenc_copy:5:1"

Create audenc_copy with priority 5 and with buffers allocated in
external memory.

❏ "audenc_copy::1"

Create audenc_copy with its configured priority and with buffers
allocated in external memory.

Appending "::0" to the codec name (or ":0" if a new priority is also
appended), means the codec memory requests should be respected. For
example, passing the following names to AUDENC_create() are
equivalent:

❏ "audenc_copy"

❏ "audenc_copy::0"

The Server APIs

Using the Codec Engine APIs 4-17

4.4 The Server APIs

On dual CPU systems, Engines that are configured to run algorithms
"remotely" (on the DSP) transparently use a "DSP Server". The DSP
Server is an executable that integrates algorithms and their frameworks
(for example, DSP/BIOS, Framework Components, codecs, and DSP
Link drivers), which will be loaded and started on the DSP when the
Engine is opened.

The Server APIs can be used by applications running on the GPP to
access information about the DSP Server and to control the DSP Server.
More specifically, these APIs allow a GPP application to obtain
information about the number of memory heaps configured in the DSP
Server, the current usage of an individual memory heap, and to
reconfigure the base and size of the DSP Server's algorithm heap.

The APIs related to the Server are:

❏ Engine_getServer(). Get the handle to a Server.

❏ Server_getNumMemSegs(). Get the number of heaps in a Server.

❏ Server_getMemStat(). Get statistics about a Server heap.

❏ Server_redefineHeap(). Set base and size of a Server heap.

❏ Server_restoreHeap(). Reset Server heap to default base and size.

4.4.1 Getting a Server Handle

To access the DSP Server for the Engine, the GPP application must first
obtain a Server handle by calling the Engine_getServer() API. For
example:

static String engineName = "auddec";

Engine_Handle engine;

Server_Handle server;

Engine_Error err;

engine = Engine_open(engineName, NULL, &err);

server = Engine_getServer(engine);

Note: As with Engine handles, Server handles are not thread
protected. Each thread that uses a Server handle must perform its own
Engine_getServer() call (using its own Engine handle) or guarantee
synchronized access to a shared Server handle.

If the value returned by Engine_getServer() is NULL, then the Engine has
no Server.

GPP+DSP

The Server APIs

4-18

4.4.2 Getting Memory Heap Information

The GPP application can obtain the number of memory heaps configured
into the DSP Server by calling Server_getNumMemSegs(). For example:

Server_Handle server;

Server_Status status;

Int numSegs;

/* Get the server handle from a previously opened Engine */

server = Engine_getServer(engine);

status = Server_getNumMemSegs(server, &numSegs);

This API returns the following error codes:

❏ Server_EOK - success. In this case, numSegs contains the number
of heaps in the DSP Server.

❏ Server_ERUNTIME - an internal runtime error occurred.

Once the number of heaps is known, the GPP application can then iterate
through this number, to obtain statistics about each heap, using
Server_getMemStat(). The memory statistics are returned in a
Server_MemStat structure:

typedef struct Server_MemStat {

 Char name[Server_MAXSEGNAMELENTH+1];

 /* Name of heap segment */

 Uint32 base; /* Base address of heap */

 Uint32 size; /* Original heap size */

 Uint32 used; /* DSP MAUs of heap used */

 Uint32 maxBlockLen; /* Length of largest free block */

} Server_MemStat;

The Server APIs

Using the Codec Engine APIs 4-19

The following example code shows the usage of these APIs (error
checking is left out for readability).

Server_Handle server;

Int numSegs, i;

Server_MemStat stat;

Server_Status status;

status = Server_getNumMemSegs(server, &numSegs);

for (i = 0; i < numSegs; i++) {

 status = Server_getMemStat(server, i, &stat);

 printf("%s: base: 0x%x size: 0x%x used: 0x%x

 max free block: 0x%x",

 stat.name, stat.base, stat.size, stat.used,

 stat.maxBlockLen);

}

The values returned by Server_getMemStat() are the following:

❏ Server_EOK. Success.

❏ Server_ENOTFOUND. The segment number was out of range.

❏ Server_ERUNTIME. An internal runtime error occurred.

4.4.3 Reconfiguring the DSP Server's Algorithm Heap

The DSP Server can be configured with a memory segment that is used
exclusively for algorithm heaps. In some situations, the DSP Server may
be configured with a small algorithm heap, and the GPP application may
want to provide, at runtime, a larger contiguous memory block to be used
by the DSP Server for the algorithm heap. Then, when the heap is not
being used by the DSP, this memory could be reclaimed from the DSP
and used by the GPP. The following Server APIs provide the means to
reconfigure the DSP algorithm heap:

Server_Status Server_redefineHeap(Server_Handle server,

 String name, Uint32 base, Uint32 size);

Server_Status Server_restoreHeap(Server_Handle server,

 String name);

The "name" parameter passed to these functions is the name of the heap
to be reconfigured; it must not be more than
Server_MAXSEGNAMELENGTH characters long. The "base" address
passed to Server_redefineHeap() must be a DSP address, and the
memory from base to base + size must be contiguous in physical
memory. The "size" parameter is given in DSP MADUs (minimum

The Server APIs

4-20

addressable data units). The base address should be 8-byte aligned, but
there are no alignment restrictions on size; a value of 0 for size is
acceptable.

The DSP algorithm heap can only be reconfigured when no memory is
currently allocated in the heap. The Server_restoreHeap() function resets
the base address and size of the algorithm heap back to their original
values (the values before any calls to Server_redefineHeap() were
made). After a successful call to Server_restoreHeap(), the memory
previously "redefined" to the heap can be used again by the system.

The return values of Server_redefineHeap() are the following:

❏ Server_EOK. Success.

❏ Server_EINVAL. Changing to the new base address and size would
cause an overlap with another heap.

❏ Server_EINUSE. Memory is currently allocated in the algorithm
heap.

❏ Server_ENOTFOUND. No heap with the given name was found.

❏ Server_ERUNTIME. An internal runtime error occurred.

Server_restoreHeap() returns any of the following values:

❏ Server_EOK. Success.

❏ Server_EINVAL. Changing back to the original base address and
size would cause an overlap with another heap.

❏ Server_EINUSE. Memory is currently allocated in the algorithm
heap.

❏ Server_ENOTFOUND. No heap with the given name was found.

❏ Server_ERUNTIME. An internal runtime error occurred.

The following code illustrates how these two APIs could be used on the
DM644x, a GPP+DSP device. In this example, a contiguous chunk of
memory is allocated by the GPP application using Memory_contigAlloc().
However, the address returned by this function is a virtual address on the
GPP, so it must be converted to a DSP address before passing it to
Server_redefineHeap(). The Memory_getBufferPhysicalAddress()
function converts the virtual address to a physical address on the GPP,
which, in the case of the DM644x, is the same as the DSP address.

The Server APIs

Using the Codec Engine APIs 4-21

After the algorithm is run, the algorithm heap is reset to its original size
and location. Error checking is left out for better readability.

Server_Handle server = NULL;

Server_Status status;

Engine_Handle ce = NULL;

XDAS_Int8 *buf;

Uint32 base;

String decoderName = "auddec_copy";

String encoderName = "audenc_copy";

String engineName = "audio_copy";

/* Open the Engine and get Server handle. Note, the

 * Engine_open() call will load and start the DSP. */

ce = Engine_open(engineName, NULL, NULL);

server = Engine_getServer(ce);

/* Allocate block of memory, contiguous in physical memory */

buf = (XDAS_Int8 *)Memory_contigAlloc(BUFSIZE, ALIGNMENT);

/* Convert virtual address to physical address, which on

 * DM644x, happens to be the same as the DSP address. */

base = Memory_getBufferPhysicalAddress(buf, BUFSIZE, NULL);

/* Reconfigure the algorithm heap */

status = Server_redefineHeap(server, "DDRALGHEAP", base,

 BUFSIZE);

'Create and run codecs'

'Delete codecs'

/* Reconfigure algorithm heap back to its original state. */

status = Server_restoreHeap(server, "DDRALGHEAP");

/* Free the buffer */

Memory_contigFree(buf, BUFSIZE);

In other scenarios, the application may need to reconfigure the algorithm
heap to an address that is not obtained by allocating a buffer on the ARM.
For example, suppose there are fixed memory spaces on the DSP that
the application will alternate between for the algorithm heap, depending
on what algorithms will be run. In this case, the application can pass the
DSP address directly to Server_redefineHeap().

What Happens to DSP Memory Issues?

4-22

4.5 What Happens to DSP Memory Issues?

The VISA APIs to create and delete algorithms provided by the Codec
Engine manage all algorithm resources. This includes the CPU, memory,
direct memory access (DMA), and more. The VISA creation and deletion
APIs hide most of the details of the codecs' memory and resource
management.

4.5.1 Buffer Handling and Shared Memory Maps

It is the responsibility of the application to handle all I/O and buffering
issues. The control APIs use pointers to input and output buffers of type
XDM_BufDesc. The structure is as follows:

typedef struct XDM_BufDesc {

 XDAS_Int8 **bufs;

 XDAS_Int32 numBufs;

 XDAS_Int32 *bufSizes;

} XDM_BufDesc;

You must place the buffers it points to in memory shared by the GPP and
DSP. This does away with the prohibitive performance impact of passing
large amounts of signal data from the GPP to the DSP and back.

In addition, the buffers you use for shared data must be contiguous and
cache-aligned.

For example, the DM644x default memory map is designed with the
intent to provide generous amount of space for DSP code and data,
plenty of private heap for DSP algorithms, and a large space for shared
buffers between GPP and DSP.

GPP+DSP

Table 4–3 DM644x Default Memory Map

Address (hex)
Address
(decimal) Size Segment Comments

0x80000000 ..
0x87800000

0-120MB 120MB Linux booted with MEM=120M

0x87800000 ..
0x88000000

120-128MB 8MB CMEM shared buffers between GPP and DSP

0x88000000 ..
0x8FA00000

128-250MB 122MB DDRALGHEAP * DSP segment used exclusively for algo-
rithm heaps

0x8FA00000 ..
0x8FE00000

250-254MB 4MB DDR* DSP segment for code, stack, and static
data

What Happens to DSP Memory Issues?

Using the Codec Engine APIs 4-23

 (*) are actual DSP linker segments.

4.5.2 Memory Fragmentation

For dual CPU applications, the exception to the rule that the Codec
Engine hides DSP memory management issues from the GPP
application developer is that buffers passed to the DSP must be
contiguous in physical memory and cache-aligned.

This differs from buffer handling on the GPP because Linux and similar
GPP operating systems handle non-contiguous buffers through a
memory management unit (MMU) that holds a table matching virtual
addresses to physical addresses. DSPs have no such table.

The Codec Engine verifies that these constraints are met in the required
platform for data buffers. Algorithm buffers are managed by the Memory_
module, which uses pools of different sizes to ensure that memory is not
fragmented.

0x8FE00000 ..
0x8FF00000

254-255MB 1MB DSPLINKMEM * memory for DSPLINK

0x8FF00000 ..
0x8FF00080

255MB-255MB 128B CTRLRESET * memory for reset vectors

0x8FF00080 ..
0x8FFFFFFF

255MB-256MB 1MB -- unnamed --

Table 4–3 DM644x Default Memory Map

Address (hex)
Address
(decimal) Size Segment Comments

GPP+DSP

What Happens to DSP Memory Issues?

4-24

However, the storage space for codec instances created by the Codec
Engine must also be contiguous and cache-aligned. The creation and
deletion of codec instances is non-deterministic. For example, if your
application follows steps like those in Figure 4–1, it may be impossible to
recreate a codec instance that was created and deleted earlier:

Figure 4–1 Non-Deterministic Buffer Creation and Deletion

Since instance creation occurs “in the background” while other codecs
are running at higher priorities, you cannot guarantee the time required
to create an instance. You can, however, control the order in which
instances are created and deleted.

If a codec or shared buffer is not physically contiguous, when the caller
calls Memory_getBufferPhysicalAddress() with a non-NULL pointer for
the Boolean *isContiguous arguments, the Codec Engine sets the ptr
data to true or false without printing any message. If the pointer is NULL
(which is most likely, since this function is called by the codec stubs,
which pass NULL for this ptr), the level 7 trace message is:

Memory_getBufferPhysicalAddress> ERROR: user buffer at
addr=<hex addr>, size=<size in bytes> is NOT contiguous

This message is printed only if level 7 tracing is enabled, which is the
default.

4.5.3 Cache Alignment

Devices that utilize a cache (for example, the C64+) also require that I/O
buffers be cache-aligned. For example, the DSP L2 cache line size on the
C64x+ is 128 bytes. Storage space allocated must start at a cache line
boundary, and the size must be a multiple of the cache line length.

If these alignment and size constraints are violated, any data object
allocated adjacent to the application buffer will share a cache line with a
portion of the application buffer. This line may be corrupted as a result of
the Cache Controller writing back the shared cache line.

Create codecs A, B, and C

Delete codecs A and C

Recreate codec C then A (No room for contiguous A)

What Happens to DSP Memory Issues?

Using the Codec Engine APIs 4-25

4.5.4 Cache Coherence

When developing an application for a multiprocessor platform (including
those with multiple processing cores, hardware accelerators, and DMA
Engines) in which some memory regions are cached, you must perform
some memory coherence operations. The Codec Engine framework,
when it has enough information, automatically handles some cache
coherence operations. However, ultimately, the application developer is
responsible for ensuring that certain pre- and post-conditions are met for
the buffers the application submits and receives from the Codec Engine.

The subsections that follow summarize the responsibilities of the
application developer for different processor environments.

4.5.4.1 GPP + DSP Environments

The following are common issues in the DaVinci environment, though
they are present in any multi-core system that utilizes a cache.

Note that the Codec Engine Framework enforces some of these rules in
the implementation of the VISA APIs. You should be aware of these rules
when accessing shared memory outside the use of the VISA APIs.

❏ Input Buffers. This is the case when a GPP application
captures/generates a buffer and passes it to the DSP.

■ GPP side. Input buffers must be written-back before each
process/control call. (Otherwise, DSP CPU/DMA accesses will
access incoherent data in external memory, with no ability to
writeback the GPP-side cache.) If a buffer is not cached on the
GPP side, a writeback is not required.

When a driver fills a GPP-cached input buffer, before passing it
to the Codec Engine, the driver should do the following: 1) Start
with a cache invalidated buffer. 2) The driver can use DMA or
CPU writes to fill the buffer. 3) If CPU is used to fill the buffer, it
must be written-back before passing the buffer to Codec Engine.

■ DSP side. Input buffers must be invalidated before each
process/control call. (Otherwise the DSP may read stale data
from its cache. This is possible if the same buffer was passed in
an earlier call.) Note that the default skeletons for the VISA APIs
automatically invalidate input buffers prior to invoking the
algorithm's process function.

❏ Output Buffers.

■ GPP side. Output buffers must be invalidated before accessing
them on the GPP side following DSP-side processing.
(Otherwise the GPP may access stale data resident in its GPP-

GPP+DSP

What Happens to DSP Memory Issues?

4-26

side cache.) If the buffers are not cache-enabled on the GPP
side invalidation is not required.

■ DSP side. Output buffers must be invalidated before each
process/control call. (Otherwise, if DMA is used to fill the buffer,
there may be overwrites as cache lines are evicted due to
unrelated CPU activity.) Also, output buffers must be written-
back after each process/control call. (Otherwise the GPP may
read incoherent data from external memory.) Note that the
default skeletons for the VISA APIs automatically writeback
output buffers following each process/control call.

❏ DMA-Related. If the GPP or DSP uses DMA to access shared
buffers, there is more work to ensure coherence. xDAIS provides
some DMA rules for frameworks. See TMS320 DSP Algorithm
Standard Rules and Guidelines (SPRU352) for details.

C6000 algorithms must not issue any CPU read/writes to buffers in
external memory that are involved in DMA transfers. This also applies to
the input buffers passed to the algorithm through its algorithm interface.

Some common cache-related errors are:

❏ Doing a cache writeback-invalidate for DSP "input" buffers, instead
of just an invalidate "before" a process/control call. In this case, if any
of the "current" input buffers has been referenced in a "previous"
process/control call, then a stale fragment of that buffer may already
be resident in the DSP cache. A writeback will corrupt the "current"
input buffer with stale data from the cache.

❏ Doing a blind "ALL L2 Cache" writeback-invalidate, instead of a
writeback or invalidate on only the algorithm's own input/output
buffers. This creates potential problems for other algorithm
instances, whose input/output buffers will be affected.

❏ Invalidating all of L2 severely degrades performance for all algorithm
instances, due to the resulting cache misses.

4.5.4.2 Single-Processor Environments

The following are common issues in the DM643x environment, though
they are present in any single-CPU system that utilizes cached memory.

❏ Input Buffers. This is the case when a DSP application
captures/generates a buffer and passes it to the Codec Engine.
Depending upon how the input buffers have been captured, the
buffers must be either invalidated or written-back and invalidated:

■ If the application (or a driver) modified the contents of the input
buffer using CPU read and/or write operations, the buffer must
be written-back and invalidated.

What Happens to DSP Memory Issues?

Using the Codec Engine APIs 4-27

■ If the application (or driver) modified the contents of the input
buffer using DMA, then the buffer must not be written-back, but
must still be invalidated.

In both cases, the application (or driver) should start filling a cache-
invalidated buffer.

❏ Output Buffers. Output buffers (those filled by Codec Engine) must
be invalidated before being submitted to the Codec Engine to be
filled. And, when returned from the Codec Engine, the buffers should
be written-back to ensure all data is written out to external memory.

What Happens to DSP Real-Time Issues?

4-28

4.6 What Happens to DSP Real-Time Issues?

It is the responsibility of the GPP application to handle all multi-threading
and real-time issues from a GPP perspective. For example, this may
involve scheduling higher-frequency, short-duration processing (such as
audio) at a higher priority than long-duration processing (such as video)
on Linux-based systems.

The DSP Server used transparently by the Codec Engine for remote
algorithms handles multi-threading and reentrancy issues on the DSP.
For platforms such as the DM644x that treat the DSP as a black box,
threading issues on the DSP are managed by the Codec Server
integration.

However, there are still some important considerations.

4.6.1 Transaction Latency

It is important to consider transaction latency when running DSP
algorithms from the GPP. For example, on the DM644x, the round-trip
time required to schedule a DSP algorithm from the GPP limits
transactions-per-second to approximately 7000. That is, the application
can use the Codec Engine to run or control an algorithm up to 7000 times
per second.

This may seem like plenty of headroom when considering typical frame
rates of 30 to 50 per second. However, be aware that applications with a
high density of channels may run up against this limit.

4.6.2 Multi- vs. Uni-Processor Performance

The VISA APIs wait for the function to return. Thus, your application
needs to be multi-threaded if you want other threads to use the
processing time while waiting for the DSP to perform its algorithms.

A discussion of managing multiple GPP threads in conjunction with the
Codec Engine is beyond the scope of this document. See the
documentation for your GPP operating system and/or middleware.

4.6.3 Local Performance

The Codec Engine is also optimized for local algorithm execution. The
execution overhead is the same as that of xDAIS algorithms. The
creation times are slightly higher.

GPP+DSP

GPP+DSP

What About Codec Engine Debugging?

Using the Codec Engine APIs 4-29

4.7 What About Codec Engine Debugging?

Codec Engine modules, both on the application and the server side,
provide plenty of trace information that can be activated, to reveal what's
happening internally.

When any object in your application fails to be created—a codec or an
Engine, either locally or on the DSP—follow the instructions in this
section to turn on Codec Engine trace in order to do basic debugging.
Section 4.8, What About Software Trace? provides details about Codec
Engine tracing, although it is generally needed when debugging real-
time, performance issues.

4.7.1 Codec Engine Debugging from the ARM on ARM+DSP Systems

To turn on the minimal level of Codec Engine debugging—catching all
warnings and errors on the ARM and the DSP—simply set the
environment variable CE_DEBUG=1 on the target prior to running your
application. All the application's and server's CE warnings and errors will
be printed, in correct order, to standard output.

Setting the CE_DEBUG environment variable causes Codec Engine on
the ARM, besides printing its own trace information, to automatically
collect any DSP server's trace information upon completing any CE
API—whether it failed or was successful. The value of the variable only
affects the detail level of the information collected and printed.

For a very detailed trace, set CE_DEBUG=2. This generates plenty of
text, so we recommend that you run your application as follows:

root@146.252.161.13:~# CE_DEBUG=2 ./app.out [any app args here...] | tee log.txt

After the application runs, examine the log.txt file.

To turn on all tracing, set CE_DEBUG=3. You will usually need the help
of a CE expert to analyze trace information generated this way.

What About Codec Engine Debugging?

4-30

4.7.2 Codec Engine Debugging on a DSP-only System

On a DSP-only system, assuming you are debugging your application
from Code Composer Studio, you turn tracing on from your C code.

To do so, when you are ready to show Codec Engine trace information—
which can be as soon as right after a call to CERuntime_init()—add the
following lines to your code (assuming you have done #include <stdio.h>
and #include <ti/sdo/ce/trace/gt.h>):

GT_setprintf((GT_PrintFxn)printf);

GT_set("*+67"); /* turn on trace for warnings and errors */

The last line shows how much tracing to turn on. To turn on all tracing,
use the following line instead:

GT_set("*+01234567,GT_prefix=1235,GT_time=0");

DSP-only

What About Software Trace?

Using the Codec Engine APIs 4-31

4.8 What About Software Trace?

A utility module you use to assist with software tracing in Codec Engine
applications is the TraceUtil module. You can use this module for
debugging and/or to collect real-time data.

Additionally, tools like SoC Analyzer can be developed to help display
trace data. TraceUtil can be used to simplify the use of such tools.

TraceUtil lets you specify the amount of tracing you want and where you
want it collected as follows:

❏ At design time by setting configuration file attributes

❏ At start time by setting environment variables

❏ At run-time by writing command strings to a named UNIX pipe

TraceUtil manages the three kinds of tracing that Codec Engine modules
can produce:

❏ Tracing on the GPP side. Many Codec Engine and other GPP-side
modules drop trace strings describing their state or warning and error
messages.

❏ Tracing on the DSP side. DSP-side modules may provide trace
information that can be collected by TraceUtil on the GPP-side.

❏ DSP/BIOS logging on the DSP side. DSP/BIOS provides the TRC
and LOG modules to collect information about various DSP/BIOS
system events such as task switching. You can use the TraceUtil
module to enable such DSP/BIOS tracing remotely. Unlike the other
kinds of trace, which are ASCII text, the DSP/BIOS log is a binary file.

As a supplement to TraceUtil, GPP-side code can also use printf(), or you
can use the GNU Project Debugger (GDB) on GPP-side code.

GPP+DSP

What About Software Trace?

4-32

4.8.1 Configuring TraceUtil at Design Time

To enable the TraceUtil module, your must add this line to your GPP
application's configuration (.cfg) script. Any location in the script is fine.

var TraceUtil = xdc.useModule('ti.sdo.ce.utils.trace.TraceUtil');

The default TraceUtil settings cause the GPP application to:

❏ Print all GPP-side errors and warnings to the standard output.

❏ Collect DSP-side errors and warnings every 200 ms and print them
to standard output.

❏ Not enable or capture any DSP/BIOS logging.

Constants are provided to set trace attributes for NO_TRACING,
DEFAULT_TRACING, SOCRATES_TRACING, and FULL_TRACING.

Instead of using the default, you can add the following line to your .cfg file
to print information in the form the SoC Analyzer can use:

TraceUtil.attrs = TraceUtil.SOCRATES_TRACING;

The set of attributes configured with the SOCRATES_TRACING option
enable SoC Analyzer tracing and DSP/BIOS logging. GPP-side trace
information is stored in the /tmp/cearmlog.txt file, DSP-side trace
information is placed in /tmp/cedsp0log.txt, and DSP/BIOS logging goes
to /tmp/bioslog.dat. Polling is initially disabled.

With this option, the application begins running with tracing disabled. To
turn tracing on, you or your program must write a command to turn tracing
on to the trace command pipe. See Section 4.8.6, Controlling Trace at
Run-Time Through a Named Pipe for details.

Another option is to add the following line to your .cfg file to enable all
types of tracing possible:

TraceUtil.attrs = TraceUtil.FULL_TRACING;

The output destinations are the same as for SOCRATES_TRACING, but
FULL_TRACING enables all levels of trace for both the GPP and DSP.

You can further control the details of tracing behavior by setting individual
TraceUtil.attrs fields in your .cfg file. For details, see the reference
documentation for the ti.sdo.ce.utils.trace.TraceUtil module in the
Configuration Reference, which is available at
CE_INSTALL_DIR/xdoc/index.html

GPP+DSP

What About Software Trace?

Using the Codec Engine APIs 4-33

4.8.2 Supporting TraceUtil in Your Application's C Code

To collect the trace information that the DSP produces, you must add
these lines of C code to your GPP application:

#include <ti/sdo/ce/utils/trace/TraceUtil.h>

 ...

/* call TraceUtil_start() after CERuntime_init() */

TraceUtil_start(engineName); /* engineName is a string */

 ...

TraceUtil_stop(); /* call at end of your app */

This code spawns a thread that collects all available DSP trace
messages and dumps them to a file or standard output. (It also collects
and stores DSP/BIOS LOG information if you want it to do so.)

4.8.3 Configuring the DSP Server for DSP/BIOS Logging

If you set TraceUtil on the GPP side to use DSP/BIOS logging, you must
also have DSP/BIOS logging enabled in your DSP Server image. To do
this, add the following line to your DSP Server's configuration script:

var LogServer = xdc.useModule('ti.sdo.ce.bioslog.LogServer');

If your DSP Server is incapable of DSP/BIOS logging, you will see GPP-
side error/warning messages like the following:

LogClient_connect> Error: failed to locate server queue,
Check if your DSP image has DSP/BIOS logging enabled

LogClient_fwriteLogs> Warning: not connected to the DSP/BIOS
log server on the DSP, cannot collect any DSP/BIOS log data.

4.8.4 Configuring the DSP Server To Redirect Trace Output

When debugging a DSP Server or single-processor DSP application
using Code Composer Studio (CCStudio), you can direct trace
information to go directly to CCStudio's output window. To do this, modify
the main() routine to make the following call before calling
CERuntime_init():

GT_setprintf((GT_PrintFxn)printf);

This causes each trace call to map to the DSP standard I/O library's
printf() function, which sends output to the CCStudio console window.

Note that the argument to the GT_setprintf() function can be any function
that takes (char *format, …) arguments. So, for example, you could
provide your own function that, for example, sends trace information to a
serial port.

GPP+DSP

GPP+DSP

What About Software Trace?

4-34

4.8.5 Configuring TraceUtil at Application Start Time

Before you run your TraceUtil-enabled application, you can set one or
more of the following environment variables to override the TraceUtil
attributes you specified in your .cfg script:

❏ CE_TRACE. Mask for the GPP-side tracing. See Section 4.8.7,
Trace Mask Values for mask details. For example:

 CE_TRACE="*=0567;OM-0"

❏ CE_TRACEFILE. Specify the output file for GPP trace information.
This can be a full path (for example, /tmp/local.txt) or a path relative
to the executing application. If the file can't be opened (for example,
if this points to a directory that doesn't exist), the trace goes to the
standard output. For example:

 CE_TRACE="trace/armtrace.txt";

❏ CE_TRACEFILEFLAGS. Set file creation flags for all files to be
opened. Use the standard fopen() flags—"a" means append; "w"
means over-write. For example:

 CE_TRACEFILEFLAGS="a"

❏ TRACEUTIL_DSP0TRACEFILE. Specify the output file for DSP
trace information. As with CE_TRACEFILE, this can be a full path or
a path relative to the executing application. If the file cannot be
opened, the trace goes to the standard output.

❏ TRACEUTIL_DSP0BIOSFILE. Specify the output binary file for the
DSP/BIOS log. This can be a full path or a path relative to the
executing application. If the file cannot be opened, the log
information is not collected.

❏ TRACEUTIL_DSP0TRACEMASK. Mask for DSP-side tracing. See
Section 4.8.7, Trace Mask Values for mask details. For example:

 TRACEUTIL_DSP0TRACEMASK="*+01;ti.bios=01234567"

❏ TRACEUTIL_REFRESHPERIOD. Specify the number of
milliseconds to sleep before the GPP-side collects the next set of
DSP-side trace information. Your choice should vary depending on
the amount of trace generated and the size of the trace logs. Failure
to set this low enough may result in data loss.

❏ TRACEUTIL_CMDPIPE. The name of a UNIX named pipe (for
example, "fifo") to which the TraceUtil module should listen for run-
time trace commands.

GPP+DSP

What About Software Trace?

Using the Codec Engine APIs 4-35

❏ TRACEUTIL_VERBOSE. Set to 1 if you want TraceUtil to print the
trace settings (masks and files) it is using and where it got them from.
Set to 2 or higher to show more debugging information. In most
cases, TRACEUTIL_VERBOSE=1 is recommended.

If you use the bash shell on Linux, it is especially convenient to set
environment variables in the same line where you start your application,
so they apply to that execution of the application only:

CE_TRACE="*+5" CE_TRACEFILE="mylog" TRACEUTIL_VERBOSE=1 ./app.out

Note that these environment variables are read only at application startup
time. Changing them after the application is running has no effect.

Note: The CE_DSP0TRACE environment variable described in
previous versions is ignored if you enable the TraceUtil module.

4.8.6 Controlling Trace at Run-Time Through a Named Pipe

If the TRACEUTIL_CMDPIPE environment variable is set to a valid name
or if the TraceUtil.attrs.cmdPipeFile configuration option is set, the
TraceUtil thread listens for any trace commands that appear in the pipe.

The SOCRATES_TRACING profile uses the command pipe feature. The
pipe is /tmp/cecmdpipe by default, but the name can be overridden by
setting the TRACEUTIL_CMDPIPE environment variable.

When you start a SoC Analyzer-enabled application, it initially provides
no trace other than (potentially) warnings and errors. Ways to override
this initial behavior are:

❏ Define the following environment variables before starting the
application. See Section 4.8.7, Trace Mask Values for mask details.

 CE_TRACE="*+5"

 TRACEUTIL_DSP0TRACEMASK="*+5,ti.bios=3"

❏ Issue the following command before running the application:

 mkfifo /tmp/cecmdpipe; echo socrates=on > /tmp/cecmdpipe

The mkfifo command is necessary only for the first run; TraceUtil
creates the pipe if it doesn't exist and doesn't delete it at the end.

When a SoC Analyzer-enabled application is running, you can turn
tracing on by writing the following string to the /tmp/cecmdpipe file:

socrates=on

GPP+DSP

What About Software Trace?

4-36

You can turn tracing off by writing the following string to the
/tmp/cecmdpipe file:

socrates=off

The socrates=on and socrates=off pipe commands are aliases for a
group of appropriate masks. These aliases are defined in the
TraceUtil.xdc file.

The best way to write a string to the pipe is to use an open-write-close
sequence (as opposed to keeping the pipe file open for writing throughout
the session). The [create_pipe]->open_pipe->write_text->close_pipe
sequence can be either done from the command line, from a script (as in
the example above), or from a C program

The following list shows the supported trace pipe commands.

❏ tracemask={GPP trace mask value}
Sets the GPP-side trace mask. For example,
tracemask=*+01234567,OM-1

❏ dsp0tracemask={DSP0 trace mask value}
Sets the DSP0 trace mask. For example,
dsp0tracemask=*-1,ti.bios-012

❏ refreshperiod={number of milliseconds}
Sets the refresh period for DSP0 trace and log collection. If 0, there
is no collection until a non-zero refreshperiod is specified. For
example, refreshperiod=10

❏ resetfiles (no arguments)
Resets all open files for GPP trace, DSP0 trace, and DSP0 log (those
that are currently in use) by truncating the files to 0 bytes.

What About Software Trace?

Using the Codec Engine APIs 4-37

Note that only one command per line should be written to the trace pipe.
However, as was done for socrates=on, you can define—in the
application’s configuration script—command pipe aliases to issue
several pipe commands. For example:

var TraceUtil =

 xdc.useModule('ti.sdo.ce.utils.trace.TraceUtil');

TraceUtil.attrs.cmdAliases = [

 {

 alias: "mycommands_1",

 cmds: [

 "resetfiles",

 "tracemask=*+5",

 "dsp0tracemask=*+5,ti.bios+3",

 "refreshperiod=200",

],

 },

 {

 alias: "mycommands_2",

 cmds: [

 "tracemask=*-5",

 "refreshperiod=0",

 "dsp0tracemask=*-5,ti.bios-3"

],

 },

 /* and so on -- no limit on the number of aliases */

];

4.8.7 Trace Mask Values

Every VISA module can supply real-time trace output. This output can be
enabled and disabled on a per-module basis at run-time. Each module
can supply up to 8 levels of trace information. Several levels have
universal meaning. For example, 0 corresponds to "entry" tracing (each
module entry point displays its name and the arguments passed to it).

The NO_TRACING, DEFAULT_TRACING, SOCRATES_TRACING, and
FULL_TRACING constants you can use in your application configuration
provide easy ways to set commonly desired tracing levels. If you want
custom trace levels for various modules, you can do that using the
information in this section.

You can set trace masks (in a configuration file, environment variable, or
command pipe) to a name/value pair or sequence of pairs. The name
indicates the module whose tracing should be set, and the value
indicates the trace levels enabled for that module.

GPP+DSP

What About Software Trace?

4-38

For example, the following setting uses * (asterisk) as a wildcard to
enable full Codec Engine tracing. This results in a lot of output, but is
often useful in identifying what is going on internally.

setenv CE_TRACE "*=01234567"

You can also set modules to different trace levels in the same
environment variable. To configure more than one module, you can
separate masks with a semi-colon. Any module settings after the asterisk
name/value pair override the wildcard setting.

For example, the following sets all modules to "1567", except "OM"
(which you don't want to see), and "CV" (for which you want to see all
information):

setenv CE_TRACE "*=1567;OM=;CV=01234567"

The following table lists the module names you can use in masks. It
shows which modules apply to GPP trace (CE_TRACE) and which apply
to DSP trace (TRACEUTIL_DSP0TRACEMASK):

Module Abbreviation Description
Valid for
GPP

Valid for
DSP

OC OSAL Communication. Abstracts messaging APIs
across operating systems.

Yes Yes

OP OSAL Process. Abstracts process APIs across
operating systems and loads the server image to the
DSP.

Yes No

OM OSAL Memory. Abstracts memory APIs across
operating systems.

Yes Yes

OG OSAL Global. Abstracts generic APIs across operating
systems.

Yes Yes

CE Codec Engine runtime APIs. Yes Yes

CS Server Runtime APIs Yes No

CV Codec Engine VISA APIs. Yes Yes

CR Codec Engine - RMS. Codec Engine’s server daemon. No Yes

CN Codec Engine - Node. Instantiates codecs and
communicates through custom skeletons.

No Yes

ti.sdo.ce.osal.AlgMem OSAL Algorithm. Used for creating, deleting, and
controlling algorithms.

Yes Yes

What About Software Trace?

Using the Codec Engine APIs 4-39

* The ti.bios, GT_prefix, and GT_time modules are special in that they are
not affected by module wildcards in a trace mask. You must name them
directly to change their flags. For example:

setenv CE_TRACE "*=67;GT_prefix=12"

setenv TRACEUTIL_DSP0TRACEMASK "*=567;ti.bios=012"

For the standard modules, the levels 0 through 7 report the following
types of messages:

❏ 7 = fatal errors
❏ 6 = warnings
❏ 5 = benchmarks
❏ 4 through 1 = internal Codec Engine messages
❏ 0 = function enter/exit reporting

For the special modules (ti.bios, GT_prefix, and GT_time) the levels have
special meanings as follows:

ti.sdo.ce.osal.power OSAL Power. Used in heterogeneous configurations to
power on/off a server. Not supported in all releases.

Yes Yes

ti.bios * Control the DSP/BIOS TRC module. No Yes

GT_prefix * Control what information is included in each trace line
prefix.

Yes Yes

GT_time * Control the format of timestamps in trace lines. Yes Yes

Module Abbreviation Description
Valid for
GPP

Valid for
DSP

Level ti.bios Module GT_prefix Module GT_time Module

none no DSP/BIOS logging no prefix microseconds in hex form
(0xa0cf80fe)

0 TRC_LOGCLK short module name microseconds, in decimal form
(4,021,348us)

1 TRC_LOGPRD long module name seconds (0.004s)

2 TRC_LOGSWI trace line class
(level)

delta in microseconds, exclud-
ing print time (+0,000,259us)

3 TRC_LOGTSK thread ID ---

4 TRC_STSHWI stack address ---

What About Software Trace?

4-40

For GT_prefix, the default levels used are 1, 3, and 5.

For GT_time, DSP time stamps are always in cycles, not in
microseconds. Setting GT_time currently makes sense only on the GPP.

5 TRC_STSPRD with TRC_STSSWI
and TRC_STSTSK

time stamp ---

6 TRC_USER0 --- ---

7 TRC_USER1 --- ---

Level ti.bios Module GT_prefix Module GT_time Module

5-1

Chapter 5

Integrating an Engine

This chapter describes how the Engine Integrator should configure an
Engine for use by the application developer.

5.1 Overview. 5–2

5.2 A Reusable Example . 5–3

5.3 Understanding Engine Configuration Syntax. 5–5

Topic Page

Overview

5-2

5.1 Overview

As described in Section 1.4.3, Engine Integrator, the Application Author
gets an Engine configuration from the Engine Integrator. In practice,
these roles may be shared by one person.

An Engine configuration is stored in an XDC *.cfg file and processed by
the makefile using package.xdc to generate a *.c file and a linker
command file (*.xdl) from the *.cfg file. For build instructions, see
CE_INSTALL_DIR/examples/build_instructions.html.

The Codec Engine example applications typically support GPP+DSP,
GPP-only, and DSP-only usage. For GPP+DSP usage, the Engine
configuration is often defined in a file named remote.cfg, designating
codecs run remotely on a DSP server. For GPP-only or DSP-only usage
the configuration often resides in a file named "local.cfg", designating that
the codecs run locally, on the same CPU as the main application.

An Engine configuration can include the names of the Engines, as well
as the codecs and their names within each Engine, whether each codec
is local or remote relative to the application, which groups each codec
should be integrated into (for environments that support resource
sharing), the name of the Server image if a particular Engine contains
remote codecs, and more.

In its simplest form, however, the Engine configuration script can simply
name the DSP server package and the corresponding server executable,
and automatically import all the server's codec definitions. This makes
the codecs available for use from the application as remote codecs.

For the latter form of configuration to work, it is important that you receive
your DSP server in a package—which is the default server delivery
method as of CE 2.00—instead of getting just one DSP server binary
executable.

A Reusable Example

Integrating an Engine 5-3

5.2 A Reusable Example

The video_copy example uses the following ceapp.cfg configuration file:

/* ======== ceapp.cfg ======== */

/* use the tracing utility module */

var TraceUtil = xdc.useModule('ti.sdo.ce.utils.trace.TraceUtil');

//TraceUtil.attrs = TraceUtil.SOCRATES_TRACING;

/* set up OSAL */

var osalGlobal = xdc.useModule('ti.sdo.ce.osal.Global');

osalGlobal.runtimeEnv = osalGlobal.DSPLINK_LINUX;

/* ======== Engine Configuration ======== */

var Engine = xdc.useModule('ti.sdo.ce.Engine');

var myEngine = Engine.createFromServer(

 "video_copy", // Engine name (as referred to in the C app)

 "./video_copy.x64P", // path to server exe, relative to its package dir

 "ti.sdo.ce.examples.servers.video_copy.evmDM6446" // server package

);

Most of this configuration file can be used as is. For your applications,
you should modify the portions shown in bold: the name of your engine
(your choice), the name of the server executable, and the name of the
server executable's package.

The codecs included in the server will be available to the application
under their original names, which for convenience are shown during the
application's build—as shown in this excerpt:

configuring ceapp.x470MV from package/cfg/ceapp_x470MV.cfg ...

Info: Configuring engine named 'video_copy' from the info file for DSP server
'./video_copy.x64P', located in package
'ti.sdo.ce.examples.servers.video_copy.evmDM6467':

 Target app will look for the DSP server image 'video_copy.x64P' in its current
directory.

 Adding codec 'viddec_copy'
(ti.sdo.ce.examples.codecs.viddec_copy.VIDDEC_COPY), scratch groupId=0

 Adding codec 'videnc_copy'
(ti.sdo.ce.examples.codecs.videnc_copy.VIDENC_COPY), scratch groupId=0

Info: Reading DSP memory map from the info file for DSP server './video_copy.x64P',
located in package 'ti.sdo.ce.examples.servers.video_copy.evmDM6467':

...

It is good practice to verify that the information in this build log (server
executable/package name, codec names, scratch groups) matches what
you expect.

A Reusable Example

5-4

Even though the engine is configured from the information stored in the
server package, you still must have all the codecs included in the server
in your package path. If you do not have a required codec package, the
build will fail. If you have a codec package of a different version than the
one used to build the server, you will get a warning.

5.2.1 Advanced Engine Creation

The Engine.createFromServer() method in the previous configuration
example is available as of Codec Engine 2.00. It replaces the lower-level
Engine.create() method for most common use cases.

The lower-level engine creation method allows you to add non-local
codecs, use different names for remote codecs, omit codecs you don't
have, and so on. You may need it in some advanced cases. The example
that follows uses the lower-level Engine.create() method:

/* get various codec modules; i.e., implementation of codecs */

var VIDDEC_COPY =

 xdc.useModule('ti.sdo.ce.examples.codecs.viddec_copy.VIDDEC_COPY');

var VIDENC_COPY =

 xdc.useModule('ti.sdo.ce.examples.codecs.videnc_copy.VIDENC_COPY');

/* ======== Engine Configuration ======== */

var Engine = xdc.useModule('ti.sdo.ce.Engine');

var myEngine = Engine.create("video_copy", [

 {name: "videnc_copy", mod: VIDENC_COPY, local: false},

 {name: "viddec_copy", mod: VIDDEC_COPY, local: false}

]);

myEngine.server = "./video_copy.x64P";

/* ======== Server memory map (DSPLINK) configuration ========

 * This table must match exactly the addresses and sizes of segments in the Server’s

 * BIOS configuration (.tcf) script. There is exactly one "main", one "link", and

 * one "reset" segment type, and zero or more of "other" types. */

myEngine.armDspLinkConfig = {

 memTable: [

 ["DDRALGHEAP", {addr: 0x88000000, size: 0x07A00000, type: "other"}],

 ["DDR2", {addr: 0x8FA00000, size: 0x00400000, type: "main" }],

 ["DSPLINKMEM", {addr: 0x8FE00000, size: 0x00100000, type: "link" }],

 ["RESETCTRL", {addr: 0x8FF00000, size: 0x00000080, type: "reset"}],

],

};

Again, characters in bold show what you may need to change in your
application.

Understanding Engine Configuration Syntax

Integrating an Engine 5-5

5.3 Understanding Engine Configuration Syntax

The syntax used in Engine configurations is based on JavaScript, which
is also used for the Tconf language used to statically configure
DSP/BIOS. (See SPRU007 for details.)

Unlike the JavaScript used in web pages, an object model is provided to
meet the needs of Engine configuration. This object model is
documented in the Configuration Reference, which is available at
CE_INSTALL_DIR/xdoc/index.html.

For example, the following statements cause the Global module in the
ti.sdo.ce.osal package to be made available to the configuration script. It
then sets the runtimeEnv attribute of the Global module to
DSPLINK_LINUX. This indicates that an application that uses this Engine
can use the DSP/BIOS Link and Linux operating environments.

var osalGlobal = xdc.useModule('ti.sdo.ce.osal.Global');

osalGlobal.runtimeEnv = osalGlobal.DSPLINK_LINUX;

To see the other options for the runtimeEnv attribute, follow these steps:

1) Open CE_INSTALL_DIR/xdoc/index.html to see the Configuration
Reference. Depending on your browser, you may need to enable
active content to view the list of nodes on the left.

2) Click the link to the ti.sdo.ce.osal package.

3) Click the link to the Global module.

4) You see the valid settings for runtimeEnv and other documentation
for the Global module.

5) Click "Back" in the upper-right corner of the window. Note that the
usual Back button in your browser does not function as expected in
this online help system.

After setting the runtime environment, the example ceapp.cfg
configuration file gets access to the codec modules it will need. For
example:

var VIDDEC_COPY =

 xdc.useModule('ti.sdo.ce.examples.codecs.viddec_copy.VIDDEC_COPY');

This statement "uses" the VIDDEC_COPY module in the
"ti.sdo.ce.examples.codecs.viddec_copy" package, and stores the
handle to it in a variable named VIDDEC_COPY. A similar statement gets
the corresponding video encoder. You can modify these statements to
reference any of the codecs provided with Codec Engine.

Understanding Engine Configuration Syntax

5-6

The ti.sdo.ce.examples.codecs.viddec_copy package corresponds to
CE_INSTALL_DIR/examples/ti/sdo/ce/examples/codecs/viddec_copy
and VIDDEC_COPY matches the VIDDEC_COPY.xdc filename in that
directory.

The next group of statements declare the contents of an Engine.

var Engine = xdc.useModule('ti.sdo.ce.Engine');

var vcr = Engine.create("video_copy", [

 {name: "videnc_copy", mod: VIDENC_COPY, local: false},

 {name: "viddec_copy", mod: VIDDEC_COPY, local: false}

]);

First, they make the Engine module in the ti.sdo.ce package available to
the script. Then they use the create() method of the Engine module to
create an Engine. As with the Global module in the ti.sdo.ce.osal
package, you can use the Configuration Reference online help to get
details about the Engine module in the ti.sdo.ce package.

Each Engine has a name that will be used by the Application Author in
the Engine_open() API they call. In this case, the Engine name is
"video_copy".

The create method then expects an array of algorithm descriptions. Each
algorithm description contains the following fields:

❏ name. This string specifies the "local" name to be used by the
Application Author to identify an algorithm to instantiate in the
VIDENC_create and VIDDEC_create VISA APIs.

❏ mod. This field is a reference that identifies the actual module
implementing the algorithm to instantiate. This is the same as the
name declared as a variable in the previous statement that called
xdc.useModule to get the
ti.sdo.ce.examples.codecs.viddec_copy.VIDDEC_COPY module.

❏ local. If true, the algorithm is instantiated on the "local" CPU.
Otherwise, the Codec Server creates a remote instance of the
algorithm identified by mod.

5.3.1 Framework Components Configuration

The example configuration files—remote.cfg (for GPP+DSP) and
local.cfg (for GPP-only and DSP-only)—often configure the
ti.sdo.fc.dskt2.DSKT2 and ti.sdo.fc.dman3.DMAN3 modules, which are
part of Framework Components. DSKT2 is the xDAIS algorithm memory
allocation manager, and DMAN3 is the DMA manager. For details on
configuring these modules, see the Framework Components
documentation in CE_INSTALL_DIR/xdoc/index.html.

Index-1

This is a draft version printed from file: codec_engineIX.fm on 9/25/07

Index

A
Algorithm Creator 1-6
algorithm instance 4-9
algorithms

getting info from Engine 4-8
getting number in Engine 4-7

alignment of cache 4-22
API Reference 1-10
APIs 4-2
Application Author 1-8
AUDDEC_control() function 4-11
AUDDEC_create() function 4-9
AUDDEC_delete() function 4-10
AUDDEC_process() function 4-14
AUDDECx module 4-2
AUDENCx module 4-2

B
bash shell 4-35
benefits of Codec Engine 1-3
buffers 4-25

information 4-12
build_instructions.html file 1-10, 3-3
building 3-2, 3-3

C
cache alignment 4-22, 4-23, 4-24
cache coherence 4-25
CE module 4-38
CE_DEBUG environment variable 4-29
CE_DSP0TRACE environment variable 4-35
CE_TRACE environment variable 4-34, 4-38
CE_TRACEFILE environment variable 4-34
CE_TRACEFILEFLAGS environment variable 4-34
ceapp.cfg file 5-3
CERuntime module 4-2
CERuntime_init function 4-4
cetools directory 2-3
.cfg file 5-2
close an engine 4-6
CN module 4-38

Codec Engine 1-2
benefits 1-3
server 1-7

codec instances, memory 4-24
coherence of cache 4-25
command constants 4-12
command pipe 4-34, 4-35

using 4-36
configuration

enabling trace 4-32
Engine 5-2
file 5-2

configuration file 5-2
Configuration Reference 1-10
configuration script 5-5
contiguous 4-22, 4-23
control functions 4-9, 4-11
Core Engine APIs 4-2
CR module 4-38
create functions 4-9
create() method 5-4
createFromServer() method 5-4
CS module 4-38
CV module 4-38

D
debugging 4-29, 4-31, 4-37

ARM 4-29
DSP 4-30

decoderName 4-9
delete functions 4-9, 4-10
DM644x

memory map 4-22
DMA 4-26
DMAN3 module 5-6
docs directory 2-3
DSKT2 module 5-6
DSP 1-2

tracing 4-31
DSP/BIOS 1-2

logging 4-31, 4-34
TRC module 4-39

DSP/BIOS configuration 1-9
DSP-only applications 1-9

Index-2

 Index

DVSDK
installation 2-2
pre-configured servers 3-2

E
end of stream 4-12
engine configuration 5-2
Engine instance 4-3
Engine Integrator 1-8, 4-5, 5-2
Engine module 4-2, 4-3
Engine.create() method 5-4
Engine.createFromServer() method 5-4
Engine_Attrs structure 4-5
Engine_close() function 4-3, 4-6
Engine_getAlgInfo() function 4-4, 4-8
Engine_getCpuLoad() function 4-3, 4-7
Engine_getLastError() function 4-4
Engine_getNumAlgs() function 4-4, 4-7
Engine_getServer() function 4-17
Engine_getUsedMem() function 4-4, 4-7
Engine_Handle 4-6, 4-9
Engine_open() function 4-3, 4-5
environment variables 4-34

CE_DEBUG 4-29
errors

from Engine_open 4-6
tracing 4-39

ESDATA parameter 4-16
examples directory 2-3
external heap 4-16

F
flush 4-12
fragmentation 4-23
Framework Components 5-6

G
Global module 5-5
GNU Project Debugger 4-31
GPP 1-2

tracing 4-31
GT_prefix module 4-39

default 4-40
trace levels 4-39

GT_set() function 4-30
GT_setprintf() function 4-30, 4-33
GT_time module 4-39

DSP vs. GPP time 4-40
trace levels 4-39

H
handles

Engine 4-6, 4-9
Server 4-17

header files 4-3, 4-4, 4-9
heap 4-22

redefining 4-19
restoring 4-20

I
I/O, handled by application 4-22
IMGDECx module 4-2
IMGENCx module 4-2
include files 4-3, 4-4, 4-9
include paths 2-2
installation 2-2
instantiate an engine 4-5
invalidate buffer 4-25

J
JavaScript 1-9, 5-5

L
latency 4-28
levels of trace 4-39
linker command file 5-2
Linux 1-2
local vs. remote 4-5
local.tcf file 1-9
logging 4-31

M
makefile 3-2
masks, trace 4-37
memory 4-22

getting used amount 4-7
number of heaps in Server 4-18
redefining heap 4-19
restoring heap 4-20
Server statistics 4-18

memory management unit 4-23
memory map 4-22
Memory module 4-2, 4-23
memory placement 4-16
Memory_contigAlloc() function

example 4-20
Memory_getBufferPhysicalAddress() function 4-24

example 4-20
middleware 1-4

Index-3

Index

mkfifo command 4-35
MMU 4-23
module abbreviations 4-38
multi-threaded 4-3, 4-28

O
OC module 4-38
OG module 4-38
OM module 4-38
online help 1-9
OP module 4-38
open an engine 4-5

P
package directory 2-2, 2-3
package path 2-2, 4-3
package repository 2-2
package.xdc file 2-2
packages 2-2

listing 2-3
packages directory 2-3
parameters

getting 4-12
set to defaults 4-12
setting 4-12

performance 4-28
period for logging 4-34
pipe 4-34, 4-35

using 4-36
printf in GPP code 4-31
priority 4-14

overriding 4-15
process functions 4-9, 4-13
PrOS 1-2

R
real-time issues 4-28
reentrancy 4-28
release_notes*.html file 1-10
remote vs. local 4-5
repository for packages 2-2
reset algorithm 4-12
roles 1-6

Algorithm Creator 1-6
Application Author 1-8
Engine Integrator 1-8, 5-2
Server Integrator 1-7

runtimeEnv attribute 5-5

S
Server APIs 4-17
server configuration 4-33
Server handle 4-17
Server Integrator 1-7
Server_getMemStat() function 4-18
Server_getNumMemSegs() function 4-18
Server_redefineHeap() function 4-19
Server_restoreHeap() function 4-20
shared buffers 4-22
skeletons 1-4
SoC Analyzer 4-32

command pipe 4-35
starting trace 4-35
tracing 4-32

Socrates 4-32
SOCRATES_TRACING 4-32
SPHDECx module 4-2
SPHENCx module 4-2
status, getting 4-12
stubs 1-4

T
tcf file 1-9
Tconf configuration 1-9, 5-5
threads 4-28
ti.bios module 4-39

trace levels 4-39
ti.sdo.ce.osal.AlgMem module 4-38
ti.sdo.ce.osal.power module 4-39
time format 4-39
trace 4-37

debugging 4-29
information level 4-39
levels 4-39
modules 4-38

trace masks 4-37
TraceUtil module 4-31

attrs details 4-32
enabling 4-32

TRACEUTIL_CMDPIPE environment variable 4-34,
4-35

TRACEUTIL_DSP0BIOSFILE environment
variable 4-34

TRACEUTIL_DSP0TRACEFILE environment
variable 4-34

TRACEUTIL_DSP0TRACEMASK environment
variable 4-34, 4-35, 4-38

TRACEUTIL_REFRESHPERIOD environment
variable 4-34

TraceUtil_start() function 4-33
TraceUtil_stop() function 4-33

Index-4

 Index

TRACEUTIL_VERBOSE environment variable 4-35
tracing 4-31
transaction latency 4-28
transactions-per-second 4-28
TRC module 4-39

U
user roles 1-6
user.bld file 3-2
UUIDs 4-15

V
VIDDECx module 4-2
VIDENCx module 4-2
video_copy example 5-3
VISA 1-2

classes 4-9
VISA APIs 4-2
VxWorks 1-2

W
WinCE 1-2

writeback buffer 4-25

X
xDAIS 1-2

related documents 1-6
xDAIS-DM 1-2
XDC Tools 1-6
xdcpkg command 2-3
.xdl file 5-2
xDM

command constants 4-12
defined 1-2
related documents 1-6

XDM_BufDesc structure 4-14, 4-22
XDM_FLUSH 4-12
XDM_GETBUFINFO 4-12
XDM_GETPARAMS 4-12
XDM_GETSTATUS 4-12
XDM_RESET 4-12
XDM_SETDEFAULT 4-12
XDM_SETPARAMS 4-12
xdoc directory 2-3

	Codec Engine Application Developer User's Guide
	Preface
	Contents
	Codec Engine Overview
	1.1 What is the Codec Engine?
	1.2 Why Should I Use It?
	1.3 Where Does the Codec Engine Fit into My Architecture?
	1.4 What Are the User Roles?
	1.4.1 Algorithm Creator
	1.4.2 Server Integrator
	1.4.3 Engine Integrator
	1.4.4 Application Author

	1.5 Where Can I Get More Information?

	Installation and Setup
	2.1 Installing Codec Engine
	2.2 Packages and Repositories
	2.3 Directory Structure

	Using the Sample Applications
	3.1 Overview
	3.2 Building Applications
	3.3 Running Applications

	Using the Codec Engine APIs
	4.1 Overview
	4.2 The Core Engine APIs
	4.2.1 Codec Engine Setup Code
	4.2.2 Opening an Engine
	4.2.3 Closing an Engine
	4.2.4 Getting Memory and CPU Information from an Engine
	4.2.5 Getting Information About Algorithms Configured into an Engine

	4.3 The VISA Classes: Video, Image, Speech, Audio
	4.3.1 VISA API Setup Code
	4.3.2 Creating an Algorithm Instance
	4.3.3 Deleting an Algorithm Instance
	4.3.4 Controlling an Algorithm Instance
	4.3.5 Processing Data with an Algorithm Instance
	4.3.6 Overriding a Remote Algorithm's Priority and Memory Requests

	4.4 The Server APIs
	4.4.1 Getting a Server Handle
	4.4.2 Getting Memory Heap Information
	4.4.3 Reconfiguring the DSP Server's Algorithm Heap

	4.5 What Happens to DSP Memory Issues?
	4.5.1 Buffer Handling and Shared Memory Maps
	4.5.2 Memory Fragmentation
	4.5.3 Cache Alignment
	4.5.4 Cache Coherence

	4.6 What Happens to DSP Real-Time Issues?
	4.6.1 Transaction Latency
	4.6.2 Multi- vs. Uni-Processor Performance
	4.6.3 Local Performance

	4.7 What About Codec Engine Debugging?
	4.7.1 Codec Engine Debugging from the ARM on ARM+DSP Systems
	4.7.2 Codec Engine Debugging on a DSP-only System

	4.8 What About Software Trace?
	4.8.1 Configuring TraceUtil at Design Time
	4.8.2 Supporting TraceUtil in Your Application's C Code
	4.8.3 Configuring the DSP Server for DSP/BIOS Logging
	4.8.4 Configuring the DSP Server To Redirect Trace Output
	4.8.5 Configuring TraceUtil at Application Start Time
	4.8.6 Controlling Trace at Run-Time Through a Named Pipe
	4.8.7 Trace Mask Values

	Integrating an Engine
	5.1 Overview
	5.2 A Reusable Example
	5.2.1 Advanced Engine Creation

	5.3 Understanding Engine Configuration Syntax
	5.3.1 Framework Components Configuration

	Index

