
Application Report 
SPRAAG9A – April 2007

1 

Decode Demo for the DVEVM/DVSDK 1.2 
Niclas Anderberg SDO Applications  
 

ABSTRACT 

The DaVinci Digital Video Evaluation Module (DVEVM) comes with demonstration applications 
that illustrate the use of its software and hardware components. This document describes the 
design of the “decode” demo application. The decode demo uses the Codec Engine as well as 
video, audio, and speech algorithms from Texas Instruments to decode video and sound data 
from files on the Linux file system, and outputs them to Linux device drivers controlling the video 
and audio peripherals on the DM6446. 

Contents 
1 Overview ..........................................................................................................................................2 
2 Application Design..........................................................................................................................3 

2.1 Main Thread ..................................................................................................................4 
2.2 Control Thread...............................................................................................................5 
2.3 Speech Thread ..............................................................................................................6 
2.4 Audio Thread .................................................................................................................8 
2.5 Video Thread ...............................................................................................................10 

2.5.1 Display Thread ............................................................................................................11 
2.5.2 Video Thread Interaction .............................................................................................12 

2.6 Encoded Data File Loader...........................................................................................13 
3 Adapting the Application..............................................................................................................15 

3.1 Speech Only ................................................................................................................15 
3.2 Audio Only ...................................................................................................................15 
3.3 Video Only ...................................................................................................................15 
3.4 Exit Cleanly Without Control Thread............................................................................16 
3.5 Replacing the Decode Algorithms with Other Codecs.................................................16 

4 More Information...........................................................................................................................18 

Figures 
Figure 1. Decode Demo Architecture.........................................................................................2 
Figure 2. Decode Demo Threads................................................................................................3 
Figure 3. Main Thread Flow ........................................................................................................4 
Figure 4. Speech Thread Initialization Flow..............................................................................6 
Figure 5. Speech Thread Main Loop Flow.................................................................................7 
Figure 6. Audio Thread Initialization Flow.................................................................................8 
Figure 7. Audio Thread Main Loop Flow ...................................................................................9 
Figure 8. Video Thread Initialization Flow...............................................................................10 
Figure 9. Video Thread Interactions.........................................................................................12 
Figure 10. File Loader Algorithm ...............................................................................................13 

 



SPRAAG9A 

2 Decode Demo for the DVEVM/DVSDK 1.2 

1 Overview 
The decode demo shows how to decode video and audio or speech using algorithms and the 
Codec Engine from Texas Instruments on the DaVinci DM6446 DVEVM board. The audio 
algorithms used are MPEG1L2 and AAC. For speech, G.711 is used. For video, the MPEG2, 
MPEG4, and H.264 algorithms are used. These algorithms implement the xDM interface (see 
Section 4 for information references) and are packaged in a Codec Server (decodeCombo.x64P) 
that is managed by the Codec Engine. The algorithms are executed on the DM6446 DSP core. 
The encoded video, audio, and speech data is read from separate elementary streams on the 
Linux file system, and the decoded data is output to peripherals on the DM6446 device. 

 
Figure 1. Decode Demo Architecture 

The DaVinci ARM core runs the demos on the Linux operating system, and all peripherals are 
controlled through Linux device drivers. The ARM also displays a user interface on the OSD (On 
Screen Display) and takes input from a remote control that allows users to send commands 
through the EVM board’s IR interface. The DSP core runs the DSP/BIOS real time operating 
system and performs algorithm processing. 

For information on how to run the decode demo, including documentation on the command-line 
parameters, see Section 4 on how to find the decode.txt file. 

 



SPRAAG9A 

 Decode Demo for the DVEVM/DVSDK 1.2 3 

2 Application Design 
The application consists of five separate POSIX threads (pthreads): the main thread (main.c), 
which eventually becomes the control thread (ctrl.c), the video thread (video.c), the display 
thread (display.c), the audio thread (audio.c), and the speech thread (speech.c). The video, 
display, audio, and speech threads are spawned from the main thread before the main thread 
becomes the control thread. The video and display threads are only created if a video file was 
provided on the command line. The same goes for the speech and audio threads. The user must 
supply at least one file (speech, audio, or video) for the demo to run, and only one audio or 
speech file (since audio and speech require the same peripherals). This means at least 2 and at 
most 4 application threads are running in the demo process. 

All threads except the original main/control thread are configured as preemptive and priority-
based scheduled (SCHED_FIFO). The display thread has the highest priority, followed by the 
video thread. The speech and audio threads have a lower priority than the video thread, and the 
control thread has the lowest priority of all. For more on POSIX threads see Section 4. 

Ctrl
Thread

Video
Thread

Audio
Thread

Speech
Thread

OSD
Video

Display
VPSS

Performance
data

Decoded
Video
frames

User
interface

Decoded
Audio
frames

AIC33

MSP430
+ IR

User
commands

Main
Thread

Becomes

Display
Thread

HDD
or NFS

Encoded
frames

 
Figure 2. Decode Demo Threads 

The initialization and cleanup of the threads are synchronized using the provided Rendezvous 
utility module, which is initialized early in the main thread. This module uses POSIX conditions to 
synchronize thread execution. Each thread performs its initialization and signals the Rendezvous 



SPRAAG9A 

4 Decode Demo for the DVEVM/DVSDK 1.2 

object when completed. When all threads have finished initializing, all threads are unlocked 
simultaneously and start executing their main loops. The same method is used for thread 
cleanup. This way buffers which are shared between threads are not freed in one thread while 
still being used in another. 

2.1 Main Thread 

The job of the main thread is to perform necessary initialization tasks, to parse the command-line 
parameters provided by the user when invoking the application, and to spawn the other threads 
with parameters depending on the value of the command-line parameters. 

1. Detect video standard ioctl(FBIO_GETSTD);

2. Parse command line arguments parseArgs();

3. Initialize Codec Engine run time CERuntime_init();

4. Start the Codec Engine trace logging TraceUtil_start();

6. Open Rendezvous objects Rendezvous_open();

8. Optionally create video thread pthread_create();

To control thread

9. Optionally create speech thread pthread_create();

10. Optionally create audio thread pthread_create();

11. Call control thread ctrlThrFxn();

7. Optionally create display thread pthread_create();

5. Open Pause object Pause_open();

1. Detect video standard ioctl(FBIO_GETSTD);

2. Parse command line arguments parseArgs();

3. Initialize Codec Engine run time CERuntime_init();

4. Start the Codec Engine trace logging TraceUtil_start();

6. Open Rendezvous objects Rendezvous_open();

8. Optionally create video thread pthread_create();

To control thread

9. Optionally create speech thread pthread_create();

10. Optionally create audio thread pthread_create();

11. Call control thread ctrlThrFxn();

7. Optionally create display thread pthread_create();

5. Open Pause object Pause_open();

 
Figure 3. Main Thread Flow 



SPRAAG9A 

 Decode Demo for the DVEVM/DVSDK 1.2 5 

As Figure 3 shows, first the video standard chosen by switch 10 on S3 on the DVEVM board is 
detected using the FBIO_GETSTD ioctl of the FBDev display device driver. The command-line 
parameters passed are then parsed, and thread environment variables are set accordingly. The 
Codec Engine and its TraceUtil module are initialized for trace logging (see Section 4 for 
documents with more details). The Pause object for synchronizing processing pausing and the 
Rendezvous objects for synchronizing thread initialization and cleanup are opened, and then the 
processing threads are created depending on the command-line parameters passed to the 
application. After one or more of these threads have been created, the control thread’s main 
function ctrlThrFxn() is called and the main thread becomes the control thread. 

2.2 Control Thread 

This thread is responsible for the user interface. It uses the utility library msp430lib to poll the 
msp430 processor, which controls the IR interface on the DaVinci EVM board, for commands. 
Optionally, if the keyboard interface has been enabled from the command line, stdin is polled to 
see if a command has been given from the command line in getKbdCommand(). Once a new 
IR command is received or a command-line command is given, the command is identified and 
the corresponding action is taken in keyAction(). Since the msp430 has to be polled for 
whether a new key has been pressed or not, usleep()puts the thread to sleep for a while 
before checking for another command. 

The control thread also draws and updates the text and graphics on the OSD. On the DaVinci 
platform the OSD window (accessible through /dev/fb/0) is in the foreground of the video 
window (accessible through /dev/fb/3). The transparency of the OSD—that is, how much of 
the video window is seen through the OSD—is set using the attributes window (accessible 
through /dev/fb/2). In the attributes window the transparency of every pixel is represented by 
a nibble (4 bits) and its value ranges from 0 (completely transparent) to 7 (no transparency). The 
control thread uses the function setOsdTransparency() to set the transparency of the OSD 
window. The demo defaults to a transparency of 5. 

The control thread uses the simplewidget utility library to draw the buttons and render text on the 
OSD. In addition to initializing the OSD device in osdInit() and creating and drawing the 
static text and buttons on the OSD during initialization using uiCreate(), the control thread 
also updates the dynamic text approximately once per second using drawDynamicData(). In 
this function performance data (such as bit rates) is gathered from other threads and then 
displayed on the OSD. Since this performance data is accessed from several threads it must be 
protected using a mutex, and safe access to these variables is wrapped in inline functions in 
decode.h. The function getArmCpuLoad() calculates the ARM-side CPU load in percent, and 
the Codec Engine call Engine_getCpuLoad() determines the DSP-side CPU load. Other 
dynamically-displayed data are bit rates, video frames processed per second, and time elapsed. 
The OSD window is double buffered, in that one display buffer is being displayed while data is 
being rendered into another buffer called the work buffer. After the dynamic data has been 
rendered into the work buffer, the work buffer is swapped for the display buffer using the 
FBIOPAN_DISPLAY ioctl before the thread waits on the next vertical sync (29.97 Hz on NTSC 
and 25 Hz on PAL) using the FBIO_WAITFORVSYNC ioctl. 



SPRAAG9A 

6 Decode Demo for the DVEVM/DVSDK 1.2 

2.3 Speech Thread 

The speech thread reads encoded speech data from a file on the Linux file system, decodes the 
data using a speech decoder, and writes the resulting samples to the AIC33 device driver. 

1. Open encoded speech source file open();

2. Initialize sound device initSoundDevice();

3. Open Codec Engine Engine_open();

4. Create speech decoder SPHDEC_create();

5. Allocate buffer for encoded data Memory_contigAlloc();

6. Allocate buffer for decoded data Memory_contigAlloc();

To main loop

1. Open encoded speech source file open();

2. Initialize sound device initSoundDevice();

3. Open Codec Engine Engine_open();

4. Create speech decoder SPHDEC_create();

5. Allocate buffer for encoded data Memory_contigAlloc();

6. Allocate buffer for decoded data Memory_contigAlloc();

To main loop
 

Figure 4. Speech Thread Initialization Flow 

As Figure 4 shows, the speech thread initialization is performed as follows: 

1. The source file with encoded speech data is opened for reading on the Linux file system. 

2. The AIC33 sound device driver is initialized for writing. The device driver is an OSS 
device driver, see Section 4 for links to documents with more details. First the sound 
device (/dev/dsp) is configured. The AIC33 sound device driver currently supports only 
2 channels and 16-bit little endian (AFMT_S16_LE) samples. The parameters are set 
accordingly. Since the speech algorithm supported use an 8 KHz sample rate, the AIC33 
is set to this rate. Also, the mixer device (/dev/mixer) is configured with the output gain. 

3. A Codec Engine instance is created with Engine_open(). This returns a handle to use 
when instantiating algorithm instances for this engine. All threads using the same engine 
need a separate handle; access to the engine through this handle is not thread safe. 

4. The speech decode algorithm instance is created using SPHDEC_create(). Currently 
the only speech algorithm provided is G.711, and only using alaw. A handle to the 
algorithm instance is returned that will be used to process (decode) data in the main loop. 



SPRAAG9A 

 Decode Demo for the DVEVM/DVSDK 1.2 7 

5. A contiguous buffer for encoded data of size READBUFSIZE is allocated for the encoded 
data using Memory_contigAlloc(). This buffer will be used by the file loader to hold 
the encoded data, since it is being read from the encoded source file on the Linux file 
system. See Section 2.6 for details on the loader. Note that a normal buffer allocated with 
malloc() will not work with the Codec Engine remote Codec Servers on the DaVinci 
platform. Such a buffer would likely be segmented on several pages (one page is 4096 
bytes on ARM Linux), and the DSP core requires contiguous memory to work with since 
it has no MMU. 

6. Another contiguous buffer is allocated. This one is for the raw samples after decoding the 
speech data. Since it will be passed to the DSP side algorithm for processing, it too 
needs to be contiguous. 

When the speech thread has finished initializing, it synchronizes with the other threads using the 
Rendezvous utility module. Only after the other threads have finished initializing is the main loop 
of the speech thread executed. The main loop looks like the one in Figure 5: 

1. Prime the loader and get an encoded frame loaderPrime();

2. Decode speech buffer SPHDEC_process();

3. Write decoded speech buffer to AIC33 device driver write();

4. Get a new encoded frame from the loader loaderGetFrame();

1. Prime the loader and get an encoded frame loaderPrime();

2. Decode speech buffer SPHDEC_process();

3. Write decoded speech buffer to AIC33 device driver write();

4. Get a new encoded frame from the loader loaderGetFrame();
 

Figure 5. Speech Thread Main Loop Flow 

1. Prime the encoded file loader and get an encoded frame. The loader is described in 
detail in Section 2.6. 

2. The encoded frame is decoded using the SPHDEC_process() call. This is a Codec 
Engine procedure call that decodes (DEC) a buffer using a speech (SPH) algorithm. The 
speech algorithm was configured when it was created. The parameters needed by the 
process call are the input buffer, the output buffer, and their respective sizes. Because 
the AIC33 device driver supports only stereo, the decoded mono data is also expanded 
to stereo samples. 

3. Write the decoded stereo sound data to the AIC33 device driver using the standard UNIX 
write() call. 

4. Load a new encoded frame from the Linux file system using the file loader. Then return to 
step 2. 

This loop continues until the application is told to quit by the control thread. 



SPRAAG9A 

8 Decode Demo for the DVEVM/DVSDK 1.2 

2.4 Audio Thread 

The audio thread reads encoded audio data from a file on the Linux file system, decodes the 
data using an audio decoder, and writes the resulting samples to the AIC33 device driver. The 
audio thread flow is similar to the speech thread flow, except it works with audio data using audio 
decoders (MPEG1L2 or AAC). 

1. Open encoded audio source file open();

2. Initialize sound device initSoundDevice();

3. Open Codec Engine Engine_open();

4. Create audio decoder AUDDEC_create();

5. Allocate buffer for encoded data Memory_contigAlloc();

6. Allocate buffer for decoded data Memory_contigAlloc();

To main loop

1. Open encoded audio source file open();

2. Initialize sound device initSoundDevice();

3. Open Codec Engine Engine_open();

4. Create audio decoder AUDDEC_create();

5. Allocate buffer for encoded data Memory_contigAlloc();

6. Allocate buffer for decoded data Memory_contigAlloc();

To main loop
 

Figure 6. Audio Thread Initialization Flow 

As Figure 6 shows, The audio thread initialization is performed as follows: 

1. The source file with encoded audio data is opened for reading on the Linux file system. 

2. The AIC33 sound device driver is initialized for writing. The device driver is an OSS 
device driver. See Section 4 for links to documents with more details. First the sound 
device (/dev/dsp) is configured. The AIC33 sound device driver currently supports only 
2 channels and 16-bit little endian (AFMT_S16_LE) samples. The parameters are set 
accordingly. Also, the mixer device (/dev/mixer) is configured with the output gain.  

3. A Codec Engine instance is created with Engine_open(). This returns a handle to use 
when instantiating algorithm instances for this engine. All threads using the same engine 
need a separate handle; access to the engine through this handle is not thread safe. 

4. The audio decode algorithm instance is created using AUDDEC_create(). Currently the 
supported audio decoders are AAC or MPEG1L2. A handle to the algorithm instance is 
returned that will be used to process (decode) data in the main loop. 



SPRAAG9A 

 Decode Demo for the DVEVM/DVSDK 1.2 9 

5. A contiguous buffer for encoded data of size READBUFSIZE is allocated for the encoded 
data using Memory_contigAlloc(). This buffer will be used by the loader to keep the 
encoded data, since it is being read from the encoded source file on the Linux file 
system. See Section 2.6 for details on the loader. Note that a normal buffer allocated with 
malloc() will not work with the Codec Engine remote Codec Servers on the DaVinci 
platform. Such a buffer would likely be segmented on several pages (one page is 4096 
bytes on ARM Linux), and the DSP core requires contiguous memory to work with since 
it has no MMU. 

6. Another contiguous buffer is allocated. This one is for the raw samples after decoding the 
audio data. Since it will be passed to the DSP side algorithm for processing, it too needs 
to be contiguous. 

When the audio thread is finished initializing, it synchronizes with the other threads using the 
Rendezvous utility module. Only after the other threads are finished initializing is the main loop 
of the audio thread executed. The main loop looks like the one in Figure 7: 

1. Prime the loader and get an encoded frame loaderPrime();

2. Decode audio buffer AUDDEC_process();

3. Write decoded audio buffer to AIC33 device driver write();

4. Get a new encoded frame from the loader loaderGetFrame();

1. Prime the loader and get an encoded frame loaderPrime();

2. Decode audio buffer AUDDEC_process();

3. Write decoded audio buffer to AIC33 device driver write();

4. Get a new encoded frame from the loader loaderGetFrame();
 

Figure 7. Audio Thread Main Loop Flow 

1. Prime the encoded file loader and get an encoded frame. The loader is described in 
detail in Section 2.6. 

2. The encoded frame is decoded using the AUDDEC_process() call. This is a Codec 
Engine procedure call that decodes (DEC) a buffer using an audio (AUD) algorithm. The 
audio algorithm was configured when it was created. The parameters needed by the 
process call are the input buffer, the output buffer, and their respective sizes. 

3. Write the decoded stereo sound data to the AIC33 device driver using the standard UNIX 
write() call. 

4. Load a new encoded frame from the Linux file system using the file loader. Then, return 
to step 2. 

This loop continues until the application is told to quit by the control thread. 



SPRAAG9A 

10 Decode Demo for the DVEVM/DVSDK 1.2 

2.5 Video Thread 

The video thread reads an encoded video frame from the Linux file system and decodes it using 
a video decoder algorithm.  

In order to get more reliable performance, and to avoid dropping frames when one or more 
frames are demanding to decode, a separate display thread is used to display the frames. If the 
same thread is used for decoding and displaying the buffer, any frame exceeding its real-time 
budget (33 ms for NTSC and 40 ms for PAL) will cause a frame to be dropped. By decoupling 
the decode processing from the display using a number of display buffers (specified by 
DISPLAY_BUFFERS), the video system can handle one or more consecutive frames that exceed 
their budgets as long as the frames that follow are less expensive to allow the video thread to 
recover. (An average of 33 ms for NTSC or 40 ms for PAL per frame is required.) The higher the 
value of DISPLAY_BUFFERS, the more consecutive frames can exceed their budgets. However, 
as a downside, increasing DISPLAY_BUFFERS also increases video latency as well as memory 
requirements. The demo defaults to a DISPLAY_BUFFERS setting of 3. This allows for a few 
consecutive expensive frames while keeping latency low. 

1. Open the encoded video file open();

2. Open Codec Engine Engine_open();

3. Create video decoder VIDDEC_create();

4. Allocate read buffer for the loader Memory_contigAlloc();

5. Allocate buffers for interacting with Memory_contigAlloc();
the display thread.

To main loop

1. Open the encoded video file open();

2. Open Codec Engine Engine_open();

3. Create video decoder VIDDEC_create();

4. Allocate read buffer for the loader Memory_contigAlloc();

5. Allocate buffers for interacting with Memory_contigAlloc();
the display thread.

To main loop
 

Figure 8. Video Thread Initialization Flow 

As Figure 8 shows, the video thread initialization is performed as follows: 

1. The video file containing the encoded video clip is opened for reading. 

2. A Codec Engine instance is created with Engine_open(). This returns a handle to use 
when instantiating algorithm instances for this engine. All threads using the same engine 
need a separate handle; access to the engine through this handle is not thread safe. 



SPRAAG9A 

 Decode Demo for the DVEVM/DVSDK 1.2 11 

3. The video decoder is created by videoDecodeAlgCreate(). Currently the decode 
demo supports decoding video using the MPEG2, H.264, or MPEG4 algorithm. A codec 
instance is created using the static parameters in the VIDDEC_create() call. The 
dynamic video decoder parameters are then set using the VIDDEC_control() call with 
the XDM_SETPARAMS command. The video decoder is asked what it’s worst case 
encoded buffer size is using the VIDDEC_control() call with the XDM_GETBUFINFO 
command. We will use this value in the loader; see Section 2.6 for details. 

4. A contiguous buffer for the encoded data of the size returned by XDM_GETBUFINFO 
above is allocated using Memory_contigAlloc(). 

5. A number of contiguous display buffers (equal to DISPLAY_BUFFERS) are allocated 
using Memory_contigAlloc(). These will be used to exchange buffers with the 
display thread as described above. 

When the video thread is finished initializing, it synchronizes with the other threads using the 
Rendezvous utility module. Because of this, only after the other threads are finished initializing is 
the main loop of the video thread executed. 

2.5.1 Display Thread 

In order to decouple the processing from the displaying of the video frames, a separate display 
thread is responsible for copying the decoded video buffer into the frame buffer of the FBDev 
display device driver. (See Section 4 for links to documents with more details on the FBDev 
interface.) This lets the decoded buffer be copied in parallel with the DSP processing. The thread 
execution begins by initializing the FBDev display device driver in initDisplayDevice(). In 
this function the display resolution (D1) and bits per pixel (16) are set using the 
FBIOPUT_VSCREENINFO ioctl, before the three (triple buffered display) buffers are made 
available to the user space process from the Linux device driver using the mmap() call. The 
buffers are initialized to black, since the video resolution might not be full D1 resolution and the 
background of a smaller frame should be black. Next a Rszcopy job is created. The Rszcopy 
module uses the VPSS resizer module on the DM6446 to copy an image from source to 
destination without consuming CPU cycles. 

When the display thread is finished initializing, it synchronizes with the other threads using the 
Rendezvous utility module. Because of this, only after the other threads are finished initializing is 
the main loop of the display thread executed. 



SPRAAG9A 

12 Decode Demo for the DVEVM/DVSDK 1.2 

2.5.2 Video Thread Interaction 

Figure 9 shows the interaction of the video and display thread main loops (after the threads have 
been released by the Rendezvous object) while processing a video frame. The descriptions of 
the interactions in the figure are from the point of view of the video thread. 

Prime
loader

Prime display thread

Video Display

Decode
video
buffer

Read new
encoded frame
using loader

Get displayed buffer

Copy decoded
buffer to display
frame buffer

Put decoded buffer for display

End of main loop

Start of main loop

Flip working
buffer and wait
for vertical sync

Prime
loader

Prime display thread

Video Display

Decode
video
buffer

Read new
encoded frame
using loader

Get displayed buffer

Copy decoded
buffer to display
frame buffer

Put decoded buffer for display

End of main loop

Start of main loop

Flip working
buffer and wait
for vertical sync

 
Figure 9. Video Thread Interactions 

First the loader is primed (initialized) with data using the loaderPrime() function (see Section 
2.6 for details), and then the video thread primes the display thread with the display buffers it 
allocated earlier using FifoUtil_put(). After this all DISPLAY_BUFFERS number of 
contiguous display buffers are in the display thread ready to be returned to the video thread 
when the main loop starts executing. 

The video thread main loop starts by asking the display thread for a display buffer using 
FifoUtil_get(). Then the encoded frame obtained by the priming of the loader is decoded 
on the DSP core into the display buffer using VIDDEC_process(). Upon completion, a pointer 
to the display buffer, now containing a decoded video frame, is sent to the display thread using 
FifoUtil_put(). Now a new encoded buffer is read from the Linux file system using 
loaderGetFrame() before starting the main loop over again. 



SPRAAG9A 

 Decode Demo for the DVEVM/DVSDK 1.2 13 

Meanwhile, the display thread has been waiting for a buffer from the video thread using 
FifoUtil_get(). When a buffer is received, it is copied to the FBDev display device driver’s 
frame buffer using Rszcopy_execute().This uses the VPSS resizer module on the DM6446 to 
copy the frame to the FBDev frame buffer. After the copy is complete, the display buffer is 
returned to the video thread using FifoUtil_put(). Finally the newly filled FBDev frame 
buffer is made available for display on the next vertical sync using the FBIOPAN_DISPLAY ioctl 
before waiting on the next vertical sync using the FBIO_WAITFORVSYNC ioctl. 

2.6 Encoded Data File Loader 

The file loader (loader.c) loads data from encoded audio, speech, and video elementary stream 
files in an efficient manner for the decoders. Note that the loader is only a couple of functions 
(interface described in loader.h) that are executed in the context of the thread calling it (speech, 
audio, or video thread), and not a thread of its own. The problems the loader tries to solve are: 

1. Because the application is working on elementary streams, there is no way of knowing 
ahead of time how big an encoded frame is without processing the frame. 

2. The decoders expect at least a full frame every time the VISA process function (speech, 
audio, or video) is called. 

3. Since the decoder algorithm determines how big the encoded frame really was, we don’t 
know how big the last frame was until the VISA process call completes. This makes 
parallelizing the I/O and the DSP processing difficult, and makes it important that as little 
as possible is read from the file each time. 

Note: It is possible to parallelize the DSP processing and the I/O by keeping big I/O buffers 
constantly filled using a separate I/O thread while just doing the stream positioning in the video, 
audio, or speech thread. This was not deemed necessary, since none of the decode algorithms 
stresses the system to a point where the chosen solution becomes a problem. 

The picture below describes the file loader algorithm. The variable names in the picture are 
either local to the loader functions or part of the LoaderState structure. 

readBufSize

dataLeft

readBuffer curPtr readPtr

spaceLeft

The window of encoded data corresponding in size to the worst case size of an encoded frame.

The new data read from file corresponding in size to the last encoded frame.

frameSize

endBuf

readBufSize

dataLeft

readBuffer curPtr readPtr

spaceLeft

The window of encoded data corresponding in size to the worst case size of an encoded frame.

The new data read from file corresponding in size to the last encoded frame.

frameSize

endBuf

 
Figure 10. File Loader Algorithm 



SPRAAG9A 

14 Decode Demo for the DVEVM/DVSDK 1.2 

The loader algorithm works by always making sure a window of encoded data is available to the 
decode algorithm. In the video case the window size is determined by asking the decoder what 
the worst case size of an encoded frame is using the XDM_GETBUFINFO control call. For speech 
and audio an adequate size was chosen for this window, since the size of speech and audio 
frames are significantly smaller than those of video frames, and don’t need to be optimized in the 
same way. 

Every time the VISA process function is called, the file loader makes sure that at least one 
encoded frame is passed to the algorithm (until there is no more data). In the picture above, this 
means that the window will slide from left to right during the decoding. Every time the 
loaderGetFrame() function is called with a frameSize parameter stating how big the last 
encoded frame really was, the window will move right by frameSize bytes using an incremental 
read() call and return a new frame pointer pointing to a full window of data that is at least one 
frame of encoded data. 

Eventually, when spaceLeft is smaller than the window size, the loader will have to restart 
from the beginning of readBuffer. The remainder of the encoded data is copied to the 
beginning of readBuffer using memcpy() before doing the usual incremental read() call. 

The loader maintains a lot of state information but still needs to be reentrant, since it is called by 
the video, audio, and speech threads. A LoaderState object (defined in loader.h) keeps track 
of the state: 

 
typedef struct LoaderState { 
    int inputFd;            // INPUT - The file descriptor of the input file 
    int loop;               // INPUT - true if clip is to start over 
    char *readBuffer;       // INPUT - A large CMEM allocated buffer 
    int readBufSize;        // INPUT - Total size of the readBuffer 
    int readSize;           // INPUT - Size of the 'window' 
    int doneMask;           // INPUT - VIDEO_DONE or SOUND_DONE 
    int firstFrame;         // OUTPUT - True if first frame of a clip 
    int endClip;            // OUTPUT - True if time to start clip over 
    char *curPtr;           // INTERNAL - Points to current frame 
    char *readPtr;          // INTERNAL - Points to the end of current 'window' 
} LoaderState; 

The members listed as INPUT needs to be set before using the loader while the OUTPUT 
variables are set by the loader for reading after each loaderGetFrame() call. Do not set the 
variables marked INTERNAL. 

The doneMask entry keeps track of which media types have finished playing (video or sound, 
where sound means speech or audio). This is used to make sure that both media types restarts 
simultaneously if the loop (-l) command-line parameter has been given to the application. 

Before loaderGetFrame() can be called, the loaderPrime() function has to be called (for 
each LoaderState object). The loaderPrime() function fills the readBuffer and initializes 
the internal state variables. 

The readBuffer should be at least 2*readSize–1 bytes to allow for the worst case 
memcpy() (while making no assumptions about the implementation of memcpy()). The bigger 
the readBuffer is, the fewer times the memcpy() has to be performed, but more memory is used. 



SPRAAG9A 

 Decode Demo for the DVEVM/DVSDK 1.2 15 

3 Adapting the Application 
The subsections that follow discuss how to adapt the application if you want to remove the 
control thread and just do video, speech or audio. This creates a single-threaded application that 
is concerned with only one media type and has no user interface on the OSD. Section 3.5 shows 
how to replace the decode algorithms with the Codec Engine copy codec example algorithms, a 
process that applies to more complex algorithms as well. 

3.1 Speech Only 

This subsection describes how to adapt the application to have just a speech thread. In main.c, 
remove the speech and video thread creation in main() and make sure the speech thread is 
called as opposed to created as follows: 

 
    /* Become the speech thread if a file name is supplied */ 
    if (args.speechFile) { 
        speechEnv.hRendezvous   = &rendezvous; 
        speechEnv.speechFile    = args.speechFile; 
        speechEnv.speechEncoder = args.speechEncoder; 
        speechEnv.soundInput    = args.soundInput; 
 
        ret = speechThrFxn(&speechEnv); 
 
        if (ret == THREAD_FAILURE) { 
            status = EXIT_FAILURE; 
        } 
    } 
 
cleanup: 

Make sure ctrlThrFxn() is no longer called from main() and that numThreads is set to 1 
when Rendezvous_open() is called (since there is only 1 thread to “synchronize” now). 

Since we removed the control thread, the speech processing loop never exits. That is, 
gblGetQuit() never returns TRUE. You can use Ctrl+C to exit the application now, since the 
resulting SIGINT signal will not be caught by the application and it will close as a result. This is 
not a clean way to exit an application, since all resources might not be freed up correctly. 
Section 3.3 describes how to exit the application in a cleaner fashion. 

3.2 Audio Only 

Creating an audio only application is similar to the speech version described in Section 3.1, but 
you should call audioThrFxn() instead of audioThrFxn(). 

3.3 Video Only 

Creating a video only application is similar to the speech version described in Section 3.1, but 
you should spawn the display thread as before, but call videoThrFxn()instead of 
speechThrFxn(), and you should set numThreads to 2 when Rendezvous_open() is 
called, because the video and display threads need synchronization in the video case. 



SPRAAG9A 

16 Decode Demo for the DVEVM/DVSDK 1.2 

3.4 Exit Cleanly Without Control Thread 
One way to exit cleanly without using the control thread is to catch the SIGINT signal generated 
when the user presses Ctrl+C. This is done by putting the following signal handler somewhere 
above the speech or video thread function: 

 
#include <signal.h> 
 
void quit(int signal) 
{ 
    gblSetQuit(); 
} 

This signal handler needs to be registered with the Linux OS. Do this by putting the following line 
just before the speech or video processing loop: 

 
signal(SIGINT, quit); 

Now the application exits cleanly when a user presses Ctrl+C. 

3.5 Replacing the Decode Algorithms with Other Codecs 
This section shows how to replace the decoders used by the decode demo (h.264, mpeg2 or 
mpeg4 for video, aac or mpeg1l2 for audio and g.711 for speech). This example shows how to 
replace these algorithms with the example copy codecs shipped as examples with the Codec 
Engine. These copy codecs essentially do a copy of the data and no real processing, but could 
just as well have been real algorithms. From an application point of view, all codecs of a VISA 
class are essentially treated the same no matter the complexity of the algorithm. 

First the decode.cfg file needs to be edited. This file contains the configuration of the Codec 
Engine for the decode demo. First the copy codec packages needs to be pulled in and made 
available using the following statements: 

 
var SPHDEC_COPY  = xdc.useModule('codecs.sphdec_copy.SPHDEC_COPY'); 
var AUDDEC_COPY  = xdc.useModule('codecs.auddec_copy.AUDDEC_COPY'); 
var VIDDEC_COPY  = xdc.useModule('codecs.viddec_copy.VIDDEC_COPY'); 

The declarations of the G711DEC, AACDEC, MP3DEC, MPEG2DEC, H264DEC and 
MPEG4DEC variables should be removed, since these algorithms will not be used anymore. 
Next, we need to describe our codec server (demoEngine): 

 
var demoEngine = Engine.create("decode", [ 
    {name: "sphdec_copy", mod: SPHDEC_COPY, local: false}, 
    {name: "auddec_copy", mod: AUDDEC_COPY, local: false}, 
    {name: "viddec_copy", mod: VIDDEC_COPY, local: false}, 
]); 

Again, the lines for h264dec, mpeg2dec, aacdec, mp3dec, g711dec and mpeg4dec should be 
removed from this array, since these algorithms will not be used anymore. 

Finally, the Codec Engine needs to be told where to find the file containing this codec server by 
changing the demoEngine.server assignment to: 

 
demoEngine.server = "./all.x64P"; 



SPRAAG9A 

 Decode Demo for the DVEVM/DVSDK 1.2 17 

The codec server file that contains copy codecs for all 8 VISA classes (all.x64P) can be found at 
codec_engine_1_02/examples/servers/all_codecs, and should be copied to the directory on your 
target file system where your demos reside (typically /opt/dvevm). 

Now the Makefile needs to be edited to add the search path to these copy algorithm packages in 
order for the configuration tool to find them. Find the line where the XDC_PATH variable is set 
and append the following to the list of package search paths: 

 
$(CE_INSTALL_DIR)/examples 

This adds the Codec Engine examples (where the copy codecs reside) to the package search 
path, and the configuration tool can find the copy codec packages when the configuration step is 
executed. 

Since the names of the codecs have changed from "h264dec", “mpeg2dec”, or "mpeg4dec" to 
"viddec_copy", and from “aacdec” or “mp3dec” to “audio_copy”, and from "g711dec" to 
"sphdec_copy", the video.c, audio.c and speech.c files of the demo need to be changed to 
reflect this. In video.c, find the line where the algName variable is assigned and make sure it 
reads as follows: 

 
algName = "viddec_copy"; 

Note: Because the video decode copy codec doesn't support the XDM_SETPARAMS or 
XDM_GETBUFINFO control calls, these calls needs to be commented out. Instead of dynamically 
checking the codecs worst size encoded buffer size, manually assign *readSizePtr to: 

 
*readSizePtr = D1_FRAME_SIZE; 

In audio.c, find the line where algName is assigned and change it to: 
 

algName = “auddec_copy”; 

Note: Since the audio decode copy codec doesn’t support the XDM_SETPARAMS, XDM_RESET, 
or XDM_SETDEFAULT control calls, these calls needs to be commented out. 

In speech.c, find the line where the SPHDEC_create() Codec Engine call is made, and modify 
this line so it reads as follows: 

 
hDecode = SPHDEC_create(hEngine, "sphdec_copy", &params); 

Now recompile the decode demo using "make" and install it to the target file system using "make 
install" before running this altered decode demo. 

Your altered decode demo will play back raw audio and video, since the copy codecs merely do 
a copy and no decompression. If you need raw clips to play back, you can use the results of the 
corresponding encode demo copy codec adaptation from the encode demo documentation. Note 
that the decode demo now “processes” raw data that may overload your file system I/O for video 
if you use a large image resolution, since the bit rate for uncompressed video is very high. 



SPRAAG9A 

18 Decode Demo for the DVEVM/DVSDK 1.2 

4 More Information 
For more information, see the following documentation: 
• Encode Demo for the DVEVM/DVSDK 1.2 (SPRAA96A) 
• EncodeDecode Demo for the DVEVM/DVSDK 1.2 (SPRAAH0A) 
• Decode Demo readme file. $(DVEVM_INSTALL_DIR)\demos\decode\decode.txt.  

Contains information on how to invoke the demo from the command line. 
• Encode Demo readme file. $(DVEVM_INSTALL_DIR)\demos\encode\encode.txt. 
• EncodeDecode Demo readme file. 

$(DVEVM_INSTALL_DIR)\demos\encodedecode\encodedecode.txt. 

DVEVM Product 
• DVEVM Getting Started Guide (SPRUE66). Hardware and software overview, including how 

to run demos, install software, and build the demos. 
• DaVinci System Level Benchmarking Measurements (SPRAAF6) 

Codec Engine 
• Codec Engine Application Developer's Guide (SPRUE67A) 
• Codec Engine API Reference 

$(DVEVM_INSTALL_DIR)\codec_engine_1_02\docs\html\index.html 

Codec Servers 
• Codec Servers Data Sheets: Encode, Decode, and Loopback (Encode/Decode) 

$(DVEVM_INSTALL_DIR)\codec_servers_1_00\docs\data_sheets 

 Linux Device Drivers 
• Linux Device Drivers 3rd Edition, J. Corbet & A. Rubini [ISBN 0-596-00590-3]. 
• Open Sound System (OSS) website. http://www.opensound.com 
• Video for Linux 2 (v4l2) website. http://www.thedirks.org/v4l2 
• FBdev website. http://linux-fbdev.sourceforge.net 

POSIX Threads 
• Programming with POSIX Threads, David R. Butenhof [ISBN 0201633922]. 

http://www.opensound.com/
http://www.thedirks.org/v4l2
http://linux-fbdev.sourceforge.net/


IMPORTANT NOTICE 
 

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, 
enhancements, improvements, and other changes to its products and services at any time and to 
discontinue any product or service without notice. Customers should obtain the latest relevant information 
before placing orders and should verify that such information is current and complete. All products are sold 
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. 
 
TI warrants performance of its hardware products to the specifications applicable at the time of sale in 
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent 
TI deems necessary to support this warranty. Except where mandated by government requirements, testing 
of all parameters of each product is not necessarily performed. 
 
TI assumes no liability for applications assistance or customer product design. Customers are responsible 
for their products and applications using TI components. To minimize the risks associated with customer 
products and applications, customers should provide adequate design and operating safeguards. 
 
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent 
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, 
or process in which TI products or services are used. Information published by TI regarding third-party 
products or services does not constitute a license from TI to use such products or services or a warranty or 
endorsement thereof. Use of such information may require a license from a third party under the patents or 
other intellectual property of the third party, or a license from TI under the patents or other intellectual 
property of TI. 
 
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without 
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. 
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not 
responsible or liable for such altered documentation. 
 
Resale of TI products or services with statements different from or beyond the parameters stated by TI for 
that product or service voids all express and any implied warranties for the associated TI product or service 
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. 
 
Following are URLs where you can obtain information on other Texas Instruments products and application 
solutions: 
 
 
Products  Applications  
Amplifiers amplifier.ti.com Audio www.ti.com/audio 
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive 
DSP dsp.ti.com Broadband www.ti.com/broadband 
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol 
Logic logic.ti.com Military www.ti.com/military 
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork 
Microcontrollers microcontroller.ti.com Security www.ti.com/security 
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony 
  Video & Imaging www.ti.com/video 
  Wireless www.ti.com/wireless 
 
 
Mailing Address: Texas Instruments 
 Post Office Box 655303 Dallas, Texas 75265 

 
 

Copyright © 2007, Texas Instruments Incorporated 

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/lpw
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Decode Demo for the DVEVM/DVSDK 1.2 
	1  Overview 
	2 Application Design 
	2.1 Main Thread 
	2.2 Control Thread 
	2.3 Speech Thread 
	2.4 Audio Thread 
	2.5 Video Thread 
	2.5.1 Display Thread 
	2.5.2 Video Thread Interaction 

	2.6 Encoded Data File Loader 

	3 Adapting the Application 
	3.1 Speech Only 
	3.2 Audio Only 
	3.3 Video Only 
	3.4 Exit Cleanly Without Control Thread 
	3.5 Replacing the Decode Algorithms with Other Codecs 

	4 More Information 


