¢ TEXAS
INSTRUMENTS

DESIGN DOCUMENT

DSP/BIOS™ LINK

Configurable TSK and SWI approach

LNK 207 DES

Version <1.00>

Template Version 1.2

Version <1.00> Texas Instruments Proprietary Information Page 1 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

This page has been intentionally left blank.

Version <1.00> Texas Instruments Proprietary Information Page 2 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI's
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property right
relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third—-party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Version <1.00> Texas Instruments Proprietary Information Page 3 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

This page has been intentionally left blank.

Version <1.00> Texas Instruments Proprietary Information Page 4 of 21

Q‘ DSP/BIOS™ LINK
TExAs LNK 207 DES

[NSTRUMENTE Configurable TSK and SWI approach
TABLE OF CONTENTS

1 3 1 o e 11T ot o Y 7
1.1 (B Le T Y o] o 1= 7

1.2 Terms & AbbreVviations ... 7

1.3 S (=] = o= PP 7

1.4 L0 =T V=1 7

2 2= 0 LT =TT 0 7
3 High Level DeSIgN ..iciciiciimsammassansassassasssassassassassassassassassansansansansnnsansansansnnss 8
3.1 Create a task to execute (TSK_Create)covvviiiiiiiiiiiiir e 8

3.2 Initializes the semaphore object ..o 9

3.3 Wait and signal @ SemMaphore ..o 10

3.4 ZCPYMQT and ZCPYDATA in TSK conteXt..oovvviiiiiiiiiiiiiiiiiiccnne e 12

3.5 Delete a task (TSK_delete) ..o e 14

3.6 Configuration and make system changes........c.oooiiiiiiiiiiici i 14

3.7 Impact and Backward Compatibility:....ccooviiiiii 15

4 Typedefs & Data StructuresS.....iciicriririeririerasrasrassassassassassansansansansansansansans 17
4.1 ZCPYMOQT At ittt 17

4.2 ZCPYDATA _DEVOD Ot .t ittt e 18

5 Y o B 0 1= T T T o 19
5.1 WA O o @ I =] 1 1 PP 19

5.2 pA O o N I AN =] = 1 PP 19

5.3 WA ©F 2\ @ N N 0 T~ [1 o PP 20

5.4 ZCPYDATA _dataChr e e 20

6 HiStOry .uvciiirisisssss s s s s s s s s s s s s nn Error! Bookmark not defined.

Version <1.00> Texas Instruments Proprietary Information Page 5 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

TABLE OF FIGURES

No table of figures entries found.

Version <1.00> Texas Instruments Proprietary Information Page 6 of 21

¢ DSP/BIOS™ LINK
TExAs LNK 207 DES

[NSTRUMENTE Configurable TSK and SWI approach
1 Introduction
1.1 Purpose & Scope

1.2

1.3

1.4

This document describes the design to configure the TSK or SWI mode for the
existing SWI functions of ZCPYMQT and ZCPYDATA. If MPCS protection is TSK-base,
then DSPLink MSGQ and CHNL drivers will use TSK Mode on DSP-side. If MPCS
protection is SWI-base, then DSPLink MSGQ and CHNL drivers will use SWI Mode. So
that systems are fully TSK-based or SWI based.

Terms & Abbreviations

DSPLINK DSP/BIOS™ LINK

SWI Software interrupt manager

TSK Task manager

R This bullet indicates important information.

Please read such text carefully.

a This bullet indicates additional information.
References
1. Spru404n.pdf TMS320C55x DSP/BIOS 5.32 Application Programming
Interface (API) Reference Guide
2. LNK_041_DES.pdf ZERO COPY LINK DRIVER
Overview

DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit
that simplifies the development of embedded applications in which a general-purpose
microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK
provides control and communication paths between GPP OS threads and DSP/BIOS™
tasks, along with analysis instrumentation and tools.

This document gives an overview of the SWI and TSK mode detailed design for
DSPLINK.

Requirements

DSPLN00001021:- DSPLink should use configurable TSK-Sem or SWI-enable and
SWI-disable approach for MPCS.

Right now in both the cases (SWI and TSK) DSPLINKs components MQT and CHNL
works in SWI mode only. Ideally for TSK mode the components should work in
context of Task.

To support this feature following changes are required:-

e Select the mode while configure the DSPLINK. Mode can be SWI or TSK (
DSP_SWI_MODE or DSP_TSK_MODE).

e Handle the components properly for both modes.

e Don't disable the scheduler by calling TSK_disable. Use semaphore SEM_pend
and SEM_post.

Version <1.00> Texas Instruments Proprietary Information Page 7 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

3 High Level Design

The zero-copy driver provides a fast physical link between the GPP and the DSP,
based on the concept of pointer exchange between the GPP and DSP applications.
For data transfer, the link driver manages a configurable number of logical channels.
The IPS component manages the transfer of data and messages across the two
processors. For this, it uses the shared memory control structure and interrupts
between the processors to inform about any changes in status of buffer/message
availability on the channels.

The IPS component shall maintain lists of messages, which are shared between the
GPP and the DSP. There shall be two unidirectional lists of messages, for messages
to and from the DSP. Similar lists shall also be used for data transfer. To protect
these shared lists, the IPS component shall utilize the services of a generic
component that shall provide critical section protection between the two processors.

In a multiprocessor system having shared access to a memory region, a
multiprocessor critical section between GPP and DSP can be implemented. This MPCS
object can be used by applications to provide mutually exclusive access to a shared
region between multiple processors, and multiple processes on each processor.

Following functionality added to support TSK mode:-
1. Create a task to execute (TSK_create).
Initializes the semaphore object
Wait and signal a semaphore (SEM_pend() and SEM_post()).
ZCPYMQT and ZCPYDATA in TSK context.
Delete a task (TSK_delete).
Configuration and make system changes.

oA wWN

3.1 Create atask to execute (TSK_create)

The TSK object is created during the ZCPYMQT_open phase for TSK mode by calling
TSK_Create. When ZCPY MQT is opened and configured, at that time create the TSK
object.

Static int ZCPYMQT_open (MSGQ_TransportHandle mgtHa ndle)
{

#if defined (DSP_TSK_MODE)
tskAttrs. priority=15 ;
mqtState->tskHandle = TSK_create(ZCPYMQT _tskFxn, &t skAttrs, 0) ;
if (mqtState->tskHandle == NULL) {
status = SYS_EALLOC;
SET_FAILURE_REASON (status) ;

}
#endif

Version <1.00> Texas Instruments Proprietary Information Page 8 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

Create the static TSK object for ZCPYDATA, use the following steps.

var ZCPYLINK_TSK_OBJ= bios.TSK.create("ZCPYLINK_TSK _OBJ");

/* To create a TSK object*/

ZCPYLINK_TSK_OBJ.comment = " This TSK handles the data transfer in
DSPLINK";

ZCPYLINK_TSK_OBJ.autoAllocateStack = true;

/* Check this box if you want the task’s private stack space to be allocated
automatically */

ZCPYLINK_TSK_OBJ.priority = 15;

/* The priority level for this task. */

ZCPYLINK_TSK_OBJ.fxn = prog.extern("ZCPYDATA_tskFxn ");
/* The function to be executed when the task runs. */
ZCPYLINK_TSK_OBJ.arg0 = prog.decl("ZCPYDATA_devObj");
/* Task function argument 0-7 */

3.2 Initializes the semaphore object

SEM_new () initializes the semaphore object pointed to by sem with count. The
function should be used on a statically created semaphore for initialization purposes

only.

Create and initialize the semaphore for MPCS:-
Int

_MPCS_open (IN Uint16 procld,

IN Char* name,
OUT MPCS_Handle * mpcsHandle,
IN OPT MPCS_ShObj* mpcsShObj)

#if defined (DSP_TSK_MODE)
if(*mpcsHandle)->dspMpcsObj.localLock == NULL) {

(*mpcsHandle)->dspMpcsObj.localLock = (Uint32)
SEM_create(1, NULL) ;

if (*mpcsHandle)->dspMpcsObj.local Lock == NULL) {
status = SYS_EALLOC;
}
else {
HAL_cacheWblInv ((Ptr) &((*mpcsH andle)->dspMpcsObj),
sizeof (MPCS_ProcOb 0);

Version <1.00> Texas Instruments Proprietary Information Page 9 of 21

¢ DSP/BIOS™ LINK
TExAs LNK 207 DES

[NSTRUMENTE Configurable TSK and SWI approach

3.3

#endif /* if defined(DSP_TSK_MODE) */

Create and initialize the semaphore for ZCPYMQT:-
Static Int ZCPYMQT _open (MSGQ_TransportHandle mgtHa ndle)

{

#if defined (DSP_TSK_MODE)

SEM_new (&(mqtState->zcpyMqtSem), 0) ;
#endif
}

Create and initialize the semaphore for ZCPYDATA:-

Void

ZCPYDATA_mdBindDev (Ptr * devp, Int devid, Ptr devP arams)
{

#if defined (DSP_TSK_MODE)
SEM_new (&(ZCPYDATA_devObj.zcpyDataSem), 0) ;
#endif

}

Wait and signal a semaphore

In case of TSK context. SEM_pend and SEM_post will control the task processing.
Initially it calls SEM_pend to acquire the semaphore if it is available and tries to get
the multiprocessor lock. SEM_pend and SEM_post are use with counting
semaphores, which keep track of the number of times the semaphore has been
posted.

The MPCS component in TSK context:-
MPCS_enter calls SEM_pend to acquire the semaphore.
Int MPCS_enter (IN MPCS_Handle mpcsHandle)
{
Int status = SYS_OK;
#if defined (DDSP_PROFILE)
Bool conflictFlag = FALSE ;
#endif
DBC_require (mpcsHandle '= NULL) ;
if (mpcsHandle == NULL) {
status = SYS_EINVAL ;
SET_FAILURE_REASON (status) ;

}

Version <1.00> Texas Instruments Proprietary Information Page 10 of 21

¢ DSP/BIOS™ LINK
TExAs LNK 207 DES

[NSTRUMENTE Configurable TSK and SWI approach
else {
#if defined (DSP_TSK_MODE)
SEM_pend (&(mpcsHandle->dspMpcsObij.locallLoc k), SYS_FOREVER);
#else
SWI_disable () ;
#endif

MPCS_leave call SEM_post to post the semaphore to allow the others that are
waiting or blocked in MPCS_enter.

Int MPCS_leave (IN MPCS_Handle mpcsHandle)
{
Int status = SYS_OK ;
DBC_require (mpcsHandle != NULL) ;
if (mpcsHandle == NULL) {
status = SYS_EINVAL ;
SET_FAILURE_REASON (status) ;

}
else {
/* Check if DSP side is using the resource i.e.there has been a
* corresponding MPCS_enter.
*/
if (mpcsHandle->dspMpcsObij.flag == (Uint16) MPCS_BUSY) {
/* Release the resource. */
mpcsHandle->dspMpcsObj.flag = (Uint16) MPCS_FREE ;

HAL_cacheWblnv ((Ptr) & mpcsHandle->dsp MpcsObj),
sizeof (MPCS_ProcObj)) ;
#if defined (DSP_TSK_MODE)
SEM_post (mpcsHandle->dspMpcsObj.locallL ock) ;

#else
SWI_enable () ;

#endif

Version <1.00> Texas Instruments Proprietary Information Page 11 of 21

¢ TEXAS
INSTRUMENTS

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

3.4

ZCPYMQT and ZCPYDATA in TSK context

When either the GPP or DSP is ready to send a message to the other processor, it
sends the message to the IPS component. On receiving a message from the other
processor, the IPS component makes a call back to the ZCPY MQT and DATA
component, which places the received message onto the appropriate local message

queue.

The Callback functions (ZCPYDATA_callback and ZCPYMQT_callback) are registered
with IPS component. These Callback functions will call SEM_post to post the
semaphore to allow the others that are waiting or blocked in ZCPYMQT_tskFxn and

ZCPYDATA_tskFxn.
In case of ZCPYMQT :-
Static Void ZCPYMQT_callback (Uint32 eventNo, Ptr a
{
ZCPYMQT _State * mqtState = (ZCPYMQT _State *) ar
(void) eventNo ;
(void) info ;
DBC_assert (mqtState '= NULL) ;
#if defined (DSP_TSK_MODE)
SEM_post (&(mqtState->zcpyMqgtSem)) ;
#else
SWI_post (mqgtState->swiHandle) ;
#endif

}

In case of ZCPYDATA :-

Static Void ZCPYDATA _callback (Uint32 eventNo, Ptr

{

(void) eventNo ;
(void) info ;

#if defined (DSP_TSK_MODE)
ZCPYDATA_DevObject*dev = (ZCPYDATA_DevOb
SEM_post (&(dev->zcpyMgtSem)) ;

#else
(void) arg ;

SWI_inc (&ZCPYDATA_SWI_OBJ) ;

#endif

}

rg, Ptr info)

g;

arg, Ptr info)

ject¥arg ;

ZCPYMQT_tskFxn and ZCPYDATA_tskFxn are register for TSK mode and both
functions will call the SEM_pend to wait the semaphore.

In case of ZCPYMQT :-

Version <1.00>

Texas Instruments Proprietary Information

Page 12 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

static
Void
ZCPYMQT _tskFxn (Arg arg0, Arg argl)
{
Int status = SYS_OK;

DBC_require (arg0 != NULL) ;

(Void) arg1 ;
mqtState = (ZCPYMQT_State *) arg0 ;

/*While (1) is to make the task continuously active */
While(1) {
SEM_pend(&(mqtState->zcpyMqgtSem), SYS_FOREV ER);
}
}

In case of ZCPYDATA :-
Void ZCPYDATA_tskFxn (Arg arg0, Arg argl)

{
ZCPYDATA DevObject* dev = (ZCPYDATA De vObject *) arg0 ;
(Void) argl ;
DBC_require (dev != NULL) ;
/*While (1) is to make the task continuously active */
While(1) {
SEM_pend(&(ZCPYDATA_devObj.zcpyDataSem), SY S FOREVER);
}
}

Version <1.00> Texas Instruments Proprietary Information Page 13 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

3.5 Delete atask (TSK_delete)

The TSK and SWI objects are deleted by calling SWI_delete and TSK_delete. When
ZCPYMQT _close is called delete the objects. ZCPYMQT_close Closes the ZCPY MQT,
and cleans up its state object.

In case of ZCPYMQT:-

static
Int
ZCPYMQT_close (MSGQ_TransportHandle mgtHandle)
{
Int status = SYS_OK;

QUE_Handle gueHandle ;
ZCPYMQT_State * mgqtState ;
MSGQ_Msg msg ;

DBC_require (mgtHandle '= NULL) ;

#if defined (DSP_TSK_MODE)
if (mgtState->tskHandle '= NULL) {
TSK_delete (mgtState->tskHandle) ;
}
#else
if (mgtState->swiHandle != NULL) {
SWI_delete (mgtState->swiHandle) ;

}
#endif

3.6 Configuration and make system changes

To make it configurable need to export the mode e.g DSP_SWI_MODE or
DSP_TSK_MODE. Using dsplinkcfg.pl mode can be exported e.g.

To enable TSK mode select: --DspTskMode=1
Provided:
Assuming SWI mode enable and continuing...

perl dsplinkcfg.pl --platform=DAVINCIHD --nodsp=1 - -
dspcfg_0=DM6467GEMSHMEM --dspos_0=DSPBIOS5XX --gp pos=MVL5G --
comps=ponsirmc --DspTskMode=1

or

Version <1.00> Texas Instruments Proprietary Information Page 14 of 21

¢ DSP/BIOS™ LINK
TExAs LNK 207 DES

[NSTRUMENTE Configurable TSK and SWI approach
perl dsplinkcfg.pl --platform=DAVINCIHD --nodsp=1 - -
dspcfg_0=DM6467GEMSHMEM --dspos_0=DSPBIOS5XX --gp pos=MVL5G --

comps=ponsirmc

In case of TSK Mode the CURRENTCFG.mk :-

#===

DSP SPECIFIC DEFINES
#===
export TI_DSPLINK_DSPO_DEFINES = PROCID=0 OMAP25 30
OMAP2530_INTERFACE=SHMEM_INTERFACE PHYINTERFACE=&ENMINTERFACE

DSP_TSK_MODE

In case of SWI Mode the CURRENTCFG.mk :-

export TI_DSPLINK_DSP_MODE := DSP_SWI|_MODE

#===

DSP SPECIFIC DEFINES
#===
export TI_DSPLINK_DSPO_DEFINES = PROCID=0 OMAP25 30
OMAP2530_INTERFACE=SHMEM_INTERFACE PHYINTERFACE=&E&NMINTERFACE

DSP_SWI_MODE

3.7 Impact and Backward Compatibility:

Earlier ZCPYDATA and ZCPYMQT worked in SWI context only. Now both can work in
either TSK mode or SWI mode.

In case of ZCPYDATA, SWI and TSK are created statically in applications e.g.

SWI :- loop.tcf and scale.tcf.

TSK :- loop_tsk.tcf and scale_tsk.tcf.

For SWI support there is no change in samples.

If user wants to ZCPYDATA worked in task mode following changes are required:-

Create new loop_tsk.tcf for all platforms .It will include the dsplink-zcpydata-tsk.tci.

Version <1.00> Texas Instruments Proprietary Information Page 15 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

*/

utils.importFile ("dsplink- omap2530-base.tci");
utils.importFile ("dsplink-iom.tci");

utils.importFile ("dsplink-zcpydata-tsk.tci");

Create new scale_tsk.tcf for all platforms. It will include the dsplink-zcpydata-tsk.tci.

[* ==

* Load generic DSP/BIOS Link configuration

* — .
*
utils.importFile ("dsplink- omap2530-base.tci");

utils.importFile ("dsplink-iom.tci");
utils.importFile ("dsplink-zcpydata-tsk.tci");

Static TSK objects will be created in dsplink-zcpydata-tsk.tci for ZCPYDATA. Now we
have two tcf file one for swi and other for tsk (loop.tcf and loop_tsk.tcf). And these
files are included according to compilation check for DSP_SWI_MODE or
DSP_TSK_MODE.

Changes in sample’s SOURCES file of loop and scale samples for all platforms :-

#o=——=—=—=—=——=—=—=—=—=——=-—=========
#TCONF configurations file (from component base path)
#==
ifeq ("$(TI_DSPLINK_DSP_MODE)", "DSP_TSK_MODE")

TCF_FILE —

$(TI_DSPLINK_DSPOS)$(DIRSEP)$(TI_DSPLINK_DSPOSVERSI ON)$(DIRSEP)$(TI_DSP
LINK_DSPDEVICE)$(DIRSEP)loop_tsk.tcf

else

TCF_FILE -
$(TI_DSPLINK_DSPOS)$(DIRSEP)$(TI_DSPLINK_DSPOSVERSI ON)$(DIRSEP)$(TI_DSP
LINK_DSPDEVICE)$(DIRSEP)loop.tcf

endif

Version <1.00> Texas Instruments Proprietary Information Page 16 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

4 Typedefs & Data Structures

41 ZCPYMQT_State

This structure defines the ZCPYMQT state object, which contains all the component-
specific information.

Definition

typedef struct ZCPYMQT _State_tag {
Uintl6 poolld ;
QUE_ODbj ackMsgQueue ;
Uint32 ipsid ;
Uint32 ipsEventNo
ZCPYMQT_Ctrl * ctrlPtr

#if defined (DSP_TSK_MODE)
TSK_Handle tskHandle

#else
SWI_Handle swiHandle
#endif
SEM_Obj zcpyMqtSem
} ZCPYMQT _State ;
Fields

poolld Pool ID used for allocating control messages. This pool is also
used in case the ID within the message received from the
DSP is invalid. This can occur in case of a mismatch between
pools configured on the GPP and the DSP.

ackMsgQueue Queue of locateAck messages received from the GPP.

ipsld IPS ID associated with MQT.

ipsEventNo IPS Event no associated with MQT.

swiHandle SWI for processing of locate functionality in non-ISR context.
Only defined if callback processing is to be performed within
a SWI instead of interrupt context.

tskHandle Only defined if callback processing is to be performed within
a TSK context.

zcpyMqtSem Zero copy semaphore object.

Comments

An instance of this object is created and initialized during ZCPYMQT _open () , and its
handle is returned to the caller. It contains all information required for maintaining
the state of the MQT.

Constraints
None.

Version <1.00> Texas Instruments Proprietary Information Page 17 of 21

¢ TEXAS

INSTRUMENTS

DSP/BIOS™ LINK
LNK 207 DES
Configurable TSK and SWI approach

See Also
ZCPYMQT open ()

4.2 ZCPYDATA DevObject
LINK device object structure.

Definition
typedef struct ZCPYDATA_DevObject_tag {
Uns inUse ;
Uns devid ;
Uint32 ipsid ;
Uint32 ipsEventNo ;
Uns numChannels ;
Uns outputMask ;
Uns ongoingOutputMask ;
Uns lastOutputChannel ;

ZCPYDATA_Ctrl * ctriPtr ;
ZCPYDATA_ChannelObject * chnlObj ;
#if defined (DSP_TSK_MODE)

SEM_Obj zcpyDataSem ;
#endif
} ZCPYDATA DevObiject ;
Fields
inUse Non zero value means this LINK device is in use..
devid Data driver ID.
ipsid . . .
IPS ID associated with the data driver.
ipsEventNo IPS event number associated with the data driver.
numChannels Maximum channels supported by this device.
outputMask Indicates on which channels output buffer available.
(IzngoingOutputMas Indicates on which channels output data transfer is ongoing
:astOutputChanne Variable indicating on which channel last output was done
ctriPtr Pointer to shared memory control structure
chnlObj Array of channel objects that belong to this device.
zcpyDataSem ZCPYDATA semaphore object.
Comments

An instance of this object is initialized during ZCPYDATA _init ()

Constraints
None.

See Also
None.

Version <1.00>

Texas Instruments Proprietary Information

Page 18 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

5 API Definition

5.1 ZCPYMQT _tskFxn
Implements the TSK function for the ZCPYMQT.

Syntax

Static Void ZCPYMQT_tskFxn (Arg arg0) ;
Arguments

IN Arg argo0 ;

ZCPYMQT state object, which contains all the component-specific
information.

Return Value

void

Comments

SEM_pend is called to wait for semaphore. This function will call the
ZCPYMQT_msgCtrl () to transfer the data in DSPLINK.

Constraints
None.

See Also
None.

5.2 ZCPYDATA tskFxn
Implements the TSK function for the ZCPYDATA.

Syntax
Static Void ZCPYDATA _tskFxn (Arg argO0) ;

Arguments

IN Arg argo ;
Pointer to LINK device structure.

Return Value

void

Comments

SEM_pend is called to wait for semaphore. This function will call the
ZCPYDATA_dataCtrl () to transfer the data in DSPLINK.

Constraints
None.

Version <1.00> Texas Instruments Proprietary Information Page 19 of 21

¢ DSP/BIOS™ LINK
TExAs LNK 207 DES

[NSTRUMENTE Configurable TSK and SWI approach
See Also
None.

5.3 ZCPYMQT_msgCitrl
Message control function for the SWI and TSK.

Syntax

Static Void ZCPYMQT_msgCtrl (ZCPYMQT_State * mqtState) ;
Arguments

IN Arg arg0;

Pointer to LINK device structure.

Return Value

void

Comments

Make locate request to remote MQT by sending event to IPS containing control
message.

If the locate call is synchronous, wait for receiving locate acknowledgement message
from remote MQT as an IPS event containing control message.

If the locate call is asynchronous, return from the function without blocking. When
the locate acknowledgement arrives from the remote processor, allocate and send an
asynchronous locate message to the reply message queue specified by the caller.

Constraints
None.

See Also
None.

54 ZCPYDATA dataCitrl
Message control function for the SWI and TSK.

Syntax

Static Void ZCPYDATA_dataCtrl (ZCPYMQT_State * mqtState) ;
Arguments

IN Arg arg0;

Pointer to LINK device structure.

Return Value

void

Comments
The ZCPY DATA transfer component uses the features provide by the IPS component

Version <1.00> Texas Instruments Proprietary Information Page 20 of 21

¢ DSP/BIOS™ LINK
TEXAS LNK 207 DES
[NSTRUMENTE Configurable TSK and SWI approach

for transferring the data between the DSP and GPP. Both the GPP and DSP issue
buffers for data transfer and the ZCPY driver exchanges the buffer pointers to
complete the transfer..

Constraints
None.

See Also
None.

Version <1.00> Texas Instruments Proprietary Information Page 21 of 21

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	High Level Design
	Create a task to execute (TSK_create)
	Initializes the semaphore object
	Wait and signal a semaphore
	ZCPYMQT and ZCPYDATA in TSK context
	Delete a task (TSK_delete)
	Configuration and make system changes
	Impact and Backward Compatibility:

	Typedefs & Data Structures
	ZCPYMQT_State
	ZCPYDATA_DevObject

	API Definition
	ZCPYMQT_tskFxn
	ZCPYDATA_tskFxn
	ZCPYMQT_msgCtrl
	ZCPYDATA_dataCtrl

