

Template Version 1.2

Version 0.50 Page 1 of 60

DESIGN DOCUMENT

DSP/BIOS™ LINK

DYNAMIC CONFIGURATION

LNK 137 DES

Version 0.50

Page 2 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

This page has been intentionally left blank.

Page 3 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

This page has been intentionally left blank.

Page 5 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

TABLE OF CONTENTS

1 Introduction ... 7
1.1 Purpose & Scope ... 7
1.2 Terms & Abbreviations ... 7
1.3 References ... 7
1.4 Overview.. 7

2 Requirements ... 8

3 Assumptions... 9

4 Constraints ... 9

5 High Level Design... 10
5.1 Configuration file ..10
5.2 Change in configuration...10
5.3 Shared memory configuration ..10
5.4 Configuration of components ...12
5.5 DSP-side configuration ..13

6 Sequence Diagrams.. 15
6.1 Configuration setup ..15
6.2 GPP-side Initialization ...16
6.3 GPP-side Handshake ...17
6.4 DSP-side Initialization ...18

7 API ... 19
7.1 Constants & Enumerations...19
7.2 Typedefs & Data Structures ...19
7.3 API Definition...38

8 LDRV .. 39
8.1 Constants & Enumerations...39
8.2 Typedefs & Data Structures ...39
8.3 API Definition...50

Page 6 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

 TABLE OF FIGURES

Figure 1. Shared memory layout for one DSP ..11
Figure 2. GPP-side configuration setup..15
Figure 3. GPP-side initialization..16
Figure 4. Handshake between GPP and DSP-side ...17
Figure 5. DSP-side initialization ...18

Page 7 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

1 Introduction

1.1 Purpose & Scope
This document describes the design of dynamic configuration for DSP/BIOS™ LINK.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. LNK 084 PRD DSP/BIOS™ LINK Product Requirement Document

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

This module provides the design for Dynamic Configuration of DSPLINK.

This document gives an overview and detailed design of Dynamic Configuration on

the GPP and DSP-sides of DSPLINK.

Page 8 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

2 Requirements
Please refer to section 16.7 of LNK 084 PRD - DSP/BIOS™ LINK Product Requirement

Document.

Several users have expressed the need to change the memory map used by

DSP/BIOS™ Link dynamically. To enable such use cases, this release shall provide

the capability to change memory map used by Link in a more dynamic manner.

R119 This release shall allow applications to configure the memory map used by the

product without the need to fully recompile the sources.

R120 Applications shall also be allowed to partially change the memory map during

runtime. This shall be allowed only after the application releases all resources.

In addition, the Dynamic Configuration component must meet the following generic

requirements:

1. All major configurable items within the existing DSPLINK static configuration

must be made dynamic without a need to rebuild the GPP-side kernel component.

2. The DSP-side DSPLINK libraries must not be required to be rebuilt on changing

the values of any of the configuration items.

Page 9 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

3 Assumptions
The Dynamic Configuration design makes the following assumptions:

1. The hardware supports multiple processors having shared access to a memory

region.

4 Constraints
None.

Page 10 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

5 High Level Design
The static configuration of DSPLINK is achieved through a textual configuration file

(CFG_<PLATFORM>.TXT), which is processed during the build step of DSPLINK, to

generate configuration header and source files for both the GPP and DSP-sides of

DSPLINK. These generated files are compiled along-with the DSPLINK GPP-side

kernel module, and DSP-side dsplink library.

The Dynamic Configuration of DSPLINK shall be achieved through configuration items

made available to DSPLINK from the user-side on the GPP-side only. The GPP-side

kernel module and DSP-side library shall not need to be rebuilt.

5.1 Configuration file
A pre-defined “C” source file shall be provided with configuration values defined

within a fixed structure format. This shall be compiled with the DSPLINK user library

by default.

5.2 Change in configuration
PROC_Setup () shall be modified to optionally take a pointer to a configuration

structure in the same format as the provided configuration source file. If a valid

pointer is provided, the configuration values provided by the application are used. If

none is provided, the default configuration is used. This ensures backward

compatibility of existing applications.

No configuration source or header files shall be generated, resulting in the GPP-side

kernel module and DSP-side DSPLINK library not requiring to be rebuilt.

The configuration taken during PROC_Setup () shall be stored on the kernel-side as

a pointer to the configuration structure.

5.3 Shared memory configuration
The DRV component shall manage a module called the Shared Memory Manager

(SMM), which shall manage memory regions with shared access across processors.

The SMM component is a simple offset-based memory manager. It configures itself

to manage all memory segments defined in the configuration, which are marked as

shared regions. Based on the memory segment ID provided, it returns a pointer to

the next chunk of available memory within the memory segment, and increments the

internal used offset by specified size. This component expects that the memory

acquired is released in the reverse order of acquires. The functionality supported by

the SMM component includes:

� Initialize the SMM component

� Finalize the SMM component

� Allocate shared memory

� Free shared memory

For the DM642_PCI platform, the shared memory manager manages the segment(s)

of memory that have been mapped for direct access through PCI. A configuration

flag in each memory segment indicates whether the memory region allows shared

access. Only such memory segments are managed by the SMM component. An

example layout of a single memory section shared with a DSP, with memory for the

different components, is shown in the following figure:

Page 11 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

Figure 1. Shared memory layout for one DSP

LDRV DRV

SHM DRV

LDRV IPS

IPS 0

IPS 1

LDRV POOL

POOL 0

POOL 1

LDRV MPCS

LDRV MPLIST

LDRV MQT

ZCPY MQT

LDRV DATA

DATA DRV 0

DATA DRV 1

Shared region for platform-independent component fo r all
its instances for the DSP

Shared region for specific instance of the componen t for
the DSP

Memory shared with a DSP

LDRV RINGIO

Page 12 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

5.4 Configuration of components
The LDRV component manages the kernel-side configuration structure. Within the

initialization function called during PROC_setup (), the kernel-side configuration
structure is initialized. Module initialization functions for all LDRV sub-components

are also called at this time. The module initialization functions for each sub-

component setup their configuration and validate the provided configuration values.

The DRV component provides the interface to all other sub-components within

DSPLINK.

Initialization functions of all the sub-components are called by the DRV component

during PROC_attach () .

Each sub-component initialization function allocates and initializes the chunk of

shared memory it requires from the SMM component for the memory segment ID

specified in the configuration. It writes the configuration information required to be

shared with the DSP within this region. It also returns the address of the shared

region to the DRV component (caller), so that the DRV component can set this

information within its shared region. The DRV shared region containS pointers to the

shared regions of all the sub-components managed by it.

The sub-components managed by the DRV component are:

� IPS: The LDRV_IPS component manages one or more instances of IPS

present between the GPP and DSP. Its shared memory control region points

to the individual shared memory regions required by each IPS instance. The

information shared between individual IPS instances consists of the following:

o Configuration information including information about the GPP and DSP

interrupt IDs.

o IPS control structure with event registration masks, event charts etc.

� POOL: The LDRV_POOL component manages one or more instances of POOL

present between the GPP and DSP. Its shared memory control region points

to the individual shared memory regions required by each POOL instance. The

information shared between individual POOL instances consists of the

following:

o Configuration information (if any).

o POOL control structure with MPCS object, number of buffer sizes,

pointer to array of buffer pools for different sizes, etc.

� MPCS: The LDRV_MPCS component manages a number of instances of MPCS

objects. Its shared memory control region contains the following:

o Configuration information including maximum number of MPCS

instances.

o MPCS control region containing information about all MPCS instances

in the system.

� MPLIST: The LDRV_MPLIST component manages a number of instances of

MPLIST objects. Its shared memory control region contains the following:

o Configuration information including maximum number of MPLIST

instances.

o MPLIST control region containing information about all MPLIST

instances in the system.

Page 13 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

� MQT: The LDRV_MQT component manages only a single instance of MQT

between the GPP and DSP. It does not have any shared memory requirement

of its own, and its shared control region contains the following information

specific to the MQT instance used between the GPP and DSP:

o Configuration information including IPS ID and IPS event number used

by the MQT.

o MQT control structure with MPCS objects and shared lists used for

transferring messages between the GPP and the DSP.

� DATA: The LDRV_DATA component manages one or more instances of data

drivers present between the GPP and DSP. Its shared memory control region

points to the individual shared memory regions required by each data driver

instance. The information shared between individual data driver instances

consists of the following:

o Configuration information including IPS ID and IPS event number used

by the data driver, number of logical channels supported by the data

driver, maximum buffer size supported on the channels by the data

driver etc.

o Data driver control structure with masks, MPCS objects and shared

lists used for transferring messages between the GPP and the DSP etc.

� RINGIO: The LDRV_RINGIO component manages a number of instances of

RINGIO objects. Its shared memory control region contains the following:

o Configuration information including maximum number of RINGIO

instances.

o RINGIO control region containing information about all RINGIO

instances in the system.

5.5 DSP-side configuration
Within PROC_Start () , the DRV component’s API to setup the handshake is called.

This function makes a call to PMGR_PROC_GetSymbolAddress () to get the address of

the DSP-side global variable within DRV, where the address of the GPP-side DRV

component’s shared memory region is to be set using LDRV_PROC_Write () . After

starting the DSP, the DRV component then waits for the handshake indicating that

the DSP-side initialization is complete for all sub-components based on the scalability

configuration selected.

On the DSP-side, a new function DSPLINK_init () shall be added, which shall call

DSPLINK_init () . This function shall be called by applications within their main ()

function. For modules integrated within DSP/BIOS™, this function shall also be called

from their initialization functions (POOL, MSGQ, and CHNL). The application shall no

longer call individual <MOD>_init () functions. The DSPLINK_init () function shall

ensure that the code within it is called only once.

DSPLINK_init () shall initialize itself and call sub-component initialization functions

for all the other components based on the configuration flags, and if the module has

been configured on the GPP-side (as indicated by the GPP-side).

Each sub-component shall initialize itself using the shared memory address passed to

it by the DRV component. All the configuration information required by each sub-

component would be present at this address in a fixed format shared between the

GPP and DSP-side sub-component.

Page 14 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

DSPLINK_init () shall then call DSPLINK_handshake () , which would indicate to the

GPP that the initialization of the modules specified by the provided mask is complete.

Following this, GPP-side driver handshake would complete with success or failure

depending on whether the DSP-side configuration matches the GPP-side expectation,

and also whether the DSP-side initialization is complete within the maximum poll

count used for the handshake. This poll count shall be specified by the user as part

of the dynamic configuration. This would allow the user to debug DSP-side without

GPP-side timing out, if so required, by changing the timeout value to a special value

indicating infinite wait (-1).

To support usage of the RINGIO and MPCS components in DSP-DSP configuration

only (without presence of GPP-side component), these components shall check

whether their initialization is complete from GPP-side. If not, they shall perform their

own initialization. A GEL file can be used to initially reset the initialization flag and

set configuration information required by these modules at the location expected by

them.

Page 15 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

6 Sequence Diagrams
The following sequence diagrams show the control flow for the configuration setup,

initialization, and finalization of the various components on GPP and DSP-sides. A

sequence diagram showing the handshake between the GPP and DSP-sides of

DSPLINK is also given.

6.1 Configuration setup

Figure 2. GPP-side configuration setup

1. A pointer to the configuration information is optionally provided by the

application during PROC_setup () . If provided, this structure replaces the

existing default configuration built within the DSPLINK API library.

2. The configuration structure is passed on by PMGR layer to LDRV, where an
OS-specific implementation of LDRV_init () initializes the kernel-side pointer

to the configuration structure. If an OS such as PrOS is used, which does not

have a user-kernel separation, the address of the user-side structure is

directly used as the configuration. Otherwise a newly allocated kernel-side

configuration structure is initialized with the contents of the user-side

configuration structure.

API
PMGR

LDRV

1. PROC_setup

2. PMGR_PROC_setup

3. LDRV_init

4. Initialize config
 structure

Page 16 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

6.2 GPP-side Initialization

Figure 3. GPP-side initialization

1. PROC_attach
 (Owner)

5. Initialize
 DRV

PMGR

2. PMGR_PROC_attach

LDRV_DRV

SMM

IPS

POOL

MPCS

MPLIST

MQT

3. LDRV_DRV_init

4. LDRV_SMM_init

DATA

RINGIO

6. LDRV_IPS_init

7. LDRV_POOL_init

8. LDRV_MPCS_init

9. LDRV_MPLIST_init

10. LDRV_MQT_init

11. LDRV_DATA_init

12. LDRV_RINGIO_init

API

Page 17 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

6.3 GPP-side Handshake

Figure 4. Handshake between GPP and DSP-side

1. PROC_start

7. Initialize
 shared
 region

PMGR

2. PMGR_PROC_start

LDRV_DRV

4. LDRV_DRV_handshake
 (setup)

LDRV_PROC

5. PMGR_PROC_getSymbolAddress

6. LDRV_PROC_write

9. LDRV_DRV_handshake
 (start)

8. DSP_start

DSP

3. LDRV_PROC_start

10. Write GPP
 handshake
 value in
 shared region

11. LDRV_DRV_handshake
 (complete)

12. Wait for DSP
 handshake
 complete

API

Page 18 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

6.4 DSP-side Initialization

Figure 5. DSP-side initialization

1. DSPLINK_init

RINGIO

NOTIFY

DATA

3. Initialize
 DRV

DRV

4. DSPLINKIPS_init

5. DSPLINKPOOL_init

6. MPCS_init

7. MPLIST_init

8. DSPLINKMQT_init

9 . DSPLINKDATA_init

11..RINGIO_init

HAL

2. HAL_init

MPLIST POOL

IPS MPCS MSG

13. Write DSP
 handshake values
 indicating
 initialization

10. NOTIFY_init

12. DSPLINK_handshake

Page 19 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7 API
This section describes the low-level design for the DSPLINK dynamic configuration

within the API layer.

7.1 Constants & Enumerations
None.

7.2 Typedefs & Data Structures

7.2.1 LINKCFG_Object

This structure defines the object containing all configuration items for DSP/BIOS

LINK.

Definition
typedef struct LINKCFG_Object_tag {
 LINKCFG_Gpp * gppObject ;
 Uint32 numDsps ;
 LINKCFG_Dsp * dspObjects ;
 LINKCFG_LinkDrv * linkDrvObjects ;
 Uint32 numMemTables ;
 LINKCFG_MemEntry ** memTables ;

 Uint32 numIpsTables ;
 LINKCFG_Ips ** ipsTables ;

 Uint32 numPoolTables ;
 LINKCFG_Pool ** poolTables ;

 Uint32 numDataTables ;
 LINKCFG_DataDrv ** dataTables ;

 Uint32 numMqts ;
 LINKCFG_Mqt * mqtObjects ;

 Uint32 numRingIo ;
 LINKCFG_RingIo * ringIoObjects ;

 Uint32 numMpList ;
 LINKCFG_MpList * mplistObjects ;

 Uint32 numMpcs ;
 LINKCFG_Mpcs * mpcsObjects ;

 LINKCFG_Log * logObject ;
} LINKCFG_Object ;

Fields

gppObject Pointer to the GPP object.

numDsps Number of DSPs connected to the GPP.

dspObjects Pointer to the array of DSP objects.

Page 20 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

linkDrvObjects Pointer to the array of link objects.

numMemTables Number of MEM tables specified in configuration database.

memTables Pointer to the array of memory information table arrays.

numIpsTables Number of IPS tables.

ipsTables Pointer to the array of IPS table arrays.

numPoolTables Number of POOL tables.

poolTables Pointer to the array of POOL table arrays.

numDataTables Number of data tables.

dataTables Pointer to the array of data table arrays.

numMqts Number of Message Queue Transports.

mqtObjects Pointer to the array of MQT objects.

numRingIo Number of RingIO tables.

ringIoObjects Pointer to the array of RingIO tables.

numMpList Number of MPLIST tables.

mpListObjects Pointer to the array of MPLIST tables.

numMpcs Number of MPCS tables.

mpcsObjects Pointer to the array of MPCS tables.

logObject Pointer to the LOG object.

Comments

An instance of the LINKCFG_Object is linked into the DSPLINK user-side library by

default. This contains the default configuration provided with DSPLINK. The

application may override this configuration by providing a pointer to its own instance

of the LINKCFG_Object structure.

Constraints

None.

See Also
LINKCFG_Gpp
LINKCFG_Dsp
LINKCFG_LinkDrv
LINKCFG_MemEntry
LINKCFG_Ips
LINKCFG_Pool
LINKCFG_DataDrv
LINKCFG_Mqt
LINKCFG_RingIo

Page 21 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

LINKCFG_MpList
LINKCFG_Mpcs
LINKCFG_Log

Page 22 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.2 LINKCFG_Gpp

This structure defines the configuration structure for the GPP.

Definition
typedef struct LINKCFG_Gpp_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 maxMsgqs ;
 Uint32 maxChnlQueue ;
 Uint32 poolTableId ;
 Uint32 numPools ;
 Uint32 probeRtcId ;
 Uint32 probeIntId ;
} LINKCFG_Gpp ;

Fields

name Name of GPP Processor.

maxMsgqs Maximum MSGQs that can be opened on the GPP.

maxChnlQueue Maximum Queue Length for all channels created on the GPP.

poolTableId POOL table ID to be used for intra-GPP communication. A

value of -1 indicates that no POOL is required by the GPP.

numPools Number of POOLs within the pool table for the GPP.

probeRtcId Real Time Clock ID for PROBE.

probeIntId Interrupt ID for PROBE.

Comments

An instance of the LINKCFG_Gpp object is provided, with information about the GPP

object in the system.

Constraints

None.

See Also
LINKCFG_Object

Page 23 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.3 LINKCFG_Dsp

This structure defines the configuration structure for the DSP.

Definition
typedef struct LINKCFG_Dsp_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 dspArch ;
 Char8 loaderName [DSP_MAX_ST RLEN] ;
 Bool loadSymbols ;
 Bool autoStart ;
 Char8 execName [DSP_MAX_STRL EN] ;
 Bool doPowerCtrl ;
 Uint32 resumeAddr ;
 Uint32 resetVector ;
 Uint32 resetCodeSize ;
 Uint32 maduSize ;
 Uint32 endian ;
 Uint32 wordSwap ;
 Uint32 memTableId ;
 Uint32 memEntries ;
 Uint32 linkDrvId ;
} LINKCFG_Dsp ;

Fields

name Name of DSP processor.

dspArch Architecture of the DSP.

loaderName Name of loader to be used for loading the DSP executable.

loadSymbols Indicates whether symbols from the DSP executable should

be loaded.

autoStart AutoStart flag indicating whether a default DSP image should

be loaded on startup. Currently not supported.

execName Name of executable to load in case autostart is used.

doPowerCtrl Indicates whether DSP/BIOS LINK should do the power

control for the DSP.

resumeAddr The resume address after hibernating.

resetVector Address of reset vector of DSP.

resetCodeSize Size of code at DSP Reset Vector.

maduSize Minimum addressable unit on the DSP.

endian Endianism info of DSP.

wordSwap Indicates whether words need to be swapped while writing

into the memory for the DSP.

memTableId Table number of the MEM entries for this DSP.

Page 24 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

memEntries Number of entries in the MEM table.

linkDrvId Link Driver table identifier for this DSP.

Comments

An instance of the LINKCFG_Dsp object is provided for each DSP in the system.

Constraints

None.

See Also
LINKCFG_Object

Page 25 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.4 LINKCFG_MemEntry

This structure defines an entry in the MEM table.

Definition
typedef struct LINKCFG_MemEntry_tag {
 Uint32 entry ;
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 physAddr ;
 Uint32 dspVirtAddr ;
 Uint32 gppVirtAddr ;
 Uint32 size ;
 Bool shared ;
} LINKCFG_MemEntry ;

Fields

entry Entry number in the memory table.

name Name identifying the memory region.

physAddr Physical address of the memory region.

dspVirtAddr DSP virtual address of the memory region.

gppVirtAddr
GPP virtual address of the memory region. If specified as -1,

the GPP virtual address is assumed to be invalid, and shall
be set internally within the DSPLINK driver.

size Size of the memory region.

shared Flag indicating whether the memory region is shared

between GPP and DSP.

Comments

The configuration contains one or more memory tables, each containing a number of

memory entries of the type LINKCFG_MemEntry . Each DSP object contains

information about the memory table for the DSP.

Constraints

None.

See Also
LINKCFG_Object

Page 26 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.5 LINKCFG_LinkDrv

This structure defines the configuration information for the physical link driver.

Definition
typedef struct LINKCFG_LinkDrv_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 hshkPollCount ;
 Uint32 memEntry ;
 Uint32 ipsTableId ;
 Uint32 numIpsEntries ;
 Uint32 poolTableId ;
 Uint32 numPools ;
 Uint32 dataTableId ;
 Uint32 numDataDrivers ;
 Uint32 mqtId ;
 Uint32 ringIoTableId ;
 Uint32 mplistTableId ;
 Uint32 mpcsTableId ;
} LINKCFG_LinkDrv ;

Fields

name Name of the physical link driver.

hshkPollCount

Poll count to be used for the handshake between GPP and

DSP. The GPP spins in a loop for number of iterations equal

to the handshake poll count or till the DSP completes its
handshake. A value of -1 indicates infinite wait.

memEntry
MEM Entry for the memory area used by this physical link.

This field is optional and can be specified as -1 in case a MEM
entry is not required.

ipsTableId IPS table ID.

numIpsEntries Number of IPS table entries for this link driver.

poolTableId POOL table ID.

numPools Number of POOLs within the pool table for this link driver.

dataTableId Table number of the data driver(s) used with this DSP.

numDataDrivers Number of data drivers used with this DSP.

mqtId The ID of the MQT which is to be used for this DSP.

ringIoTableId Table number of the RINGIO object(s) for this DSP.

mplistTableId Table number of the MPLIST object(s) for this DSP.

mpcsTableId Table number of the MPCS object(s) for this DSP.

Page 27 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

 Comments

An instance of the LINKCFG_LinkDrv object is provided for every DSP in the system,

with information about the physical link connecting the GPP and the DSP.

Constraints

None.

See Also
LINKCFG_Object

Page 28 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.6 LINKCFG_Ips

This structure defines the Configuration information for the Inter-processor Signaling

Component.

Definition
typedef struct LINKCFG_Ips_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 numIpsEvents ;
 Uint32 memEntry ;
 Uint32 gppIntId ;
 Uint32 dspIntId ;
 Uint32 arg1 ;
 Uint32 arg2 ;
} LINKCFG_Ips ;

Fields

name Name of the IPS component.

numIpsEvents Number of events supported by the IPS.

memEntry
MEM entry for the memory area used for this IPS component.

This field is optional and can be specified as -1 in case a MEM
entry is not required.

gppIntId Interrupt Number to be used by the IPS on GPP-side.

dspIntId Interrupt Number to be used by the IPS on DSP-side.

arg1 First IPS-specific optional argument.

arg2 Second IPS-specific optional argument.

Comments

The physical link driver between GPP and DSP may have one or more Inter-processor

Signaling components connecting the GPP and DSP. Information about each IPS

component is provided within the LINKCFG_Ips object. Tables of IPS objects are

present within the configuration, and each link driver indicates the IPS table ID used

by it.

Constraints

None.

See Also
LINKCFG_Object

Page 29 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.7 LINKCFG_Pool

This structure defines the configuration information for a buffer pool, from which

buffers for use with DSPLINK can be allocated through the POOL interface(s).

Definition
typedef struct LINKCFG_Pool_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 memEntry ;
 Uint32 poolSize ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
 Uint32 arg1 ;
 Uint32 arg2 ;
} LINKCFG_Pool ;

Fields

name Name of the pool.

memEntry
MEM Entry for the memory area used by this buffer pool. This

field is optional and can be specified as -1 in case a MEM
entry is not required.

poolSize Size of the buffer pool.

ipsId ID of the IPS used (if any). A value of -1 indicates that no

IPS is required by the pool.

ipsEventNo IPS Event number associated with POOL (if any). A value of

-1 indicates that no IPS is required by the pool.

arg1 First optional pool-specific argument.

arg2 Second optional pool-specific argument.

Comments

Multiple pools may be configured within the system. Configuration information about

one pool instance is present in an instance of the LINKCFG_Pool object. The pool

instance is associated with pool ID matching the index number of the pool in the pool

table.

Constraints

None.

See Also
LINKCFG_Object

Page 30 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.8 LINKCFG_DataDrv

This structure defines the configuration structure for the data streaming driver using

the CHNL component.

Definition
typedef struct LINKCFG_DataDrv_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 baseChnlId ;
 Uint32 numChannels ;
 Uint32 maxBufSize ;
 Uint32 memEntry ;
 Uint32 poolId ;
 Uint32 queuePerChnl ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
 Uint32 arg1 ;
 Uint32 arg2 ;
} LINKCFG_DataDrv ;

Fields

name Name of the data transfer driver.

baseChnlId Base channel ID for this data driver.

numChannels Number of logical channels for this data driver.

maxBufSize
Maximum size of data buffer supported by this data driver. If

no limit is imposed by the driver, a value of -1 can be
specified.

memEntry
MEM entry for the memory area for data streaming driver.

This field is optional and can be specified as -1 in case a MEM
entry is not required.

poolId Identifier for the pool from where buffers are allocated.

queuePerChnl Buffer Queue length on each channel supported by the data

driver.

ipsId ID of the IPS to be used (if any). A value of -1 indicates that

no IPS is required by the data driver.

ipsEventNo
IPS Event number associated with data driver (if any). A

value of -1 indicates that no IPS is required by the data
driver.

arg1 First optional data driver specific argument. The significance

of this argument is specific to a data driver.

arg2 Second optional data driver specific argument 2. The

significance of this argument is specific to a data driver.

Page 31 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

Comments

Each instance of the LINKCFG_DataDrv object contains configuration information

about a data streaming driver connecting the GPP and a DSP. The data driver is used

by the CHNL component. Each GPP-DSP connection may have one or more data

drivers, indicated by the data table ID within the DSP object. The data driver to be

used between the GPP and DSP is identified on the basis of the channel ID used. The

base channel ID and maximum channels are specified by the data driver as part of

its configuration.

Constraints

None.

See Also
LINKCFG_Object

Page 32 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.9 LINKCFG_Mqt

This structure defines the configuration structure for the Message Queue Transport.

Definition
typedef struct LINKCFG_Mqt_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 memEntry ;
 Uint32 maxMsgSize ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
 Uint32 arg1 ;
 Uint32 arg2 ;
} LINKCFG_Mqt ;

Fields

name Name of the MQT.

memEntry
MEM entry id for the memory area used by this MQT. This

field is optional and can be specified as -1 in case a MEM
entry is not required.

maxMsgSize Maximum size of message supported by MQT. May be -1 if

there is no limit on maximum message size for the MQT.

ipsId ID of the IPS to be used (if any). A value of -1 indicates that

no IPS is required by the MQT.

ipsEventNo IPS Event number associated with MQT (if any). A value of -1

indicates that no IPS is required by the MQT.

arg1 First optional argument for this MQT. The significance of this

argument is specific to the MQT.

arg2 Second optional argument for this MQT. The significance of

this argument is specific to the MQT.

Comments

Each instance of the LINKCFG_Mqt object provides configuration information about a

Message Queue Transport connecting the GPP and a DSP. There can be only one

MQT configured at a time between the GPP and each DSP.

Constraints

None.

See Also
LINKCFG_Object

Page 33 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.10 LINKCFG_RingIo

This structure defines the configuration structure for the RingIO component.

Definition
typedef struct LINKCFG_RingIo_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 memEntry ;
 Uint32 maxEntries ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
} LINKCFG_RingIo ;

Fields

name Name of the RingIO.

memEntry MEM entry ID for the memory area used by this RingIO.

maxEntries Maximum number of RingIO instances supported by the

RingIO.

ipsId ID of the IPS to be used.

ipsEventNo IPS Event number associated with the RingIO.

Comments

Each instance of the LINKCFG_RingIo object provides configuration information

about a RingIO transport connecting the GPP and a DSP. There can be only one

RingIO transport configured at a time between the GPP and each DSP.

Constraints

None.

See Also
LINKCFG_Object

Page 34 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.11 LINKCFG_MpList

This structure defines the configuration structure for the MPLIST component.

Definition
typedef struct LINKCFG_MpList_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 memEntry ;
 Uint32 maxEntries ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
} LINKCFG_MpList ;

Fields

name Name of the MPLIST.

memEntry MEM entry ID for the memory area used by this MPLIST.

maxEntries Maximum number of MPLIST instances supported by the

MPLIST.

ipsId ID of the IPS to be used (if any). A value of -1 indicates that

no IPS is required by the MPLIST.

ipsEventNo IPS Event number associated with MPLIST (if any). A value of

-1 indicates that no IPS is required by the MPLIST.

Comments

Each instance of the LINKCFG_MpList object provides configuration information

about an MPLIST transport connecting the GPP and a DSP. There can be only one

MPLIST transport configured at a time between the GPP and each DSP.

Constraints

None.

See Also
LINKCFG_Object

Page 35 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.12 LINKCFG_Mpcs

This structure defines the configuration structure for the MPCS component.

Definition
typedef struct LINKCFG_Mpcs_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 memEntry ;
 Uint32 maxEntries ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
} LINKCFG_Mpcs ;

Fields

name Name of the MPCS.

memEntry MEM entry ID for the memory area used by this MPCS.

maxEntries Maximum number of MPCS instances supported by the MPCS.

ipsId ID of the IPS to be used (if any). A value of -1 indicates that

no IPS is required by the MPCS.

ipsEventNo IPS Event number associated with MPLIST (if any). A value of

-1 indicates that no IPS is required by the MPCS.

Comments

Each instance of the LINKCFG_Mpcs object provides configuration information about

an MPCS transport connecting the GPP and a DSP. There can be only one MPCS

transport configured at a time between the GPP and each DSP.

Constraints

None.

See Also
LINKCFG_Object

Page 36 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.2.13 LINKCFG_Log

This structure defines the configuration structure for the LOG component.

Definition
typedef struct LINKCFG_Log_tag {
 Bool gdMsgqPut ;
 Bool gdMsgqSendInt ;
 Bool gdMsgqIsr ;
 Bool gdMsgqQue ;

 Bool dgMsgqPut ;
 Bool dgMsgqSendInt ;
 Bool dgMsgqIsr ;
 Bool dgMsgqQue ;

 Bool gdChnlIssueStart ;
 Bool gdChnlIssueQue ;
 Bool gdChnlIssueCompl ;

 Bool gdChnlXferStart ;
 Bool gdChnlXferProcess ;
 Bool gdChnlXferCompl ;

 Bool gdChnlReclStart ;
 Bool gdChnlReclPend ;
 Bool gdChnlReclPost ;
 Bool gdChnlReclCompl ;

 Bool dgChnlIssueQue ;

 Bool dgChnlXferStart ;
 Bool dgChnlXferProcess ;
 Bool dgChnlXferCompl ;

 Bool dgChnlReclPend ;
 Bool dgChnlReclPost ;

 Uint32 msgIdRangeStart ;
 Uint32 msgIdRangeEnd ;
} LINKCFG_Log ;

Fields

gdMsgqPut GPP->DSP MSG Transfer - MSGQ_Put call.

gdMsgqSendInt GPP->DSP MSG Transfer - GPP sends interrupt.

gdMsgqIsr GPP->DSP MSG Transfer - DSP receives interrupt.

gdMsgqQue GPP->DSP MSG Transfer - Message queued at DSP.

dgMsgqPut DSP->GPP MSG Transfer - MSGQ_Put call.

dgMsgqSendInt DSP->GPP MSG Transfer - DSP sends interrupt.

dgMsgqIsr DSP->GPP MSG Transfer - GPP receives interrupt.

Page 37 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

dgMsgqQue DSP->GPP MSG Transfer - Message queued at GPP.

gdChnlIssueStart GPP->DSP CHNL Transfer - Entering inside ISSUE call.

gdChnlIssueQue GPP->DSP CHNL Transfer - ISSUE: Buffer is queued in

internal

gdChnlIssueCompl GPP->DSP CHNL Transfer - ISSUE call completed.

gdChnlXferStart GPP->DSP CHNL Transfer - Initiating a buffer transfer by

GPP.

gdChnlXferProcess GPP->DSP CHNL Transfer - Actual transfer of buffer is going

to take place.

gdChnlXferCompl GPP->DSP CHNL Transfer - Buffer transfer is complete.

gdChnlReclStart GPP->DSP CHNL Transfer - Entering RECLAIM call.

gdChnlReclPend GPP->DSP CHNL Transfer - RECLAIM: Wait on a semaphore.

gdChnlReclPost GPP->DSP CHNL Transfer - RECLAIM: Posting the

Semaphore.

gdChnlReclCompl GPP->DSP CHNL Transfer - RECLAIM call completed.

dgChnlIssueQue DSP->GPP CHNL Transfer - ISSUE: Buffer is queued in

internal structure on DSP.

dgChnlXferStart DSP->GPP CHNL Transfer - Initiating a buffer transfer by

DSP.

dgChnlXferProcess DSP->GPP CHNL Transfer - Actual transfer of buffer is going

to take place.

dgChnlXferCompl DSP->GPP CHNL Transfer - Buffer transfer is complete.

dgChnlReclPend DSP->GPP CHNL Transfer - RECLAIM: Wait on a semaphore.

dgChnlReclPost DSP->GPP CHNL Transfer - RECLAIM: Posting the

Semaphore.

msgIdRangeStart MSG ID range: lower limit.

msgIdRangeEnd MSG ID range: upper limit.

Comments

An instance of the LINKCFG_Log object is provided, with information about the LOG

component in the system.

Constraints

None.

See Also
LINKCFG_Object

Page 38 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

7.3 API Definition

7.3.1 PROC_setup

This function sets up the necessary data structures for the PROC sub-component.

Syntax
DSP_STATUS PROC_setup (LINKCFG_Object * linkCfg) ;

Arguments

IN OPT LINKCFG_Object * linkCfg

Pointer to the configuration information structure for DSP/BIOS™ LINK.

If NULL, indicates that default configuration should be used.

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

A version of this API is also provided, which does not take any parameters, for

backward compatibility with existing applications:

#define PROC_Setup PROC_setup (NULL)

Constraints

None.

See Also
LINKCFG_Object

Page 39 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8 LDRV
This section describes the low-level design for the DSPLINK dynamic configuration

within the link driver layer.

8.1 Constants & Enumerations
None.

8.2 Typedefs & Data Structures

8.2.1 CFGMAP_Object

This structure defines the object containing all configuration mapping information for

DSP/BIOS LINK.

Definition
typedef struct CFGMAP_Object_tag {
 Uint32 numDsps ;
 CFGMAP_Dsp * dspObjects ;

 Uint32 numLoaders ;
 CFGMAP_Loader * loaders ;

 Uint32 numLinkDrvs ;
 CFGMAP_LinkDrv * linkDrvObjects ;

 Uint32 numIps ;
 CFGMAP_Ips * ipsObjects ;

#if defined (POOL_COMPONENT)
 Uint32 numPools ;
 CFGMAP_Pool * poolObjects ;
#endif /* if defined (POOL_COMPONENT) */

#if defined (CHNL_COMPONENT)
 Uint32 numDataDrivers ;
 CFGMAP_DataDrv * dataObjects ;
#endif /* if defined (CHNL_COMPONENT) */

#if defined (MSGQ_COMPONENT)
 Uint32 numMqts ;
 CFGMAP_Mqt * mqtObjects ;
#endif /* if defined (MSGQ_COMPONENT) */
} CFGMAP_Object ;

Fields

numDsps Number of DSPs supported for this platform.

dspObjects Pointer to the array of DSP configuration mapping objects.

numLoaders Number of DSP executable loaders supported for this

platform.

Page 40 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

loaders Pointer to the array of DSP executable loader configuration

mapping objects.

numLinkDrvs Number of types of link drivers supported for this platform.

linkDrvObjects Pointer to the array of link driver configuration mapping

objects.

numIps Number of different types of IPS supported for this platform.

ipsObjects Pointer to the array of IPSs configuration mapping objects.

numPools Number of different types of POOLs supported for this

platform. Only defined if POOL_COMPONENT is used.

poolObjects Pointer to the array of POOL configuration mapping objects.

Only defined if POOL_COMPONENT is used.

numDataDrivers Number of different types of data drivers supported for this

platform. Only defined if CHNL_COMPONENT is used.

dataObjects Pointer to the array of data driver configuration mapping

objects. Only defined if CHNL_COMPONENT is used.

numMqts Number of different types of MQTs supported for this

platform. Only defined if MSGQ_COMPONENT is used.

mqtObjects Pointer to the array of MQT configuration mapping objects.

Pointer to the array of MQT configuration mapping objects.

Comments

An instance of the CFGMAP_Object object provides information that maps function

table interfaces and function pointers for required modules to the user-level

configuration.

Constraints

None.

See Also
CFGMAP_Dsp
CFGMAP_Loader
CFGMAP_LinkDrv
CFGMAP_Ips
CFGMAP_Pool
CFGMAP_DataDrv
CFGMAP_Mqt

Page 41 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.2 CFGMAP_Dsp

This structure defines the configuration mapping structure for the DSP.

Definition
typedef struct CFGMAP_Dsp_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 DSP_Interface * interface ;
} CFGMAP_Dsp ;

Fields

name Name of DSP processor.

interface Function pointer interface table for accessing the DSP.

Comments

Each instance of the CFGMAP_Dsp object provides configuration mapping information

for each type of DSP.

Constraints

None.

See Also
CFGMAP_Object

Page 42 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.3 CFGMAP_Loader

This structure defines the configuration mapping structure for the DSP executable

loader.

Definition
typedef struct CFGMAP_Loader_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 LOADER_Interface * interface ;
} CFGMAP_Loader ;

Fields

name Name of DSP executable loader.

interface Function pointer interface table for the DSP executable

loader.

Comments

Each instance of the CFGMAP_Loader object provides configuration mapping

information for each type of DSP executable loader.

Constraints

None.

See Also
CFGMAP_Object

Page 43 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.4 CFGMAP_LinkDrv

This structure defines the configuration mapping structure for the link driver.

Definition
typedef struct CFGMAP_LinkDrv_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 DRV_Interface * interface ;
} CFGMAP_LinkDrv ;

Fields

name Name of link driver.

interface Name of link driver.

Comments

Each instance of the CFGMAP_LinkDrv object provides configuration mapping

information for each type of link driver.

Constraints

None.

See Also
CFGMAP_Object

Page 44 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.5 CFGMAP_Ips

This structure defines the configuration mapping structure for the IPS component.

Definition
typedef struct CFGMAP_Ips_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 FnIpsInit init ;
 FnIpsExit exit ;
#if defined (DDSP_DEBUG)
 FnIpsDebug debug ;
#endif /* if defined (DDSP_DEBUG) */
} CFGMAP_Ips ;

Fields

name Name of IPS.

init Function pointer for the init function.

exit Function pointer for the exit function.

debug Function pointer for the exit function. Defined only if

DDSP_DEBUG is enabled.

Comments

Each instance of the CFGMAP_Ips object provides configuration mapping information

for each type of IPS.

Constraints

None.

See Also
CFGMAP_Object

Page 45 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.6 CFGMAP_Pool

This structure defines the configuration mapping structure for the POOL component.

Definition
typedef struct CFGMAP_Pool_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 FnPoolInit init ;
 FnPoolExit exit ;
 POOL_Interface * interface ;
} CFGMAP_Pool ;

Fields

name Name of the pool.

init Initialization function for the pool.

exit Finalization function for the pool.

interface Function pointer interface table for the pool.

Comments

Each instance of the CFGMAP_Pool object provides configuration mapping information

for each type of pool.

Constraints

None.

See Also
CFGMAP_Object

Page 46 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.7 CFGMAP_DataDrv

This structure defines the configuration mapping structure for the DATA driver

component.

Definition
typedef struct CFGMAP_DataDrv_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 DATA_Interface * interface ;
} CFGMAP_DataDrv ;

Fields

name Name of the data transfer driver.

interface Function pointer interface table for the data driver.

Comments

Each instance of the CFGMAP_DataDrv object provides configuration mapping

information for each type of data transfer driver.

Constraints

None.

See Also
CFGMAP_Object

Page 47 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.8 CFGMAP_Mqt

This structure defines the configuration mapping structure for the MQT component.

Definition
typedef struct CFGMAP_Mqt_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 MQT_Interface * interface ;
} CFGMAP_Mqt ;

Fields

name Name of the MQT.

interface Function pointer interface table for the MQT.

Comments

Each instance of the CFGMAP_Mqt object provides configuration mapping information

for each type of Message Queue Transport.

Constraints

None.

See Also
CFGMAP_Object

Page 48 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.9 LDRV_SMM_MemObject

This structure defines the memory object managed by the Shared Memory Manager

(SMM). This object contains all information about the shared memory region required

by the SMM.

Definition
typedef struct LDRV_SMM_MemObject_tag {
 LINKCFG_MemEntry * memEntry ;
 Uint32 curFreeOffset ;
} LDRV_SMM_MemObject ;

Fields

memEntry Pointer to memory entry in the configuration.

curFreeOffset
Current free offset within the shared memory region. The

memory from this offset onwards within this region is free to

be allocated.

Comments

An array of the LDRV_SMM_MemObject objects is maintained and managed within the

SMM component.

Constraints

None.

See Also
LDRV_SMM_Object

Page 49 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.2.10 LDRV_SMM_Object

This structure defines the Shared Memory Manager (SMM) object, which contains all

state information required by the Shared Memory Manager.

Definition
typedef struct LDRV_SMM_Object_tag {
 Uint32 numMemEntries ;
 LDRV_SMM_MemObject * memTable ;
} LDRV_SMM_Object ;

Fields

numMemEntries Number of memory entries within the memory table.

memTable Array of SMM memory objects.

Comments

One instance of the LDRV_SMM_Object is present for every DSP in the system.

Constraints

None.

See Also
LDRV_SMM_MemObject
LDRV_SMM_init ()

Page 50 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3 API Definition

8.3.1 LDRV_init

This function initializes the LDRV component. The implementation of this function is

OS-independent.

Syntax
DSP_STATUS LDRV_init (LINKCFG_Object * linkCfg) ;

Arguments

IN LINKCFG_Object * linkCfg

Pointer to the user-side configuration object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_ECONFIG Incorrect configuration.

DSP_EFAIL General failure.

Comments

This function initializes the LDRV component. It calls the module initialization

functions for all LDRV sub-components after getting the pointer to configuration

information (LDRV_LinkCfgPtr) . The validity of configuration values provided by the

user is verified during the execution of this function.

Constraints

None.

See Also
LDRV_exit ()

Page 51 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.2 LDRV_exit

This function finalizes the LDRV component. The implementation of this function is

OS-independent.

Syntax
DSP_STATUS LDRV_exit (Void) ;

Arguments

None.

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function clears configuration information stored within the LDRV component

(LDRV_LinkCfgPtr) after calling the module finalization functions for all LDRV sub-

components.

Constraints

None.

See Also
LDRV_init ()

Page 52 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.3 LDRV_getLinkCfg

This function gets the pointer to kernel configuration structure after creating it (if

required). The implementation of this function is OS-specific.

Syntax
DSP_STATUS LDRV_getLinkCfg (LINKCFG_Object * linkC fg,
 LINKCFG_Object ** knlLi nkCfg) ;

Arguments

IN LINKCFG_Object * linkCfg

Pointer to the user-side configuration object.

OUT LINKCFG_Object ** knlLinkCfg

Location to receive the pointer to the kernel-side configuration object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_ECONFIG Incorrect configuration.

DSP_EFAIL General failure.

Comments

This function returns a pointer to the kernel-side configuration structure. The

implementation of this function varies depending on the Operating System. For OSes

such as PrOS with no user-kernel separation, this function simply sets the returns

the specified pointer to the user-level configuration structure. For OSes such as

Linux, having user-kernel separation, this function allocates memory for the

configuration sub-structures in kernel memory space and copies the contents of the

specified configuration structure from user-space.

Constraints

None.

See Also
LDRV_freeLinkCfg ()

Page 53 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.4 LDRV_freeLinkCfg

This function frees any memory allocated for the kernel-side DSPLINK configuration

structure. The implementation of this function is OS-specific.

Syntax
DSP_STATUS LDRV_freeLinkCfg (LINKCFG_Object * knlL inkCfg) ;

Arguments

IN LINKCFG_Object * knlLinkCfg

Pointer to the kernel-side configuration object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_ECONFIG Incorrect configuration.

DSP_EFAIL General failure.

Comments

This function frees any memory allocated for the kernel-side configuration structure.

The implementation of this function varies depending on the Operating System. For

OSes such as PrOS with no user-kernel separation, this function does not perform

any actions. For OSes such as Linux, having user-kernel separation, this function

frees any memory allocated for the kernel-side configuration structure and sub-

structures allocated during initialization.

Constraints

None.

See Also
LDRV_getLinkCfg ()

Page 54 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.5 LDRV_SMM_moduleInit

This function initializes the LDRV_SMM module.

Syntax
DSP_STATUS LDRV_SMM_moduleInit (Void) ;

Arguments

None.

Return Value

DSP_SOK Operation successfully completed.

DSP_ECONFIG Incorrect configuration.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called once for the LDRV_SMM sub-component. It is called during

initialization of the LDRV component, done during PROC_setup ().

This function initializes the fields of LDRV_SMM state objects for all DSPs to indicate

that the LDRV_SMM component is not initialized.

Constraints

None.

See Also
LDRV_SMM_moduleExit ()

Page 55 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.6 LDRV_SMM_moduleExit

This function finalizes the LDRV_SMM module.

Syntax
DSP_STATUS LDRV_SMM_moduleExit (Void) ;

Arguments

None.

Return Value

DSP_SOK Operation successfully completed.

DSP_ECONFIG Incorrect configuration.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called once for the LDRV_SMM sub-component. It is called during

finalization of the LDRV component, done during PROC_destroy ().

This function resets the fields of LDRV_SMM state objects for all DSPs.

Constraints

None.

See Also
LDRV_SMM_moduleInit ()

Page 56 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.7 LDRV_SMM_init

This function initializes the Shared Memory Manger (SMM) component.

Syntax
DSP_STATUS LDRV_SMM_init (ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

ID of the DSP for which the SMM component is to be initialized.

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called once for every DSP in the system. It is called during

initialization of the LDRV_DRV component for each DSP.

This function searches within the DSPLINK configuration for the memory table for the

specified DSP, and initializes itself for the memory regions that are marked as

shared.

Constraints

None.

See Also
LDRV_SMM_exit ()

Page 57 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.8 LDRV_SMM_exit

This function finalizes the Shared Memory Manger (SMM) component.

Syntax
DSP_STATUS LDRV_SMM_exit (ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

ID of the DSP for which the SMM component is to be finalized.

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called once for every DSP in the system. It is called during

finalization of the LDRV_DRV component for each DSP.

This function frees any memory allocated during initialization of the SMM component,

and finalizes the state object.

Constraints

None.

See Also
LDRV_SMM_init ()

Page 58 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.9 LDRV_SMM_alloc

This function allocates a chunk of memory of the requested size from the specified

shared memory region.

Syntax
DSP_STATUS LDRV_SMM_alloc (ProcessorId dspId,
 Uint32 memEntryId,
 Uint32 * physAddr,
 Uint32 * dspVirtAddr,
 Uint32 * gppVirtAddr,
 Uint32 size) ;

Arguments

IN ProcessorId dspId

ID of the DSP with which the memory region is shared.

IN Uint32 memEntryId

ID of the memory entry from which memory is to be allocated.

OUT Uint32 * physAddr

Location to receive the physical address of the allocated memory chunk.

If NULL, the address is not returned.

OUT Uint32 * dspVirtAddr

Location to receive the DSP virtual address of the allocated memory

chunk. If NULL, the address is not returned.

OUT Uint32 * gppVirtAddr

Location to receive the GPP kernel virtual address of the allocated

memory chunk. If NULL, the address is not returned.

IN Uint32 size

Size of the memory chunk to be allocated.

Return Value

DSP_SOK Operation successfully completed.

DSP_EVALUE Memory entry ID does not correspond to a shared

region.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called by all the DSPLINK components to allocate their shared

memory requirements.

Page 59 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

Constraints

None.

See Also
LDRV_SMM_free ()

Page 60 of 60 Version 0.50

DSP/BIOS™ LINK

LNK 137 DES

DYNAMIC CONFIGURATION

8.3.10 LDRV_SMM_free

This function frees the chunk of memory of the requested size into the specified

shared memory region.

Syntax
DSP_STATUS LDRV_SMM_free (ProcessorId dspId,
 Uint32 memEntryId,
 Uint32 size) ;

Arguments

IN ProcessorId dspId

ID of the DSP with which the memory region is shared.

IN Uint32 memEntryId

ID of the memory entry into which memory is to be freed.

IN Uint32 size

Size of the memory chunk to be freed.

Return Value

DSP_SOK Operation successfully completed.

DSP_EVALUE Memory entry ID does not correspond to a shared

region.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called by all the DSPLINK components to free their shared memory

allocations.

Constraints

The allocated memory regions must be freed in the reverse order of their allocation.

Due to this restriction, the address of memory chunk to be freed is not required for

this function.

See Also
LDRV_SMM_alloc ()

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	Configuration file
	Change in configuration
	Shared memory configuration
	Configuration of components
	DSP-side configuration

	Sequence Diagrams
	Configuration setup
	GPP-side Initialization
	GPP-side Handshake
	DSP-side Initialization

	API
	Constants & Enumerations
	Typedefs & Data Structures
	LINKCFG_Object
	LINKCFG_Gpp
	LINKCFG_Dsp
	LINKCFG_MemEntry
	LINKCFG_LinkDrv
	LINKCFG_Ips
	LINKCFG_Pool
	LINKCFG_DataDrv
	LINKCFG_Mqt
	LINKCFG_RingIo
	LINKCFG_MpList
	LINKCFG_Mpcs
	LINKCFG_Log

	API Definition
	PROC_setup

	LDRV
	Constants & Enumerations
	Typedefs & Data Structures
	CFGMAP_Object
	CFGMAP_Dsp
	CFGMAP_Loader
	CFGMAP_LinkDrv
	CFGMAP_Ips
	CFGMAP_Pool
	CFGMAP_DataDrv
	CFGMAP_Mqt
	LDRV_SMM_MemObject
	LDRV_SMM_Object

	API Definition
	LDRV_init
	LDRV_exit
	LDRV_getLinkCfg
	LDRV_freeLinkCfg
	LDRV_SMM_moduleInit
	LDRV_SMM_moduleExit
	LDRV_SMM_init
	LDRV_SMM_exit
	LDRV_SMM_alloc
	LDRV_SMM_free

