

Template Version 1.2

Version 0.60 Page 1 of 30

DESIGN DOCUMENT

DSP/BIOS™ LINK

MPCS DESIGN

LNK 133 DES

Version 0.60

Page 2 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

This page has been intentionally left blank.

Page 3 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

This page has been intentionally left blank.

Page 5 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

TABLE OF CONTENTS

1 Introduction ... 6
1.1 Purpose & Scope ... 6
1.2 Terms & Abbreviations ... 6
1.3 References ... 6
1.4 Overview.. 6

2 Requirements ... 7

3 Assumptions... 8

4 Constraints ... 8

5 High Level Design... 9

6 Sequence Diagrams.. 10

7 Low level design... 11
7.1 Constants & Enumerations...11
7.2 Typedefs & Data Structures ...13
7.3 API Definition...20

Page 6 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

1 Introduction

1.1 Purpose & Scope
This document describes the design and interface definition of the multi-processor

critical section component.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

MPCS Multi-processor Critical Section

SMA Shared Memory Allocator

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. LNK 084 PRD DSP/BIOS™ LINK Product Requirement Document

2. LNK 082 DES POOL Design Document

3. LNK 132 DES PCI Driver Redesign

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

This module provides the design for multi-processor critical section (MPCS)

component.

This document gives an overview of the MPCS component on the GPP and DSP-sides

of DSPLINK. The document also gives a detailed design of the MPCS component.

Page 7 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

2 Requirements
Please refer to section 16.3 of LNK 084 PRD - DSP/BIOS™ LINK Product Requirement

Document.

On devices with shared memory, applications may need to define their own data

structures on shared memory. Such data structures can be used for communicating

small pieces of information between the processors. However, applications need to

ensure mutually exclusive access to such data structures to ensure consistency of

data. To enable such scenarios, the product shall provide a new module that

provides this functionality.

R110 This release shall support management of a shared memory specific lock on

devices that support shared memory.

R111 The APIs shall enable applications to acquire and release the lock in an

efficient manner.

R112 The APIs shall allow protected access to the data structures from processes

running on remote processor as well as on the same processor.

In addition, the MPCS component must meet the following generic requirements:

1. The API exported by the MPCS component shall be common across different GPP

operating systems.

2. Both the DSP as well as the GPP side shall expose same API.

3. Multiple threads can perform lock and unlock operations on the MPCS objects

created in the system. However, ownership shall come into play while

creation/deletion of the MPCS object. The processor which creates the MPCS

object shall be the one which deletes it.

Page 8 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

3 Assumptions
The MPCS design makes the following assumptions:

1. The hardware allows provision of a buffer pool, to which both the GPP and the

DSP have access.

4 Constraints
� The MPCS object must be allocated and freed through POOL APIs provided by

DSPLINK. Elements allocated through the POOL API can be accessed by multiple

processors. Any other means for memory allocation (for example: standard OS

calls) will fail as the elements cannot be accessed across processors.

� The user has to use unique identifier to identify individual MPCS objects across

the system.

Page 9 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

5 High Level Design
In a multiprocessor system having shared access to a memory region, a multi-

processor critical section between GPP and DSP can be implemented. This MPCS

object can be used by applications to provide mutually exclusive access to a shared

region between multiple processors, and multiple processes on each processor. In

cases where a shared memory region does not exist, the module shall internally

perform the synchronization required to provide the protection required by the MPCS

component.

The MPCS component provides the following functionality to user applications:

� Creation of an MPCS object identified by a system-wide unique name.

� Deletion of an MPCS object identified by a system-wide unique name.

� Opening the MPCS object identified by a system-wide unique name, to get a

handle to it. The handle returned by this API can be used for accessing the MPCS

object in the process space of the caller.

� Closing the MPCS object identified by its handle.

� Entering the critical section specified by the MPCS object handle.

� Leaving the critical section specified by the MPCS object handle.

If provided by the user, the memory required for the MPCS object must be allocated

from a shared pool. Alternatively, if no memory is provided during creation of the

object, the pool ID specified is used to internally allocate the MPCS object.

Page 10 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

6 Sequence Diagrams
None.

Page 11 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7 Low level design
The MPCS component has the same design on both the GPP and DSP sides. This

section primarily refers to the GPP side design. However, the DSP-side design shall

contain the same enumerations, structures, and API definitions, with minimal

changes for different types on the GPP and DSP-sides.

7.1 Constants & Enumerations

7.1.1 MPCS_NUMENTRIES

Defines the maximum number of MPCS objects that can be created in the system.

Definition
#define MPCS_NUMENTRIES 256

Comments

This definition is present in the header file generated by the configuration script

based on information provided in the configuration file for the platform:

CFG_<platform.TXT. The value of the constant may vary depending on the value

specified by the user in the configuration file.

Constraints

None.

See Also
MPCS_Region

7.1.2 MPCS_TABLE_SIZE

Defines the size of the MPCS region in the shared region containing information

about all MPCS objects

Definition
#define MPCS_TABLE_SIZE sizeof (MPCS_Region)

Comments

This definition gives the size of the MPCS region, used by the DSPLINK static

configuration to calculate the amount of memory that needs to be reserved for the

MPCS component.

Constraints

None.

See Also
MPCS_Region

7.1.3 MPCS_INVALID_ID

Defines an invalid value for identifier(s) used by the MPCS component

Definition
#define MPCS_INVALID_ID (Uint32) -1

Page 12 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Comments

The invalid ID is used to indicate that an identifier value is not a valid value. For

example, if used as the poolId for the MPCS object, it indicates that a pool was not

used to allocate the object. This is useful for the global MPCS object used for

protecting the MPCS region entries.

Constraints

None.

See Also
None.

7.1.4 MPCS_RESV_LOCKNAME

Defines the special reserved name prefix of the MPCS object(s) which are not stored

in the entries table of the MPCS region.

Definition
#define MPCS_RESV_LOCKNAME "DSPLINK_MPCS_RESERVED"

Comments

This constant is provided to internal users of the MPCS component, where the

memory provided for the MPCS object may not be allocated from a pool, and the

object is not identified by name or stored in the entries table. This reserved prefix is

used for names of such MPCS objects.

Constraints

None.

See Also
MPCS_RESV_LOCKNAMELEN

7.1.5 MPCS_RESV_LOCKNAMELEN

Defines the string length of the special reserved name prefix of the MPCS object(s)

which are not stored in entries table of the MPCS region.

Definition
#define MPCS_RESV_LOCKNAMELEN 17

Comments

This constant is provided to internal users of the MPCS component, where the

memory provided for the MPCS object may not be allocated from a pool, and the

object is not identified by name or stored in the entries table. The reserved prefix of

length defined by this constant is used for the names of such MPCS objects.

Constraints

None.

See Also
MPCS_RESV_LOCKNAME

Page 13 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.2 Typedefs & Data Structures

7.2.1 MPCS_Attrs

This structure defines the attributes for creation of MPCS object.

Definition
typedef struct MPCS_Attrs_tag {
 Uint16 poolId ;
} MPCS_Attrs ;

Fields

poolId ID of the pool used to allocate the MPCS object.

Comments

The attributes can contain the pool ID specified by the user. This will determine from

which pool the MPCS_create () function will allocate memory for the MPCS.

Constraints

None.

See Also
None.

Page 14 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.2.2 MPCS_Entry

This structure defines the global entry structure for an MPCS object. Every MPCS

object in the system is identified through information present in the entry structure.

Definition
typedef struct MPCS_Entry_tag {
 Uint16 ownerProcId ;
 Uint16 poolId ;
 Pvoid physAddress ;
 Char8 name [DSP_MAX_STRLEN] ;
 ADD_PADDING (padding, MPCS_ENTRY_PADDING)
} MPCS_Entry ;

Fields

ownerProcId ID of the processor that created the MPCS object.

poolId ID of the pool used to allocate the MPCS object.

physAddress Physical address of the MPCS object.

name Unique system wide name used for identifying the MPCS

object.

padding Padding for alignment, depending on the platform.

Comments

The MPCS entry is created in a region accessible to all processors in the system. This

is used to identify and get information about the MPCS objects created in the

system.

Constraints

None.

See Also
MPCS_Region

Page 15 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.2.3 MPCS_Ctrl

This structure defines the control structure required by the MPCS component. It

contains information about all MPCS objects shared between the GPP and a specific

DSP.

Definition
typedef struct MPCS_Ctrl_tag {
 Uint32 isInitialized ;
 Uint32 dspId ;
 Uint32 maxEntries ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
 MPCS_Entry * dspAddrEntry ;
 ADD_PADDING (padding, MPCS_CTRL_PADDING)
 MPCS_ShObj lockObj ;
} MPCS_Ctrl ;

Fields

isInitialized Indicates whether the MPCS region has been initialized.

dspId ID of the DSP with which the MPCS region is shared.

maxEntries Maximum number of MPCS instances supported by the MPCS.

ipsId ID of the IPS to be used (if any). A value of -1 indicates that

no IPS is required by the MPCS.

ipsEventNo IPS Event number associated with MPCS (if any). A value of -

1 indicates that no IPS is required by the MPCS.

dspAddrEntry Pointer to array in DSP address space of MPCS objects that

can be created.

padding Padding for alignment, depending on the platform.

lockObj MPCS lock object to provide mutually exclusive access to the

MPCS region.

Comments

The MPCS control region is present within a region accessible to all processors in the

system. This is used to identify and get information about the MPCS objects created

in the system. The region is statically reserved through configuration.

Constraints

None.

See Also
MPCS_Entry

Page 16 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.2.4 MPCS_ProcObj

This structure defines an object for a single processor used by the Multiprocessor

Critical Section object.

Definition
typedef struct MPCS_ProcObj_tag {
 Uint32 localLock ;
 Uint16 flag ;
 Uint16 freeObject ;
#if defined (DDSP_PROFILE)
 Uint16 conflicts ;
 Uint16 numCalls ;
#endif
} MPCS_ProcObj ;

Fields

localLock
Local lock to be used for protection on specific processor. The

value stored also depends on the Operating System being
used.

flag Flags indicating whether the shared resource is being claimed

by the processor.

freeObject Contains information about whether the object was allocated

internally, and needs to be freed at the time of MPCS delete.

conflicts Number of conflicts that occurred in MPCS Enter. Defined

only when profiling is enabled.

numCalls Number of calls made to MPCS Enter. Defined only when

profiling is enabled.

Comments

The MPCS object contains one MPCS_ProcObj object for each of the processors it
provides mutually exclusive access to the shared objects from.

Constraints

None.

See Also
MPCS_Obj

Page 17 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.2.5 MPCS_ShObj

This structure defines the shared Multiprocessor Critical Section object, which is used

for protecting a specific critical section between multiple processors. The memory for

this object is accessible to the two processors using the MPCS object.

Definition
typedef struct MPCS_ShObj_tag {
volatile MPCS_ProcObj gppMpcsObj ;
 ADD_PADDING (gppPadding, MPCSOBJ_PROC_PADD ING)
volatile MPCS_ProcObj dspMpcsObj ;
 ADD_PADDING (dspPadding, MPCSOBJ_PROC_PADD ING)

volatile Uint32 mpcsId ;
volatile Uint16 turn ;
 ADD_PADDING (padding, DSPLINK_16BIT_PADDIN G)
} MPCS_ShObj ;

Fields

gppMpcsObj MPCS object for the GPP processor.

gppPadding Padding for alignment, depending on the platform.

dspMpcsObj MPCS object for the DSP processor.

dspPadding Padding for alignment, depending on the platform.

mpcsId MPCS Identifier for this object.

turn Indicates the processor that owns the turn to enter the

critical section.

padding Padding for alignment, depending on the platform.

Comments

One MPCS object is used to provide mutually exclusive access to any shared region

between the GPP and DSP.

Constraints

None.

See Also
MPCS_ProcObj

Page 18 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.2.6 MPCS_Obj

This structure defines the Multiprocessor Critical Section object, which is used for

protecting a specific critical section between multiple processors. This object is not

shared between the processors, and the object instance is specific to the process

creating the MPCS object.

Definition
typedef struct MPCS_Obj_tag {
 MPCS_ShObj * mpcsObj ;
 SYNC_USR_CsObject * syncCsObj ;
} MPCS_Obj ;

typedef MPCS_Obj * MPCS_Handle ;

Fields

mpcsObj Handle to the MPCS object in user space of the process.

syncCsObj Handle to the user-side SYNC CS object.

Comments

Each process using the MPCS object opens the MPCS object and gets a handle to the

object in its process space.

On the DSP-side, the MPCS_Obj is the same as the MPCS_ShObj.

Constraints

None.

See Also
MPCS_open ()

Page 19 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.2.7 MPCS_MemInfo

This structure contains memory information for the MPCS component. It is internally

used for mapping the MPCS memory into user space.

Definition
typedef struct MPCS_MemInfo_tag {
 ProcessorId procId ;
 Uint32 physAddr ;
 Uint32 kernAddr ;
 Uint32 userAddr ;
 Uint32 size ;
} MPCS_MemInfo ;

Fields

procId ID of the processor with which the MPCS region is shared

physAddr Physical address of the memory region for RingIO

kernAddr Kernel address of the memory region for RingIO

userAddr User address of the memory region for RingIO

size Size of the memory region for RingIO

Comments

This structure is not required on the DSP-side.

Constraints

None.

See Also
MPCS_init ()

Page 20 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3 API Definition

7.3.1 _MPCS_init

This function initializes the MPCS component.

Syntax
DSP_STATUS _MPCS_init (ProcessorId procId) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS region is to be shared.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called internally by DSPLINK and is not exposed to the user

applications.

This function performs the following operations:

� Map the statically reserved MPCS region to the user space of the calling process.

� Open the MPCS object within the region object used for protection of the MPCS

region.

Constraints

None.

See Also
_MPCS_exit ()

Page 21 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3.2 _MPCS_exit

This function finalizes the MPCS component.

Syntax
DSP_STATUS _MPCS_exit (ProcessorId procId) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS region is shared.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

Comments

This function is called internally by DSPLINK and is not exposed to the user

applications.

This function performs the following operations:

� Close the MPCS object within the region object used for protection of the MPCS

region.

� Unmap the statically reserved MPCS region from the user space of the calling

process.

Constraints

None.

See Also
_MPCS_init ()

Page 22 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3.3 MPCS_create

This function creates an MPCS object between the calling processor and the

processor whose ID is specified.

Syntax
DSP_STATUS MPCS_create (ProcessorId procId,
 Pstr name,
 MPCS_ShObj * mpcsObj,
 MPCS_Attrs * attrs) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN Pstr name

System-wide unique name for the MPCS object.

IN OPT MPCS_ShObj * mpcsObj

Pointer to the shared MPCS object. If memory for the MPCS object is

provided by the user, the MPCS object handle is not NULL. Otherwise, if

the memory is to be allocated by the MPCS component, the MPCS object

handle can be specified as NULL.

IN MPCS_attrs * attrs

Attributes for creation of the MPCS object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_EALREADYEXISTS The specified MPCS name already exists.

DSP_ERESOURCE All MPCS entries are currently in use.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Acquire lock for the MPCS region.

� Check if the user specified name already exists in the global MPCS region object.

If not, create an entry in the MPCS region.

� If user has not allocated memory for the MPCS object, allocate memory from the

user specified pool.

Page 23 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

� Initialize the MPCS object.

� Release lock for the MPCS region.

Constraints

The processor that creates the MPCS object must be the same as the processor that

deletes the object.

A call to MPCS_create () must be followed by a call to MPCS_open () to get a handle

to the MPCS object in the user space of the calling process.

See Also
MPCS_delete ()

Page 24 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3.4 MPCS_delete

This function deletes the specified MPCS object.

Syntax
DSP_STATUS MPCS_delete (ProcessorId procId,
 Pstr name) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN Pstr name

System-wide unique name for the MPCS object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND Specified MPCS object name does not exist.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Acquire lock for the MPCS region.

� Check if the user specified name exists in the global MPCS region object.

� Finalize the MPCS object.

� If the MPCS component had allocated memory for the MPCS object, free the

memory from the pool used for allocating the object.

� Remove the entry in the MPCS region.

� Release lock for the MPCS region.

Constraints

The processor that creates the MPCS object must be the same as the processor that

deletes the object.

See Also
MPCS_create ()

Page 25 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3.5 MPCS_open

This function opens an MPCS object specified by its name and gets a handle to the

object.

Syntax
DSP_STATUS MPCS_open (ProcessorId procId,
 Pstr name,
 MPCS_Handle * mpcsHandle) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN Pstr name

System-wide unique name for the MPCS object.

OUT MPCS_Handle * mpcsHandle

Location to receive the MPCS object handle, which is valid in the process

space of the calling process.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND Specified MPCS object name does not exist.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Call the internal function _MPCS_open () with the user-specified MPCS name and

NULL handle for address of shared MPCS object.

Constraints

Every process that needs to use the MPCS object must get a handle to the object by

calling this API.

See Also
MPCS_close ()

Page 26 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3.6 _MPCS_open

This internal function opens an MPCS object specified by its name and gets a handle

to the object. This function allows the user to open an MPCS object by a name with

special reserved prefix MPCS_RESV_LOCKNAME indicating that the object is not

registered within the MPCS entries table. For such objects, the user already has the

pointer to the MPCS shared object in its process space. Every process that needs to

use the MPCS object must get a handle to the object by calling this API.

Syntax
DSP_STATUS _MPCS_open (ProcessorId procId,
 Pstr name,
 MPCS_Handle * mpcsHandle ,
 MPCS_ShObj * mpcsShObj) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN Pstr name

System-wide unique name for the MPCS object. Specifying the name

with prefix as MPCS_RESV_LOCKNAME expects the user to pass the pointer

to the MPCS shared object through the mpcsShObj parameter.

OUT MPCS_Handle * mpcsHandle

Location to receive the MPCS object handle, which is valid in the process

space of the calling process.

IN OPT MPCS_ShObj * mpcsShObj

Pointer to the MPCS shared object in the caller's process space. This is

an optional argument that is provided if the user already has the pointer

to the MPCS shared object, and wishes to open the specific MPCS

object. This parameter must be specified by the user if the name used is

MPCS_RESV_LOCKNAME.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND Specified MPCS object name does not exist.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

DSP_SFREE The last close for specified MPCS resulted in it getting

closed.

Page 27 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

Comments

This function performs the following operations:

� Acquire lock for the MPCS region.

� Check if the user has specified the MPCS object name with prefix

MPCS_RESV_LOCKNAME. If yes, use the user-provided mpcsShObj as the address of
the shared MPCS object. If not, check if the user specified name exists in the

global MPCS region object, and translate the physical address of the shared

object to user space.

� Allocate the MPCS object in user process space.

� Get the address of the MPCS object in the user-space of the process through pool

address translation, and return this as the handle to MPCS object.

� For GPP-side: On the user-side, create a SYNC CS object for providing protection

between multiple processes.

� Release lock for the MPCS region.

Constraints

Every process that needs to use the MPCS object must get a handle to the object by

calling this API.

See Also
MPCS_close ()

Page 28 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3.7 MPCS_close

This function closes an MPCS object specified by its handle.

Syntax
DSP_STATUS MPCS_close (ProcessorId procId,
 MPCS_Handle mpcsHandle) ;

Arguments

IN ProcessorId procId

Identifier of the processor with which the MPCS object is to be shared.

IN MPCS_Handle mpcsHandle

Handle to the MPCS object to be closed.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND Specified MPCS object not found.

DSP_EACCESSDENIED The MPCS component has not been initialized.

DSP_EFAIL General failure.

DSP_SFREE The last close for specified MPCS resulted in it getting

closed.

Comments

This function performs the following operations:

� Acquire lock for the MPCS region.

� For GPP-side: On the user-side, delete the SYNC CS object used for providing

protection between multiple processes.

� Free the MPCS object allocated within the user process space.

� Release lock for the MPCS region.

Constraints

None.

See Also
MPCS_open ()

Page 29 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3.8 MPCS_enter

This function enters the critical section specified by the MPCS object.

Syntax
DSP_STATUS MPCS_enter (MPCS_Handle mpcsHandle) ;

Arguments

IN MPCS_Handle mpcsHandle

Handle to the MPCS object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Acquire the user-side SYNC CS.

� Indicate that the processor needs to use the resource by setting its flag to busy.

� Give away the turn to the other processor.

� Wait while the other process is using the resource and owns the turn.

Constraints

None.

See Also
MPCS_leave ()

Page 30 of 30 Version 0.60

DSP/BIOS™ LINK

LNK 133 DES

MPCS DESIGN

7.3.9 MPCS_leave

This function leaves the critical section specified by the MPCS object.

Syntax
DSP_STATUS MPCS_leave (MPCS_Handle mpcsHandle) ;

Arguments

IN MPCS_Handle mpcsHandle

Handle to the MPCS object.

Return Value

DSP_SOK Operation successfully completed.

DSP_EFAIL General failure.

Comments

This function performs the following operations:

� Indicate that the processor no longer needs to use the resource by resetting its

flag to free.

� Release the user-side SYNC CS.

Constraints

None.

See Also
MPCS_enter ()

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	Sequence Diagrams
	Low level design
	Constants & Enumerations
	MPCS_NUMENTRIES
	MPCS_TABLE_SIZE
	MPCS_INVALID_ID
	MPCS_RESV_LOCKNAME
	MPCS_RESV_LOCKNAMELEN

	Typedefs & Data Structures
	MPCS_Attrs
	MPCS_Entry
	MPCS_Ctrl
	MPCS_ProcObj
	MPCS_ShObj
	MPCS_Obj
	MPCS_MemInfo

	API Definition
	_MPCS_init
	_MPCS_exit
	MPCS_create
	MPCS_delete
	MPCS_open
	_MPCS_open
	MPCS_close
	MPCS_enter
	MPCS_leave

