

Template Version 1.2

Version 1.00 Page 1 of 21

DESIGN DOCUMENT

DSP/BIOS™ LINK

PCI Link Driver Design

LNK 132 DES

Version 1.00

Page 2 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

This page has been intentionally left blank.

Page 3 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

This page has been intentionally left blank.

Page 5 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

TABLE OF CONTENTS

1 Introduction ... 7
Purpose & Scope ... 7
Terms & Abbreviations ... 7
References ... 7
Overview.. 7

2 Requirements ... 8

3 Assumptions... 9

4 Constraints ... 10

5 High Level Design... 11
PCI device initialization ...11
More on DMA ...11
Shared memory ...12
POOL 12
Other Modules..13

6 Sequence Diagrams.. 14

7 API Definition... 20

Page 6 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

TABLE OF FIGURES

Figure 1. Initialization of SMAPOOL ..14
Figure 2. Finalization of SMAPOOL..15
Figure 3. SMAPOOL_Open ...16
Figure 4. SMAPOOL_Close...17
Figure 5. Allocation of a buffer using SMAPOOL..18
Figure 6. Freeing of a buffer using SMAPOOL...19

Page 7 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

1 Introduction

Purpose & Scope
This document describes the PCI Driver Redesign for DSP/BIOS™ LINK.

The document is targeted at the development team of DSP/BIOS™ LINK.

Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

SMAPOOL Shared Memory Allocator

DSP Digital Signal Processor

GPP General Purpose Processor

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

References
1. LNK 012 DES DSP/BIOS™ LINK

Link Driver design

2. LNK_076_DES DSP/BIOS™ LINK

Buffer Pools design

3. LNK_082_DES DSP/BIOS™ LINK

POOL design

4. PCI specification document version 1.1

Overview
The current releases of PCI Link driver provide an implementation of message

transfer that leverages the data-streaming code for transferring messages. The

current implementation supports a high level portability since only the data

streaming implementation needs to be ported to support messaging on new devices.

However, due to performance concerns it is more efficient to provide an

implementation that separates the message transfer path completely from the data

streaming implementation. Such an implementation also results in lower code

footprint in cases where only message transfer functionality is required.

Page 8 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

2 Requirements
R1. This release shall provide a redesigned PCI link driver that separates the code

path used for message transfer from the code path used for data streaming.

R2. This module shall enable applications to register a callback function with an

associated parameter for events that occur on remote processors.

R3. This module shall enable applications to send specific event notification to

remote processors. Application shall also be able to send an optional value

with the event.

R4. This module shall enforce a priority on event notifications. This priority shall

be controlled by the applications registering for such event notifications on

the receiving side.

R5. Applications shall also be able to un-register their event callback functions at

runtime if such event notification is no longer required.

R6. The product release shall support scaling out any of the new modules being

added through this release.

R7. This release shall provide a sync buffer pool (similar to SMA) for MSGQ, CHNL

and RINGIO protocols.

R8. This release shall provide critical section (lock) over PCI using IPS event.

R9. This release shall provide inter processor signaling component to realize

events on top of interrupt.

Page 9 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

3 Assumptions
None.

Page 10 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

4 Constraints
None.

Page 11 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

5 High Level Design

PCI device initialization
In Linux, when kernel boots up, it scans all PCI slots, and create a linked list of PCI

devices. Besides creating a linked list, it also initialize the configuration space

registers, create memory hole for PCI IO access, assign IRQ with help of IRQ router

mapping table, etc.

Now in DSPLINK PCI device driver, the following steps are followed:

1) Find the DM642 cards, in the system. This is done by search the Linux pci device

linked list with PCI vendor ID and device ID.

pci_find_device (PCI_TI_VENDOR, PCI_TI_DEVICE, dev)

 Where PCI_TI_VENDOR is 104C and PCI_TI_DEVICE is 9065 for DM642.

2) After finding DM642 cards, next is to read the physical address of IO/memory

region exposed by DM642 card. This is done with the help of APIs:

a. pci_resource_start – gives the start of region.

b. pci_resource_len – gives the length of the region.

c. pci_resource_flags – tells what type of region such as IO register or IO

memory.

These APIs read this information from the PCI configuration space BAR settings.

In case of DM642, BAR 0 if for prefetchable memory region and BAR 1 is for IO

register region. Now these regions are mapped onto Linux kernel virtual memory

space with the help of request_mem_region/ request_region and ioremap APIs.

For IO register region one must call request_region and request_mem_region for

memory regions.

3) The IRQ/interrupt number is read from either PCI configuration space or kernel

structure. It is good to use Kernel structure for this. Then register a IRQ handler

with request_irq API.

4) Since DM642 card has master capabilities (i.e. it can access HOST memory

directly without HOST CPU intervention, with help of DMA engine located on the

card), make the device as bus master.

5) Finally enable the device using pci_enable_device API.

After this, the device is ready to be used. (These steps must be carried for each of

desired devices found in the system).

More on DMA
Devices like DM642, have DMA capabilities to transfer buffer between host and DSP.

For these to happen, Linux has to give mastership of PCI bus to the device. This is

done using following APIs:

pci_set_dma_mask, pci_set_drvdata, pci_set_master, pci_set_mwi.

And after these are done, command register in PCI config space is updated to

indicate mastership.

Page 12 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

Once the device has attained mastership of PCI bus, it can DMA buffers using three

register PCI Memory Address, DSP memory address and PCI memory count register.

More details about these registers can be found in respectively device’s documents.

Shared memory
Since in DSPLINK all protocols used between GPP and DSP are based on shared

memory, the 4MB memory region exposed by DSP (DM642) is used to provide this

shared memory. This 4MB memory region can point to any 4MB contiguous memory

region from DSP address space with the help DSPP (DSP page pointer register). Only

POOL is implemented in slight different manner then all other protocols. Where all

control information are accessed through the 4MB shared memory region, but

buffers (can be very large) are kept in local physical contiguous memory on both GPP

and DSP. These local copies are replica of peer’s copy.

POOL
POOL is basic backbone of ZCPY (zero copy) mechanism of transferring information

in DSPLINK. But it requires shared memory, which may or may not available. So a

slight modification in POOL, can fix this problem in case when shared memory is not

present. Like in case of DM642 where the only selected 4MB of DSP memory can be

accessed, which may not fit the requirement for big sized POOL (Also the 4MB slot

has very slow read and write operations). In this case, all control information related

to POOL are accessed through 4MB slot, but buffers (can be very large) are kept in

local physical contiguous memory on both GPP and DSP. These local copies are

replica of peer’s copy.

These copies are kept in sync with the help of DMA engine.

Standard Linux kernel is patched with big physical area patch. This patch enables to

allocate big physical buffers, which may not be possible by using standard Linux

kernel APIs. This big physical buffer becomes the local copy of buffer area on GPP

side.

On the DSP side, a memory area from DSP memory map is left unused. This will

subsequently become DSP side local copy of buffer area.

5.1.1 Create

GPP does the POOL initialization, including buffer list creation and control

structure initialization. In this type of POOL, buffer list is created on the local

copy and buffer list’s next free buffer is now an offset instead of address. This

helps in ease use of POOL on DSP side (no address translation required). Once all

this initialization is done, GPP copy its local buffer area on to DSP side local copy

using DMA engine. Please refer to below figure.

Page 13 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

5.1.2 Alloc

Allocation is similar to normal POOL allocation technique, the only difference is that

nextFree member of buffer POOL header contains next available buffer’s offset. So

this offset is converted into an address using local buffer area’s base address and

offset value contained in the just allocated buffer is written into the nextFree

member. After this buffer POOL header is copied to the DSP side using DMA. This

stands true for reverse case also.

5.1.3 Free

Free is similar to normal POOL Free technique, the only difference is that nextFree

member of buffer POOL header contains next available buffer’s offset. So buffer

address (to be freed) is converted into an offset using local buffer area’s base

address and written to nextFree member of buffer POOL header. Also, previous value

of nextFree member (an offset) is written to first word of freed buffer. After this

buffer POOL header is copied to the DSP side using DMA and also the buffer is copied

to corresponding DSP side copy using DMA. This stands true for reverse case also.

Two new APIs are added to GPP side POOL so that MSGQ, CHNL protocols can be used with

this POOL. These APIs are

1) <internal POOL module>_writeBack

This API writes the content of passed buffer to DSP side address (also passed to this

API).

2) <internal POOL module>_invalidate

This API reads DSP side buffer (also passed to this API) to the local buffer.

Other Modules
All other modules like MSGQ, CHNL, etc are exactly same as they are in ZCPY

technique. Since they internally depend upon POOL for zero copy mechanism, thus

they left unchanged.

Buffer POOL1 Buffer POOL2 Buffer POOL#

POOL 1

Buffer 1 Buffer 2 Buffer #

Buffer 1 Buffer 2 Buffer #

Buffer 1 Buffer 2 Buffer #

Next buffer’s offset
(from first buffer)

Local copy

Shared control space

Page 14 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

6 Sequence Diagrams

6.1.1 SMAPOOL_init

Figure 1. Initialization of SMAPOOL

SMAPOOL MPBUF

 init

Allocate a big
physical area for
buffers.

Update the ctrl structure
with shared memory
address in GPP address
space and DSP address
space

Page 15 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

6.1.2 SMAPOOL_exit

Figure 2. Finalization of SMAPOOL

SMAPOOL MPBUF

exit

Free the big
physical area for
buffers

Page 16 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

6.1.3 SMAPOOL_Open

Figure 3. SMAPOOL_Open

SMAPOOL MPBUF

SMAPOOL_Open

Create the buffer Handles and buffer pools

Set isGppInit flag in Ctrl
structure

DMA the buffer area to DSP

Page 17 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

6.1.4 SMAPOOL_Close

Figure 4. SMAPOOL_Close

SMAPOOL MPBUF

SMAPOOL _close

Delete the buffer handles and buffer pools

Reset isGppInit flag in Ctrl
structure

Page 18 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

6.1.5 SMAPOOL_Alloc

Figure 5. Allocation of a buffer using SMAPOOL

SMAPOOL MPBUF

SMAPOOL_alloc

Search for the correct
buffer pool for specified
size

Allocate a buffer

Enter the critical section

Leave the critical section

DMA the searched buffer
pool Header.

Page 19 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

6.1.6 SMAPOOL_Free

Figure 6. Freeing of a buffer using SMAPOOL

SMAPOOL MPBUF

SMAPOOL_free

Search for the correct
buffer pool for specified
size

Free the buffer

Enter the critical section

Leave the critical section

DMA the searched buffer pool
Header and the freed buffer

Page 20 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

7 API Definition

7.1.1 SMAPOOL_writeback

This function writes the content of GPP buffer into DSP buffer (with offset in sync).

Syntax
DSP_STATUS SMAPOOL_writeback (IN ProcessorId dspId,
 IN Uint32 poolId,
 IN Pvoid object,
 IN Pvoid buf,
 IN Uint32 size) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

IN Uint32 poolId

Pool Identifier.

IN Pvoid object

 Pointer to the pool-specific object.

IN Pvoid buf

Pointer to the buffer.

IN Uint32 size

Size of the buffer to be written back.

Return Value

DSP_SOK The POOL component has been successfully initialized.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
SMAPOOL_invalidate ()

Page 21 of 21 Version 1.00

DSP/BIOS™ LINK

LNK 132 DES

PCI Link Driver Design

7.1.2 SMAPOOL_invalidate

This function reads the content of DSP buffer into GPP buffer (with offset in sync).

Syntax
DSP_STATUS SMAPOOL_invalidate (IN ProcessorId dspId,
 IN Uint32 poolId,
 IN Pvoid object,
 IN Pvoid buf,
 IN Uint32 size) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

IN Uint32 poolId

Pool Identifier.

IN Pvoid object

 Pointer to the pool-specific object.

IN Pvoid buf

Pointer to the buffer.

IN Uint32 size

Size of the buffer to be written back.

Return Value

DSP_SOK The POOL component has been successfully initialized.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
SMAPOOL_writeback ()

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	PCI device initialization
	More on DMA
	Shared memory
	POOL
	Create
	Alloc
	Free

	Other Modules

	Sequence Diagrams
	
	SMAPOOL_init
	SMAPOOL_exit
	SMAPOOL_Open
	SMAPOOL_Close
	SMAPOOL_Alloc
	SMAPOOL_Free

	API Definition
	
	SMAPOOL_writeback
	SMAPOOL_invalidate

