

Template Version 1.2

Version 1.63 Page 1 of 75

PROGRAMMER’S GUIDE

DSP/BIOS™ LINK

PROGRAMMER’S GUIDE

LNK 161 USR

Version 1.63

Page 2 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

This page has been intentionally left blank.

Page 3 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

This page has been intentionally left blank.

Page 5 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

TABLE OF CONTENTS

1 Introduction ... 8
1.1 Purpose & Scope ... 8
1.2 Terms & Abbreviations ... 8
1.3 References ... 8
1.4 Overview.. 8

2 Getting started with writing applications ... 8
2.1 Generic information ... 8
2.2 Static buffer system with minimal control communication with the DSP.......11
2.3 Dynamic buffer system with minimal control communication with the

DSP ..12
2.4 Multiple buffers to be sent between GPP and DSP14

3 PROC .. 15
3.1 Overview...15
3.2 Configuration and changing system memory map.....................................16
3.3 Support for symbol stripped DSP executables ..18
3.4 Support for multiple DSP boot modes..19
3.5 Support for multiple types of COFF based loaders.....................................35
3.6 Concepts ...38

4 POOL .. 39
4.1 Overview...39
4.2 Configuration ...40
4.3 POOL requirements for different DSP/BIOS™ LINK components..................43
4.4 POOL setup for multi process applications..45

5 RingIO.. 48
5.1 Overview...48
5.2 Generic features...49
5.3 Acquiring and releasing data..50
5.4 Attributes ..52
5.5 Foot-buffer ..54
5.6 Notification ..57

6 Multi-DSP support .. 67
6.2 Features..67

7 Multi-application and multi-process support .. 71
7.1 Overview...71
7.2 Features..71

8 Dos and Don’t’s for writing applications using DSP/BIOS LINK.................. 75

Page 6 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

8.1 Dos...75
8.2 Don'ts ...75

Page 7 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

 TABLE OF FIGURES

Figure 1. App scenario: Static buffer system with minimal control

communication with the DSP..12
Figure 2. App scenario: Dynamic buffer system with minimal control

communication with the DSP..13
Figure 3. App scenario: Multiple buffers to be sent between GPP and DSP.................15
Figure 4. Normal Boot Mode ..20
Figure 5. External Load Mode ..23
Figure 6. External Load And Start Mode ..28
Figure 7. RingIO overview...48
Figure 8. Foot-buffer Use-Case Scenario 1 ..55
Figure 9. Foot-buffer Use Case Scenario 2...56

Page 8 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

1 Introduction

1.1 Purpose & Scope
This document is a Programmer’s Guide for DSP/BIOS™ LINK. It gives information

about the various concepts and components in DSP/BIOS™ LINK along with their

features, concepts and programming tips.

The document is targeted at the application developers of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. UserGuide DSP/BIOS™ LINK User Guide

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

2 Getting started with writing applications
To write applications using DSP/BIOS™ LINK, it is important to select the most

appropriate DSPLINK modules to be used as per the system and application

design. Based on the application’s requirements, all or a subset of the features

provided by DSPLINK can be used.

The following section describes simple application scenarios. This information can be

used to select the modules providing the most optimum performance and footprint

for the system, while still giving the simplest application design.

2.1 Generic information
1. PROC component is always required for all applications using DSP/BIOS LINK.

This component provides the basic functionality to setup, boot-load, control and

communicate with the processors in the system.

2. To understand how the APIs for each component are used, the GPP and DSP-side

of the sample applications provided with each DSPLINK release can be used as

reference.

3. In addition, a description of the setup, execution and shutdown control flow for

each component is given within the User Guide. The designs of the sample

applications are also detailed in the User Guide.

Page 9 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

2.1.1 Component features

Te following information may be useful to decide which DSPLINK component is best

suited to meet the application’s messaging and data transfer requirements:

NOTIFY

NOTIFY component may be used for messaging/data transfer if:

1. Only 32-bit information needs to be sent between the processors.

2. Prioritization of notifications is required. For example, one low priority event

(e.g. 30) can be used for sending buffer pointers. A higher priority event (e.g.

5) can be used to send commands.

3. The notification is to be sent infrequently. If multiple notifications for the

same event are sent very quickly in succession, each attempt to send a

specific event spins, waiting till the previous event has been read by the other

processor. This may result in inefficiency.

4. Multiple clients need to be able to register for the same notification event.

When the event notification is received, the same notification with payload is

broadcast to all clients registered for that event.

MSGQ

MSGQ component may be used for messaging/data transfer if:

1. Application requires single reader and multiple writers.

2. More than 32-bit information needs to be sent between the processors using

application-defined message structures.

3. Variable sized messages are required.

4. Reader and writer operate on the same buffer sizes.

5. Messages need to be sent frequently. In this case, the messages are queued

and there is no spin-wait for the previous event to be cleared.

6. The ability to wait when the queue is empty is desired. This is inbuilt within

the MSGQ protocol, and no extra application code is required. If MSGQ_get ()

is called on an empty queue, it waits till a message is received. If NOTIFY is

used, the application must register the callback, or wait on a semaphore that

is posted by the application’s notification callback function.

7. It is desired to have the ability to move the Message Queue between

processors. In this case, the MSGQ_locate () on other processors internally

takes care of locating the queue, and the application code sending messages

to this queue does not need to change.

8. It is desired to also have DSP-DSP communication. In this case, Message

Queue component in DSP/BIOS allows usage of different Message Queue

Transport modules independent of DSPLINK to communicate between DSPs.

MPLIST

MPLIST component may be used for messaging/data transfer if:

1. Application requires multiple writers and multiple readers.

2. The application wishes to perform out-of-order processing on received

packets. This is not possible with MSGQ or with NOTIFY. With MPLIST, the

Page 10 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

reader may traverse the shared list and choose any buffer within the list to be

removed.

3. Making a specific buffer as high priority is desired. The sender to an MPLIST

can make a specific buffer/message as high priority by pushing it to the head

of the queue instead of placing it at the end of the queue. APIs are provided

to traverse the list and insert element before any specified element in the

queue.

4. Inbuilt notification is not required. If the application desires flexibility in when

notification is to be sent/received, MPLIST module can be used. The

application may use NOTIFY module to send & receive notifications as per its

specific requirements. This may result in better performance and lesser

number of interrupts, tuned to application’s requirements. However, the

disadvantage is that additional application code needs to be written for

notification, which is present inherently within MSGQ component.

5. Reader and writer operate on the same buffer sizes.

6. More than 32-bit information needs to be sent between the processors using

application-defined message structures.

7. Variable sized messages/data buffers are required.

8. Messages/data buffers need to be sent frequently. In this case, the messages

are queued directly. No notification/spin-wait for notification is performed.

CHNL

CHNL component may be used for data transfer if:

1. Single reader and single writer are required.

2. Fixed size data buffers are required.

3. Reader and writer operate on the same buffer sizes.

4. Existing SIO drivers for other peripherals are to be used in conjunction with

the DSPLINK driver for GPP-DSP communication. In such scenarios, SIO

provides a standard means of communication and inter-operability.

5. Simple synchronized data streaming is required. For such requirements, CHNL

module provides a simple issue-reclaim protocol. The application only needs

to issue empty/full buffers on both processors, and these get exchanged

when buffers are available on both processors on the same channel. If buffer

is not available, inbuilt wait & notification is available when attempt is made

to reclaim the buffer.

6. Multiple buffers can be easily queued for better performance.

RingIO

RingIO component may be used for messaging & data transfer if:

1. Single reader and single writer are required.

2. Data, as well as attributes/messages associated with data are to be sent &

received.

3. Writer and reader need to execute independently of each other. The size of

buffer used by writer may be different from the buffer size needed by reader.

Page 11 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

4. The buffer sizes for acquire and release for writer & reader do not need to

match. Writer/reader may choose to release lesser buffer size than was

acquired, or may choose to acquire more data before releasing any data.

5. Applications have different notification needs. The application can minimize

interrupts by choosing the most appropriate type of notification based on

watermark.

6. It is desired to have the capability to cancel unused data that was acquired

but not released.

7. It is desired to flush the contents of the ring buffer to clear the ring buffer of

released data. For example, when ongoing media file play is stopped and new

media file is to be streamed and decoded.

The following sections give examples of possible application scenarios and suggest

design and DSPLINK components to be used for each.

2.2 Static buffer system with minimal control commu nication with the DSP

2.2.1 Application requirements:

1. Boot-load the DSP

2. Statically reserve a region of memory to be shared with DSP. The complete

system is static.

3. GPP and DSP may need to infrequently ping each other with some control

information.

Page 12 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

2.2.2 Suggested design

Figure 1. App scenario: Static buffer system with minimal con trol
communication with the DSP

1. PROC module is used to boot-load the DSP. The DSP executable is present in

the GPP file system.

2. Two regions of memory can be statically reserved (at compile time) through

the DSPLINK dynamic configuration file (CFG_<PLATFORM>.c). On DSP-side, a
similar configuration needs to be done within TCF file to reserve the memory.

One region of memory can be used for GPP->DSP transfers, and the other for

DSP->GPP transfers. Since the memory is statically reserved, both GPP and

DSP are aware of their start addresses and sizes.

3. NOTIFY module can be used to send 32-bit control messages between the

GPP and DSP.

2.2.3 DSP/BIOS LINK components used

1. PROC

2. NOTIFY

2.3 Dynamic buffer system with minimal control comm unication with the DSP

2.3.1 Application requirements:

1. Boot-load the DSP

2. Be able to dynamically allocate and free regions of memory to be shared with

DSP. For example, this may be needed if same DSP executable is to be used with

different GPP applications having different buffer size requirements.

GPP

GPP->DSP
region

DSP->GPP
region

Shared Memory

DSP

GppApp DspApp

NOTIFY_notify

PROC_write

PROC_read

Direct
memory
reads &
writes

Page 13 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3. Buffer requirements for each application are limited. For example, each

application just needs to allocate one or two buffers during setup phase, and

after this, the same buffers are used directly by GPP and DSP.

4. GPP and DSP may need to infrequently ping each other with some control

information.

2.3.2 Suggested design

Figure 2. App scenario: Dynamic buffer system with minimal co ntrol
communication with the DSP

1. PROC module is used to boot-load the DSP. The DSP executable is present in

the GPP file system.

2. A POOL is opened with a configuration of the sizes of buffers to be shared
between the GPP and DSP.

3. Buffers are allocated from the POOL as required by the GPP or DSP during

setup phase of the application.

4. If allocated on GPP, the buffer address received from POOL_alloc can be

translated to DSP address space to get the corresponding DSP address of the

same buffer using POOL_translateAddr .

5. NOTIFY module can be used to send the 32-bit buffer addresses (or other 32-

bit control information) between the GPP and DSP.

6. If the buffer is allocated on DSP-side, the DSP address received on the GPP
can be translated using POOL_translateAddr .

GPP

POOL

Shared Memory

DSP

GppApp DspApp

NOTIFY_notify

POOL_alloc

Direct memory
reads & writes

POOL_free

POOL_translateAddr

Page 14 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

7. The buffers are now used by GPP and DSP for sending/receiving data. NOTIFY
module can be used to inform the processors when data is available/freed in

the buffers.

8. If both GPP and DSP may have to simultaneously access the pool buffers, and

mutually exclusive access is to be provided to the buffers, the MPCS module

can be optionally used to protect access to the buffers.

2.3.3 DSP/BIOS LINK components used

1. PROC

2. NOTIFY

3. POOL

4. MPCS (optional)

2.4 Multiple buffers to be sent between GPP and DSP

2.4.1 Application requirements:

1. Boot-load the DSP

2. Be able to dynamically allocate and free regions of memory to be shared with

DSP.

3. Multiple buffers are required by each application. The buffers may be allocated

and freed at run-time. The buffers need to be sent between GPP and DSP during

execution phase.

2.4.2 Suggested design

MPLIST

GPP

POOL

Shared Memory

DSP

GppApp DspApp

NOTIFY_notify

POOL_alloc

POOL_free

POOL_translateAddr

POOL_alloc

POOL_free

MSGQ MSGQ

OR OR

Page 15 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

Figure 3. App scenario: Multiple buffers to be sent between G PP and
DSP

1. PROC module is used to boot-load the DSP. The DSP executable is present in

the GPP file system.

2. A POOL is opened with a configuration of the sizes of buffers to be shared
between the GPP and DSP.

3. Buffers are allocated from the POOL as required by the GPP or DSP.

4. If allocated on GPP, the buffer addresses received from POOL_alloc can be

translated to DSP address space to get the corresponding DSP addresses of

the same buffers using POOL_translateAddr .

5. If the buffers are to be sent infrequently, the NOTIFY module can be used to

send the 32-bit buffer addresses (or other 32-bit control information)

between the GPP and DSP. If one processor may need to send multiple

buffers to the other processor in one shot, either MSGQ or MPLIST module

can be used. If additional information (e.g. buffer attributes) is required to be

associated with the data buffer, a message structure can be defined that has

these attributes, and MSGQ or MPLIST component can be used to send the

message to the other processor.

6. If the buffers are allocated on DSP-side, the DSP addresses received on the
GPP can be translated using POOL_translateAddr .

2.4.3 DSP/BIOS LINK components used

1. PROC

2. NOTIFY / MSGQ / MPLIST

3. POOL

3 PROC

3.1 Overview
The PROC module provides functionality to setup, boot-load, control, and

communicate with the processors in the system. The master processor in the system

is responsible for all control activities on the slave processors in the system. For

example, in an SoC such as Davinci, the ARM processor is the master and the DSP is

the slave.

The specific services provided by the PROC module are:

1. Setup and destroy the DSP/BIOS LINK driver.

2. Attach to and detach from a specific processor. Every process in the system

wishing to communicate with a specific processor must do this to gain access to

the processor.

3. Load a DSP executable on the target processor. This executable is present within

the GPP file system.

4. Start execution of the DSP executable on the target processor.

5. Stop execution of the target processor

6. Write to and read from DSP memory

Page 16 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

7. Get the current state of the PROC component. This indicates the last successful

state transition for the DSP. It does not return the actual run-time state of the

DSP.

8. Perform platform-specific control activities with the target processor.

3.2 Configuration and changing system memory map
The PROC module can be configured as part of the dynamic configuration.

• Instances of the LINKCFG_Dsp object contain all configuration information for

each DSP in the system. The following information in this object most often

needs to be customized by the system developer:

o Number of memory entries in the memory map for DSP, which is

visible to the GPP.

o In case the CPU frequency for the DSP on the user platform is different

from the BIOS-set value, this needs to be set as part of this object.

o If the DSP address of the reset-vector memory entry has been

changed, this needs to be reflected in the DSP object as well. The

resume address is some number of bytes after the reset vector, and

hence this needs to be changed as well.

• The memory map of the platform needs to be configured as part of the

LINKCFG_MemEntry memory table.

o By default, DSPLINK configures 1 MB of shared memory and 1MB of

memory for loading the DSP code/data. If the system requires more

memory, this needs to be modified/added in the memory table.

o If the application wishes to reserve any additional memory to be used

with PROC_read and PROC_write APIs to read from and write into DSP

memory, this must be done by making additional memory entries

within the memory table.

o As per your application requirement, you can either add or remove

memory entries. The number of memory entries must be

correspondingly updated in LINKCFG_dspObject: field MEMENTRIES

which indicates number of configured memory entries.

o The fields in the memory entry that are usually changed are the

physical address, DSP virtual address and size of the memory region.

o To match the changes in the memory table, the DSP-side application’s

TCF file must be modified to indicate this information to DSP/BIOS

configuration.

o This information also needs to be conveyed to the GPP-side operating

system to ensure that it does not place any of its code/data in this

reserved region. On MVL Linux, this is done by specifying MEM=<>

parameter in the boot args. The method to do this varies based on the

GPP-side operating system. For more information on this, please refer

to the platform-specific Install guide document available with the

release.

o The shared field is used to decide whether mapping is required for

ARM-side. If ARM-side mapping is required, set the shared field to

TRUE. For example: In case of pool, shared memory etc. shared field

Page 17 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

should be TRUE. If ARM-side mapping is not required, set the shared

field to FALSE. For example: In case of internal DSP regions (e.g. L4

core of OMAP2530 and OMAP3530), ARM-side mapping is not required.

So set the shared field to FALSE. If any mappings are unnecessarily

enabled, ARM-side can run out of virtual memory space.

• The physical interrupts to be used by the system for IPC and application use

are configured within the LINKCFG_Ips instance.

o The default configuration contains IPS configuration for one or more

IPS instances. If the number of IPS instances is modified, this needs to

be updated within the corresponding LINKCFG_LinkDrv instance.

o The DSP-side interrupt vector number to be used for the ARM->DSP

interrupts can be configured as per the system requirements to ensure

that it does not clash with the other system usage.

o The poll value indicates the number of cycles for which the IPS polls

waiting for previous event to be cleared. If specified as -1, this wait is

infinite. By specifying a value tuned to the application’s requirements,

error handling for DSP crash/block scenarios can be done by the

application.

o An IPS can be configured to work either in both GPP->DSP and DSP-

>GPP directions, or in one of the two. This can be configured based on

availability of physical interrupts between the GPP and DSP.

3.2.1 Making configuration changes

For making configuration changes, it is very simple to update existing default

configuration, instead of keeping the application’s own copy of the configuration. This

can be done by updating existing configuration prior to PROC_setup call. Using this
method allows the application to remain independent of changes in configuration,

and makes it easier to have platform-independent application code.

Example of runtime change of existing configuration:

/* Extern declaration to default configuration obje ct in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

/* Increase maximum Message Queues to 32. */
LINKCFG_config.gppObject->maxMsgqs = 32 ;

 ...
 ...

/* Initialize and configure the DSPLink driver */
status = PROC_setup (&LINKCFG_config) ;

Page 18 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3.3 Support for symbol stripped DSP executables
DSP/BIOS Link supports application writers wishing to use a DSP executable from

which the symbol table has been stripped out. This is done to reduce the size of the

DSP executable.

The size of the DSP side executable can be reduced by the following ways:

3.3.1 Remove debug information

The debug information can be reduced using post-processing utility provided within

the DSP CGTOOLS. For example, for C6x based devices, strip6x utility is used. When

strip6x utility is used with default options, no change in applications using DSP/BIOS

Link needs to be made. However source level debugging is not possible.

3.3.2 Remove the full symbol table

The size of the DSP side executable can be reduced by using the –s option in the

linker. Entire symbol table can be removed by using the –s option. If strip6x utility is

used with -p option, it has the similar effect, and the DSP executable size is reduced

further. Applications using this feature must set the value of the

.data:DSPLINK_shmBaseAddress section in the application specific linker command

file to the start of shared memory.

� If a non-symbol stripped DSP executable is used, or an executable from which

only debug information is removed, but symbol table is still present, the

below steps are not required. In this case, DSPLink internally determines the

address of the _DSPLINK_shmBaseAddress symbol using the symbol table on
the GPP-side and uses it to fill the DSP-side section with the right address.

3.3.2.1 Example

For example, the application linker command file must contain a directive similar to

the following:

SECTIONS {
.data:DSPLINK_shmBaseAddress: fill=0x8FE05000 {} > DDR
}

The fill value should be the start address of the shared memory used for the DRV

component and varies with the devices and memory configuration used.

Please refer to the configuration file CFG_<platform.c> for the start of the DRV

component.

3.3.2.2 Determining the location of the DRV component

The DRV component is present at the very start of shared memory assigned to it

through the DSPLink dynamic configuration file CFG_<platform.c> . For most

devices, this is the start of the DSPLINKMEM/DSPLINKMEM1 memory region, depending

on which memory region is used for placement of the LINKCFG_LinkDrv sub-module.

Page 19 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3.4 Support for multiple DSP boot modes

3.4.1 Overview

Multiple applications/processes on the GPP may wish to use the services provided by

DSPLink to control and communicate with the DSP. DSPLink supports multiple boot

modes to enable different use cases.

DSPLink PROC module supports three different scenarios for DSP boot-loading:

• Normal Boot Mode: DSPLink loads and starts the DSP running

o DSP_BootMode_Boot_NoPwr

o DSP_BootMode_Boot_PwrDefault

• External Load Mode: DSPLink only starts the DSP running

o DSP_BootMode_NoLoad_NoPwr

o DSP_BootMode_NoLoad_Pwr

• External Load and Start Mode: DSPLink does not load or start the DSP

running

o DSP_BootMode_NoBoot

In all modes, the application calls all DSPLink APIs for PROC module. DSPLink

internally checks the boot mode and accordingly determines the correct action to be

taken for each API. For example, APIs PROC_load, PROC_start , PROC_stop need to
be called even in External Load or External Load and Start mode.

3.4.2 Normal Boot Mode

In this boot mode:

• GPP boots first

• Uses DSPLink to load the DSP

• Uses DSPLink to start the DSP running

Page 20 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

Figure 4. Normal Boot Mode

3.4.2.1 DSP_BootMode_Boot_NoPwr

In this boot mode, DSPLink does not do power management of DSP.

• PROC_attach places the DSP in local reset. It does not power up the DSP.

• PROC_load loads the DSP executable into DSP memory.

• PROC_start sets entry point for DSP i.e. c_int00 and release DSP from reset.

• PROC_stop places DSP in local reset.
• PROC_detach does not power down the DSP.

Application changes to support this boot mode

The default DSPLink configuration, or application configuration passed to DSPLink in

PROC_setup needs to be updated.

The configuration can be changed to use the DSP_BootMode_Boot_NoPwr boot mode

in one of two possible ways:

3.4.2.1.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 DSP_BootMode_Boot_NoPwr, /* DODSPCTRL : Type of boot mode */

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

DSP is reset

Receive ISR
Reset the DSP. Can

DSP

Call
from
main

Page 21 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

 ...
}

3.4.2.1.2 Changing default configuration file at ru n-time
/* Extern declaration to default configuration obje ct in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...

 /* Change dynamic configuration for boot mode * /
 LINKCFG_config.dspConfigs [processorId]->dspObj ect->doDspCtrl =
DSP_BootMode_Boot_NoPwr ;

3.4.2.2 DSP_BootMode_Boot_Pwr

In this boot mode, DSPLink does power management of DSP.

• PROC_attach places the DSP in local reset. It powers up the DSP.

• PROC_load loads the DSP executable into DSP memory.

• PROC_start sets entry point for DSP i.e. c_int00 and release DSP from reset.

• PROC_stop places DSP in local reset.
• PROC_detach powers down the DSP.

Application changes to support this boot mode

The default DSPLink configuration, or application configuration passed to DSPLink in

PROC_setup needs to be updated.

The configuration can be changed to use the DSP_BootMode_Boot_Pwr boot mode in

one of two possible ways:

3.4.2.2.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 DSP_BootMode_Boot_Pwr, /* DODSPCTRL : Type of boot mode */
 ...
}

3.4.2.2.2 Changing default configuration file at ru n-time
/* Extern declaration to default configuration obje ct in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration for boot mode * /
 LINKCFG_config.dspConfigs [processorId]->dspObj ect->doDspCtrl =
DSP_BootMode_Boot_Pwr ;

3.4.2.2.3 Application changes to support this boot mod e

The default DSPLink configuration, or application configuration passed to DSPLink in

PROC_setup needs to be updated.

Example of application configuration file

STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 DSP_BootMode_Boot_Pwr, /* DODSPCTRL : Type of boot mode */

Page 22 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

 ...
}

Page 23 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3.4.3 External Load Mode

In this boot mode:

• GPP boots first

• Application/GPP boot-loader pre-loads the DSP

• Uses DSPLink to optionally power up the DSP

• Uses DSPLink to start the DSP running

Figure 5. External Load Mode

3.4.3.1 DSP_BootMode_NoLoad_NoPwr

• PROC_attach places the DSP in local reset. It does not power up the DSP.

• PROC_load does not load the DSP executable into DSP memory.

• PROC_start sets entry point for DSP i.e. c_int00 and release DSP from reset.

• PROC_stop places DSP in local reset.
• PROC_detach does not power down the DSP.

Application changes to support this boot mode

1. The default DSPLink configuration, or application configuration passed to DSPLink

in PROC_setup needs to be updated.
2. Parameters passed to PROC_load API change to support the NOLOADER.

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

DSP is reset

Other operations

DSP

Call
from
main

Does not actually load the DSP

Reset the DSP. Can be restarted
if external loader reloads the
DSP

Page 24 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3.4.3.1.1 Step 1: Update DSPLink configuration

The configuration can be changed to use the DSP_BootMode_NoLoad_NoPwr boot
mode in one of two possible ways:

3.4.3.1.1.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "NOLOADER", /* LOADERNAME : Name of the DSP executable load er */
 ...
 DSP_BootMode_NoLoad_NoPwr, /* DODSPCTRL : Type of boot mode */
 ...
}

3.4.3.1.1.2 Changing default configuration file at run-time

/* Extern declaration to default configuration obje ct in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration for boot mode * /
 LINKCFG_config.dspConfigs [processorId]->dspObj ect->doDspCtrl =
DSP_BootMode_NoLoad_NoPwr ;
 strcpy (LINKCFG_config.dspConfigs [processorId] ->dspObject->loaderName, "
NOLOADER") ;

3.4.3.1.2 Step 2: Call PROC_load with different par ameters for NOLOADER

The NOLOADER requires additional information to enable DSPLink to successfully

start the DSP. These are present as part of the NOLOADER_ImageInfo structure. This
is passed to PROC_load instead of the DSP executable path.

In External Load boot modes, application can still use DSPLink to pass arguments to

the DSP main function (if required).

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = 0x8FF2C780 ; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00; /* Address of the symbol
 DSPLINK_shmB aseAddress from DSP COFF
 Executable * /
 image.argsAddr = 0x8ff30278 ; /* Address of the .args section */
 image.argsSize = 0x10 ; /* Size of the .args section */

 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &im age, argc, argv) ;

� The addresses mentioned above will be different based on the device and

memory configuration used. They can be obtained using the ofd tool for the

respective device. For example, for C6x based devices, the command to
obtain the address of DSPLINK_shmBaseAddress is:

Page 25 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

� The value of argc i.e. number of arguments and argv i.e. arguments buffer is
application dependent

The application may not need to pass arguments in .args buffer. In such cases,

argc and argv can be passed as 0 and NULL respectively:

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = 0x8FF2C780; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00 ; /* Address of the symbol
 DSPLINK_shmB aseAddress from DSP COFF
 Executable * /
 image.argsAddr = NULL ;
 image.argsSize = 0x0 ;
 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &im age, 0 , NULL) ;

� The addresses mentioned above will be different based on the device and

memory configuration used. They can be obtained using the ofd tool for the

respective device. For example, for C6x based devices, the command to
obtain the address of DSPLINK_shmBaseAddress is:

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

3.4.3.2 DSP_BootMode_NoLoad_Pwr

• PROC_attach places the DSP in local reset. It powers up the DSP.

• PROC_load does not load the DSP executable into DSP memory.

• PROC_start sets entry point for DSP i.e. c_int00 and release DSP from reset.

• PROC_stop places DSP in local reset.
• PROC_detach powers down the DSP.

Application changes to support this boot mode

1. The default DSPLink configuration, or application configuration passed to DSPLink

in PROC_setup needs to be updated.
2. Parameters passed to PROC_load API change to support the NOLOADER.

3.4.3.2.1 Step 1: Update DSPLink configuration

The configuration can be changed to use the DSP_BootMode_NoLoad_Pwr boot mode

in one of two possible ways:

3.4.3.2.1.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "NOLOADER", /* LOADERNAME : Name of the DSP executable load er */
 ...
 DSP_BootMode_NoLoad_Pwr, /* DODSPCTRL : Type of boot mode */
 ...
}

Page 26 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3.4.3.2.1.2 Changing default configuration file at run-time

/* Extern declaration to default configuration obje ct in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration for boot mode * /
 LINKCFG_config.dspConfigs [processorId]->dspObj ect->doDspCtrl =
DSP_BootMode_NoLoad_Pwr ;
 strcpy (LINKCFG_config.dspConfigs [processorId] ->dspObject->loaderName, "
NOLOADER") ;

3.4.3.2.2 Step 2: Call PROC_load with different par ameters for NOLOADER

The NOLOADER requires additional information to enable DSPLink to successfully

start the DSP. These are present as part of the NOLOADER_ImageInfo structure. This
is passed to PROC_load instead of the DSP executable path.

In External Load boot modes, application can still use DSPLink to pass arguments to

the DSP main function (if required).

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = 0x8FF2C780 ; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00; /* Address of the symbol
 DSPLINK_shmB aseAddress from DSP COFF
 Executable * /
 image.argsAddr = 0x8ff30278 ; /* Address of the .args section */
 image.argsSize = 0x10 ; /* Size of the .args section */

 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &im age, argc, argv) ;

� The addresses mentioned above will be different based on the device and

memory configuration used. They can be obtained using the ofd tool for the

respective device. For example, for C6x based devices, the command to

obtain the address of DSPLINK_shmBaseAddress is:

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

� The value of argc i.e. number of arguments and argv i.e. arguments buffer is
application dependent

The application may not need to pass arguments in .args buffer. In such cases,

argc and argv can be passed as 0 and NULL respectively:

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = 0x8FF2C780; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00 ; /* Address of the symbol
 DSPLINK_shmB aseAddress from DSP COFF
 Executable * /
 image.argsAddr = NULL ;

Page 27 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

 image.argsSize = 0x0 ;
 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &im age, 0 , NULL) ;

� The addresses mentioned above will be different based on the device and

memory configuration used. They can be obtained using the ofd tool for the

respective device. For example, for C6x based devices, the command to

obtain the address of DSPLINK_shmBaseAddress is:

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

Page 28 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3.4.4 External Load and Start Mode
There are two scenarios to be supported for this boot mode:

• GPP-based load

1. GPP boots first

2. Application/GPP boot-loader pre-loads the DSP

3. Application/GPP boot-loader starts the DSP running

4. Uses DSPLink only for IPC with the DSP

 OR

• DSP-based load

5. DSP boots first, starts running an application

6. ARM comes up later and sets up DSPLink, which initializes shared

memory

7. DSPLink is not used to load or start the DSP

8. Uses DSPLink only for IPC with the DSP

Figure 6. External Load And Start Mode

Only NoPwr based mode is supported when NoBoot mode is selected.

3.4.4.1 DSP_BootMode_NoBoot

• PROC_attach does not place the DSP in local reset. It does not power up the

DSP.

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

Other operations

DSP

Call from
TSK after
ISR
received

Does not actually load the DSP

No capability to stop/ reload/
restart the DSP

Does not actually start the DSP
Send an interrupt to DSP to
indicate GPP init done

Register app ISR (can
be done statically)

Receive ISR
Reset the DSP. Can

Page 29 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

• PROC_load does not load the DSP executable into DSP memory.

• PROC_start does not set entry point for DSP i.e. c_int00 and does not

release DSP from reset.

• PROC_stop does not place DSP in local reset.
• PROC_detach does not power down the DSP.

Application changes to support this boot mode

1. The default DSPLink configuration, or application configuration passed to DSPLink

in PROC_setup needs to be updated.
2. Parameters passed to PROC_load API change. PROC_load must be called. The

parameters will not be used.

3. Changes on DSP-side to call DSPLINK_init after main i.e. in a TSK

• Creation of DSPLink IOM driver must be changed from static to dynamic if

CHNL component is configured in DSPLink

• All DSPLink SMA Pools must be initialized after DSPLINK_init call in the TSK.

• The MSGQ transport between GPP and DSP must be opened after

DSPLINK_init call in the TSK.

• DSPLink_init internally polls for the value of DSPLINK_shmBaseAddress to be

a non-NULL value. One of the two below methods can be used for this:

1. If the application uses the default polling mode, this variable must be set

to NULL using the linker command file.

2. DSPLink also supports a non-polling interrupt based mode for

synchronization between the GPP and DSP

3.4.4.1.1 Step 1: Update DSPLink configuration

The configuration can be changed to use the DSP_BootMode_NoBoot boot mode in

one of two possible ways:

3.4.4.1.1.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "NOLOADER", /* LOADERNAME : Name of the DSP executable load er */
 ...
 DSP_BootMode_NoBoot, /* DODSPCTRL : Type of boot mode */
 ...
}

3.4.4.1.1.2 Changing default configuration file at run-time

/* Extern declaration to default configuration obje ct in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration for boot mode * /
 LINKCFG_config.dspConfigs [processorId]->dspObj ect->doDspCtrl =
DSP_BootMode_NoBoot ;
 strcpy (LINKCFG_config.dspConfigs [processorId] ->dspObject->loaderName, "
NOLOADER") ;

3.4.4.1.2 Step 2: Call PROC_load with different par ameters for NOLOADER

Page 30 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

The NOLOADER may require additional information to enable DSPLink to successfully

start the DSP. These are present as part of the NOLOADER_ImageInfo structure. This

is passed to PROC_load instead of the DSP executable path.

In External Load & Start boot mode, application cannot use DSPLink to pass

arguments to the DSP main function, because the DSP may already be running and

main function completed, by the time DSPLink comes up.

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = NULL ; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00; /* Address of the symbol
 DSPLINK_shmB aseAddress from DSP COFF
 Executable * /
 image.argsAddr = NULL ; /* Address of the .args section */
 image.argsSize = 0 ; /* Size of the .args section */

 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &im age, 0, NULL) ;

� The address mentioned above will be different based on the device and

memory configuration used. It can be obtained using the ofd tool for the

respective device. For example, for C6x based devices, the command to

obtain the address of DSPLINK_shmBaseAddress is:

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

� dspRunAddr does not need to be provided, since DSPLink is not responsible
for starting the DSP in this boot mode.

In case the user does not wish to specify the shmBaseAddr from ARM-side, the DSP-

side can be built with the information about the shmBaseAddr . In this case, it is not
required to specify the value to the NOLOADER, and the ARM-side application can

become fully independent of the DSP-side build. In this case, the approach used for

symbol stripped executables needs to be used, as described in section 3.3 in this

document.

#include <loaderdefs.h>
 ...

 image.dspRunAddr = NULL ; /* Address of the symbol c_int00 */
 image.shmBaseAddr = NULL ; /* Address of the symbol
 DSPLINK_shmB aseAddress from DSP COFF
 Executable * /
 image.argsAddr = NULL ; /* Address of the .args section */
 image.argsSize = 0 ; /* Size of the .args section */
 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &im age, 0 , NULL) ;

3.4.4.1.3 Step 3: Make changes on DSP-side to call DSPL INK_init from task instead of main

Creation of DSP-side IOM driver dynamically

Page 31 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

If CHNL module is not enabled in the build, this step is not applicable.

By default, the application will usually create the DSP-side DSPLink driver statically,

by including the following two TCI files within the application’s TCF configuration file:

• DSPLink IOM driver: dsplink-iom.tci

• DSPLink DIO adapter for usage with SIO: dsplink-dio.tci

The IOM and DIO drivers need to be created dynamically for this boot-mode.

For dynamic creation of IOM driver:

• Comment out the static creation of the dsplink IOM driver in dsplink-
iom.tci in the application TCF

• The creation of ZCPYLINK_SWI_OBJ can still be done statically.
/* === ==========================
 * UDEV : DSP/BIOS LINK
 * === ==========================
 */
/*var dsplink = prog.module("UDEV").create("dsplink ");
dsplink.initFxn = prog.decl("ZCPYDATA_init");
dsplink.fxnTable = prog.decl("ZCPYDATA_FXNS");
dsplink.fxnTableType = "IOM_Fxns";
dsplink.comment = "DSP/BIOS LINK - IOM Driver ";*/

/* === ==========================
 * SWI : ZCPYLINK_SWI_OBJ
 * === ==========================
 */
var ZCPYLINK_SWI_OBJ = prog.module("SWI").crea te("ZCPYDATA_SWI_OBJ");
ZCPYLINK_SWI_OBJ.comment = "This swi handles the d ata transfer in DSPLINK";
ZCPYLINK_SWI_OBJ.fxn = prog.decl("ZCPYDATA_SW I");
ZCPYLINK_SWI_OBJ.priority = 14;
ZCPYLINK_SWI_OBJ.arg0 = $externPtr("ZCPYDATA_d evObj");

For dynamic creation of DIO adapter:

• Do not include dsplink-dio.tci in the application TCF file

The code given below can be used as reference to create the IOM and DIO drivers

dynamically.
extern IOM_Fxns ZCPYDATA_FXNS ;
extern Void ZCPYDATA_init (Void) ;

DIO_Params dioAttrs = {
 "/dsplink",
 NULL
} ;

DEV_Attrs devAttrs = {
 0, /* devId */
 0, /* dsplink deviceParams */
 DEV_IOMTYPE, /* dsplink driver type */
 0 /* dsplink devp */
} ;

DEV_Attrs dioDevAttrs = {
 0, /* devId */
 &dioAttrs, /* DIO deviceParams */
 DEV_SIOTYPE, /* DIO type */

Page 32 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

 0 /* devp */
} ;

 ...

 /* Create IOM driver dynamically */
 status = DEV_createDevice("/dsplink", &ZCPYDATA _FXNS, (Fxn)
&ZCPYDATA_init, &devAttrs) ;

 /* Create DIO adapter dynamically */
 status = DEV_createDevice("/dio_dsplink", &DIO_ tskDynamicFxns, NULL,
&dioDevAttrs);

Calling POOL_open in a task

Dummy configuration needs to be defined for the POOL so that DSP/BIOS will not

internally call DSPLink SMAPOOL initialization functions.

/* Dummy base configuration for POOLs */
POOL_Obj MESSAGE_Pools [NUM_POOLS] =
{
 POOL_NOENTRY,
 POOL_NOENTRY
} ;

/* POOL_config variable as needed by DSP/BIOS */
POOL_Config POOL_config = {MESSAGE_Pools, NUM_POOLS } ;

In the application task after DSPLINK_init is called, the actual POOL configuration

must be updated into the POOL configuration structure, and a call made to

POOL_open.

/* Define actual global SMAPOOL parameters */
SMAPOOL_Params MESSAGE_PoolParams [NUM_P OOLS] ;

 /* Declare temporary local pool object for opening the pool */
 POOL_Obj poolObj ;

 ...

 /* Setup SMAPOOL parameters */
 MESSAGE_PoolParams [0].poolId = 0 ;
 MESSAGE_PoolParams [0].exactMatchReq = TRUE ;

 /* Populate the global POOL configuration struc ture with actual POOL
configuration.*/
 poolObj.initFxn = SMAPOOL_init ;
 poolObj.fxns = (POOL_Fxns *) &SMAPOOL_FXNS ;
 poolObj.params = &(MESSAGE_PoolParams [0]) ;
 poolObj.object = NULL ;

 /* Open the POOL dynamically */
 status = POOL_open (0, &poolObj) ;

Calling MSGQ_transportOpen in a task

Dummy configuration needs to be defined for the Message Queue transport so that

DSP/BIOS will not internally call DSPLink MQT initialization functions.

/* Dummy base configuration for MQT */

Page 33 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

MSGQ_TransportObj MESSAGE_Transports [MAX_PROCESSOR S] =
{
 MSGQ_NOTRANSPORT, /* Represents the local processor */
 MSGQ_NOTRANSPORT /* Dummy transport for DSPLink */
}

/* MSGQ_config variable as needed by DSP/BIOS */
MSGQ_Config MSGQ_config =
{
 MESSAGE_MsgQueues,
 MESSAGE_Transports,
 NUM_MSG_QUEUES,
 MAX_PROCESSORS,
 0,
 MSGQ_INVALIDMSGQ,
 POOL_INVALIDID
} ;

In the application task after DSPLINK_init is called, the actual MQT configuration

must be updated into the MSGQ configuration structure, and a call made to

MSGQ_transportOpen .

/* Define actual global ZCPYMQT parameters */
ZCPYMQT_Params MESSAGE_MqtParams ;

 /* Declare temporary local transport object for ope ning the transport */
 MSGQ_TransportObj transport ;

 /* Initialize the transport object for ZCPYMQT */
 transport.initFxn = ZCPYMQT_init ; /* Init Function */
 transport.fxns = (MSGQ_TransportFxns *) &ZCP YMQT_FXNS ; /* Transport
interface functions */
 transport.params = &MESSAGE_MqtParams ; /* Transport params */
 transport.object = NULL ; /* Filled in by transport */
 transport.procId = ID_GPP ; /* Processor Id */

 /* Open the Message Queue Transport dynamically . */
 status = MSGQ_transportOpen (ID_GPP, &transport) ;

Calling DSPLINK_init from TSK

DSPLink_init internally polls for the value of DSPLINK_shmBaseAddress to be a non-

NULL value. One of the two below methods can be used for this:

1. Polling Mode: This variable must be set to NULL using the linker command file.

2. Non-polling Mode: Use interrupt based synchronization between the GPP and DSP

1. Polling mode: Application linker command file update

A command needs to be added in the application linker command file to initialize the

DSPLINK_shmBaseAddress value to NULL.

/* Set the contents of DSPLINK_shmBaseAddress to NU LL. */
SECTIONS {
 .data:DSPLINK_shmBaseAddress: fill=0x00000000 { } > DDR
}

2. Non-Polling mode: Interrupt-based synchronization

1. The application can register for the DSPLink interrupt for IPS ID 0 using

DSP/BIOS HWI APIs, or static configuration. In this case, as soon as DSPLink

Page 34 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

GPP-side has completed configuration of shared memory, it sends an interrupt to

the DSP.

2. The application-registered ISR shall get called, which can post a semaphore to

wake-up a task that was blocked on the semaphore.

3. The task then calls DSPLink_init and opens the POOLs and MQT dynamically.

4. Once this is done, DSP-side application can start using DSPLink for IPC between

the GPP and DSP.

Page 35 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3.5 Support for multiple types of COFF based loader s

3.5.1 Overview

DSPLink supports loading of COFF executable in DSP memory using PROC_load API.
The COFF file can be loaded in DSP memory from a file or from memory. DSPLink

supports multiple types of COFF loaders for different system needs. This section

details the types of loaders and how they are used.

3.5.2 PROC_load using a COFF file

This is the default usage of PROC_load. The DSP executable is generated using the
required tools and is present in the target file system.

Example of application configuration file

STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "COFF", /* LOADERNAME : Name of DSP executable loader */
 ...
}

Example of PROC_load API call

 #define DSP_EXECUTABLE “/opt/message.out”

 status = PROC_load (ID_PROCESSOR, DSP_EXECUTABL E, argc, argv) ;

� The value of argc i.e. number of arguments and argv i.e. arguments will be

application dependant. If not required, they can be passed as 0 and NULL
respectively.

3.5.3 PROC_load using optimized COFF loader on shared memory based platforms like
DM6446, DRA44x etc

This is the optimized usage of the default COFF loader. In this loader the section data

is directly copied to the DSP memory. This is possible because DSP memory is

directly accessible for shared memory based devices. The DSP executable is

generated using the required tools and is present in the target file system.

The configuration can be changed to use the COFFSHM loader in one of two possible
ways:

3.5.3.1 Statically changing application-specific configurat ion file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "COFFSHM", /* LOADERNAME : Name of DSP executable loader */
 ...
}

3.5.3.2 Changing default configuration file at run-time
/* Extern declaration to default configuration obje ct in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

Page 36 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

 /* Change dynamic configuration to use COFFSHM lo ader */
 strcpy (LINKCFG_config.dspConfigs [processorId] ->dspObject->loaderName,
"COFFSHM") ;

Example of PROC_load API call

 #define DSP_EXECUTABLE “/opt/message.out”

 status = PROC_load (ID_PROCESSOR, DSP_EXECUTABL E, argc, argv) ;

� The value of argc i.e. number of arguments and argv i.e. arguments will be

application dependant. If not required, they can be passed as 0 and NULL
respectively.

3.5.4 PROC_load using a COFF file present in ARM me mory

In certain application scenarios, the COFF file can be loaded into a memory buffer

outside DSPLink. The DSP executable is loaded in DSP memory by reading the buffer

contents. This type of loader is useful, if, for example, there is no file system on the

ARM side.

The configuration can be changed to use the COFFMEM loader in one of two possible
ways:

3.5.4.1 Statically changing application-specific configurat ion file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "COFFMEM", /* LOADERNAME : Name of DSP executable loader */
 ...
}

3.5.4.2 Changing default configuration file at run-time
/* Extern declaration to default configuration obje ct in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration to use COFFMEM lo ader */
 strcpy (LINKCFG_config.dspConfigs [processorId] ->dspObject->loaderName,
"COFFMEM") ;

DSPLink COFFMEM loader expects the file to be pre-loaded into a memory buffer.

This may be done by applications in multiple possible ways.

The user needs to ensure that the buffer used for loading the file is physically

contiguous in non-cacheable memory, and its physical address is known.

Example of PROC_load API call using POOL buffer for loading the file

 #include <loaderdefs.h>

 ...
 COFFLOADER_ImageInfo image ;

 ...
 /* Size of files in bytes */
 image.size = size_of_file_in_bytes ;

Page 37 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

 /* Physical address of memory where COFF file i s present. */
 image.fileAddr = bufAddr ;

 /* Load the buffer into DSP memory. */
 status = PROC_load (ID_PROCESSOR, (Char8 *) &im age, argc, argv) ;

� The value of argc i.e. number of arguments and argv i.e. arguments will be

application dependant. If not required, they can be passed as 0 and NULL

respectively.

An example usage where a POOL is used to allocate the buffer used for loading the

file is shown below. Using a POOL buffer ensures that the buffer is physically

contiguous, and also enables the user to translate the buffer address to a physical

address.

Example of PROC_load API call using POOL buffer for loading the file

 #include <loaderdefs.h>

 ...
 SAMPLE_POOL_ID = POOL_makePoolId (ID_PROCESSOR, 0) ; /* 0 is the
 Zeroth po ol id of the DSP processor
 Identifie d by ID_PROCESSOR .*/

 COFFLOADER_ImageInfo image ;

 ...

 /* Configure pool for the file size. */
 SamplePoolAttrs.numBufPools = 1 ;
 SampleNumBuffers [0] = 1 ;
 SampleBufSizes [0] = DSPLINK_ALIGN (size_of_f ile_in_bytes,
 DSPLINK_B UF_ALIGN) ;

 /* If approximate file size is used, change lin e below to use
 * exactMatchReq as FALSE
 */
 SamplePoolAttrs.exactMatchReq = TRUE ;

 /* Open the pool. */
 status = POOL_open (SAMPLE_POOL_ID, &SamplePool Attrs) ;
 if (DSP_SUCCEEDED (status)) {
 status = POOL_alloc (SAMPLE_POOL_ID,
 (Pvoid *) &srcAddr
 (SampleBufSizes [0)) ;
 }

 /* -- ------------------------
 * <Code to read the full contents of file to b e loaded, into the
 * buffer.>
 * -- ------------------------
 */

 /* Get physical address of the user buffer */
 if (DSP_SUCCEEDED (status)) {
 status = POOL_translateAddr (SAMPLE_POOL_ID ,
 &dstAddr,
 AddrType_Phy,

Page 38 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

 srcAddr,
 AddrType_Usr) ;
 }

 if (DSP_SUCCEEDED (status)) {
 /* Size of files in bytes */
 image.size = size_of_file_in_bytes ;

 /* Physical address of memory where COFF fi le is present. */
 image.fileAddr = dstAddr ;

 /* Load the buffer into DSP memory. */
 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, argc, argv) ;
 }

 ...

 /* Start the DSP running */
 if (DSP_SUCCEEDED (status)) {
 status = PROC_start (ID_PROCESSOR) ;
 }

 ...

 /* Now POOL can be closed to free up the shared memory, so that POOL
 * can be reopened (if needed) with different p arameters.
 */
 if (DSP_SUCCEEDED (status)) {
 tmpStatus = POOL_close (SAMPLE_POOL_ID) ;
 }

� The value of argc i.e. number of arguments and argv i.e. arguments will be

application dependant. If not required, they can be passed as 0 and NULL

respectively.

� The POOL can be opened initially with all the shared memory requirements or

first the POOL can be opened with only the file size requirement, closed after
PROC_start and then re-opened with the shared memory requirements.

3.6 Concepts

3.6.1 Cleanup of the kernel driver

On operating system such as Linux, multiple processes and threads may use

DSP/BIOS™ LINK to communicate with the DSP. It may happen that one or more of

the processes may crash due to a user-space application issue or invalid state. In

such cases, it is desirable to restore the kernel state for the DSPLINK driver such

that applications may be able to restart and use the DSPLINK driver for further

communication with the DSP.

In addition, if an application process is unable to perform the required shutdown calls

corresponding to the startup calls made by it, the kernel state must still be restored

to a state such that it does not affect the execution of other (possibly independent)

application processes.

This is done using two mechanisms on Linux. A similar mechanism may be

implemented on other GPP operating system having this support.

Page 39 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

3.6.1.1 Signal handling on Linux

To support cleanup after an application crash or Ctrl C to terminate the process, the

DSPLINK driver needs to cleanup the kernel resources used by it and restore the

kernel driver to a consistent state. This is done using signals.

1. By default, DSPLINK registers signal handlers for process termination signals.

Within the signal handler, DSPLINK cleans up the kernel driver. It also frees as

many kernel resources as is possible.

2. If the application wishes to perform its own cleanup and does not wish DSPLINK

to register signal handlers for the process termination signals, it can disable the

signal handling through the OS-specific dynamic configuration file

(CFG_<GPPOS>.c). In this case, it is the application’s prerogative to ensure that

it also makes the required DSPLINK shutdown calls within its signal handler.

3. If the system design requires some specific behavior for certain process

termination signals, the specific signals to be handled by DSPLINK is also

dynamically configurable within the GPP OS-specific dynamic configuration file.

Note that if the number of signals within the array is modified, this needs to be

reflected in the NUMSIGNALS field within the LINKCFG_gppOsObject object.

3.6.1.2 Automatic cleanup on process exit in normal process termination

To support the scenario where an application process is unable to perform the

required shutdown calls corresponding to the startup calls made by it, atexit

handler is registered by default by DSPLINK with Linux for each process. This handler

performs all shutdown APIs for that process and gets called automatically when the

process terminates.

Applications are also free to register their atexit handlers for their own usage. The

atexit handlers are executed on a first-registered-last-executed basis.

Registration of the atexit handler is not made dynamically configurable to ensure

that processes are not allowed to corrupt the system state.

� It is a good practice for applications to always make all shutdown calls

corresponding to the startup calls. The atexit feature should not be relied

upon by applications, because this may not be available on other operating

systems, and affects the portability of the applications.

4 POOL

4.1 Overview
The POOL component provides APIs for configuring shared memory regions across

processors.

These buffers are used by other modules from DSP/BIOS Link for providing inter-

processor communication functionality.

The specific services provided by this module are:

• Configure the shared memory region through open & close calls.

• Allocate and free buffers from the shared memory region.

• Translate address of a buffer allocated to different address spaces (e.g. GPP

to DSP)

Page 40 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

• Synchronize contents of memory as seen by the different CPU cores.

This component is responsible for providing a uniform view of different memory pool

implementations, which may be specific to the hardware architecture or OS on which

DSP/BIOS™ LINK is ported. This component is based on the POOL interface in

DSP/BIOS™.

The DSP/BIOS LINK POOL is not a heap-based pool. It is a fixed-size buffer pool. It

requires the specific configuration of number of buffers and sizes as will be used by

the application. The exactMatchReq property only allows users the flexibility of

configuring an approximate size for each buffer. However, the maximum number of

buffers still must be configured.

4.2 Configuration

4.2.1 Configuration parameters
The POOL_open () call is used to configure the shared memory requirement for the

application. Since the pool is shared between DSP and GPP, the sizes of the buffers

must be cache aligned. DSP/BIOS LINK provides an API DSPLINK_ALIGN which can

be used to get the cache aligned size.

For SMA Pool, we need to configure a parameter of type SMAPOOL_Attrs in the
POOL_open call. The POOL_open call takes a structure of type SMAPOOL_Attrs for the
POOL_open call. The elements in the structure are:

• numBufPools : Number of buffer pools.

• bufSizes : Array of sizes of the buffers in each buffer pools. The buffer sizes

must be cache aligned.

• numBuffers : Array of number of buffers in each buffer pools.

• exactMatchReq : Flag indicating whether requested size is to be rounded to

nearest available larger size in Pools or exact match has to be performed.

4.2.2 Exact match required
1. exactMatchReq specified as TRUE: With this configuration, error is returned if the

exact size is not found configured.

2. exactMatchReq specified as FALSE: With this configuration, the highest buffer

size next closest in size to the specified size to be allocated is returned. If the

nearest higher size buffers are exhausted, POOL_alloc () call will return with

DSP_EMEMORY or memory allocation failure.

1. You can set exactMatchReq field in the SMAPOOL_Attrs while opening the pool
to FALSE, and use a large buffer size for the configuring the pool (all

allocations must be less than this size).
2. Please note that the disadvantage of using exactMatchReq as FALSE is

possible wastage of memory, since even a buffer of size 128 bytes may result

in an allocation of size 1024 bytes if only buffers of 1024 bytes are configured
in the pool.

4.2.3 Buffer configuration
To set the pool attributes, you need to know how many buffers that you need in the

shared memory as well as their size. Depending on your application needs, you

configure your pool according to the size and the number of the buffers required. You

can also configure the pool to return the buffer only if an exact match size is

configured or to return a buffer with a size which fits best to what has been asked.

Page 41 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

4.2.4 Example
If you want to configure the pool (with exact match TRUE) to allocate 10 buffers of

size 128, 10 buffers of size 512 and 10 buffers of size 2048 you may configure the

pool as follows.

#define NUM_BUF_SIZES 3 /* 3 buffer sizes to be c onfigured */
#define SAMPLE_POOL_NO 0 /* Pool no as in the conf ig CFG_<PLATFORM>.c.

Uint32 numBufs [NUM_BUF_SIZES] ;
Uint32 size [NUM_BUF_SIZES] ;
SMAPOOL_Attrs poolAttrs ;

 . . .

if (DSP_SUCCEEDED (status)) {
 size [0] = 128 ;
 numBufs [0] = 10 ;

 size [1] = 512 ;
 numBufs [1] = 15 ;

 size [2] = 2048 ;
 numBufs [2] = 5 ;

 poolAttrs.bufSizes = (Uint32 *) &size ;
 poolAttrs.numBuffers = (Uint32 *) &numBufs ;
 poolAttrs.numBufPools = NUM_BUF_SIZES ;
 poolAttrs.exactMatchReq = TRUE ;

 /* Make the pool id from pool no and dsp proce ssor id . Applicable
 * GPP side only
 */
 poolId = POOL_makePoolId (ID_PROCESSOR ,SAMPLE_ POOL_NO) ;
 status = POOL_open (poolId, &poolAttrs) ;
 if (DSP_FAILED (status)) {
 APP_Print ("POOL_open () failed. Status = [0x%x]\n", status) ;
 }
}

� The above is just a dummy representation of how to configure the POOL. In

real world applications, this is more tuned to the application buffer size
requirements.

In the above example:

1. Consider a scenario where exactMatchReq is TRUE. The application can

successfully allocate 10 buffers of size 128, 15 buffers of size 512, and 5 buffers

of size 2048. If you want to allocate a buffer of size 256, the above configuration

will not support it and POOL_alloc will return error.

2. Consider a scenario where exactMatchReq is FALSE. The application can

successfully allocate 10 buffers of size 128, 15 buffers of size 512, and 5 buffers

of size 2048. as before. However, the difference is that an attempt to allocate a

buffer of size 256 will result in the POOL_alloc () call returning a buffer of next

larger size i.e. 512 if available. If buffer of size 512 is not available it will return

DSP_EMEMORY or memory allocation failure.

Page 42 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

4.2.5 Configuring multiple pools

4.2.5.1 GPP side

CFG_<platform>.c needs to be updated for multiple POOLS on GPP side. The

parameters to be updated are:

1. Add other ‘n’ entries in LINKCFG_poolTable_00 with the same name.

MEMENTRY i.e. the memory entry from which the pool will be configured and

the POOLSIZE i.e. the size of the second pool can be configured as desired by
the application.

STATIC CONST LINKCFG_Pool LINKCFG_poolTable_00 [] =
{
 {
 "SMAPOOL", /* NAME : Name of the pool */
 (Uint32) 1, /* MEMENTRY: Mem entry ID (-1 if not n eeded)*/
 (Uint32) 0x35000 , /* POOLSIZE: Size of pool (-1 if not needed) */
 (Uint32) -1, /* IPSID : ID of t he IPS used */
 (Uint32) -1, /* IPSEVENTNO: IPS E vent number for POOL */
 0x0, /* ARGUMENT1 : First Pool-specific argument */
 0x0 /* ARGUMENT2 : Secon d Pool-specific argument*/
 },
 {
 "SMAPOOL", /* NAME */
 (Uint32) 1, /* MEMENTRY */
 (Uint32) 0x35000 , /* POOLSIZE */
 (Uint32) -1, /* IPSID */
 (Uint32) -1, /* IPSEVENTNO */
 0x0, /* ARGUMENT1 */
 0x0 /* ARGUMENT2 */
 }
}

2. Update NUMPOOLS in LINKCFG_linkDrvObjects to ‘n’.

STATIC CONST LINKCFG_LinkDrv LINKCFG_linkDrvObject s [] =
{
 {
 "SHMDRV", /* NAME: Name of the link driver */
 (Uint32) 100000000, /* HSHKPOLLCOUNT : Poll value for which */
 * handshake waits (-1 if infinite) */
 (Uint32) 1, /* MEMENTRY: Mem ent ry ID (-1 if not needed)*/
 0, /* IPSTABLEID : ID of the IPS table used */
 2, /* IPSENTRIES : Num ber of IPS supported */
 0, /* POOLTABLEID : ID of the POOL table */
 2, /* NUMPOOLS : Number of PO OLs supported */
 0, /* DATATABLEID : ID of data driver table */
 1, /* NUMDATADRV : Num ber of data drivers */
 0, /* MQTID : ID of the MQT */
 0, /* RINGIOTABLEID: Ri ngIO Table Id */
 0, /* MPLISTTABLEID: Mp List Table Id */
 0 /* MPCSTABLEID : MP CS Table ID */
 }
} ;

� After configuring the pools, if application is using dynamic configuration, the

GPP-side application must be rebuilt. If dynamic configuration is not used, the

Page 43 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

DSP/BIOS™ LINK API library must be rebuilt, followed by the application
rebuild.

4.2.5.2 DSP side

With BIOS 5.xx:

1. The global variable POOL_config must be configured as required by DSP/BIOS™.

POOL_Config POOL_config = {MESSAGE_Pools, 2} ;

2. The pools must be configured as required by DSP/BIOS™.

POOL_Obj MESSAGE_Pools [NUM_POOLS] =
{
 {
 &SMAPOOL_init, /* Init Funct ion */
 (POOL_Fxns *) &SMAPOOL_FXNS, /* Pool inter face functions */
 &MESSAGE_PoolParams [0], /* Pool param s */
 NULL /* Pool objec t: Set in pool impl. */
 },
 {
 &SMAPOOL_init, /* Init Funct ion */
 (POOL_Fxns *) &SMAPOOL_FXNS, /* Pool inter face functions */
 &MESSAGE_PoolParams [1], /* Pool param s */
 NULL /* Pool objec t: Set in pool impl. */
 }
}

� After configuring the pools, the DSP-side application must be rebuilt to
generate the DSP executable.

4.3 POOL requirements for different DSP/BIOS™ LINK c omponents

4.3.1 PROC
PROC component has no POOL requirements.

4.3.2 NOTIFY
NOTIFY component has no POOL requirements.

4.3.3 MPCS
Each MPCS has the following buffer requirements:

1. MPCS_ShObj: MPCS control structure size

Along with this, application must configure buffers as required according to

application need for the protocol that uses MPCS.

4.3.4 MSGQ
One pool must be reserved for Message Queue transport. This pool is used by all

applications that use MSGQ. This pool must configured messages as given below:

1. ZCPYMQT_CTRLMSG_SIZE: MSGQ control structure size. The number of buffers

of this size required varies depending on the frequency with which

MSGQ_locate is performed by the application. This message size is required

for the MSGQ transport. The POOL ID configured for the MSGQ transport

must have this buffer size configured.

The same or different pool(s) as used for the MQT can be used to satisfy the

following other buffer requirements for messaging:

Page 44 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

1. MSGQ_AsyncLocateMsg : MSGQ ASYNC locate call message size requirement,

one for each ASYNC locate call. The number of buffers of this size required

varies depending on the frequency with which MSGQ_locateAsync is

performed by the application. This size is not required to be configured if

application is not using MSGQ_locateAsync . The pool ID to be used internally

for allocating these messages is provided within the MSGQ_LocateAsyncAttrs

passed to the MSGQ_locateAsync call.

2. MSGQ_AsyncErrorMsg : MSGQ ASYNC error buffer size required if application

wishes to handle asynchronous error messages by setting error handler

MSGQ through the API MSGQ_setErrorHandler () . When an asynchronous

error occurs within the MSGQ module, if the application has registered an

error handler, an error message of this size is allocated, filled with async error

details, and sent to the registered MSGQ. If no error handling MSGQ is

registered, this size does not need to be configured. The pool ID to be used

for this is passed to the MSGQ_setErrorHandler () call. Currently, the

DSP/BIOS LINK MQT does not send any asynchronous error messages, since

the shared physical link is lossless. However, this may be required for MQTs

built over certain other possibly lossy physical connections.

Along with this, the application must configure message buffers according to

application need. The considerations for allocating and reserving memory for

message buffers are:

1. Each message buffer used by the application must have the fixed size

MSGQ_MsgHeader as the first field in the message. The size of this structure

must be included in the message size to be allocated by the application.

2. The sizes of the message buffers (including fixed header) must be a multiple

of cache line size (if applicable for the platform). For example, for Davinci, the

size of message buffer must be a multiple of 128 bytes.

3. The MSGQ_alloc () call takes the pool ID to be used for allocating the

message buffers. The corresponding pool must be configured to support

allocation of the required numbers of message buffers.

4. Message buffers of different sizes can be used within the same application as

long as the generic constraints mentioned above are followed.

4.3.5 RingIO
Each RingIO has the following buffer requirements:

1. Data buffer: This size should be cache aligned. If foot buffer is configured,

then the size required is (data buffer size + foot buffer size).

2. Attribute size buffer (if configured): This size should be cache aligned.

3. RingIO_ControlStruct : RingIO control structure size

4. MPCS_ShObj: MPCS control structure size

4.3.6 MPLIST
 Each MPLIST has the following buffer requirements:

1. MPLIST_List : MPLIST control structure size.

Along with this, the application must configure buffers which will be the list elements

according to application need. The considerations for allocating and reserving

memory for buffers to be used with MPLIST are:

Page 45 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

1. Each buffer used by the application on the MPLIST must have the fixed size

MPLIST_Header as the first field in the message. The size of this structure

must be included in the buffer size to be allocated by the application.

2. The sizes of the buffers (including fixed header) must be a multiple of cache

line size (if applicable for the platform). For example, for Davinci, the size of

buffer must be a multiple of 128 bytes.

3. Buffers of different sizes can be used within the same application with MPLIST

as long as the generic constraints mentioned above are followed.

4.3.7 CHNL

The application needs to configure buffers for data transfer according to application

need.

The considerations for allocating and reserving memory for data transfer buffers are:

1. The size of the data transfer buffers must be a multiple of cache line size (if

applicable for the platform). For example, for Davinci, the size of data

transfer buffer must be a multiple of 128 bytes.

2. The pool ID to be used for allocating the buffers is configured within the

CFG_<PLATFORM>.c file within the LINKCFG_DataDrv object (field POOLID).
This pool ID gets used internally when the buffers used for data transfer are

allocated using the CHNL_allocateBuffer () API. One or more buffers may

be allocated for each channel using the CHNL_allocateBuffer () API.

3. For each channel, buffers of a fixed size are used. Different channels can have

different buffer sizes as long as they are less than the maximum buffer size

supported by the data transfer driver.

4. The POOL configuration for the data driver must take buffer requirements for

all channels into account.

4.4 POOL setup for multi process applications
There are two ways in which POOL can be configured for multi process applications

4.4.1 Opening all pools at system initialization ti me
The main process needs to understand the POOL requirements for the complete

application and configure the POOL using POOL_open () call accordingly.

In each other process which attaches to use DSPLINK, the application can call

POOL_open () with params as NULL. Any parameters that are provided are ignored

for all calls subsequent to the first one for each pool ID. The application need not call

POOL_open () if it is not doing anything that uses a pool (RingIO, MSGQ,

POOL_alloc () etc.).

4.4.2 Opening pools dynamically

In this method, each application may open its own pool as required. All pools need

not be opened at system initialization time, and the system integrator does not need

to know pool requirements of all applications.

One pool must be reserved for Message Queue transport. This pool must be opened

statically before PROC_start () to ensure correct behavior on the DSP-side. All

Page 46 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

applications using MSGQ must call POOL_open () for this pool ID to be allowed to

use messaging.

To open pools dynamically, following procedure must be followed:

1. On the DSP-side, instead of specifying the actual pool configuration, use a

dummy configuration. This ensures that BIOS boot-up in POOL module

initialization does not hang waiting for the GPP-side pool to be opened.

/** === ====================
 * @name MESSAGE_DummyPoolFxns
 *
 * @desc Dummy pool functions to allow dynamic p ool open as required
 * === ====================
 */
POOL_Fxns MESSAGE_DummyPoolFxns =
{
 (POOL_Open) SYS_zero, /* return 0 so POOL_ini t will not fail */
 (POOL_Close) FXN_F_nop, /* have close do nothin g */
 (POOL_Alloc) SYS_one, /* have alloc return no n-zero */
 (POOL_Free) FXN_F_nop /* have free do nothing */
} ;

/** === ====================
 * @name MESSAGE_Pools
 *
 * @desc Array of pools.
 * === ====================
 */
POOL_Obj MESSAGE_Pools [NUM_POOLS] =
{
 {
 &FXN_F_nop, /* Init Functi on */
 &MESSAGE_DummyPoolFxns, /* Pool interf ace functions */
 NULL, /* Pool params */
 NULL /* Pool obj: S et in pool impl. */
 }
} ;

2. After the GPP-side pool is opened (which may be after PROC_start ()), the

application can notify the DSP-side (possibly through NOTIFY_notify () ,

since NOTIFY module does not require any pool). Note that the application

must ensure that it does not attempt to use the POOL either directly or

indirectly before the pool is opened on both GPP and DSP-sides.

3. When the notification is received from GPP that the pool has been opened, the

DSP-side application can now provide the actual configuration parameters and

open the pool. This is to ensure that the DSP-side application does not spin

waiting for the pool to be opened by GPP-side. With this method, the DSP-

side can simply wait on a semaphore for the GPP-side pool to be opened, and

the notification callback posts this semaphore. The pool can be opened on

DSP-side by:

SMAPOOL_Params MESSAGE_PoolParams [NUM_POOLS] ;

MESSAGE_PoolParams [poolId].poolId = poolId ;
MESSAGE_PoolParams [poolId].exactMatchReq = TRUE ;

Page 47 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

MESSAGE_Pools [poolId].initFxn = SMAPOOL_init ;
MESSAGE_Pools [poolId].fxns = (POOL_Fxns *) &SMA POOL_FXNS ;
MESSAGE_Pools [poolId].params = &(MESSAGE_PoolPara ms [poolId]) ;
MESSAGE_Pools [poolId].object = NULL ;

status = POOL_open (poolId, &(MESSAGE_PoolParams [p oolId])) ;

� The code given above is only indicative. Similar changes would need to be
done in the application to open pools dynamically.

Page 48 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

5 RingIO

5.1 Overview
The RingIO component provides Ring Buffer based data streaming.

Figure 7. RingIO overview

The specific services provided by this module are:

1. Create a ring buffer created within the shared memory. The RingIO is identified

by a unique name. The reader and writer of the ring buffer can be on different

processors.

2. Writer and reader can open a handle to the RingIO in a specific mode, which can

be used for all further accesses to the RingIO.

3. Writer can acquire empty regions of memory within the data buffer. The contents

of the acquired region are committed to memory when the data buffer is released

by the writer.

4. Reader can acquire regions of memory within the data buffer with valid data

within them. On releasing the acquired region, the contents of this region are

marked as invalid.

5. Writer and reader can operate completely asynchronously with each other.

6. The buffers are acquired in sequence. The size of released data need not match

the sizes in which the data was acquired. Data is released to the buffer by

specifying only the size to be released. The buffer pointer is not specified.

7. Attributes can be synchronous transferred with data. End of Stream (EOS), Time

Stamps, Stream offset etc. are examples of such attributes and these can be

associated with offsets in the ring buffer. Writer sets attributes, and reader gets

the attributes. The attributes may be fixed or of variable size.

8. Cancel the acquired buffer.

9. Flush the contents of the ring buffer. The behavior of flush is different based on

whether writer or reader is flushing the data/attributes, and also depends on the

type of flush requested.

10. Writer and/or reader can register for notification with a callback function. The

notification is received when certain specific conditions as required by the

different notification types are met.

11. Helper functions to get information about the current state of the RingIO.

Reader Acquired Buffer Start

Writer Acquired Buffer Start

Valid Data in Buffer

Reader Acquired Buffer End

Writer Acquired Buffer End

Empty Buffer

Page 49 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

5.2 Generic features
� A client using RingIO is a single unit of execution. It may be a process or

thread on the GPP or the DSP.

� The RingIO instance can be created between a client on the ARM and a client

on the DSP or between two DSP clients.

� Either the reader or writer can create or delete the RingIO instance.

� The RingIO instance should be created in a shared memory region which can

be accessed directly by both the reader and the writer.

� Both the reader and the writer need to open the RingIO instance and get a

handle. Any data access on the RingIO instance should be made using these

handles.

� Each RingIO can have a single writer client and a single reader client. A

RingIO handle may not be shared between multiple clients on the GPP or

DSP. For example, the following scenario is not permitted: One thread

acquires from the RingIO, passes the buffer pointer to another thread, which

then releases the buffer. This scenario is a multi-reader/writer scenario,

which is not supported.

� Each RingIO instance is associated with a unique RingIO name. This RingIO

name is specified while creating, opening and deleting the RingIO.

� The RingIO client can be closed only if there is no currently acquired data or

attributes. If there is any unreleased data or attributes, they must be

released or cancelled before the RingIO client can be closed.

� The RingIO can be deleted only when both reader and writer clients have

successfully closed their RingIO clients.

� Each RingIO instance has an associated footer area, if configured. The foot-

buffer can be configured to be of zero size if not required.

� The RingIO data and attribute buffer sizes must comply with any constraints

imposed by the pool that they are specified to be allocated from. For

example, for the Shared Memory Pool, the buffer sizes must be aligned to

DSP cache line.

5.2.1 RingIO buffers

There are three types of RingIO buffers:

� Data buffer

� Attribute buffer

� Foot buffer

The size of the RingIO buffers depends on the application’s need. The size of the

buffers is specified while creating the RingIO, as part of RingIO creation attributes:

ringIOAttrs.dataBufSize = 0x40000 ;
ringIOAttrs.attrBufSize = 0x1000 ;
ringIOAttrs.footBufSize = 0x100 ;

� The RingIO footbuffer is required to be physically contiguous with the data

buffer. Hence when specifying pool requirements for the buffers, a size of

(dataBufSize + footBufSize) must be configured.

Page 50 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

5.2.2 DSP cache-related information

� On the DSP-side, cache-related flags are provided to the writer and reader

clients while opening the RingIO. These flags enable the user to get the

maximum performance from the system and customize it for their own use.

Separate cache flags are available for:

o Control structures

o Data buffer

o Attribute buffer

� These flags indicate whether cache coherence is to be performed for the

RingIO control structures, data buffer or attribute buffer. The flags need not

be specified when opening the RingIO for the following application scenarios:

o DSP-DSP RingIO

o If RingIO control structures are specified to be placed into an internal

memory pool, cache flag need not be specified for control structures.

o If the RingIO data buffer is specified to be placed into an internal

memory pool, cache flag need not be specified for data buffer.

o If the RingIO attribute buffer is specified to be placed into an internal

memory pool, cache flag need not be specified for attribute buffer.

5.3 Acquiring and releasing data
� The writer/reader client can acquire data buffers of any arbitrary size. RingIO

does not maintain the acquired data as separate buffers, but as the complete

acquired size.

o Each buffer received from the acquire call is guaranteed to be a

contiguous data buffer.

o However, buffers received from multiple consecutive acquire calls may

not be contiguous.

o No assumption should be made that consecutively acquired buffers

are contiguous in memory.

o The writer/reader client can acquire multiple buffers and release the

size completely, or in smaller chunks of varying sizes.

� The data is released into the RingIO by specifying the size to be released.

Buffer pointers are not provided to the release call.

� As long as the size to be released does not exceed the total acquired size,

the data can be released in any granularity. The sequence of release calls

does not need to match the acquire calls.

� Cancel: Any acquired data that is not required can be cancelled back to the

RingIO through the RingIO_cancel () API.

o The cancel call removes all acquired but un-released data from the

RingIO for the calling client.

o In case of writer, any attributes that were set within this acquired but

un-released region are also removed.

o In case of reader, any attributes that were removed within the

acquired region are replaced back into the RingIO.

Page 51 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

5.3.1 Writer

� The writer writes data into the RingIO data buffer by first acquiring a

contiguous data buffer, writing data into the acquired buffer, and then

releasing the filled up data to the RingIO.

� The behavior of acquire varies depending on the NEED_EXACT_SIZE

specified while opening the writer client. The NEED_EXACT_SIZE flag

indicates whether the writer always needs buffers only of a specific size, and

buffers of lesser size are not acceptable.

o NEED_EXACT_SIZE is TRUE

� If the requested empty size is not available within the RingIO

as a contiguous data buffer, error is returned.

� If the requested empty size is not available till the end of the

RingIO buffer, but is available from the top of the buffer, a

wraparound occurs, and a contiguous buffer is returned from

the top of data buffer.

o NEED_EXACT_SIZE is FALSE: If the requested buffer size is not

available, RingIO returns the amount of empty contiguous data buffer

that is available till the end of the data buffer, with a status code

indicating this.

� Five different types of notification mechanisms are supported. Details of the

notification types are present in later sections.

� The writer can flush the data that it has written into the RingIO in two

different modes. In the case of hard-flush, all data and associated attributes

present in the RingIO will be removed. In the case of soft-flush, all data and

associated attributes after the first readable attribute will be flushed, and the

attribute is also removed.

5.3.2 Reader

� The reader reads data from the RingIO data buffer by first acquiring a

contiguous data buffer, reading data from the acquired buffer, and then

releasing the empty buffer to the RingIO.

� The behavior of acquire varies depending on the NEED_EXACT_SIZE

specified while opening the reader client. The NEED_EXACT_SIZE flag

indicates whether the reader always needs buffers only of a specific size.,

and buffers of lesser size are not acceptable.

o NEED_EXACT_SIZE is TRUE

� If the requested valid size is not available within the RingIO as

a contiguous data buffer, error is returned.

� If the requested empty size is not available till the end of the

RingIO buffer, but is available from the top of the buffer, the

behavior varies depending on whether a foot-buffer has been

configured.

• If non-zero size foot-buffer is configured, the required

amount of valid data is copied from the top of the data

buffer into the foot-buffer (assuming foot-buffer size is

sufficient). A contiguous data buffer is then returned to

the user as requested. Further acquires will happen

Page 52 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

from the specific offset from the top of the buffer. If

foot-buffer size is not sufficient to return a contiguous

data buffer of specified size, error is returned.

• If foot-buffer is not configured, error is returned in this

case.

o NEED_EXACT_SIZE is FALSE: If the requested buffer size is not

available, RingIO returns the amount of valid contiguous data buffer

that is available till the end of the data buffer, with a status code

indicating this. Foot-buffer is not used in this scenario.

� Five different types of notification mechanisms are supported. Details of the

notification types are present in later sections.

� The reader can flush the data that is available from the RingIO in two

different modes. In the case of hard-flush, all data and associated attributes

present in the RingIO will be removed. In the case of soft flush, all data and

associated attributes before the first readable attribute will be flushed

5.4 Attributes

5.4.1 Generic information

� Attributes are used to communicate in-band information from the writer to

the reader.

� Typical attributes could be the EOS marker at the end of the stream that’s

being written, or an attribute to indicate changes in the stream’s status.

� Attributes can be of two types

o Fixed attributes: Fixed attributes have an attribute type and an

optional parameter

o Variable attributes: Variable attributes can be provided a data buffer

as payload data in addition to the attribute type and the optional

parameter. The attributes are copy-based. The information in writer-

provided buffer is copied into the attribute buffer. The size of provided

buffer in variable attributes must be a multiple of 4 bytes.

5.4.2 Setting attributes

� Attributes can be set by the writer only on a data buffer that has been

acquired. This means that, if the writer has acquired a buffer of size x,

attributes can be set at any of offset position between 0 and x (inclusive).

� The only exception to the above rule is if the writer wishes to set an attribute

when no data has been acquired. In this case, the writer can set attributes at

the next write location i.e. offset 0 in the buffer that is going to be acquired.

Attempts to set attributes at any other offset are ignored, and the attributes

get set at offset 0.

� When the writer writes attributes for the data buffer it has acquired, it should

set attributes in the increasing order of buffer offsets. Setting attributes in

any arbitrary order can lead to undefined behavior.

� The writer commits attributes to the attribute buffer when the associated

write buffer is released. Any attributes set when writer has no acquired data

are released immediately.

Page 53 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

5.4.3 Getting attributes

� The attributes written by the writer should be “read” before the reader can

read any more data after the offset at which the attribute is set.

� If the reader could not read data due to presence of attributes at the current

read location, an error code mentioning the presence of an attribute is

returned.

� When a variable attribute is being read, a valid buffer must be provided to the

getAttribute function. The attribute information is copied into this application

buffer.

� Attributes are removed from the attribute buffer when the reader releases the

data buffer that contains the associated attributes or the writer flushes valid

data which will clear associated attributes.

� Fixed and Variable attributes can be set and received using different APIs. In

case a fixed attribute get function is called when a variable attribute is

present, an error code is returned informing of the presence of the variable

attribute.

5.4.4 Constraints

Setting attributes when RingIO is in an incorrect state

An attempt to set an attribute shall fail with error RINGIO_EWRONGSTATE, if setting the
attribute would fall into the reader region. This can happen for the following

scenarios:

• The buffer is completely full. In this case, attribute can only be set at offset 0.

But offset 0 falls into reader region.

• The buffer is completely acquired by the writer. Part or none of this buffer

may have be released. Writer is attempting to set an attribute at the end of

its acquired range. In this case, end of writer buffer is the same as beginning

of reader buffer.

If the reader has acquired and released some data, resulting in its moving further

such that its acquire start is not at the same location where writer may be able to set

an attribute, the above conditions do not hold true, and the attribute is allowed to be

set.

Ensuring the constraint:

If such a scenario occurs, the application must wait/poll till the reader moves ahead

so that the attribute would not fall in its region. This can be done in two ways:

1. Wait on a semaphore for notification that it is safe to set the attribute: For this

constraint, the reader release data is the trigger point. So if the writer can set

notifier to be notified when reader releases data, writer can have a semaphore

wait that gets posted when the notification comes.

• Watermark needs to be set at 1 byte, since that's the minimum that's

needed for reader to move forward.

• Notification type must be RINGIO_NOTIFICATION_HDWRFIFO_ONCE,
RINGIO_NOTIFICATION_ALWAYS or

RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS. This may interfere with any

other notification mechanisms, since application may have a different

threshold or notification type for the other generic activities. So it may

Page 54 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

not be always possible to implement this type of notification

mechanism for attribute buffer. If this method is not possible, then

polling type of notification must be used.

2. Poll till RingIO_setAttribute/RingIO_setvAttribute returns success: It is

preferable to have a small sleep in between successive calls to the setattribute
APIs to ensure that the CPU is not loaded and other threads get a chance to run.

5.5 Foot-buffer
1. A foot-buffer is a buffer that is configured during creation of the RingIO. The size

of the foot-buffer to be used, if any, is mentioned in the RingIO attributes

specified while creating the RingIO.

2. The foot-buffer memory is reserved, contiguously starting from the end of the

RingIO data buffer.

3. The foot-buffer comes into the picture only for RingIO reader. It is not

used/written into by the RingIO writer.

4. For a RingIO reader, the following scenario causes foot-buffer to be used:

� Reader attempts to acquire a buffer size that is more than the contiguous

size available till the end of the RingIO data buffer.

� Valid size is present from the top of the RingIO data buffer

� Foot-buffer is configured to be of a non-zero size.

� In this scenario, the RingIO_acquire call for reader decides the size of

contiguous valid buffer available as a minimum of:

- Total valid size

- Contiguous buffer size available -- size till the end of RingIO data

buffer + early end buffer (if any) + foot-buffer

- Size till the first attribute that can be read by the reader

Based on this, there is a memory copy from the top of the RingIO data buffer

into the early end buffer & foot-buffer, and the pointer to the contiguous

buffer is returned to the reader.

After this, the reader acquire pointer will be reset to within the RingIO data

buffer (from top), and subsequent acquires will be made from within the

RingIO data buffer.

5. Without foot-buffer, application design in certain scenarios may get complicated.

This is elaborated below in the use-case scenario.

Page 55 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

5.5.1 Use Case Scenarios

5.5.1.1 Scenario 1

Figure 8. Foot-buffer Use-Case Scenario 1

Without foot-buffer

Consider a RingIO configured with data buffer size 1024K. No foot-buffer is

configured.

1. Reader requires 384 bytes frame size. Note that 1024K is not a multiple of 384.

2. Writer acquires and releases large chunks of data as it is available, and fills up

the data buffer.

3. The reader acquires and releases 384 bytes at a time.

4. When the reader reaches the end of the buffer, it has already used up 1048320

bytes (1024K – 256).

5. Now the reader needs another 384 bytes. However, only 256 bytes are available

at the end of the buffer as a contiguous buffer.

6. The 256 bytes at the end of the data buffer cannot be ignored. The Reader needs

to now allocate its own 384 byte buffer, acquire the 256 bytes from the RingIO

data buffer, copy the 256 bytes into its own buffer. Then acquire another 128

bytes from the top of the data buffer, and copy it after the existing 256 bytes

into its own buffer. This gives it the required 384 bytes.

7. This special implementation needs to be done by the application writer to ensure

correct behavior.

With foot-buffer

1024
Kbytes

RingIO
data buffer

RingIO_acquire
RingIO_release

 384 bytes

lastBuf

tskRingIO

tskRingIO

 Foot-buffer

RingIO_acquire
RingIO_release

 384 bytes

Not required when foot -
buffer is present.

Copy from end

Copy from top

Page 56 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

When foot-buffer is copied, the complete special application implementation in step 6

above can be avoided.

In step 6:

The reader still makes a request for 384 bytes. Since only 256 bytes are available at

the end, RingIO internally copies 128 bytes from the top of the buffer into the foot-

buffer and provides a contiguous buffer to the reader.

When the reader releases the buffer, the internal RingIO data structures are updated

to ensure that the next request goes to the start of the buffer (with 128 byte offset)

instead of continuing into the foot-buffer.

Due to this, a minimal foot-buffer size of 128 bytes only is sufficient to ensure

application simplicity.

Points to be considered

Only the required foot-buffer size of 128 bytes should be configured in above case.

Configuring a larger foot-buffer will not result in additional efficiency. It will result in

memory wastage.

5.5.1.2 Scenario 2

Figure 9. Foot-buffer Use Case Scenario 2

Without foot-buffer

Consider a RingIO data buffer of size 1024K. No foot-buffer is configured.

1. A task (tskRingIO) interacts with RingIO in reader mode to acquire and release

buffers. It attempts to always acquire 256K buffers (ringIOBuf) with

NEED_EXACT_SIZE false.

1024
Kbytes

RingIO
data buffer

RingIO_acquire

256 Kbytes

tskRingIO

tsk1
GetBuffer

1030 bytes

RingIO_cancel

Page 57 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

Other tasks (tsk1) interact with tskRingIO to satisfy their buffer needs. For

example, tsk1 always asks for fixed size 1030 byte buffers. tsk1 does not interact

with RingIO.

2. The tskRingIO buffer ringIOBuf provides a simple size management for its

acquired buffer size. The size available within ringIOBuf is reduced whenever it

provides a buffer to tsk1. When the size reduces to less than 1030 (e.g. 524) and

tsk1 buffer get fails, tskRingIO releases the used buffer (size 261620) and

cancels the remaining unused part (size 524) to the RingIO.

3. This works fine for the first few times tskRingIO acquires the 256K buffers, till it

reaches the end of RingIO data buffer. Consider that the last cancel has now

cancelled 524 bytes to the RingIO buffer, resulting in the reader’s acquire start

being at 524 bytes above its physical end. Now if tskRingIO attempts to acquire

256K, it will get only 524 bytes again of contiguous buffer till the end of RingIO

data buffer, even though valid data may be available from the top of RingIO

buffer.

4. The tsk1 buffer get again fails (524 < 1030), tskRingIO again cancels the buffer

to RingIO, and this keeps happening in a loop, stalling the system.

With foot-buffer

In this scenario, foot-buffer is very useful. By configuring the foot-buffer of size

1030, this situation can be avoided.

In step 2, if tskRingIO cancels 524 to the RingIO data buffer, and sufficient valid size

is available at the top of RingIO data buffer, RingIO_acquire for tskRingIO will result

in copying valid data of size 1030 from top of buffer into foot-buffer. Then this buffer

of size 1554 is returned to tskRingIO.

tsk1 buffer get passes, and tskRingIO cancels remaining amount (524) to the

RingIO.

However, since the RingIO data buffer end boundary has now been crossed, the

reader acquire start has been reset to 524 bytes from top of RingIO data buffer, and

next acquire will return data from the top of the buffer.

Points to be considered

The following issues are seen if applications unnecessarily use a large foot-buffer:

The foot-buffer size to be used must be tuned to the application’s needs. Using a

larger foot-buffer size will not give any additional advantages to the system. On the

other hand, it will degrade the system performance.

For example, if a 256K foot-buffer is used, assuming sufficient valid size, it will result

in entire 256K buffer being copied from top of RingIO data buffer into the foot-buffer.

This is unnecessary, and will degrade the performance, and zero-copy behavior is

lost.

5.6 Notification
The notification mechanism as well as other configuration parameters for the

notification can be set by the reader or writer through an API call to set the notifier.

Parameters that can be configured include the notification type, watermark, callback

function, and fixed parameter to the callback function.

Five different types of notification are supported:

Page 58 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

5.6.1 RINGIO_NOTIFICATION_NONE

No notification is required.

5.6.2 RINGIO_NOTIFICATION_ALWAYS

5.6.2.1 Description

� The notification is enabled when an attempt to acquire data by the client

has failed.

� Once enabled, the notification remains enabled till:

o For writer client, empty data size falls below the watermark.

o For reader client, valid data size falls below the watermark.

At this point, the notification is disabled again. Only a RingIO_release call

will disable the notification. RingIO_cancel and RingIO_flush will not

disable the notification.

� Notifications are sent each time when the other client releases data, as

long as the data size is above the watermark:

o Empty data size for writer – This condition can be met in the

functions RingIO_release and RingIO_flush.

o Valid data size for reader

� Cancel call does not enable or disable notification.

� Flush call does not enable or disable notification. Flush called by the

reader client may cause empty data size to fall above the watermark and

cause a notification to be sent to the writer client.

5.6.2.2 Examples

Scenario 1: Reader notification

RingIO data buffer size = 1MB

Application requirements:

1. RingIO reader needs at least 16K valid buffer size to be able to start/continue

its processing.

2. RingIO reader does not need to be notified as long as it is not acquiring any

data. Writer may continue to release data, but only when reader has started

acquiring data and has failed once, it needs to be notified. Till then, it is not

interested in writer's data releases.

3. Once the reader's acquire has failed, it needs to be notified for each writer

release as long as the valid buffer size is above its watermark.

Scenario:

1. Initial state is RingIO is empty.

2. RingIO reader sets notification for 16K watermark with

RINGIO_NOTIFICATION_ALWAYS type.

3. Writer starts releasing data. 64K valid data is available in the RingIO. No

notification is received for reader.

Page 59 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

4. At some point, reader starts acquiring data. The initial acquires pass (e.g.

56K).

5. RingIO reader attempts acquire (e.g. 16K). Acquire fails. Notification gets

enabled.

6. RingIO reader now waits for notification.

7. RingIO writer releases 16K. Notification is sent to reader.

8. RingIO reader wakes up and can now acquire data.

9. Writer releases another 8K. Notification is again sent to reader (valid data =

24K is above reader watermark of 16K).

10. Writer releases another 8K. Notification is again sent to reader (valid data =

32K is above reader watermark of 16K).

11. Reader acquires 16K. Valid data = 16K. Notification is still enabled. If writer
releases any data, reader will get notified.

12. Reader acquires 8K. Valid data = 8K, which is below reader watermark of

16K. Notification gets disabled.

13. Writer releases 16K. Notification is not sent to reader (valid data = 24K is

above reader watermark of 16K, but notification is disabled).

14. Now, notification gets enabled again only if reader attempt to acquire data

fails. For example, if reader attempts to acquire 32K.

Scenario 2: Writer notification

RingIO data buffer size = 1MB

Application requirements:

� RingIO writer needs at least 64K empty buffer size to be able to continue

filling the RingIO buffer with valid data.

� RingIO writer does not need to be notified as long as it is able to succesfully

acquire any empty buffer. Reader may continue to release empty buffer, but

only when writer acquire fails, it needs to be notified. Till then, it is not

interested in reader's buffer releases.

� Once the writer's acquire has failed, it needs to be notified for each reader

release as long as the empty buffer size is above its watermark.

Scenario:

1. RingIO writer sets notification for 64K watermark with

RINGIO_NOTIFICATION_ALWAYS type.

2. Writer and reader are acquiring and releasing data at their own processing

speeds.

3. Writer is faster than reader. At some point, the RingIO data buffer gets filled

up such that the empty buffer size falls below the 64K watermark set by

writer.

4. Writer attempts acquire. Acquire fails. Notification gets enabled.

5. RingIO writer now waits for notification.

Page 60 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

6. RingIO reader releases 64K buffer such that the empty buffer size goes above

the 64K watermark set by writer. Notification is sent to writer. Empty buffer

size = 64K.

7. RingIO writer wakes up and can now acquire empty buffer.

8. Reader releases another 8K. Notification is again sent to writer (empty buffer

= 72K is above writer watermark of 64K).

9. Reader releases another 8K. Notification is again sent to writer (empty buffer

= 80K is above writer watermark of 64K).

10. Writer acquires 16K. Empty buffer = 64K. Notification is still enabled. If

reader releases any buffer, writer will get notified.

11. Writer acquires 8K. Empty buffer = 56K, which is below writer watermark of

64K. Notification gets disabled.

12. Reader releases 16K. Notification is not sent to reader (empty buffer = 72K is

above writer watermark of 64K, but notification is disabled).

13. Now, notification gets enabled again only if writer attempt to acquire data

fails. For example, if writer attempts to acquire 80K.

5.6.3 RINGIO_NOTIFICATION_ONCE

5.6.3.1 Description

� The notification is enabled when an attempt to acquire data by the client

has failed.

� The notification is sent when the other client releases data, when the

below condition is true:

o For writer client, empty data size is above the watermark – This

condition can be met in the functions RingIO_release and

RingIO_flush.

o For reader client, valid data size is above the watermark.

As soon as the notification is sent, it is disabled.

� The notification is re-enabled, only when the first condition is met again

(acquire attempt fails).

� Cancel call does not enable or disable notification.

� The notification is disabled only once the notification is sent by the other

client.

� Flush call does not enable or disable notification. Flush called by the

reader client may cause empty data size to fall above the watermark and

cause a notification to be sent to the writer client.

5.6.3.2 Examples

Scenario 1: Reader notification

RingIO data buffer size = 1MB

Application requirements:

� RingIO reader needs at least 16K valid buffer size to be able to start/continue

its processing.

Page 61 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

� RingIO reader does not require notification as long as valid data is above

watermark. It needs notification only if its attempt to get required amount of

data fails.

Scenario:

1. Initial state is RingIO is empty.

2. RingIO reader sets notification for 16K watermark with

RINGIO_NOTIFICATION_ONCE type. Valid data size = 0K.

3. RingIO reader attempts acquire. Acquire fails. Notification gets enabled.

4. RingIO reader now waits for notification.

5. RingIO writer releases 64K. Notification is sent to reader. Valid data size =

64K.

6. RingIO reader wakes up and can now acquire data.

7. Reader acquires 16K data. Notification gets disabled because the acquire is

successful. Valid data size = 48K.

8. Writer releases 8K data. Notification is not sent to reader because notification

is disabled. This is even though valid data size = 64K is above reader

watermark of 16K.

9. Reader acquires 56K buffer. Acquire is successful. Valid data size = 8K.

10. Reader attempts to acquire 16K buffer. Acquire fails. Notification is re-

enabled.

11. Now if writer releases 8K buffer, valid data size = 16K matches reader

watermark, and notification is sent to reader.

12. This continues ... On subsequent writer releases, notification will not be sent
to reader. If reader acquire fails, then it can wait for notification again. It will

get notified if writer releases enough buffer to go above the reader watermark

for valid data size.

Scenario 2: Writer notification

RingIO data buffer size = 1MB

Application requirements:

� RingIO writer needs at least 64K empty buffer size to be able to continue

filling the RingIO buffer with valid data.

� RingIO writer does not require notification as long as valid data is above

watermark. It needs notification only if its attempt to get required amount of

data fails.

Scenario:

1. RingIO writer sets notification for 64K watermark with

RINGIO_NOTIFICATION_ONCE type.

2. Writer and reader are acquiring and releasing data at their own processing

speeds.

3. Writer does not receive notification from reader even though empty buffer

size is above watermark (64K).

Page 62 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

4. Writer is faster than reader. At some point, the RingIO data buffer gets filled

up such that the empty buffer size falls below the 64K watermark set by

writer.

5. Writer attempts acquire. Acquire fails. Notification gets enabled.

6. RingIO writer now waits for notification.

7. RingIO reader releases 128K buffer. Notification is sent to writer. Empty

buffer size = 128K.

8. RingIO writer wakes up and can now acquire empty buffer.

9. Writer acquires 32K buffer. Notification gets disabled because the acquire is

successful. Empty buffer size = 96K.

10. Reader releases 8K data. Notification is not sent to reader because

notification is disabled. This is even though empty buffer size = 104K is above

writer watermark of 64K.

11. Writer acquires 48K buffer. Acquire is successful. Empty buffer size = 48K.

12. Writer attempts to acquire 64K buffer. Acquire fails. Notification is re-enabled.

13. Now if reader releases 16K buffer, empty buffer size = 64K matches writer

watermark, and notification is sent to writer.

14. This continues ... On subsequent reader releases, notification will not be sent
to writer. If writer acquire fails, then it can wait for notification again. It will

get notified if reader releases enough buffer to go above the writer watermark

for empty buffer size.

5.6.4 RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS

5.6.4.1 Description

� Notifications are sent each time when the other client releases data, as

long as the data size is above the watermark:

o Empty data size for writer - This condition can be met in the

function RingIO_release and RingIO_flush.

o Valid data size for reader

� This notification is always enabled. Unlike

RINGIO_NOTIFICATION_ALWAYS, this notification does not require buffer

to get full/empty or acquire to fail to get enabled.

� Cancel call does not enable or disable notification.

� Flush call does not enable or disable notification. Flush called by the

reader client may cause empty data size to fall above the watermark and

cause a notification to be sent to the writer client.

5.6.4.2 Examples

Scenario 1: Reader notification

RingIO data buffer size = 1MB

Application requirements:

� RingIO reader needs at least 16K valid buffer size to be able to start/continue

its processing.

Page 63 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

� RingIO reader needs to be notified for each writer release as long as the valid

buffer size is above its watermark.

Scenario:

1. Initial state is RingIO is empty.

2. RingIO reader sets notification for 16K watermark with

RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS type.

3. Writer releases 8K valid data. Notification is not sent to reader because valid

data size = 8K is less than reader's watermark (16K).

4. Writer releases another 8K valid data. Notification is sent to reader because

valid data size = 16K matches reader's watermark.

5. Writer releases another 16K valid data. Notification is sent to reader because

valid data size = 32K is more than reader's watermark.

6. Reader starts acquiring data. Reader acquires 24K. Valid data size = 8K falls

below reader's watermark. Notification gets disabled.

7. Writer releases 4K valid data. Notification is not sent to reader because valid

data size = 12K is less than reader's watermark.

8. Writer releases 8K valid data. Notification is sent to reader because valid data

size = 24K is more than reader's watermark.

9. This continues ... as long as valid data size is equal or more than reader's

watermark, every writer release sends notification to reader. Writer releases

do not send notification to reader if valid data size is below reader's

watermark even after the writer release.

Scenario 2: Writer notification

RingIO data buffer size = 1MB

Application requirements:

� RingIO writer needs at least 64K empty buffer size to be able to continue

filling the RingIO buffer with valid data.

� RingIO writer needs to be notified for each reader release as long as the

empty buffer size is above its watermark.

Scenario:

1. RingIO writer sets notification for 64K watermark with

RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS type.

2. Writer and reader are acquiring and releasing data at their own processing

speeds.

3. Empty buffer size = 128K.

4. Reader releases 8K empty buffer. Notification is sent to writer because empty

buffer size = 132K is more than writer's watermark (64K).

5. Writer is faster than reader. At some point, the RingIO data buffer gets filled

up such that the empty buffer size falls below the 64K watermark set by

writer. Empty buffer size = 32K.

Page 64 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

6. Reader releases 8K empty buffer. Notification is not sent to reader because

empty buffer size = 40K is less than writer's watermark.

7. Reader releases 24K empty buffer. Notification is sent to writer because valid

data size = 64K matches the writer's watermark.

8. Reader releases another 8K empty buffer. Notification is sent to writer

because valid data size = 72K is more than writer's watermark.

9. Writer starts acquiring the buffer. Writer acquires 24K. Empty buffer size =

48K falls below writer's watermark. Notification gets disabled.

10. Reader releases 8K empty buffer. Notification is not sent to writer because

empty buffer size = 56K is less than writer's watermark.

11. Reader releases 16K empty buffer. Notification is sent to writer because

empty buffer size = 72K is more than writer's watermark.

12. This continues ... as long as empty buffer size is equal or more than writer's

watermark, every reader release sends notification to writer. Reader releases

do not send notification to writer if empty buffer size is below writer's

watermark even after the reader release.

5.6.5 RINGIO_NOTIFICATION_HDWRFIFO_ONCE

5.6.5.1 Description

This notification type will send a notification only once when a low watermark

condition is satisfied and then it is disabled.

� Unlike RINGIO_NOTIFICATION_ONCE, this notification does not require

buffer to get full/empty or acquire to fail to get enabled.

� The notification is sent when the other client releases data, when the

below condition is true:

o For writer client, empty data size is above the watermark - This

condition can be met in the function RingIO_release and

RingIO_flush.

o For reader client, valid data size is above the watermark.

As soon as the notification is sent, it is disabled.

� The notification is re-enabled when the data size crosses the watermark:

o For writer client, empty data size falls below the watermark.

o For reader client, valid data size falls below the watermark.

� Cancel call will affect the notification state. If the notification has been

enabled earlier either because of a failed acquire call or a low watermark

condition is satisfied, this notification will be disabled if the low watermark

condition is no longer true.

o The notification will be disabled when the data size crosses the

watermark:

1. For writer client, empty data size falls above the watermark.

2. For reader client, valid data size falls above the watermark.

� Flush call will affect the notification state.

Page 65 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

o For writer client, the notification will be disabled when the data size

falls above the watermark i.e. empty data size is greater than the

watermark.

o For reader client, the notification will be enabled when the data

size falls below the watermark i.e. valid data size is lesser than the

watermark.

5.6.5.2 Examples

Scenario 1: Reader notification

RingIO data buffer size = 1MB

Application requirements:

� RingIO reader needs at least 16K valid buffer size to be able to start/continue

its processing.

� RingIO reader does not require notification as long as valid data is above

watermark. It needs notification only if the valid data size falls below its

watermark level.

Scenario:

1. Initial state is RingIO is empty.

2. RingIO reader sets notification for 16K watermark with

RINGIO_NOTIFICATION_HDWRFIFO_ONCE type. Valid data size = 0K.

3. RingIO writer releases 8K valid data. Notification is not sent to reader. Valid

data size = 8K.

4. Writer releases another 8K valid data. Notification is not sent to reader even

though valid data size = 16K matches reader's watermark.

5. Writer releases another 16K valid data. Notification is not sent to reader even

though valid data size = 32K is more than reader's watermark.

6. Reader starts acquiring data. Reader acquires 24K. Valid data size = 8K falls

below reader's watermark. Notification gets enabled.

7. Writer releases 4K valid data. Notification is not sent to reader because valid

data size = 12K is less than reader's watermark.

8. Writer releases 8K valid data. Notification is sent to reader because valid data

size = 24K is more than reader's watermark. Then notification gets disabled.

9. This continues ... On subsequent writer releases, notification will not be sent

to reader as long as the valid data size remains above the reader's

watermark. When reader acquires results in valid data size falling below

watermark, notification gets enabled again. As soon as one notification is sent

to reader, it gets disabled again.

Scenario 2: Writer notification

RingIO data buffer size = 1MB

Application requirements:

� RingIO writer needs at least 64K empty buffer size to be able to continue

filling the RingIO buffer with valid data.

Page 66 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

� RingIO writer does not require notification as long as empty buffer size is

above watermark. It needs notification only if the empty buffer size falls

below its watermark level.

Scenario:

1. RingIO writer sets notification for 64K watermark with

RINGIO_NOTIFICATION_HDWRFIFO_ONCE type.

2. Writer and reader are acquiring and releasing data at their own processing

speeds.

3. Writer does not receive notification from reader even though empty buffer

size is above watermark (64K).

4. Writer is faster than reader. At some point, the RingIO data buffer gets filled

up such that the empty buffer size falls below the 64K watermark set by

writer. At this point, notification gets enabled. Empty buffer size = 32K.

5. Reader releases 8K empty buffer. Notification is not sent to reader because

empty buffer size = 40K is below reader's watermark.

6. Reader releases 32K empty buffer. Notification is sent to reader because

empty buffer size = 72K is more than reader's watermark. Then notification is

disabled.

7. Reader releases another 16K valid data. Notification is not sent to reader

even though empty buffer size = 88K is more than reader's watermark.

8. Writer starts acquiring data. Writer acquires 48K. Empty buffer size = 40K

falls below writer's watermark. Notification gets enabled.

9. Reader releases 16K valid data. Notification is not sent to reader because

empty buffer size = 56K is less than writer's watermark.

10. Reader releases 8K valid data. Notification is sent to reader because empty

buffer size = 64K matches the writer's watermark. Then notification gets

disabled.

11. This continues ... On subsequent reader releases, notification will not be sent
to writer as long as the empty buffer size remains above the writer's

watermark. When writer acquire results in empty buffer size falling below

watermark, notification gets enabled again. As soon as one notification is sent

to writer, it gets disabled again.

Page 67 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

6 Multi-DSP support

6.1.1 Overview

DSPLink supports multiple DSPs connected to the master GPP processor. With this

feature, GPP side process/application can communicate with the multiple DSPs

connected to the GPP over heterogeneous physical links. Example reference ports

have also be included for multi-DSP configurations

1. Linux PC connected to two DM6437 devices over PCI

2. DRA44x connected to external DM6437 over VLYNQ

6.2 Features

6.2.1 Configuration of DSPLink for Multi-DSP.

DSPLink static build configuration allows users to configure the DSPLINK for multi

DSP usage. With the static build configuration, users can select the number of DSPs,

supported OS on each DSP etc. Refer to user guide for the details.

6.2.2 Linux PC connected to multiple DM6437 devices over PCI

DSPLink provides support for Linux PC connected to multiple DM6437devices over

PCI.

Application on GPP can communicate with all the DSPs or any DSP that is configured

in the system. Application on any DSP can communicate with GPP and also can

communicate with the other DSPs via GPP. Note that DSP side application can not

directly communicate the other DSPs but it can send the information to GPP and GPP

can transfer the information to other DSP.

6.2.3 DRA44x connected to external DM6437 over VLYN Q

DSPLink provides support for DRA44x connected to DM6437 device over VLYNQ.

Application on GPP can communicate with all the DSPs (DM6437GEM and

DRA44xGEM) or any DSP that is configured in the system. Application on any DSP

can communicate with GPP and also can communicate with the other DSPs via GPP.

Note that DSP side application can not directly communicate the other DSPs but it

can send the information to GPP and GPP can transfer the information to other DSP.

6.2.4 Configuration changes

6.2.4.1 Dynamic configuration

New dynamic configuration files

The dynamic configuration has been enhanced for multi-DSP support. Previously,

only two dynamic configuration files were required for each platform:

o CFG_<PLATFORM>.c
o CFG_<GPPOS>.c

With multi-DSP support, this has now changed into a need for four or more dynamic

configuration files. The current CFG_<PLATFORM>.c file has been split up into

separate configuration files for the GPP and DSP:

o CFG_<GPP>.c

Page 68 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

o CFG_<DSPn>_<PHYLINK>.c (These files may be one or more based on the

number of DSPs to be used in the system configuration)

o CFG_system.c : This file contains the current configured system architecture,

and is generated by the static build configuration script.

o CFG_<GPPOS>.c: This file contains the GPP OS related configurations i.e.
signal that needs to handled by link. This file is unchanged from previous

release.

The CFG_system.c file is generated within the GPP temporary folder. If a temporary

folder location is not specified when running the build configuration script, the default

location is the same as in previous releases.

Macros for easier modifications to dynamic configuration

To enable users to easily modify the DSPLink dynamic configuration for most

commonly changed fields, the following enhancements have been made:

1. On changes in number of entries in any table, the corresponding value for

number of entries in the configuration now gets automatically updated. For

example, on adding a new memory table entry, the MEMENTRIES field in DSP

object gets updated automatically.

2. Macros have been provided for most commonly changed fields such as base

addresses of memory sections, memory entry IDs and handshake poll count

(set to -1 during debugging of DSP-side for infinite wait).

3. Even if ordering of the memory entries is changed (due to moving them or

adding/removing new entries), the memory entry ID used by DSPLink

modules for their control needs remains current by modification only in the

macro for shared memory entries number.

Change in name of top-level configuration object for DSP

The top-level configuration structure LINKCFG_Config is now a generated structure,

and includes configurations for the GPP as well as all DSPs. When using dynamic

configuration, applications must only create DSP and GPP configurations, but the

system configuration must get generated only through the static build configuration

script, since it will get overwritten whenever the dsplinkcfg.pl script is run.

6.2.5 Build changes

For legacy single-DSP users, there is no change in build process for GPP or DSP.

Refer user guide to user guide to use the DSPLINK in legacy mode.

6.2.5.1 Common

Path for generated files

It is now possible to maintain a golden DSPLink installation by providing a different

path for all generated files. This path can be specified while running the static build

configuration script dsplinkcfg.pl. If a path is not specified, files are generated in the

same folders as in previous releases.

Removal of platform variant concept

Page 69 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

Variant concept has been removed from DSPLink. All devices are now mentioned by

their full names. This has been done to ensure that porting to a different device in

DSPLink will not require any changes in generic DSPLink, such as moving a header

from generic platform folder into variant-specific folder.

Also, all zero-copy and dma-copy implementations have been moved out of platform-

specific folders. Due to this, device porting effort is now limited to specific folders

within the DSPLink directory tree.

6.2.5.2 GPP-side

None.

6.2.5.3 DSP-side

Scripts for multi-DSP build

For multi-DSP configurations, multimake.bat and multimake.sh scripts are

generated during the static build configuration step. These script files can be used to

build DSP executables for all DSPs in the system in a single step. The files get

generated into $(DSPLINK)/etc/host/scripts/[Linux | msdos].

Generated DSP executable name

The DSP executable is now generated in a folder having the processor ID of the DSP

appended to it.

6.2.6 GPP-side changes

6.2.6.1 Changes in applications

If using single-DSP configuration, applications need to take the following into

consideration:

• If passing PROC_Attrs to PROC_attach () , the dspCfgPtr field must be set to

NULL. A garbage (un-initialized) value in this field shall no longer be accepted

and can cause a system crash. If NULL is being passed as attributes to

PROC_attach () , no change is required.

• If dynamic configuration is to be used in multi-processing/multi-application

scenario, PROC_setup () (and correspondingly PROC_destroy ()) must now

be called in all processes to pass the new dynamic configuration information.

If this is not done, the other processes shall only get default configuration

information, and updated dynamic configuration shall not be available in their

user space. This may cause non-deterministic results.

• POOL_getPoolId () API signature has been changed to take an additional

procId as the first parameter.

If using multi-DSP configuration, applications must ensure the following:

• DSP dynamic configuration for each DSP must be provided to DSPLink as part

of PROC_Attrs provided to PROC_attach () API for that DSP. This ensures

that it becomes possible to reconfigure one of the executing DSPs by

detaching & attaching to it with a different dynamic configuration. This can be

done without disturbing the execution of the other DSP.

Page 70 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

• The GPP-side POOL IDs used for communication with the DSP must now be

generated using a new API: POOL_makePoolId . By default, a single DSP

configuration is used, and processor ID of 0 is assumed for the DSP. Hence, in

single-DSP configuration, this change is not needed. However, in multi-DSP

configuration, it is essential to identify the DSP with which the POOL is

shared. Hence, the POOL_makePoolId macro can be used to generate the ID

which is to be used for all POOL operations.

6.2.6.2 Include path changes

The include paths for GPP-side have been modified to include two folders:

o sys: Contains all system and device specific header files

o usr: Contains all user include files, which are device-independent

Most applications would only need to include header files in the usr folder. The

generated <COMPONENT>_includes.TXT file would now contain the updated include

paths. This file can be used by any users that are not using the DSPLink build system

for their applications.

6.2.6.3 New compiler defines

The <COMPONENT>_defines.TXT file generated during build would contain all new
compiler defines to be used for building DSPLink and applications. This can be used

as a reference if a non-DSPLink based build system is being used.

6.2.7 DSP-side application changes

The DSP-side of DSPLink is fully backward compatible with the previous release. No

changes are required to applications.

Application configuration in multi-DSP configuration must ensure that Message

Queue transports are created as needed considering IDs of all processors in the

system. This is not specific to DSPLink, but a basic DSP/BIOS MSGQ configuration

requirement for multi-DSP usage.

Page 71 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

7 Multi-application and multi-process support

7.1 Overview
Multiple applications/processes on the GPP may wish to use the services provided by

DSPLINK to control and communicate with the DSP. A few possible methods are

available to support multiple processes or multiple applications using DSP/BIOS™

LINK. This is applicable for operating systems such as Linux that support multi-

processing.

3. Multiple independent applications using DSP/BIOS™ LINK services

4. Multiple processes within a single application.

5. Multiple threads within the processes

7.2 Features

7.2.1 Multiple independent applications

Multi-application support with DSP/BIOS™ LINK has the following features:

1. An application can be written to execute singly using DSPLINK to control

and communicate with the DSP.

2. The same application can be used without any changes in the applications

source code, to run simultaneously along with another application also

using DSPLINK. The only consideration to be used while writing the

application, is that the DSPLINK resources (e.g RingIO/MSGQ names)

used by the applications must be unique for the system.

3. The applications use the same integrated DSP executable containing DSP-

side content required for all the co-existing GPP-side applications.

4. If multiple different applications using DSPLINK are running on the target

processor, a crash in one of these does not affect the execution of the

other application.

� When multiple applications use DSPLINK, they must ensure that they pass the

same dynamic configuration pointer during PROC_setup. They must also
ensure that they use the same DSP executable to be loaded with PROC_load.

7.2.1.1 Example

Two applications contain source as follows:

PROC_setup (...) ;
PROC_attach (...) ;
POOL_open (poolId, poolParams) ;
PROC_load (..., dspExec, ...) ;
PROC_start (...) ;
MSGQ_transportOpen (...) ;

/* Application-specific code */

MSGQ_transportClose (...) ;
PROC_stop (...) ;
POOL_close (...) ;
PROC_detach (...) ;

Page 72 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

PROC_destroy (...) ;

Both the applications can start-up and run independently if run singly. They can also

start-up and run independently if run at the same time.

The behavior seen by the applications shall be the same irrespective of the sequence

in which the calls actually get made to DSPLINK. An overview of the activities

occurring in each API, depending on the sequence in which it gets called, is given

below. It may not be necessary that the first occurrence for all APIs occurs only for

the first application.

API First occurrence Second occurrence

PROC_setup Sets up GPP-side of

DSPLINK

No activity. Does not result in

actually allocating any

resources for DSPLINK.

PROC_attach Performs all activities

required to be able to

access the DSP resources

from this process.

Performs all activities required

to be able to access the DSP

resources from this process.

POOL_open Configures the specified

pool with the specified

parameters

If the same pool is opened, it

is made available to the

process. No change is made in

the pool configuration and the

parameters are ignored.

PROC_load Loads the specified DSP

executable on the DSP.

If the same DSP executable is

specified, the DSP state is not

changed, and the executable

is not actually loaded on the

DSP.

PROC_start Starts the DSP executing

from its entry point.

The DSP state is not changed,

and this call does not result in

actually starting the DSP

execution.

MSGQ_transportOpen Opens the MSGQ

transport

The MSGQ transport is not

actually opened.

MSGQ_transportClose Does not actually close

the MSGQ transport

The MSGQ transport is closed.

PROC_stop Does not actually stop the

execution of the DSP,

since it is still being used

by the second application.

Stops execution of the DSP

and places it in reset.

POOL_close Does not result in actually

closing the pool. Only

makes the pool

unavailable to this

process.

Closes the pool and makes it

unavailable to any

process/DSP.

PROC_detach Releases all resources that

were acquired for this

Releases all resources that

were acquired for this process

Page 73 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

process in PROC_attach. in PROC_attach.

PROC_destroy No activity. Does not

result in freeing any

resources in DSPLINK.

Releases all allocated

resources on the GPP-side of

DSPLINK. Following this, no

further calls can be made to

DSPLINK APIs.

� For additional information about return codes from PROC APIs and the

behavior of each API, please refer to the enhanced multi-process support
design document (LNK_157_DES) available with the release.

7.2.2 Multiple processes within a single applicatio n

When multiple processes are used within a single application, the following are the

salient features of this scenario:

1. There is one system integration application, which initially sets up

DSPLINK. It opens all pools as are required by the system. It also loads

and starts execution of the DSP executable.

2. This application forks out different processes that perform different

independent activities.

3. Each process that needs to use DSPLINK attaches to the required DSP

using PROC_attach () .

4. Each process also indicates the pool that it wishes to use by calling

POOL_open. It may pass NULL as the pool parameters, since the pool was

already opened by the system integrator.

5. Each process may also open additional pools as required only for that

process.

6. The process may perform data transfers with the DSP using any DSPLINK

components as required.

7. When it has completed its processing, it closes its handle to the pools it

had opened by calling POOL_close .

8. It also detaches from the DSP by calling PROC_detach .

9. Only after all processes have completed their activities, the system

integrator performs system shutdown by stopping the DSP execution,

performing final close of the POOLs and destroying the DSPLINK driver.

7.2.3 Multiple threads within the processes

When multiple threads are used within the processes, the following are the salient

features of this scenario:

1. The setup of DSPLINK is done by the processes as required. This is similar to

both scenarios 1 and 2.

2. Each thread that needs to use DSPLINK can directly start using the DSPLINK

component services as required. It must not call PROC_attach or POOL_open.

3. It can open and use any MSGQs, CHNLs, or other resources as required.

4. When the thread has finished processing, it can close the resources that it had

allocated, and simply exit. It does not need to call POOL_close or PROC_detach .

Page 74 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

5. On Linux, if signals are being used for cleanup processing, all threads that do not

wish to catch the termination signals must mask the signals to ensure that they

do not die.

Page 75 of 75 Version 1.63

DSP/BIOS™ LINK

LNK 161 USR

PROGRAMMER’S GUIDE

8 Dos and Don’t’s for writing applications using DS P/BIOS LINK

8.1 Dos

8.1.1 Always check the return status of any DSPLink API call.

DSP/BIOS Link provides macros like DSP_SUCCEEDED and DSP_FAILED which can

be used to determine if the API has succeeded or failed.

These API’s can be used to check or return status for all protocols except RingIO. In

RingIO the user needs to check each status return type explicitly as the application

might need to interpret and evaluate application behavior between different success

code.

This macro cannot be used in the following manner

if (DSP_SUCCEEDED (MSGQ_Open (msgqName, &msgq, NULL))) {
 ...
}

Though the argument ‘x’ is used only once in the statement as it appears in the

program, the macro expansion can result in invoking ‘x’ multiple times, if it is a

function.

Here, MSGQ_Open () may get invoked multiple times, resulting in undesired

behavior. Hence, this usage must be replaced by the following:

status = MSGQ_Open (msgqName, &msgq, NULL) ;
if (DSP_SUCCEEDED (status)) {
 ...
}

8.1.2 Use the software dependencies with correct ve rsions as stated in release notes.

Each DSP/BIOS Link release documents the dependencies against which it has been

validated. Some of the features required by DSPLink may depend on the versions of

the dependencies. The behavior of DSPLink may not be as expected if the

dependencies are incorrect.

8.2 Don'ts

8.2.1 Do not use names with size equal or greater t han 32 characters.

DSP/BIOS Link stores all names for e.g. RingIO names, MSGQ names in an array

with size as 32 characters. If you name your MSGQ or RingIO with a size equal or

larger than 32 characters width it might lead to system issues.

8.2.2 Do not call any DSP/BIOS Link API from a regi stered callback function

No DSP/BIOS Link API should be called from a callback function registered through

the RingIO or NOTIFY module. On DSP-side or on operating systems such as PrOS,

the callback functions are run from ISR context and must not perform any operations

that may take a lock or block, which is done by most DSPLink APIs. Minimum

functionality must be used in the callback functions, most often limited to posting a

semaphore on which application is waiting, posting SWI etc.

DSPLINK
IOM driver
Element1

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Getting started with writing applications
	Generic information
	Component features

	Static buffer system with minimal control communication with the DSP
	Application requirements:
	Suggested design
	DSP/BIOS LINK components used

	Dynamic buffer system with minimal control communication with the DSP
	Application requirements:
	Suggested design
	DSP/BIOS LINK components used

	Multiple buffers to be sent between GPP and DSP
	Application requirements:
	Suggested design
	DSP/BIOS LINK components used

	PROC
	Overview
	Configuration and changing system memory map
	Making configuration changes

	Support for symbol stripped DSP executables
	Remove debug information
	Remove the full symbol table
	Example
	Determining the location of the DRV component

	Support for multiple DSP boot modes
	Overview
	Normal Boot Mode
	DSP_BootMode_Boot_NoPwr
	Statically changing application-specific configuration file
	Changing default configuration file at run-time

	DSP_BootMode_Boot_Pwr
	Statically changing application-specific configuration file
	Changing default configuration file at run-time
	Application changes to support this boot mode

	External Load Mode
	DSP_BootMode_NoLoad_NoPwr
	Step 1: Update DSPLink configuration
	Statically changing application-specific configuration file
	Changing default configuration file at run-time

	Step 2: Call PROC_load with different parameters for NOLOADER

	DSP_BootMode_NoLoad_Pwr
	Step 1: Update DSPLink configuration
	Statically changing application-specific configuration file
	Changing default configuration file at run-time

	Step 2: Call PROC_load with different parameters for NOLOADER

	External Load and Start Mode
	DSP_BootMode_NoBoot
	Step 1: Update DSPLink configuration
	Statically changing application-specific configuration file
	Changing default configuration file at run-time

	Step 2: Call PROC_load with different parameters for NOLOADER
	Step 3: Make changes on DSP-side to call DSPLINK_init from task instead of main

	Support for multiple types of COFF based loaders
	Overview
	PROC_load using a COFF file
	PROC_load using optimized COFF loader on shared memory based platforms like DM6446, DRA44x etc
	Statically changing application-specific configuration file
	Changing default configuration file at run-time

	PROC_load using a COFF file present in ARM memory
	Statically changing application-specific configuration file
	Changing default configuration file at run-time

	Concepts
	Cleanup of the kernel driver
	Signal handling on Linux
	Automatic cleanup on process exit in normal process termination

	POOL
	Overview
	Configuration
	Configuration parameters
	Exact match required
	Buffer configuration
	Example
	Configuring multiple pools
	GPP side
	DSP side

	POOL requirements for different DSP/BIOS™ LINK components
	PROC
	NOTIFY
	MPCS
	MSGQ
	RingIO
	MPLIST
	CHNL

	POOL setup for multi process applications
	Opening all pools at system initialization time
	Opening pools dynamically

	RingIO
	Overview
	Generic features
	RingIO buffers
	DSP cache-related information

	Acquiring and releasing data
	Writer
	Reader

	Attributes
	Generic information
	Setting attributes
	Getting attributes
	Constraints

	Foot-buffer
	Use Case Scenarios
	Scenario 1
	Scenario 2

	Notification
	RINGIO_NOTIFICATION_NONE
	RINGIO_NOTIFICATION_ALWAYS
	Description
	Examples

	RINGIO_NOTIFICATION_ONCE
	Description
	Examples

	RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS
	Description
	Examples

	RINGIO_NOTIFICATION_HDWRFIFO_ONCE
	Description
	Examples

	Multi-DSP support
	
	Overview

	Features
	Configuration of DSPLink for Multi-DSP.
	Linux PC connected to multiple DM6437 devices over PCI
	DRA44x connected to external DM6437 over VLYNQ
	Configuration changes
	Dynamic configuration

	Build changes
	Common
	GPP-side
	DSP-side

	GPP-side changes
	Changes in applications
	Include path changes
	New compiler defines

	DSP-side application changes

	Multi-application and multi-process support
	Overview
	Features
	Multiple independent applications
	Example

	Multiple processes within a single application
	Multiple threads within the processes

	Dos and Don’t’s for writing applications using DSP/BIOS LINK
	Dos
	Always check the return status of any DSPLink API call.
	Use the software dependencies with correct versions as stated in release notes.

	Don'ts
	Do not use names with size equal or greater than 32 characters.
	Do not call any DSP/BIOS Link API from a registered callback function

