Q‘ TEXAS White Paper
INSTRUMENTS SPRAS81C - May 2002

The TMS320 DSP Algorithm Standard

Steve Blonstein Technical Director

ABSTRACT

The TMS320 DSP Algorithm Standard(d, also known as XDAIS, is part of TI's eXpressDSPO
initiative. The purpose of the standard is to reduce those factors that prohibit an algorithm
from being easily integrated into a system without significant re-engineering. Many of the
unknowns in such a situation relate to resource allocation and consumption on a DSP. Bugs
often occur during system integration as a result of the algorithm designer’s unfounded
assumptions about the system into which the algorithm is to be integrated. The standard,
therefore, focuses on a set of general rules and guidelines that should be applied to all
algorithms. In addition, all algorithms must comply with a memory management API, called
IALG. For those algorithms utilizing DMA, the IDMA interface must be implemented. Finally,
specific rules and guidelines are provided for each family of TI DSPs. A XDAIS developer’s
kit provides the standard itself, example code, and a demonstration.

Contents
1 BaCKgroUNd ... 2
2 TErMINOIOgY et 2
2.1 Description of the eXpressDSP Elements e 3
3 Who Stands to Gain From Using The Algorithm Standard? 4
3.1 The Algorithm Wl e e e e e 4
3.2 System Integrators and OEMS i e 4
4 Scope of TMS320 DSP Algorithm Standard e 5
4.1 New Versus Retrofit? e 6
D SUMMIAIY .o e e e 6

List of Figures

Figure 1. eXpressDSP elements ona T320DSPo e 3
Figure 2. eXpressDSP-Compliant LOgOttt e e 6

Trademarks are the property of their respective owners.

{'.?‘ TEXAS

SPRA581C INSTRUMENTS

1

Background

Texas Instruments has long understood the importance of good development tools that typically
include a C compiler, linker, emulator, and debugger. Since improvements in each of these tools
translate to an improvement in productivity for the developer, Tl invests significant time to
continuously improve these tools. Our 1998 acquisition of GO-DSP and the 1999 release of
Code Composer Studiol illustrated TI's commitment to push the tool environment forward.
Additionally in 1999, Tl launched eXpressDSP with a major focus on improving the developer
experience with the code base on the target DSP. Before this, DSP applications typically
revolved around proprietary technologies instead of standards. The result was a splintered
mass market for DSP, whereby the entire target code implementation was left to the customer
who, despite the progress of C compilers, often had to write much of the code in assembly to
achieve the performance required to justify selecting a DSP. With the advent of many
telecommunication, imaging, and video standards, a market developed for Tl third parties to
develop, market, and distribute commercial off-the-shelf (COTS) algorithms.

Since today’s applications often require the use of several such COTS algorithms, it is feasible
to conceive of DSP applications that can provide the infrastructure that enable multiple standard
algorithms to operate on a single platform. The question arises as to what infrastructure Tl has
put in place to support this type of environment. There are two significant advances that have
been made by Tl in the past few years. This white paper discusses one of those two advances,
the TMS320 DSP Algorithm Standard. In addition, in 2002, Tl introduced Reference
Frameworks for eXpressDSP. These frameworks act as starting points and illustrations for how
to best construct an application on the TMS320 DSPs. They are also textbook examples for
how algorithms should be integrated into the final application. These reference frameworks are
discussed in detail in several application notes such as SPRA791 and SPRA793.

The premise for creating XDAIS was to directly address the issues that cause problems in
system integration, and in particular the issues revolving around the use of existing algorithm IP
that is supplied from another party. XDAIS is the result of a tremendous support effort from
many TI third parties and several key customers. We wish to thank them for their dedicated
efforts to make this standard a reality.

Terminology

Below is a sampling of definitions for some of the more common terms that we encounter when
discussing the TMS320 DSP Algorithm Standard.

Algorithm: A module of code that consumes a data stream, processes it, and outputs a
resultant stream. Examples include vocoders, modems, audio compression, video
decompression, etc.

Reference Framework: The “glue” code that holds together the drivers, the algorithms,
resource managers, and DSP kernel. Reference Frameworks start out as application-agnostic.
Upon the addition of application-specific algorithms, the Framework takes on an
application-specific nature.

DSP Kernel: A low-level software layer that provides hardware abstraction and manages low
level physical resources. It provides threading, interrupt support, pipes, signals, and several
other functions. In addition, DSP/BIOS offers data logging and statistical accumulation that
enable real-time analysis of the system.

The TMS320 DSP Algorithm Standard

%’ TeEXAS
INSTRUMENTS SPRA581C

2.1

Application: The definition depends upon the use of some or all of the other components. If a
customer writes all the code from scratch including a kernel, algorithms, and a framework, then
the entire software system may be described as the application. However, in an environment
where DSP/BIOS, a reference framework, and COTS algorithms have been deployed, the
application programmer may see no further down into the system than the APlIs to the controlling
framework.

Figure 1. eXpressDSP elements on a T320 DSP

Customer Application

Referenca Framewarks

F—-— e

| Compliamt | Compliant
Algorithm Algorithm

Code Camposer Studio™ Dav. Toals TME320™ DSP
Algarithm Standard

5

Compliant Campliznt

Complimnt Compliant .- .
Plug-n Plug-in Algorithm Algorithm

Program Program Real-Time

Bulld Dobug Analysis pirmis™ .

XDS560™
5560™ Emulator Embedded Emulation Companssts

Host Computer TMS320™DSP

Description of the eXpressDSP Elements

The left-hand side of the diagram shows the Code Composer Studio Development Tools
environment. It is not the intent of this white paper to discuss this area of technology. More
detail on this can be found at www.ti.com/sc/ccstudio. The right-hand side of the diagram
represents the target DSP in the eXpressDSP environment. It assumes the use of the
DSP/BIOS real-time kernel (shown as purple components) with the possible inclusion of threads
and tasks as required by the system designer. It also assumes that the system is built upon a
Reference Framework (shown as the surrounding blue box). Algorithms that have been written
to comply with XDAIS, referred to as eXpressDSP-compliant, are shown here as the green
shapes “plugging” into the Reference Framework. The key here are the “sockets” that the
algorithms plug into. It is the separation between the plugs and sockets that defines XDAIS.

XDAIS focuses on the interfaces between the algorithm and the rest of the system, rather than
the ability of algorithm writers to exploit their individual talents to achieve their goals of fastest,
smallest, and cheapest. Essentially, the core of the standard focuses on an abstraction of DSP

The TMS320 DSP Algorithm Standard 3

{'.?‘ TEXAS

SPRA581C INSTRUMENTS

3.1

3.2

4

resource management away from the algorithms themselves. Typically, resources on a DSP
refer to memory usage and placement, along with 1/O control such as the use of DMA channels,
and possibly the use of key control registers. When only a single algorithm runs on the DSP, one
can make broad assumptions about the use of the DSP resources. Even in the case of a
multiple-channel instantiation of that single algorithm, provided basic re-entrancy exists, then the
system should run just fine. However, when several algorithms are combined, problems may
occur; for example, when one algorithm assumes the use of certain resources that are then
“stolen” or “borrowed” by another algorithm in real time. It can be very difficult to pinpoint the
source of a problem if the first algorithm was never designed to run in such a way and then
doesn't perform to its specification, or worse, performs sporadically. In addition, algorithms
cannot make direct calls to the underlying DSP kernel for most of its services. If this were true,
then that algorithm could not be used in any other environment where the same kernel was not
present. However, the standard does allow limited use of the DSP/BIOS. For example, the
real-time analysis modules may be called to provide for visualization of the algorithm in real
time. None of the threading or tasking APIs may be called. With these basic premises, the
algorithm standard enables a system integrator to more easily assemble production-quality
systems from one or more algorithms.

Who Stands to Gain From Using The Algorithm Standard?

With the basic premise for the standard being reduction in system integration time, everyone in
the development cycle stands to win. Let’s briefly touch on some of the highlights.

The Algorithm Writer

Until recently, many system integrators had their own algorithm integration methodologies and
the algorithm writer had to adhere to that methodology. This required the algorithm vendor to
support multiple interfaces. This issue is resolved by getting everyone to agree to one standard.
A second major advantage to supporting the algorithm standard is that the system integrator can
more quickly monitor the performance of an algorithm. If the algorithm vendor believes that he or
she has a better solution than the one currently in use, the system integrator can quickly make
an exchange to test out the new algorithm. This is very difficult if each algorithm follows a
different interface standard.

System Integrators and OEMs

Many hard-to-find bugs simply go away because algorithm “black boxes” become a lot more
predictable. The system integrator now has more choices. With several standardized algorithms
available, it becomes much easier to compare algorithm A to algorithm B in order to gauge
performance, robustness, and size. Individual algorithm interface methodologies adopted by
system integrators can be eliminated. Also, when combined with Reference Frameworks,
standardized algorithms enable rapid prototyping.

The TMS320 DSP Algorithm Standard

{'f TeEXAS
INSTRUMENTS SPRA581C

4

Scope of TMS320 DSP Algorithm Standard

The algorithm standard is comprised of thirty-nine rules that must be adhered to in order to be
fully eXpressDSP-compliant. An additional fifteen guidelines are also recommended. Many of
the rules are common-sense programming practices that have been in use for a long time and
apply to all algorithms, regardless of the application area. Besides the general rules, there are
instruction set architecture (ISA)-specific rules (e.qg., use of specific control registers) for each of
the major TMS320 families of DSPs. These general rules and guidelines, along with the
ISA-specific rules and guidelines, are contained in the TMS320 DSP Algorithm Standard Rules
and Guidelines, literature number, SPRU352.

A second document, TMS320 DSP Algorithm Standard APl Reference, literature number,
SPRU360, contains information on the implementation of the generic APIs that all algorithms
must follow. The primary API, referred to as IALG, is basically responsible for taking the
memory management function away from the algorithm and placing it in the hosting framework.
Thus, a negotiation occurs between the algorithm and framework to assign memory for that
algorithm. Additional functions within this API allow such functions as shared memory blocks
between algorithms and for the framework to move memory around while an algorithm is
operating in the system. For algorithms that require or choose to utilize on-chip DMA resources,
the IDMA interface must also be implemented. A third optional, but highly recommended API in
this document is called IRTC. This is designed to standardize the algorithm’s test mode.

Finally, to assure the practical use of an algorithm, it must be supplied with a specific API,
appropriate to the function being performed. The algorithm standard does not require the use of
any particular set of APIs. However, to increase acceptance of the standard, Tl will be
distributing one or more algorithm-standard demonstration applications which use algorithms
that are eXpressDSP-compliant. Specific APl documentation is provided for each of the
included algorithms. By using eXpressDSP-compliant algorithms, a customer can “switch out”
one of the algorithms and “link—in” another version of the same algorithm without having to
recompile. This can only be done when object code compatibility is ensured, and this can only
be achieved if the second algorithm also uses the same specific API.

Note: An algorithm vendor may want to provide a version of the algorithm that follows the
specified example APIs, so that it can be evaluated in one of these algorithm standard
demonstrations.

The TMS320 DSP Algorithm Standard 5

{'.?‘ TEXAS

SPRA581C INSTRUMENTS

4.1

Tl provides a unique testing environment that checks the conformance of algorithms to the rules
of the standard. Algorithms that pass this automated test are awarded the right to be called
“eXpressDSP-compliant” and to display the eXpressDSP Compliant logo.

Figure 2. eXpressDSP-Compliant Logo

eXpressDSP” Compliant

 DSP

TEXAS INSTRUMENTS

New versus Retrofit?

There are clearly hundreds and perhaps thousands of algorithm implementations that exist for
use on TMS320 DSPs. The question often arises as to whether it makes sense to go back and
retrofit an algorithm to be eXpressDSP-compliant. Clearly, for new algorithms it is prudent to
follow the rules and guidelines right away. The answer to the retrofit question should be handled
on a case by case basis. Issues to address include whether or not the algorithm will be used in
different applications in the future. Will the algorithm be sold and integrated into a larger
application? Will a particular end customer require that all algorithms be
eXpressDSP-compliant? If the answer to these or similar questions is yes, then it probably is
necessary to convert the algorithms. To assist with this effort, Tl provides a selection of tools
that will make this task easier. One additional scenario is that old and new algorithms must be
integrated. If some algorithms are eXpressDSP-compliant, then it is probably most expeditious
to convert the old algorithms to be eXpressDSP-compliant to help simplify the overall integration
task.

Summary

The TMS320 DSP Algorithm Standard is a bold program being undertaken by Texas Instruments
as part of the overall its eXpressDSP initiative. Tl has clearly recognized that as system
software complexity grows at an exponential pace, this kind of standard initiative is vital if we are
to maintain the time-to-market goals of our customers. While we recognize that many system
integrators have internal methodologies already, it is advantageous for everyone in the
marketplace to share and promote a single standard.

The TMS320 DSP Algorithm Standard

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subjectto TI's terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which T1 products or services are used. Information published by Tl regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2002, Texas Instruments Incorporated

