{’;‘ TEXAS

Application Report

INSTRUMENTS SPRAT789A - April 2004

Design and Implementation of an eXpressDSP-Compliant

DMA Manager for C6X1X

Murat Karaorman Texas Instruments, Santa Barbara

Vincent Wan

ABSTRACT

Following an overview of DMA abstractions for eXpressDSP-compliant algorithms, this ap-
plication describes a C6x1x-optimized (C6211, C6711) ACPY2 library implementation and
DMA Resource Manager, which can also be run on C64x devices. An algorithm and example
application is provided (including source code) to demonstrate enhancements to DMA ac-

cess.

Sections in this application note are provided for both producers and consumers of
eXpressDSP-compliant algorithms.

This application report contains project code that can be downloaded from this link.
http://lwww-s.ti.com/sc/psheets/spra789A/spra789A.zip.

Contents

1 INtrodUCHION .o e 2
1.1 Overview of Standard DMA INterfacest e 3
1.2 DMA Transfer Configuration Settingsttt 5

2 Generic DMA Manager Module: DMAN ... 7
2.1 Using DMAN for Algorithm Integration e n 7
2.2 DMAN ModUle APIS . o . 8
2.3 Implementing the DMAN Interface i e 8
2.3.1 DMAN_addAIg() vt 8
2.3.2 DMAN NI, oottt e e e 10
2.3.3 DMAN _EXIT(). « vt ottt et e e et e e 10
2.3.4 DMAN remoVeAIg(). ..ot e 10
2.3.5 DMAN _SEtUP() - oottt 11

3 ACPY2 Interface Reference Example 12
3.1 Overview of the QDMA Mechanism on C6211/ C6711/ CB4X irininennnn.. 12
3.2 High-Performance ACPY2 Library Implementation 13
3.2, ACPY 2 Nit() « vttt et 14
3.2.2 ACPY 2 XIt() « v v ottt et e 16
3.2.3 ACPY2_initChannel() 16
3.2.4 ACPY2_getChanODbjSize()coui 17
3.25 ACPY2_CONMIQUIE() - - v v o ettt e e e e e e e e e e e 17
3.2.6 ACPY2_SetNUMFrames()ottt e e 21
3.2.7 ACPY2_setSrcFramelndex()oouoen i 21

Trademarks are the property of their respective owners.

{'.?‘ TEXAS

SPRAT789A INSTRUMENTS
3.2.8 ACPYZ2_setDstFramelndeX()ouiriiiii e e e 22
3.2.9 ACPY 2 Star() « .o vvi ettt e e e 23
3.2.10 ACPY 2 Wat() « v vttt et e ettt e e e 29
3.2.11 ACPY2 complete() . ..o e 29
4 The fastcopytest EXample e 30
D CONCIUSION . 31
6 Installation of Example Code i e e 32
T REIEIEBNCES ..o e 32
Appendix A Code for the fastcopytest Example i 33.

List of Figures

Figure 1. Client Application and Algorithm Interaction With DMA Resources 3
Figure 2. DMA Transfer BIOCK e e e e e 6
Figure 3. QDMA and CIPR Registers Used inData Transfers it 12
Figure 4. Performance COMPAriSONttt e et et 13
Figure 5. Flowchart for ACPY2_startAligned e 23
Figure 6. TCC Table and TCCSttt e e e 24
Figure 7. ACPY2_start FIowChart e 25
Figure 8. Dependencies in the fastcopytest Example i, 31

List of Tables

Table 1. IDMAZ FUNCHONSot e e e e e e e e e e e e e 4
Table 2. ACPY 2 FUNCHONS e e e e e e e e 4
Table 3. IDMA2_ChannelRec Structure Fields i e 5
Table 4. IDMA2_Params Structure Fields i e 5
Table 5. DMAN FUNCHONS i e e e e et et et et et et e et 8
1 Introduction

The direct memory access (DMA) controller performs asynchronously scheduled data transfers
between memory regions without intervention by the CPU. The DMA controller allows movement
to and from internal memory, internal peripherals, and external devices to occur in the
background, while the CPU continues to execute other instructions in parallel. Algorithms and
client applications can achieve greater throughput by using DMA to overlap data movement with
processing, however, eXpressDSP-compliant algorithms are not allowed to directly access or
control any hardware peripherals, including the DMA. All system DMA resources must be
controlled by the client application.

The TMS320 DSP Algorithm Standard (also known as XDAIS) specifies standard interfaces,
IDMA2 and ACPY2, that allow the client application and algorithms to negotiate DMA resources,
which in turn grants algorithms controlled access to DMA services. The client application uses
the algorithm’s IDMAZ2 interface to query its DMA resource requirements and grant it handles for
accessing the DMA. Each granted handle provides the algorithm a uniform, private “logical”
DMA channel abstraction. Algorithms call the ACPY2 API functions implemented by the client
application to schedule DMA transfers on the logical DMA channels.

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

11

This application note presents a C6x1x-specific (C6211, C6711) implementation of the ACPY2
APls, a DMA Manager (DMAN) interface and implementation and an example algorithm and
application (including source code) to demonstrate an end-to-end system with algorithms that
use DMA.

By retaining configuration and resource states with each logical channel descriptor, ACPY2
functions can be implemented very efficiently. This C6x1x implementation demonstrates how
this can be done. Section 3 provides a function-by-function description of this implementation.

The fastcopytest example in section 4 presents a complete example to illustrate how to use an
algorithm that implements the IDMA2 interface.
Overview of Standard DMA Interfaces

Figure 1 shows which modules are implemented by the client application and which are
implemented by the algorithm. Arrows indicate which modules use other modules. The
interfaces in the center are used to make implementations independent of one another.

Clent — Algorithm
application *—u algAlloc()
Framework
dmaGetChannels()
v dmalnit()...
DMA manager
DMAN | Algo functions
DMAN_init() -]
DMAN_... @

ACPY library

ACPY2_configure()]
ACPY2_start()...

DMA hardware

Figure 1. Client Application and Algorithm Interaction With DMA Resources

Algorithms must access DMA hardware via the “logical” DMA channel handles they request and
receive from the client application. Algorithms submit DMA transfer requests on these logical
channels through the functions provided by the client application. In this application note we
introduce a new optional module, DMAN, which provides a convenient wrapper layer around the
IDMAZ2 interface for querying and granting algorithms logical DMA channels.

e |IDMA2 - All algorithms that use DMA resources must implement the IDMA2 interface. This
interface allows the algorithm to request and receive handles representing private “logical”
DMA resources

e ACPY2 - These functions are implemented as part of the client application and called by the
algorithm (and possibly the client application). A client application must implement the
ACPY2 interface in order to use algorithms that use the DMA resource. The ACPY?2 interface
describes the comprehensive list of DMA operations algorithm can perform on the logical
DMA channels acquired through the IDMA2 protocol. The ACPY2 functions allow:

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 3

SPRAT789A

{'f TExAs
INSTRUMENTS

— Configuring channel DMA transfer parameters applied to each submitted DMA request

— Submitting asynchronous DMA transfers requests.

— Synchronizing with scheduled transfers (both blocking and non-blocking).

e DMAN - Client applications may provide and use a DMA manager to grant DMA resources
to algorithms. The DMAN interface is neither required nor specified by the XDAIS rules and
guidelines. However, it may be useful for a client application to modularize use of the IDMA2
and ACPY?2 interfaces. The DMAN module provided with this application note may be used

for this purpose.

The Use of the DMA Resource chapter in TMS320 DSP Algorithm Standard Rules and
Guidelines (SPRU352) describes the use of the ACPY2 and IDMAZ2 interfaces. The TMS320
DSP Algorithm Standard API Reference (SPRU360) provides details on each function.

Collectively, IDMA2 and ACPY2 describe a flexible and efficient model that greatly simplifies
management of system DMA resources and services by the client application and a simple and
powerful mechanism for the algorithm to configure and access DMA services.

The following tables summarize the API functions and structures used by the IDMA2 and
ACPY?2 interfaces. DMAN interface and design details are presented in the next section.

Table 1. IDMA2 Functions

Functions

Description

dmaChangeChannels()
dmaGetChannelCnt()

dmaGetChannels()

Called by an application whenever logical channels are moved at runtime.

Called by an application to query an algorithm about its number of logical DMA
channel requests.

Called by an application to query an algorithm about its DMA channel requests at
initialization time, or to get the current channel holdings.

dmalnit() Called by an application to grant DMA handle(s) to the algorithm at initialization.
Table 2. ACPY2 Functions
Functions Description

ACPY2_complete
ACPY2_configure
ACPY2_exit
ACPY2_getChanObjSize
ACPY2_init
ACPY2_initChannel
ACPY2_setNumFrames
ACPY2_setSrcFramelndex
ACPY2_setDstFramelndex

ACPY2_start

Check if the data transfers on a specific logical channel have completed

Configure a logical channel

Free resources used by the ACPY2 module [FRAMEWORK API]
Get the size of the IDMA2 channel object [FRAMEWORK API]
Initialize the ACPY2 module [FRAMEWORK API]
Initialize the IDMA2 channel object passed in [FRAMEWORK API]

Rapidly configure the numFrames parameter of an IDMA2 channel
Rapidly configure the source frame index parameter of IDMA2 channel
Rapidly configure the destination frame index parameter of IDMA2 channel

Issue a request for a data transfer using current channel settings

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

1.2

Table 2. ACPY2 Functions

Functions Description

ACPY2_startAligned Issue a request for a data transfer using current channel settings (assumes aligned
buffers)

ACPY2_wait Wait for all data transfers to complete on a specific logical channel

Table 3. IDMA2_ChannelRec Structure Fields

Structures Description
handle Handle to logical DMA channel
queueld Selects the serialization queue

Table 4. IDMA2_Params Structure Fields

Structures Description

xType Transfer type: 1D1D, 1D2D, 2D1D or 2D2D

elemsSize Element transfer size {1,2, or 4 bytes}

numFrames Num of frames for 2D

srcElementindex Gap + elemSize between consecutive elements in source data (in 8-bit bytes)
dstElementindex Gap + elemSize between consecutive elements in destination data (in 8-bit bytes)
srcFramelndex Gap between consecutive source data frames for 2D transfers (in 8-bit bytes)
dstFramelndex Gap between consecutive destination data frames for 2D transfers (in 8-bit bytes)

DMA Transfer Configuration Settings

Each DMA transfer is submitted on a logical channel by calling the ACPY2 start or
ACPY2_startAligned function. Each transfer request specifies a source and destination memory
region. A background, DMA activity asynchronously carries out the copying of the contents of
the source memory region to the destination.

The unit of DMA transfer is a transfer block composed of frames and elements. The physical
layouts of the source or destination memory regions do not have to be single contiguous chunks.
The source and destination addresses for the blocks and the number of elements in each frame
are passed as function arguments to ACPY2 start. The remaining configuration parameters
are the intrinsic properties of the logical channel and are set by the algorithm by calling the
ACPY2 configuration functions. The previously configured properties of the logical channel at
the time of transfer request determine the actual memory that gets copied from source to
destination. A DMA transfer is characterized by the following list configurable attributes. Figure 2
illustrates the memory layout of a DMA transfer block characterized by these configuration
parameters.

e Transfer type (xType): 1D-to-1D, 1D-to-2D, 2D-to-1D or 2D-to-2D
e Element size (elemSize): The number of 8-bit bytes per element € {1, 2, 4}.

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 5

{'.?‘ TEXAS

SPRA789A INSTRUMENTS

6

e Number of frames (numFrames) : The number of frames in a block.

e Elementindex (srcElementIndex Or dstElementIndex): the size of the gap between
two consecutive elements within a frame plus the element size in 8-bit bytes. When element
index is set to zero (0) element indexing is not used.

e Frame index (srcFrameIndex or dstFrameIndex): Size of the gap in 8-bit bytes between
two consecutive frames within a block. Defined for 2D transfers only.

e Number of elements (argument to ACPY2_start or ACPY2_startAligned): the number of
elements per frame.

e Source and destination addresses (argument to ACPY2_start or ACPY2_startAligned): as
8-bit byte-addresses.

Element and frame index parameters are shared by both source & destination if the hardware
does not support setting these independently, as is the case for the C6x1x EDMA architecture.
Configure functions should indicate error status when any configuration settings are not
supported by the client implementation.

Source
(destination) .
address Element size
w
Element 0
Element index
v
Frame O Element 1
Element K
A
Frame index
Element 0
Transfer block:
Number of frames = N+1,
Number of elements = K+1 Frame 1 Element 1
Element K
| . |
Frame N

Figure 2. DMA Transfer Block

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

2

2.1

Generic DMA Manager Module: DMAN

An optional DMAN module is provided with this application note. This module can be customized
as needed, and is a convenient way to create algorithm instances.

Using DMAN for Algorithm Integration

The steps for integrating an algorithm that uses DMA resources can be greatly simplified by
making use of the DMAN module provided with this application note. The DMAN module acts as
a DMA manager to grant DMA resources to algorithms. This module is neither required nor
specified by the XDAIS rules and guidelines. However, it simplifies and modularizes use of the
IDMA2 and ACPY2 interfaces.

Following steps provide a generic and convenient set of instructions to use the DMAN module to
instantiate algorithm instances that requests DMA resources. The code examples are from the
fastcopytest.c example provided with this application note.

1. Include the DMAN module in the application. You can use the DMAN module as provided
or make changes to it as needed by your application.

#include <dman.h>

2. Implement or include an ACPY2 library in the application. The ACPY2 module must
implement the functions specified by the XDAIS specification. An ACPY2 implementation
for C6x1x is provided with this application note.

#include <acpy2 6xlx.h>

3. Initialize the algorithm by calling its alglnit() function, and set values for fields in the
algorithm-specific params structure, which is declared in imod>.h.

FCPY Params fcpyParams;
FCPY_Handle alg;

FCPY init () ;
fcpyParams = FCPY PARAMS; /* use the default creation parameters */

4. Use the standard IALG interface to allocate and grant the memory buffers requested by
the algorithm and initialize the instance object.

if ((alg = FCPY create (&fcpyParams)) == NULL) {

SYS abort (“Could not create algorithm instance”);

}

5. Initialize the ACPY2 library.

ACPY2 6X1X init();

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 7

{'.?‘ TEXAS

SPRA789A INSTRUMENTS

2.2

2.3

231

6. Initialize and set up the DMAN module.

DMAN init () ;
DMAN setup (INTERNALHEAP) ;

7. Use the DMAN module to grant the DMA resources requested by the algorithm.

if (DMAN addAlg((IALG Handle)alg, &FCPY IDMA2) == FALSE) {

SYS abort (“Problem adding algorithm’s dma resources”) ;

DMAN Module APIs

These functions are intended to provide application frameworks a convenient and easy to use
layer to integrate algorithms requesting DMA resources.

Table 5. DMAN Functions

Functions Description

DMAN_addAlg () Grant logical channel resources to an algorithm instance.
DMAN_exit () Finalization method of the DMAN module.

DMAN_init () Initialize the DMAN module.

DMAN_removeAlg () Remove logical channel resources from an algorithm instance.

DMAN_setup Setup the DMAN module. Specifies the heap identifier used for MEM module for allocating
memory for channel handles.

Implementing the DMAN Interface

The following list describes each function that must be implemented.

DMAN_addAlg()

e Add an algorithm to the DMA Manager. The DMA Manager will grant DMA resources to the
algorithm as a result. This function is called when initializing an algorithm instance.

* —======= dman_addalg,c —=======
* Grant logical channel resources to an algorithm instance

*/

static Bool allocChannels (IDMA2 ChannelRec dmaTab[], Int n);
/*
* ———===== DMAN_addAlg ——======

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

* Add an algorithm to the DMA Manager. The DMA Manager will grant DMA

* resources to the algorithm as a result. This function is called when
* dinitializing an algorithm instance.
*/

Bool DMAN addAlg (IALG Handle algHandle, IDMA2 Fxns *dmaFxns)

{

Int numChan;
IDMA2 ChannelRec dmaTab [_DMAN_MAXDMARECS] ;

/* verify that alg and idma2 fxns are from same implementation */
if ((algHandle != NULL) && (dmaFxns != NULL) &&

(dmaFxns->implementationId == algHandle->fxns->implementationId)) {

numChan = dmaFxns->dmaGetChannelCnt () ;

/*
* Stack-based dmaTab records avoid the risk of fragmentation.
* A maximum number of records is set. If, in the unlikely case,
* more records than the maximum are requested, return failure
*/

if (numChan > DMAN MAXDMARECS) {
return (FALSE) ;

numChan = dmaFxns->dmaGetChannels (algHandle, dmaTab) ;
if (numChan <= 0) {

return (FALSE) ;
}

if (allocChannels (dmaTab, numChan) == TRUE) {
if (dmaFxns->dmaInit (algHandle, dmaTab) == IALG EOK) {
return (TRUE); // DMA init success

}

/* If dmaInit fails for any reason, free channel resources */
_DMAN freeChannels (dmaTab, numChan) ;

}

return (FALSE) ;

* =—======= gllocChannels ========
* Allocate and initialize logical channels (IDMA2 Obj’s) requested in
* a dmaTabl[].
*/
static Bool allocChannels (IDMA2 ChannelRec dmaTab[], Int numChan)
{
Int i;
Int chanObjSize = ACPY2 getChanObjSize() ;

for (i = 0; i < numChan; i++) {

/*

* Word alignment is done to help simplify accesses of fields

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 9

{'.?‘ TEXAS

SPRA789A INSTRUMENTS
* in the IDMA2 Obj structure by assembly implementations of ACPY2
*/
dmaTab[i] .handle = (IDMA2 Handle)MEM alloc(DMAN heapId, chanObjSize,
sizeof (Int));
if (dmaTab[i] .handle == MEM ILLEGAL) {
_DMAN freeChannels (dmaTab, 1);
return (FALSE) ;
}
/* Initialize channel object */
ACPY2 initChannel (dmaTab[i] .handle, dmaTab[i].queueId) ;
}
return (TRUE) ;
}
/*
* ======== freeChannels ========
* Reclaim logical channel resources (IDMA2 Obj’s).
*/
Void DMAN freeChannels (IDMA2 ChannelRec dmaTab[], Int numChan)
{
Int 1i;
Int chanObjSize = ACPY2 getChanObjSize() ;
for (1 = 0; i < numChan; i++) {
if (dmaTab[i] .handle != MEM ILLEGAL) ({
MEM_free (_DMAN heapId, dmaTab[i] .handle, chanObjSize);
}
}
return;
}
2.3.2 DMAN_init() .

2.3.3

2.3.4

10

e |nitialize the DMAN module.

Void DMAN init (Void)
{
}

DMAN_exit() .
e Finalization method of the DMAN module

Void DMAN exit (Void)
{
}

DMAN_removeAlg() .

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

2.3.5

This function removes logical channel resources from an algorithm instance. This function is
called before deallocating an algorithm instance in dynamic systems.

* ======== DMAN removeAlg ========
* Remove logical channel resources from an algorithm instance.
* This function is called before deallocating an algorithm instance
* in dynamic systems.
*/
Bool DMAN removeAlg (IALG Handle algHandle, IDMA2 Fxns *dmaFxns)
{
IDMA2 ChannelRec dmaTab[DMAN MAXDMARECS] ;
Int numChan;
Int actualNumChan;

/* verify that alg and idma2 fxns are from same implementation */
if ((algHandle != NULL) && (dmaFxns != NULL) &&

(dmaFxns->implementationId == algHandle->fxns->implementationId)) {

numChan = dmaFxns->dmaGetChannelCnt () ;

/*
* Stack-based dmaTab records reduces fragmentation.
* A maximum number of records is set. If, in the unlikely case,
* more records than the maximum are requested, return failure
*/

if (numChan > DMAN MAXDMARECS) ({
return (FALSE) ;

actualNumChan = dmaFxns->dmaGetChannels (algHandle, dmaTab) ;
if (actualNumChan <= 0) {

return (FALSE) ;
}

_DMAN freeChannels (dmaTab, actualNumChan) ;
return (TRUE) ;

}

return (FALSE) ;

DMAN_setup()

Function to setup the DMAN module. Specifies the heap ID for dynamic allocation. This function
is called when initializing the DMAN module. In a dynamic system, it can also be called to
change the heap used by DMAN after all algorithms have first been removed from DMAN using
DMAN_removeAlg.

Void DMAN setup (Int heapId)

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 11

{'.?‘ TEXAS

SPRA789A INSTRUMENTS

3.1

12

{

/* Assumed heapId to be a valid segment address */
_DMAN heapId = heapId;

}

ACPY?2 Interface Reference Example

This section describes the C6x1x-specific (C6211, C6711) ACPY2 implementation provided with
this application note. A hand-optimized assembly version of the same library is provided in the
TMS320 DSP Algorithm Standard Developer’s Kit 2.5. After the overview, details and code are
shown for each function.

Overview of the QDMA Mechanism on C6211/ C6711/ C64x

The enhanced direct memory access (EDMA) controller handles all data transfers between the
level-two (L2) cache/memory controller and device peripherals on the C621x/C671x/C64x. The
EDMA controller in the C621x/C671x/C64x is different from the DMA controller in C620x/C670x
devices. Enhancements include providing 64 channels (C64x) or 16 channels (C621x/C671x)
with programmable priority and the ability to link and chain data transfers.

The EDMA device on the C6000 supports the quick DMA (QDMA) mechanism, which is one of
the most efficient ways of moving data. The EDMA can perform fast and efficient transfers by
accepting a QDMA request from the CPU. A QDMA transfer is best suited to applications that
require quick data transfers, such as data requests in a tight loop algorithm.

Figure 3 shows how the QDMA registers can be used for data transfers.
QDMA registers

source

Start
source
[::> H/W queue
source
source DMA transfer
Set TCC upon
completion

oOo|0(|1]O0

Ll

source

CIPR

Figure 3. QDMA and CIPR Registers Used in Data Transfers

The QDMA consists of two sets of five memory mapped, write-only registers: the “QDMA
registers” and the “QDMA pseudo registers.” Writes to the QDMA registers configure, but do not
submit, the next DMA data transfer request. Writing to any one of the five pseudo registers
submits a transfer request. Hence, as shown in Figure 3, one would generally write to four
QDMA registers (source, destination, option, index) and to one pseudo register (count) to
configure and submit a transfer request.

Two transfer request queues are available on the C6211/ C6711 for the QDMA mechanism: a
high-priority queue and a low-priority queue.

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

3.2

On the C6211/ C6711, at most 3 simultaneous requests can be submitted on each queue
through the QDMA mechanism. Each request must assigned one of 16 transfer complete codes
(TCC) by specifying it in one of the five QDMA registers. When the transfer is completed, a bit in
the 16-bit channel interrupt pending register (CIPR) corresponding to the TCC is set. Therefore,
this register can be monitored to verify the status of each transfer request.

On the C64x devices, there is more flexibility. The maximum number of simultaneous requests in
each transfer request queues is programmable and a total of 64 TCCs are available. Note that
the ACPY2 implementation provided with this application note has been optimized for the
C6211/C6711, so it only supports the lower 16 TCCs and two of the hardware queues
(high-priority and medium-priority) on the C64x when used on the latter.

High-Performance ACPY2 Library Implementation

200 [192 188 190
180 |-]
160
140
o 140 130
S 120]
) o6 100
= 100 [—
3] — [] 61
S 80 - 61
60 |- 56
33
40 |- 24
W L |]
0
S 5 z z ° 5 %5 T £ 23 2
S5 82 %% 3 35 87 ¢
T O c £ &5 g 2 2 ¢ SR
& = o O H € c L > 1%}
x g 9 < 8 8 £ c
3 g > N | %) 2
[N N [oX
< S a > > 3 €
>'< O o o | [}
o < O O W
< < < 7z
@)
<

Figure 4. Performance Comparison

The best-case performance numbers for the high-performance ACPY2 library implementation
supplied with this application report are shown in Figure 4. The numbers were obtained using
the profiler clock in Code Composer Studio 2.1. When the new DMA guidelines from TMS320
DSP Algorithm Standard are followed, this implementation is capable of providing better
performance than traditional ACPY implementations that use the DAT module, as can be seen in
the first column in Figure 4.

This example implementation for the C6211/ C6711/ C64x devices is based on the following
logical IDMA2 channel structure:
/*

* IDMA2 Obj is the structure representation of a logical DMA channel.

* It contains the state information of the channel

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 13

{'.?‘ TEXAS

SPRA789A INSTRUMENTS
*/
typedef struct IDMA2 Obj {
IDMA2 Params params ; // Used to hold the current channel config params
Int lastTCC ; // The last TCC used by this channel in decimal
EDMA Config config ; // Config structure used to store QDMA parameters

3.21

14

// before writing them to registers
} IDMA2 Obj;

This structure contains three fields:
e params holds the current set of IDMA2 parameters used by this channel.
e |astTCC holds the TCC used by this channel to submit its last transfer.

e Config is an EDMA_Config structure used to store intermediate values to be directly stored
in QDMA registers when submitting a transfer.

To optimize the process of starting transfers in ACPY2 start (), itis best to fill the
EDMA _config structure as much as possible when configuring channels. This minimizes
overhead when submitting transfer requests.

ACPY2_init()

ACPY2_init() initializes the ACPY2 module. It is called by the client application to allocate TCCs
for use in ACPY2 and to initialize the corresponding bits in the CIPR. This function uses dummy
transfers to set the TCC bits allocated for ACPY2. This causes bits in CIPR register to be set.
Later, when ACPY2 start () is called, the transfer can take ownership of one of the TCC bits
set, and reset it. ACPY2 wait () can then wait on the TCC bit to get set again to ensure transfer
completion.

/*
* —======= acpyz_init,c —=======
*/
#pragma CODE_SECTION(ACPYZ_init, ".text:ACPYZ_init")
#pragma DATA_SECTION(_ACPYZ_TCCTable, ".bSS:_ACPYZ_TCCTable")

#include <std.h>
#include <sys.h>

#include <csl edma.h>

#include < acpy2.h>
#include <acpy2 6xl1x.h>
#include <idma2 priv.h>

//Table recording which handle last used a particular TCC
IDMA2 Handle _ACPY2_TCCTable[_ACPY2_TCCTABLESIZE] =
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

Int ACPY2 TCCmask = 0; //Bits in CIPR reserved for ACPY2’'s use

Char ACPY2 TCCsAllocated[ACPY2 TCCTABLESIZE] =
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

/*
* ======== ACPY2 init ========
Initialize the ACPY2 module

*
*
* The strategy consists of setting the TCC bits allocated for ACPY2
* using dummy transfers. In this manner, when ACPY2 start is called,
* the transfer can take ownernership of one of the TCC bits set, and
* reset it. ACPY2 wait can then wait on the TCC bit to get set again
* to ensure transfer completion.

*/
Void ACPY2 init (Void)

{

Int count = 0;

//Used for dummy transfers to set CIPR register used in QDMA transfers.
Uint32 dummySrc;

Uint32 dummyDst;

EDMA Config dummyCfg;

//if ACPY2 init has never been called before
if (_ACPY2 TCCmask == 0) ({

//Initialize dummyCfg structure
dummyCfg.opt = EDMA FMKS (OPT, PRI,HIGH) |
EDMA FMKS (OPT,ESIZE, 8BIT) |
EDMA_ FMKS (OPT, 2DS,NO) |
EDMA FMKS (OPT, SUM, INC) |
EDMA_ FMKS (OPT, 2DD, NO) |
EDMA FMKS (OPT, DUM, INC)
EDMA_FMKS (OPT, TCINT, YES
EDMA FMKS (OPT, TCC, OF (0)
EDMA_FMKS (OPT, LINK, NO)
EDMA FMKS (OPT, FS, YES) ;

|
)|
)
|

dummyCfg.src (Uint32) &dummySrc;

dummyCfg.cnt = 0x4; //Transfer 4 bytes to fill dummyDst
dummyCfg.dst (Uint32) &dummyDst ;

dummyCfg.idx = 0;

//Allocate the TCCs for ACPY2.
for (count = 0; count < ACPY2 6X1X.numTCC; count++) {
_ACPY2 TCCsAllocated[count] = EDMA intAlloc(-1);
if (ACPY2 TCCsAllocated[count] == -1) {
SYS abort ("Not enough TCCs available”);
}

else if (ACPY2 TCCsAllocated[count] >= ACPY2 TCCTABLESIZE) {
/*
* NOTE: On Cé4x, if EDMA intAlloc returns a TCC value that is
* not supported on the C6211, this implementation will fail

* gince it is built to work with C6211. It simply maintains
* compatibility with C64x devices.
*/

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 15

{'f TExAs
SPRA789A INSTRUMENTS

SYS abort (“TCC returned exceeds the maximum TCC supported” \
"by this implementation.”) ;

}

_ACPY2 TCCmask |= (1 << _ACPY2 TCCsAllocated[count]) ;

/*
* Do a dummy transfer so that bits in CIPR register are set,
* meaning TCCs are ready for another transfer
*/

EDMA FSETA (& (dummyCfg.opt), OPT, TCC, _ACPY2 TCCsAllo-

cated[count]) ;
EDMA gdmaConfig (&dummyCfg) ;
}

3.2.2 ACPY2_exit()
ACPY2_exit() is called by the client application. It frees TCCs reserved for use by ACPY?2.

Void ACPY2 exit (Void)

{

int count;

//Free TCCs allocated by ACPY2

for (count = 0; count < ACPY2 6X1X.numTCC; count++) {
EDMA intFree(ACPY2 TCCsAllocated[count]) ;

}

3.2.3 ACPY2_initChannel()

ACPY2_initChannel() is called by the client application. It initializes a channel’'s IDMA2_Obj
structure. It also accepts the queueld of the logical channel and maps it to a corresponding DMA
priority level, attempting to utilize all hardware queues to maximize DMA bandwidth (For more
details on EDMA hardware queues usage, see TMS320C621x/C671x EDMA Queue
Management Guidelines, SPRA720). All transfers submitted on the same priority level are
serialized in hardware on the EDMA device.

16 Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

{

¥ ======== ACPY2_initChannel ========
* TInitialize the IDMA2 channel object passed in. Set the priority level
* based on the queue id.

*/
Void ACPY2 initChannel (IDMA2 Handle handle, Int queueId)
/*
* NOTE: gid is an arbitrary number that has to be mapped to physical
* hardware queues on the Céx EDMA device. The scheme chosen here
* 15 to map even queue ids to low priority h/w queue and odd queue
* ids to high priority h/w queue. This scheme can be customized to
* suit a specific application.
*/
if ((queueId % _ACPY2 NUM HWQUEUES) == 0) ({
//Set to low priority
(handle->config) .opt = EDMA FMK (OPT,PRI,EDMA OPT PRI LOW) ;
}
else {

3.24

//Set to high priority
(handle->config) .opt = EDMA FMK (OPT,PRI,EDMA OPT PRI HIGH) ;

ACPY2_getChanObjSize()

ACPY2_getChanObjSize() is called by the client application. It returns the size of the channel’s
IDMA2_Obj structure. It is typically used when the client application is allocating memory for the
logical channels.

Uns ACPY2 getChanObjSize (Void)

{
}

3.2.5

return (sizeof (IDMA2 0bj)) ;

ACPY2_configure()

ACPY2_configure() is called by the algorithm to configure data transfer parameters for the
channel. Using the IDMA2_Params argument, it sets up the following values and stores them
within the channel object:

Value to be written to the option register based on the transfer type and element size of the
logical channel.

Value to be written to the index register based on the source/destination element index and
frame index parameters.

Value to be written to the count pseudo-register based on the numFrames parameter.

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 17

SPRAT789A

%‘ TExAs
INSTRUMENTS

=—======= ACPY2_configure —=======

* Configure a logical channel

Void ACPY2 configure (IDMA2 Handle handle, IDMA2 Params *params)

{

//Save priority level set
Uns priField = EDMA FGETA (& ((handle->config) .opt),OPT, PRI) ;

handle->params = *params;

/*
* Default value for option register. The assumption here for c64x
* devices is that the extra fields have default values of 0.
*/
handle->config.opt =
EDMA FMKS (OPT, PRI,OF (priField)) |
EDMA FMKS (OPT,ESIZE,OF (0)) |
EDMA FMKS (OPT, TCINT, YES) |
EDMA FMKS (OPT, TCC,OF (0))
EDMA_FMKS(OPT,LINK,NO);

//Frame and element count set to 0 for 1D transfers

handle->config.cnt = 0;
if (params->xType != IDMA2 1D1D) { //For 2D transfers
/*

* params->stride and params->numFrames are only initialized when it
* igs not a 1D transfer
*/

handle->config.cnt = EDMA FMK (CNT, FRMCNT, ((params->numFrames) - 1)) ;

//Check if element indexing is used
if ((params->srcElementIndex == 0) &&
(params->dstElementIndex == 0)) {
switch (params->xType) {
case IDMA2 2D2D:
handle->config.opt |=
EDMA FMKS (OPT, FS, YES) |
EDMA_FMKS (OPT, SUM, INC) |
EDMA_FMKS (OPT,DUM, INC) |
EDMA FMKS (OPT, 2DS, YES) |
EDMA FMKS (OPT, 2DD, YES) ;
//Check for invalid src and dst frame index combinations

if (params->srcFrameIndex != params->dstFramelIndex) {
SYS abort (”Frame indices must be same in 2D2D trans
fers”) ;
else {

handle->config.idx = EDMA FMK (IDX, FRMIDX,
(params->dstFramelIndex)) ;

18 Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

}

break;
case IDMA2 1D2D:
handle->config.opt |=
EDMA FMKS (OPT, FS, YES) |
EDMA_ FMKS (OPT, SUM, INC) |
EDMA_FMKS (OPT,DUM, INC) |
EDMA_FMKS (OPT, 2DS,NO) |
EDMA FMKS (OPT, 2DD, YES) ;
handle->config.idx = EDMA FMK(IDX, FRMIDX,
(params->dstFramelIndex)) ;
break;
case IDMA2 2D1D:
handle->config.opt |=
EDMA FMKS (OPT, FS, YES) |
EDMA FMKS (OPT, SUM, INC) |
EDMA_FMKS (OPT,DUM, INC) |
EDMA_ FMKS (OPT, 2DS, YES) |
EDMA FMKS (OPT, 2DD, NO) ;
handle->config.idx = EDMA_ FMK (IDX, FRMIDX,
(params->srcFrameIndex)) ;
break;
default:
//Should never end up here!
SYS abort (”Invalid transfer type”);
break;

}
else {
SYS abort ("Element index has to be zero in 2D transfers on

cex1x") ;

}

else { //For 1D transfers
//Check if element indexing is used
if ((params->srcElementIndex == 0) &&
(params->dstElementIndex == 0)) {
//Both src and dst have element indexing mode disabled
handle->config.idx = 0;
handle->config.opt |=
EDMA FMKS (OPT, FS, YES) |
EDMA FMKS (OPT, SUM, INC) |
EDMA_FMKS (OPT,DUM, INC) |
EDMA FMKS (OPT, 2DS,NO) |
EDMA_FMKS(OPT,ZDD,NO);
}
else if (params->srcElementIndex == 0) {
//Enable element indexing mode for dst
handle->config.idx = EDMA_FMK(IDX,ELEIDX,
(params->dstElementIndex)) ;
handle->config.opt |=
EDMA FMKS (OPT, FS,NO) |

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 19

{'.?‘ TEXAS

SPRA789A INSTRUMENTS

20

EDMA FMKS (OPT, SUM, INC) |
EDMA FMKS (OPT,DUM, IDX) |
EDMA_FMKS(OPT,2DS,NO) |
EDMA_FMKS(OPT,2DD,NO);
}
else if (params->dstElementIndex == 0) {
//Enable element indexing mode for src
handle->config.idx = EDMA FMK (IDX, ELEIDX,
(params->srcElementIndex)) ;
handle->config.opt |=
EDMA FMKS (OPT, FS,NO) |
EDMA FMKS (OPT, SUM, IDX) |
EDMA_ FMKS (OPT,DUM, INC) |
EDMA_FMKS (OPT, 2DS,NO) |
EDMA_FMKS (OPT, 2DD, NO) ;
}
else if (params->dstElementIndex == params->srcElementIndex) {
//Enable element indexing mode for src and dst
handle->config.idx = EDMA FMK(IDX, ELEIDX,
(params->srcElementIndex)) ;
handle->config.opt |=
EDMA FMKS (OPT, FS,NO) |
EDMA FMKS (OPT, SUM, IDX) |
EDMA FMKS (OPT,DUM, IDX) |
EDMA FMKS (OPT, 2DS,NO) |
EDMA_FMKS (OPT, 2DD, NO) ;
}
else {
SYS abort (”Invalid combination of src and dst element indices”);
}

}

//Set the element size field
switch (params->elemSize) {
case IDMA2 ELEMS8:
(handle->config) .opt |= EDMA_ FMKS (OPT, ESIZE, 8BIT) ;
break;
case IDMA2 ELEM16:
(handle->config) .opt |= EDMA FMKS (OPT,ESIZE,16BIT) ;
break;
default:
break;

ACPY2_setNumFrames(), ACPY2_setSrcFramelndex() and ACPY2_setDstFramelndex are
faster alternatives for reconfiguring channels.

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

3.2.6

3.2.7

ACPY2_setNumFrames()

ACPY2_setNumFrames() allows an algorithm to rapidly change the numFrames parameter of an
IDMA2 channel. Using the value argument, it sets the numFrames parameter. It also converts
the value to a corresponding bit field to be written to the count pseudo-register and stored in the
channel object.

* ======== ACPY2 setNumFrames ========
* Rapidly configure the numFrames parameter of an IDMA2 channel

*/

Void ACPY2 setNumFrames (IDMA2 Handle handle, Uns numFrames)

{

handle->params.numFrames = numFrames;
handle->config.cnt = EDMA FMK (CNT, FRMCNT,
((handle->params.numFrames) - 1)) ;

ACPY2_setSrcFramelndex()

ACPY2_setSrcFramelndex() allows an algorithm to rapidly change the source frame index
parameter of an IDMA2 channel. It also converts the framelndex value to a corresponding bit
field to be written to the count pseudo-register and stores this bit field in the channel object. Note
that on the C6x1x EDMA device, ACPY2_setSrcFramelndex() has the same behavior as
ACPY2_setDstFramelndex() in 2D to 2D transfers since the hardware only supports one frame
index value.

* ======== ACPY2 setSrcFramelIndex ========
* Rapidly configure the source Frame index parameter of an IDMA2 channel
* Note that both source and destination indexes are set simultaneously
* on the C6xlx with this API.
*/
Void ACPY2 setSrcFrameIndex (IDMA2 Handle handle, Int frameIndex)

{

handle->params.srcFrameIndex = framelIndex;

/*
* For 2D to 2D transfers, src and dst indices must be set to same
* value.

*/

if (handle->params.xType == IDMA2 2D2D) ({

handle->params.dstFrameIndex = framelndex;

}
/*

* The idx register value is recomputed
*/
handle->config.idx &= 0xX0000FFFF; //clear the frame index field

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 21

{'.?‘ TEXAS

SPRA789A INSTRUMENTS
handle->config.idx |=
EDMA_ FMK (IDX, FRMIDX, (handle->params.srcFrameIndex)) ;
}
3.2.8 ACPY2_setDstFramelndex()

22

ACPY2_setDstFramelndex() allows an algorithm to rapidly change the destination frame index
parameter of an IDMA2 channel. It also converts the framelndex value to a corresponding bit

field to be written to the count pseudo-register and stores this bit field in the channel object. Note

that on the C6x1x EDMA device, ACPY2_setDstFramelndex() has the same behavior as
ACPY2_setSrcFramelndex() in 2D to 2D transfers since the hardware only supports one frame
index value.

* ======== ACPY2 setDstFramelndex ========
* Rapidly configure the destination frame index parameter of an
* IDMA2 channel. Note that both source and destination indexes
* are set simultaneously on the Cé6xlx with this API.
*/

Void ACPY2_ setDstFrameIndex (IDMA2_ Handle handle, Int frameIndex)

{

handle->params.dstFrameIndex = framelndex;

/*

* For 2D to 2D transfers, src and dst indices must be set to same
* value.

*/
if (handle->params.xType == IDMA2 2D2D) ({

handle->params.srcFrameIndex = framelndex;

}
/*

* The idx register value is recomputed
*/
handle->config.idx &= Ox0000FFFF; //clear the frame index field
handle->config.idx |=
EDMA_FMK (IDX, FRMIDX, (handle->params.dstFrameIndex)) ;

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

3.2.9 ACPY2_start() and ACPY2_startAligned

The ACPY?2 library implements two interface functions to submit DMA transfer requests:
ACPY2 start () and ACPY2 startAligned (). The only operational difference between
ACPY2 startAligned () and ACPY2 start () is the additional requirement by

ACPY2 startAligned () for its source and destination addresses and indexes to be properly
aligned with respect to the configured element size.

The supplied ACPY2 startAligned () implementation described in this section, whose
operation is outlined in Figure 5, offers very high performance when the source and destination
addresses and indexes are properly aligned.

The ACPY2 start () implementation makes no assumptions on the alignment of the source
and destination addresses. It accepts addresses at any alignment and adjusts the transfer
parameters (including element size, number of elements, transfer type) to transparently perform
the desired transfer using the given alignment. It is intended to simplify algorithm development in
the initial states. ACPY2 start () thus strives to maintain simplicity while maintaining
reasonable levels of performance. The ACPY2 startAligned () API, on the other hand,
makes no runtime checks on the alignment and performs the transfer using the configured
transfer settings of the channel. Passing source or destination addresses (or indexes) with
incorrect alignment with respect to the configured element size of the DMA handle will result in
unspecified behavior.

—‘

Poll CIPR for Record last TCC
an available TCC used by this
channel
v
Disable interrupts Set all 5 registers
v v
Clear TCC Re-enable interrupts
i
Update TCC table (E
I

Figure 5. Flowchart for ACPY2_startAligned

As shown in Figure 5, ACPY2 startAligned () starts by polling the CIPR register for an
available TCC to use with ACPY2. When it finds one, it reserves it by clearing the corresponding
bit in the CIPR.

At this point, ACPY2 startAligned () updates the TCC table. As shown in Figure 6, the TCC
table is a sixteen-entry array of IDMA2_Handle’s. It is initialized to contain zeros (0) in
acpy2_init.c and has a one-to-one correspondence with the 16 TCCs available on the C6211/
C6711. ACPY2 startAligned () records the logical channel handle for the transfer in the
corresponding entry of the TCC table. Furthermore, it records the TCC it reserved as the last
TCC used by this channel in its IDMA2_Obj structure. Both of these records are necessary to
ensure proper execution of subsequent ACPY2 wait () and ACPY2 complete () calls on this
channel.

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 23

{'f TExAs
SPRA789A INSTRUMENTS

3 TCCsin CIPR
12 11 10

oo w | w | x|

0x8000ABCD | 10
— | Ox8000AB34 11
— | Ox8000ABCD | 12

TCC table (last channel
to have been assigned
the TCC)

Figure 6. TCC Table and TCCs

Finally, the transfer is submitted by writing the appropriate values to all five QDMA registers, with
the help of the arguments of the function and the config field in the channel’'s IDMA2_ODbj
structure.

The implementation of ACPY2 start () is sketched in the flowchart in Figure 7. ACPY2_start
optimizes the element size of the transfers based on the alignment of the source address, the
destination address, the element count, and the stride of the transfer. For example, if the
channel has previously been configured as a 1D to 1D 8-bit channel, but 80 bytes (a multiple of
4) is to be transferred from a 32-bit aligned source address to a 32-bit aligned destination
address, then it is possible to schedule the transfer as a 32-bit element size transfer instead of
an 8-bit transfer to speed it up. Subsequent steps of ACPY2_start uses the same logic used in
ACPY2_startAligned as explained above for polling and managing the TCCs and configuring the
DMA hardware.

Note that this optimization is skipped when element indexing is used, or in other words, when
there is a non-zero gap between consecutive elements in a transfer. Instead, the transfer is
automatically scheduled as an 8-bit transfer. This is a conservative approach to ensure
correctness in non-aligned transfers, while keeping the overhead of transfer submission to a
minimum.

As a rule of thumb, algorithm developers are encouraged to use aligned buffers and indexes at
all times in DMA transfers to minimize transfer submission overhead with the use of
ACPY2_startaligned.

A highly optimized assembly version of both functions are provided with this application report.
Since we do not assume knowledge of C6000 assembly language, we provide the functionally
equivalent C- model implementation of both functions in this section.

24 Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'? TEXAS

INSTRUMENTS

SPRAT789A

Use Element No > Adjust transfer settings
Indexing? for equivalent 8-bit
transfer mode
Optimize element size based on alignment
—» Poll CIPR for an available TCC Exit
I
A 4
. . A
Disable interrupts Record last TCC
v used by this
Clear TCC channel Re -enable
2 interrupts
v N p
Update TCC Table Set all 5 registers

Figure 7. ACPY2_start Flowchart

======== acpy2 startAligned.c ========

Void ACPY2 startAligned(IDMA2 Handle handle, Void * src, Void *dst, Uns cnt)

{

Int csr;

Int temp; //variable used to check available TCCs

Int usedTCC; //actual TCC chosen for present transfer

Uns * base = (Uns *) EDMA QOPT ADDR; //base address of QDMA regs

//Disable interrupts when modifying QDMA registers
csr = HWI disable() ;

//Determines if there are TCCs available for ACPY2'’s use
temp = EDMA_RGET(CIPR) & _ACPYZ_TCCmaSk;

base[EDMA QSRC OFFSET] = (Uns)src;

base[EDMA QDST OFFSET] = (Uns)dst;

while (temp == 0)

HWI restore(csr) ;

csr = HWI disable();

temp = EDMA RGET(CIPR) & _ACPY2 TCCmask;
base[EDMA QSRC OFFSET] = (Uns)src;
base[EDMA QDST OFFSET] = (Uns)dst;

}

//Calculate the TCC number used
usedTCC = 31 - 1mbd(1l, temp);

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

25

%‘ TExAs
SPRA789A INSTRUMENTS

//Clear TCC bit in CIPR to record next transfer completion event
EDMA RSET (CIPR,1 << usedTCC) ;

//Record in TCC table as the last handle to have used this TCC
_ACPY2 TCCTable [usedTCC] = handle;

//Record this TCC as the last TCC used by this handle
handle->1astTCC = usedTCC;

//Write to QDMA registers.

base[EDMA QIDX OFFSET] = (handle->config) .idx;
base [EDMA QOPT OFFSET] = (handle-s>config).opt | (usedTCC << 16);
if (handle->params.xType != IDMA2 1D1D)
{

base[EDMA QSCNT OFFSET] = (handle->config) .cnt + cnt;
else
{

base[EDMA QSCNT OFFSET] = (Uns)cnt;

HWI restore(csr); //reenable interrupts

}

static inline Void elemIdxAdjust (IDMA2 Handle handle, Uns * opt, Uns * idx, Uns *
cnt) ;

Void ACPY2 start (IDMA2 Handle handle, Void * src, Void * dst, Uns cnt)

Int csr;
Int temp; //variable used to check available TCCs
Int usedTCC; //actual TCC chosen for present transfer

Int alignment;
Uns opt = handle->config.opt;
Uns idx = handle->config.idx;

Uns * base = (Uns *) EDMA QOPT ADDR; //base address of QDMA regs

//Check to see if element indexing is used

if ((handle->params.srcElementIndex != 0) |
(handle->params.dstElementIndex != 0))

elemIdxAdjust (handle, &opt, &idx, &cnt);

else {
//Perform alignment checking to optimize transfer
alignment = 0;
if (handle-s>params.elemSize == IDMA2 ELEM32)
if (handle-s>params.xType == IDMA2 1D1D) {
alignment = ((Uns)src | (Uns)dst);
else {
alignment = ((handle->params.srcElementIndex) |
(handle->params.dstElementIndex) |
(Uns)src | (Uns)dst);

if ((alignment & 0x1) == 0) { //at least 16-bit aligned
if ((alignment & 0x2) != 0) { //1lébit xfer
cnt <<= 1;
opt |= 0x08000000;

else { //not aligned => 8 bit transfer needed

26 Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'? TEXAS

INSTRUMENTS SPRA789A

cnt <<= 2;

opt |= 0x10000000;
else if (handle ->params.elemSize == IDMA2 ELEM16)
if (handle-s>params.xType == IDMA2 1D1D) {
alignment = ((Uns)src | (Uns)dst | (cnt << 1));
else {
alignment = ((handle->params.srcElementIndex) |
(handle->params.dstElementIndex) | (Uns)src
| (Uns)dst | (cnt << 1));

if ((alignment & 0x1l) ==
if ((alignment & 0x2)

cnt >>= 1;
opt &= OXE7FFFFFF; //clear element size field

0) { //at least 16-bit aligned
== 0) { //32-bit xfers

else { //not aligned => 8 bit transfer needed
cnt <<= 1;
opt &= OXE7FFFFFF; //clear element size field

opt |= 0x10000000;
}
else {
if ((handle-s>params.xType) != IDMA2 1D1D) {
alignment = ((handle->params.srcElementIndex) |
(handle->params.dstElementIndex) | (Uns)src | (Uns)dst
| cnt);
else {
alignment = ((Uns)src | (Uns) dst | (Uns)cnt);
if ((alignment & 0x1) == 0) { //at least 16-bit aligned

cnt >>= 1;

opt &= OXE7FFFFFF; //clear element size field

opt |= 0x08000000;

if ((alignment & 0x2) == 0) { //32 bit xfer
opt &= OxXE7FFFFFF; //clear element size field
cnt >>= 1;

}

//Disable interrupts when modifying QDMA registers
csr = HWI disable() ;

//Determines if there are TCCs available for ACPY2’s use
temp = EDMA_RGET(CIPR) & ACPY2 TCCmask;

base[EDMA QSRC OFFSET] = (Uns)src;

base[EDMA QDST OFFSET] = (Uns)dst;

while (temp == 0)

HWI restore(csr);

csr = HWI disable();

temp = EDMA_RGET(CIPR) & _ACPYZ_TCCmask;
base[EDMA QSRC OFFSET] = (Uns)src;
base[EDMA QDST OFFSET] = (Uns)dst;

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

27

@‘ TEXAS

SPRA789A INSTRUMENTS

}

//Calculate the TCC number used
usedTCC = 31 - 1mbd(1l, temp);

//Clear TCC bit in CIPR to record next transfer completion event
EDMA_RSET(CIPR,l << usedTCC) ;

//Record in TCC table as the last handle to have used this TCC
_ACPY2 TCCTable[usedTCC] = handle;

//Record this TCC as the last TCC used by this handle
handle->1lastTCC = usedTCC;

//Write to QDMA registers.

base[EDMA QIDX OFFSET] = idx;

base [EDMA QOPT OFFSET] opt | (usedTCC << 16);
if (handle->params.xType != IDMA2 1DI1D)

base[EDMA QSCNT OFFSET] = (handle->config).cnt + (Uns)cnt;
else

{

base[EDMA QSCNT OFFSET] = (Uns)cnt;

HWI restore(csr); //reenable interrupts

static inline Void elemIdxAdjust (IDMA2 Handle handle, Uns * opt, Uns * idx,

{

28

Uns * cnt)

Uns elementSize;

/*
* When element index is used, go with the conservative approach
* to schedule everything as 8-bit transfers to ensure there is no
* alignment issues

*
/
*opt &= OXE7FFFFFF; //clear element size field
*opt |= 0x10000000; // Mask for 8-bit element size
//elementSize = {1 (for 8bit), 2 (for 16bit), 4 for (32bit)}
elementSize = (handle->params.elemSize) * 2;
if (elementSize == 0)
elementSize++;

//new FIdx = EIdx - esize

*idx = (handle->config.idx - elementSize) << 16;
//new numFrames = cnt - 1

*cnt -= 1;

*cnt = *cnt << 16;

//new # element/frame = element size
*cnt = *cnt + elementSize;

*opt &= OxXFCO9FFFFF; //clear SUM and DUM addressing fields
if ((handle->params.srcElementIndex != 0) &&

(handle->params.dstElementIndex != 0)) {
//set as 2D2D transfer if both element indices are set

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'? TEXAS

INSTRUMENTS SPRA789A

*opt |= 0x05A00000;

else if (handle->params.srcElementIndex == 0) {
//set as 1D2D transfer if only dstEIdx is used
*opt |= 0x01A00000;

else if (handle->params.dstElementIndex == 0) {
//set as 2D1D transfer if only srcEIdx is used
*opt |= 0x05200000;

3.2.10 ACPY2_wait()

ACPY2 wait () uses the entry in the TCC table corresponding to the last TCC used by a
specific logical channel x to find out if all transfers issued on the channel has completed. If the
lastTCC entry does not correspond to channel x’s handle, another channel y has used channel
x's last TCC. From this information, it can be inferred that all transfers on channel x have
completed. Otherwise, x is the last channel to use the last TCC and the CIPR should be polled
until the TCC becomes available.

/*
* ======== ACPY2 wait ========
* wait for the data transfers to complete
*/

Void ACPY2 wait (IDMA2 Handle handle)

{

Uint32 mask = 1 << (handle->1astTCC) ;

*
* If the entry in the table corresponding to the last TCC

* uged by this handle matches the handle itself, then we need

* to wait for the TCC bit to get set to ensure transfer completion.
* Otherwise, the TCC has already been assigned to a subsequent

* transfer, meaning the last transfer on this handle has already

* completed, and there is no need to wait.

*
f

(_ACPY2 TCCTable [handle->1lastTCC] == handle) {
//This loop will not get optimized out because EDMA RGET (CIPR)
//macro maps into (volatile) (address of CIPR)

while ((EDMA RGET (CIPR) & mask) != mask) ({

.

3.2.11 ACPY2_complete()

Similar to ACPY2 wait (), ACPY2 complete () checks the entry in the TCC table

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 29

{'f TExAs
SPRA789A INSTRUMENTS

corresponding to the last TCC used by a specific logical channel and the CIPR bit of the TCC to
determine transfer completion status. It does not wait for transfers to complete. Instead, it
returns 1 if transfers are complete and O if transfers are not complete.

/*

* ———===== ACPY2_complete —=======

* Check to see if the data transfers have completed
*/

Int ACPY2 complete (IDMA2 Handle handle)

{

Uint32 mask = 1 << (handle->1astTCC) ;

/*
* Tf the entry in the table corresponding to the last TCC
* used by this handle matches the handle itself, then we need
* to check the TCC bit to verify transfer completion.
* Otherwise, the TCC has already been assigned to a subsequent
* transfer, meaning the last transfer on this handle has already
* completed.
*/
if ((_ACPY2 TCCTable[handle->lastTCC] == handle) &&
! (EDMA RGET (CIPR) & mask)) {
return (0); //Not complete
}
else {
return (1); //complete

}

4 The fastcopytest Example

To show how the ACPY2 APIs can be used in an actual application, an example, fastcopytest,
has been developed. It uses the FCPY_TI algorithm, which follows the new guidelines for
achieving high performance. This section describes the example application. Sample code is
provided in Appendix A.

30 Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789A

Application

Framework v

ACPY2_6x1x DMA manager
library module (DMAN)

A 4
IDMA2
interface A
\

Algorithm

—>» Invoke
— —» Implement

Figure 8. Dependencies in the fastcopytest Example

As Figure 8 shows, to simplify interaction between the IDMAZ2 interface and the ACPY2 library, a
DMA manager module (DMAN) is used as an extra layer between the algorithm and the
application. This module queries the algorithm for its DMA resource needs through the
algorithm’s IDMAZ2 interface, allocates the necessary memory for logical channels, and grants
the memory to the algorithm.

The example uses the FCPY_TI algorithm, which copies a 2D buffer with a frame index value—
the number of 8-bit bytes between the last byte of a row in the 2D buffer and the first byte of its
next row— of x into another buffer with a frame index value of y.

Note that this algorithm is also part of the example. It is not performance-driven and aims to
show the use of the ACPY2 APIs. It first does a 2D to 1D transfer of the data in the input buffer
into an internal buffer, then transfers the data to a second internal buffer using a 1D to 1D
transfer. Finally, it does a 1D to 2D transfer from the second buffer to the output buffer.

You may also refer to TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide
(SPRUG609), for more details about the DMA-related cache coherence issues that are addressed
in this example code.

The fastcopytest application does the appropriate module initializations and uses an instance of
the FCPY_TI algorithm to copy a 64x64 block from an input buffer to an output buffer. It divides
the block into four quadrants, and makes four separate calls to FCPY_TI to copy the data one
guadrant at a time. It prints the word “Pass” in the DSP/BIOS Message Log when all data
transfers complete successfully.

5 Conclusion

Using the new DMA guidelines in TMS320 DSP Algorithm Standard Developer’s Kit 2.5, you can
easily implement a DMA manager for eXpressDSP-compliant algorithms. The example code
provided with this application note should provide a good starting point for building more
sophisticated DMA managers and understanding the roles of the IDMA2 and ACPY?2 interfaces
in a system containing DMA-based algorithms.

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 31

SPRAT789A

{'f TExAs
INSTRUMENTS

6

32

Installation of Example Code

To install the example code attached to this application note, simply unzip the file into
%TI_DIR%\myprojects directory (where %TIl_DIR% is the installation directory of Code
Composer Studio, e.g. c:\ti). It will create a directory spra789 and a series of subdirectories that
contains the following modules:

ACPY2_6X1X — The ACPY2 implementation. It is optimized for C6211 and C6711 EDMA
devices and is compatible with C6414, C6415 and C6416 devices. However, it does not
make use of the C64x EDMA extensions such as larger number of hardware queues and
transfer completion.

DMAN - The DMA management module used in conjunction with the ACPY?2 library to
provide DMA service to XDAIS algorithms implementing the IDMA2 interface.

FCPY_TI - An algorithm that shows an example of an IDMA2 interface and how DMA
transfers can be used inside an eXpressDSP-compliant algorithm.

FASTCOPYTEST - An example application that instantiate the FCPY_TI algorithm and uses
it to copy data.

Each module can be individually built using the .pjt file available under the directory
\spra789\src\(mod_name)\, where (mod_name) corresponds to the module name.

References

o0k whE

TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

TMS320 DSP Algorithm Standard API Reference (SPRU360)

TMS320 DSP Algorithm Standard Developer’s Guide (SPRU424)

TMS320C6000 Peripherals Reference Guide (SPRU190)

TMS320C621x/C671x EDMA Queue Management Guidelines (SPRA720)
TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide (SPRU609)

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789

Appendix A Code for the fastcopytest Example

The following example (fastcopytest.c) uses the FCPY_TI algorithm and the C6x1x ACPY2
implementation to illustrate how IDMA2 functions are implemented and how ACPY?2 functions
are used to perform DMA transfers.

Example A-1. Code Example for the fastcopytest

* ======== fastcopytest.c ========
* Test application for FCPY algorithm. Copies a 2D block from one
* Jlocation to another in memory, one quadrant at a time.
*/
// External data sections
#pragma DATA SECTION (input, “.image:ext sectl”) ;
#pragma DATA SECTION (output,”.image:ext sect2”);
#pragma DATA ALIGN (input,128); // aligned on cache boundary
#pragma DATA ALIGN (output,128); // aligned on cache boundary
#include <std.h>
#include <sys.h>
#include <log.h>
#include <csl cache.h>
#include <alg.h>
#include <ialg.h>
#include <ifcpy.h>
#include <dman.h>
#include <acpy2 6xl1x.h>
#include <fcpy.h>

#define SLINELEN 32 /* in bytes */
#define SNUMLINES 32 /* in bytes */
#define SSTRIDE 32 /* in bytes */
#define DLINELEN 32 /* in bytes */
#define DNUMLINES 32 /* in bytes */
#define DSTRIDE 32 /* in bytes */
#define INPUTSIZE 1024 /* in words */

#define OUTPUTSIZE INPUTSIZE /* in words */

//2D 64x64 Input and output data buffers

int input [INPUTSIZE] ;

int output [OUTPUTSIZE] ;

extern far Int INTERNALHEAP;

extern far Int EXTERNALHEAP;

extern LOG Obj LOG myLog;

extern far IFCPY Fxns FCPY IFCPY; /* FCPY algorithm’s v-table */
extern far IDMA2 Fxns FCPY IDMA2; /* FCPY algorithm’s IDMA2 v-table */

Int main(Void)
{
Int 1i;
FCPY Params fcpyParams;
FCPY Handle alg;
Bool errorFlag = FALSE;
IFCPY Fxns * fxns = (IFCPY Fxns *)&FCPY IFCPY;
FCPY init () ; //Initialize the framework

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 33

SPRA789

%‘ TExAs
INSTRUMENTS

// Set up param structure

fcpyParams

fcpyParams.
fcpyParams.
fcpyParams.
fcpyParams.
fcpyParams.
fcpyParams.

// Use the

= FCPY_ PARAMS;
srcLinelLen = SLINELEN;
srcNumLines = SNUMLINES;
srcStride = SSTRIDE;
dstLinelLen = DLINELEN;
dstNumLines = DNUMLINES;
dstStride = DSTRIDE;

ALG interface to create a new algorithm instance

if ((alg = FCPY create(fxns, &fcpyParams)) == NULL) {
SYS abort (“Could not create algorithm instance”);

}

//
// Initialize DMA manager and ACPY2 library for XDAIS algorithms

// and grant DMA resources

//
ACPY2 6X1X init();
DMAN init () ;

DMAN setup (INTERNALHEAP) ;
if (DMAN addAlg((IALG Handle)alg, &FCPY IDMA2) == FALSE) {
SYS abort (“Problem adding algorithm’s dma resources”) ;

}

CACHE clean (CACHE L2ALL, NULL, NULL) ;

// Initialize data arrays

for (i = 0; 1 < INPUTSIZE; i++)
input [i] = 1i;
output [1] = OxDEADBEEF;

}

CACHE clean (CACHE L2ALL, NULL, NULL);

//
// Copy input to the output one quadrant at a time
//
// Quadrant 2
FCPY apply((FCPY Handle)alg, input, output) ;
// Quadrant 1
FCPY apply((FCPY Handle)alg, input + (SSTRIDE/4), output +
(DSTRIDE/4)) ;
// Quadrant 3
FCPY apply ((FCPY Handle)alg, input + (INPUTSIZE/2),
output + (OUTPUTSIZE/2)) ;
// Quadrant 4
FCPY apply((FCPY Handle)alg, input + (INPUTSIZE/2) + (SSTRIDE/4),

output + (OUTPUTSIZE/2) + (DSTRIDE/4));

// Verify output
for (1 = 0; 1 < OUTPUTSIZE;

{

if (output[i] != 1) {

i++4)

34 Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X

{'f TeExAS
INSTRUMENTS SPRA789

LOG printf (&LOG myLog, “ %d th element in output should not be
$d.\n”

, 1, outputl[il]);
errorFlag = TRUE;

}

if (errorFlag == FALSE) ({
LOG_printf (&LOG myLog, “pass \n”);
}

//

// Withdraw DMA resources from algorithm and deinitialize the DMA
// manager and ACPY2 library

//
if (DMAN removeAlg((IALG Handle)alg, &FCPY IDMA2) == FALSE) ({

SYS abort (”Problem removing algorithm’s dma resources”) ;

// delete the algorithm instance

ALG delete((IALG Handle)alg) ;

// module finalization

DMAN exit () ;

ACPY2 6X1X exit () ;

FCPY exit(); //Deinitialize the framework

return (0) ;

Design and Implementation of an eXpressDSP-Compliant DMA Manager for C6X1X 35

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

