
xdc·spec 1.1
xdc·spec is a special-purpose language for expressing the logical structure of software content in
terms of three higher-level constructs – modules, interfaces, and packages. Enforcing a clean
separation between software specification and software implementation, an xdc·spec source file
effectively serves as a programmatic contract between content suppliers (producers) and their
clients (consumers). Incorporating familiar C constructs for defining client-visible constants, types,
and functions, a specification expressed in xdc·spec often resembles a “cleaned-up” rendition of
a legacy header file.

While comparable to an IDL (Interface Definition Language), the true power of xdc·spec lies in its
ability to forge a single specification that serves two congruent programming domains: [1] a target-
domain, where the specified content is implemented in C/C++ and executes on a suitable hardware
platform; and [2] a meta-domain, where this same content is potentially configured to match
specific system requirements before target execution begins. In support of the latter, xdc·spec
works hand-in-hand with xdc·script – a general-purpose language based on industry-standard
JavaScript – used by producers and consumers alike to implement host-based meta-programs that
ultimately beget target executables.

lexical-elements
The lexical structure of xdc·spec closely tracks that of JavaScript, which in turn is patterned after
familiar conventions originating in C. The following table summarizes the different sorts of lexical
elements potentially found in an xdc·spec source file:

Element Examples
whitespace space, tab, newline
single-line comment // text
block comment /* text */
C-style identifier main , int32 , _private
JavaScript number 123 , 0xff , 6.02e23
JavaScript string "hello\n" , 'abc'

syntactic-elements
The following table summarizes the different sorts of syntactic elements appearing throughout the
xdc·spec reference grammar:

Element Examples
syntactic production requires-statement , unit-category

language keyword package , module
language identifier dirname , UnitName
literal value number , string
literal symbol [, } , ;
documentation comment //! @xdoc

 1 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1
optional term grammar-term ?
alternative terms grammar-term | grammar-term
zero-or-more occurrences grammar-term *
one-or-more occurrences grammar-term +
group-of terms [grammar-term grammar-term]

package-specification
Within the realm of xdc·spec, a package is a programmatic element that logically contains
modules and interfaces – collectively termed units – within its scope. Besides introducing its own
public name, a package specification may identify other named packages upon which the current
package in some way depends. The specification may also declare its (in)compatibility with earlier
versions of the same package, as well as further constrain the level of compatibility required of any
dependent packages. Specially-formatted comments embedded in package-specification source
file are processed by the xdoc utility when generating HTML documentation for a set of packages.

package-specification
requires-statement*
//! @xdoc
package qualified-package-name compatibility-key?
{
 unit-declaration-list*
} [;]?
//! @xdoc

requires-statement
requires qualified-package-name compatibility-key? ;

qualified-package-name
dirname [.dirname]*

compatibility-key
[number [,number]*]

unit-declaration-list
unit-category UnitName [,UnitName]* ;

unit-category
module | interface

 A qualified-package-name should in general be globally-unique. Packages are
located in a directory with a matching name found along the system package path.

 A package-specification resides in a distinguished source file named
package.xdc, found in the corresponding package directory.

 2 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1
 Each unit-declaration-list introduces individual modules and interfaces within the

scope of the current package, all of which must be uniquely named. Units with the same
name may only appear in different packages.

 Each requires-statement designates another package upon which the current
package in someway depends. The requires-relation among packages cannot contain
cycles.

 A compatibility-key is generally interpreted as an numeric array of the form
[m,s,r,p] where m denotes major functionality, s denotes source level, r denotes
specification radius, and p denotes a particular patch. A new release of a package is
source-compatible with any predecessor in which m is the same, and is binary-compatible
with that predecessor if s is the same as well.

 By convention, package names are composed of lowercase identifiers whereas units
(modules or interfaces) are named with TitleCase identifiers.

unit-specification
A unit specification defines all client-visible programmatic features of a module or interface. While
virtually identical vis-à-vis their xdc·spec syntax, semantically this pair of programmatic elements
are almost opposites: a module is concrete and closed, comprising a public specification
accompanied by a conforming implementation; an interface is abstract and open, comprising only a
public specification which others may import and ultimately implement. In general, the specification
of a module or interface can inherit features from exactly one other (interface) specification, which
itself can inherit additional features in the same manner – as if the latter’s cumulative set of
features had been directly defined with the unit specification of its inheritor.

The features defined within the scope of a unit partition themselves into two main groups: module-
wide features, which are associated with a solitary programmatic object encapsulating the
implementation of some concrete module; and per-instance features, which are associated with a
family of programmatic objects individually created and manipulated by the same underlying
module. Aside from auxiliary definitions of supporting constants and types (deemed module-wide
for convenience), features with a meaningful run-time presence in the underlying implementation –
assignable configuration parameters along with callable functions – can participate in either
category. As with packages, special documentation comments can be associated with the
module/interface as a whole as well as with any named feature defined within its scope.

In the general case, a single unit specification for a module or interface defines a presence in two
congruent programming domains: [1] the target-domain, where specified features become
accessible within executable programs (written in C/C++) running on some particular platform; and
[2] the meta-domain, where specified features become accessible within hosted scripts (written in
xdc·script) used to configure these very same target programs ahead of their execution. In some
cases, the specification of a particular module or interface can be restricted to the meta-domain –
useful when constructing configuration “facades” atop legacy content as well as when distributing
host-based meta-content for use in a broader range of scripting contexts.

 3 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1
unit-specification

//! @xdoc
metaonly? unit-category UnitName
 inherited-interface?
{
 module-wide-feature*
[instance:
 per-instance-feature*
]?
} [;]?
//! @xdoc

inherited-interface
inherits qualified-unit-name

qualified-unit-name
[qualified-package-name .]? UnitName

module-wide-feature
//! @xdoc
[auxiliary-definition
 | config-parameter
 | function-declaration
]

per-instance-feature
//! @xdoc
[config-parameter
 | function-declaration
]

 A qualified-unit-name effectively extends the (already) globally-unique name of the
unit’s containing package. If the qualified-package-name prefix is absent, the current
package name is presumed.

 A unit-specification resides in a source file named UnitName.xdc, found in the
directory of its containing package.

 Each module-wide-feature or per-instance-feature introduces an individual
feature with the scope of the current unit, all of which must be uniquely named. Features
with the same name may only appear in different units.

 An inherited-interface designates a single interface whose features are introduced
within the scope of the current unit. Any module or interface can optionally inherit features
from another interface, so long as the inherits-relation among all units remains acyclic.

 Each unit manifests itself in both the target- and meta-programming domains, unless
designated metaonly. As a rule, inheritors of metaonly interfaces must themselves be
metaonly modules or interfaces.

 4 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1

auxiliary-definition
An xdc·spec auxiliary definition defines a (module-wide) constant or type, often supporting other
module-wide or per-instance features defined in the same unit. These definitions are also used by
clients who consume this unit, both within any modules or interfaces they may specify as well as
within any target (or meta) content they may implement. For the most part, the syntax and
semantics of each form of auxiliary definition is patterned after a familiar programmatic construct
already found in C. Further semantic restrictions guarantee auxiliary definitions have a meaningful
manifestation in the meta-domain as well as in the target-domain.

auxiliary-definition
const | enum | extern | struct

const
const typed-declaration = initializer ;

enum
enum EnumName {
 enum-value [, //! @xdoc
 enum-value]* //! @xdoc
} [;]?

enum-value
ENUMVAL_NAME [= initializer]?

extern
extern typed-declaration = symbolName ;

struct
struct StructName {
 struct-field*
} [;]?

struct-field
typed-declaration ; //! @xdoc

typedef
typedef typed-declaration ;

 A const is restricted to numeric types, either standard or else enumerated. Its persistent
value is defined by a statically-evaluated initializer consistent with its typed-
declaration.

 An enum is a new numeric type that ranges over a finite set of named values. As in C,
integer values beginning with 0 are assigned to each successive enum-value (unless
altered by an explicit numeric initializer). Each named value is actually resident in the
scope of the containing module or interface, and hence must be unique among all features
defined in this unit.

 5 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1
 An extern is a special form of constant that effectively aliases an external program

symbol naming a C-language function or variable. Its typed-declaration is restricted to
standard C types, including arbitrary pointer-types.

 A struct defines a new aggregate type comprising a set of assignable fields of any type.
Each struct-field must be uniquely named within the scope of the enclosing struct.

 A typedef effectively defines a synonym for the type specified in its typed-
declaration, rather than a new type per se. As in C, typedef names can appear in other
typed declarations not unlike previously-defined enum or struct names.

 By convention: UPPER_CASE identifiers are used to name a const, enum value, or
extern; TitleCase identifiers are used to name an enum/struct types as well as in
typedefs; and camelCase identifiers are used to name struct fields.

config-parameter
A configuration parameter is a feature that behaves like a “property” of the underlying module or
instance object – a readable (and sometimes writeable) variable of virtually any type. In the most
general case, module-wide configuration parameters are assigned within the meta-domain and
then become persistent constants within the target-domain; per-instance configuration parameters
are likewise assignable within the meta-domain, but are limited to supporting run-time instance
creation within the target-domain. Where appropriate, configuration parameters can be restricted to
the meta-domain as well as designated readonly after initialization.

A configuration parameter inherited from some previously specified interface can itself be
overridden – typically to (re-)define its initial value. A configuration parameter can also be finalized,
effectively freezing its definition and precluding further overrides.

config-parameter
config-modifiers
config typed-declaration [= initializer]? ;

config-modifiers
final? override? readonly? metaonly?

 The optional initializer must yield a value consistent with the typed-declaration,
using the rules of assignment-compatibility defined by xdc·script for the meta-domain. If
no initializer is supplied, the configuration parameter starts out undefined in the meta-
domain.

 If override is specified among the config-modifiers for a configuration parameter,
its typed-declaration as well as its use of readonly and metaonly must exactly
match that of the inherited configuration parameter being overridden. Configuration
parameters marked final cannot be overridden.

 A readonly configuration parameter without an initializer can still be assigned a
persistent value in the meta-domain, during construction of an underlying module/instance
object.

 6 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1

 By convention, configuration parameters names are camelCase identifiers.

function-declaration
An xdc·spec function declaration generally stipulates the signature – argument and return types –
of a callable routine implemented through a concrete module in either the target-domain or else (if
so indicated) in the meta-domain; a target function also manifests itself in the meta-domain as an
extern symbol of a function-pointer type derived from the stipulated signature. Following C++,
default values can be specified for the last k arguments of an n-ary function, enabling the same
routine to be called with as few as n-k inputs; an untyped sequence of optional trailing arguments
can be also specified using the familiar ... notation. For those meta-domain functions wishing to
adopt a more “weakly-typed” style supported (but not necessarily encouraged!) by the xdc·script
language, their corresponding declaration in xdc·spec can just contain the names for each
argument.

Like configuration parameters, a function declaration inherited from a previously-specified interface
can be overridden – typically, to alter or extend the set of default argument values or else to allow
optional trailing arguments. Note, though, that since interfaces are entirely abstract (void of any
“default” implementation), inheritance of functions is limited to their client-visible specification;
ultimately, it is concrete modules (or their delegates) that bear responsibility for implementing all
functions directly or indirectly declared in their specification. With xdc·spec support for Design-
By-Contract forthcoming, overriding inherited function declarations becomes an essential technique
for weakening pre-conditions and strengthening post-conditions specified previously through
executable expressions.

function-declaration
typed-function-declaration|untyped-function-declaration

typed-function-declaration
function-modifiers
typed-declaration (typed-arguments? [, ...]?);

function-modifier
final? override? metaonly?

typed-arguments
arg-declaration [,arg-declaration]*

arg-declaration
typed-declaration [= initializer]?

untyped-function-declaration
function fxnName(untyped-arguments?);

untyped-arguments
argName [,argName]*

 7 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1

 If override is specified among the function-modifiers for a function, its name and
type signature as well as its use of metaonly must exactly match that of the inherited
declaration being overridden. Functions marked final cannot be overridden.

 The optional initializer within an arg-declaration must yield a value consistent with
the typed-declaration, using the rules of assignment-compatibility defined by
xdc·script for the meta-domain.

 All argument names – whether typed-arguments or untyped-arguments – must be
uniquely named on a per-function basis.

 An untyped-function-declaration is implicitly modified final and metaonly.
 By convention, function and argument names are camelCase identifiers.

typed-declaration
Generic declarations of typed identifiers patterned after the familiar (and sometimes awkward)
syntax of C lie at the heart of virtually all xdc·spec feature definitions. These declarations
stipulate a type name, either built-in or previously-defined, followed by what is conventionally
termed a declarator – the name of the feature per se, optionally adorned with other syntactic
elements. As in C, use of the *, [], and () operators within the declarator denotes new types
such pointer-to(t), array-of(t), and function-returning(t)for some base type t; extra
parentheses are typically used to bind the lower-precedent * operator to the declared name,
especially when defining types of form pointer-to(function-returning(t)).

Beyond these familiar C constructs lifted from the target-domain – each given a corresponding
meaning in the meta-domain – xdc·spec introduces additional base types as well as more
specialized forms of the array: [1] the built-in type any, which subsumes all other types in the
meta-domain; [2] the keywords Module or Instance, signifying an opaque type referencing a
concrete module or instance object whose visible features are limited to those specified in the
corresponding named unit; [3] the keyword length in conjunction with the [] operator,
signifying the type vector-of(t) whose length can be altered in the meta-domain and retrieved in
the target-domain; and [4] the keyword string in conjunction with the [] operator, signifying
the type map-into(t)that effectively overlays direct access via string-valued keys on an
underlying vector-of(t).

[Note that only a subset of the elementary C types are recognized at this time. More
comprehensive support for target-domain types – including a set of “portable” numeric types – is
forthcoming.]

typed-declaration
[standard-type | defined-type] declarator

standard-type
any | bool | float | int | string | void

 8 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1
defined-type

[qualified-unit-name .]? defined-type-name
defined-type-name

EnumName | StructName | TypedefName | Instance | Module
declarator

 declared-name ?
| * declarator
| declarator [[number | length | string]?]
| declarator (argument-types ? [...]?)
| (declarator)

declared-name
 CONST_NAME
| EXTERN_NAME
| TypedefName
| argName
| configName
| fieldName
| fxnName

argument-types
typed-declaration [,typed-declaration]*

 The following table summarizes the meaning of certain standard-type(s) in each
domain:

Type Target Domain Meta Domain
bool
float
int
string

standard C bool
standard C float
standard C int
standard C char*

standard JavaScript boolean
standard JavaScript number
standard JavaScript number
standard JavaScript string

 The standard-type void, as in the C-based target-domain, is basically limited to
specifying the type of functions returning “no” value in the meta-domain as well. The type
void* likewise preserves the semantics of a “universal pointer” in the meta-domain,
assignable any value of type pointer-to(t).

 The standard-type any is only defined for the meta-domain.
 A defined-type identifies a previously defined type, either in the module or interface

designated by a valid qualified-unit-name or else in the current unit.
 The declared-name at the heart of a declarator is only optional within arguments-

types, typically used when declaring a type pointer-to(function-returning(t)). C
reference grammars usually refer to this syntactic construct as an abstract-declarator.

 9 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1

initializer
An initializer is an expression that denotes either a scalar or aggregate value, and whose
elementary terms are manifest constants of known types. While certainly C-like in form and
substance, xdc·spec scalar initializers are in fact statically-evaluated using JavaScript semantics
(upon which xdc·script is based). Building on this foundation, xdc·spec aggregate initializers
adopt standard JavaScript notation for denoting object and array values.

initializer
scalar-initializer | array-initializer | struct-initializer

scalar-initializer
 literal
| defined-constant
| unary-op scalar-initializer
| scalar-initializer binary-op scalar-initializer
| scalar-initializer ? scalar-initializer : scalar-initializer
| (scalar initializer)

literal
number | string | true | false | null |undefined

defined-constant
[qualified-unit-name .]? defined-constant-name

defined-constant-name
CONST_NAME | ENUMVAL_NAME

unary-op
*|-|~|!

binary-op
+|-|*|/|%|<<|>>|==|!=|<|<=|>|>=|&|||^

array-initializer
[] | [initializer [,initializer]* [,]?]

struct-initializer
{ } | { field-initializer [,field-initializer]* [,]?}

field-initializer
fieldName : initializer

 A literal number or string must conform to standard JavaScript, which also tracks
standard C in this regard.

 A defined-constant identifies a previously defined constant, either in the module or
interface designated by a valid qualified-unit-name or else in the current unit.

 The meaning and precedence of each unary-op and binary-op conforms to standard
JavaScript, which likewise mirrors C. Note that JavaScript often overloads operators like +
and < to accept strings as well as numbers.

 10 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1

//! @xdoc
Special comments embedded within a specification source file are processed by the xdoc utility
when generating HTML documentation for a set of packages. These documentation comments are
identified by an extra leading “bang” character – //! for single-line comments, /*! for the block
variety – and can be juxtaposed with most named elements in the specification. Whenever multiple
comments of either variety are associated with an individual specification element, their bodies are
effectively concatenated into a single documentation block comprising one or more lines of text.

Markup of the form @tag, when present at the beginning of a line, further punctuates a
documentation block into distinct sections comprising various styles of paragraphs. To avoid clutter
in the source file due to excessive markup, most commentary can be written as “plain text” that
follows some simple conventions to indicate (say) change-of-font or end-of-paragraph. Each
documentation block generally comprises: [1] an untagged summary section, which is typically a
“one-liner”; [2] an optional untagged details section, which may contain multiple paragraphs with
additional information; and [3] a series of tagged sections, which further compartmentalize
information about the associated specification element.

//! @xdoc
summary-section
details-section?
tagged-section*

summary-section
comment-paragraph

details-section
comment-paragraph+

tagged-section
@sectTag(ident) comment-paragraph+

comment-paragraph
[@p[(style)]?]? textLines*

 The @a(sectName) and @b(sectName) tags create named sections that will
respectively appear after or before the details section for this documentation block.

 The @c(childName) tag is used in struct, enum, or function-declaration
documentation to respectively comment on one of its named children – fields, values, or
arguments. All such comments are output together as a definition list in a special section.

 The tags @field, @value, @arg, and @param are available as (more mnemonic)
alternatives to the @c tag.

 An struct-field or enum-value can be immediately followed by a documentation
comment, which must begin on the same line. The body of this comment is limited to a
summary section.

 11 TI Proprietary Information – Internal Data
 12.29.04

xdc·spec 1.1
 The @p(style) tag is used to change the prevailing paragraph style, which remains in

effect until the next tag. Without any parameter, @p reverts to the default “plain-text” style
in effect at the beginning of the block. The following table summarizes the different styles
supported through this tag, and the interpretation each imposes on subsequent lines of
text:

Style Interpretation Of Subsequent Text

blist a bulleted list, with leading dashes indicating successive
list elements

code monospace text in which whitespace is preserved

dlist a definition list, with leading dashes indicating
successive terms; unmarked lines are the definitions

html text containing standard HTML markup

nlist a numbered list, with leading dashes indicating
successive list elements

text “plain-text” with minimal in-line formatting; the default

 Except for code and html, all @p styles support the following formatting conventions
within the lines of text under their control:

Convention Resulting Format
`text` render this text in monospace
text render this text with emphasis
blank-line skip a line and start a new paragraph

 12 TI Proprietary Information – Internal Data
 12.29.04

