
Name

xdc - eXpress DSP Component package build command

Synopsis

xdc [-n] [-h] [-k] [goal ...] [-P[RD] package-dir . ..]

Description

The xdc command is used to build packages and executables that use packages.

In its current implementation, xdc is nothing more than a command shell that

invokes the GNU make utility with makefiles that are either part of the XDC

toolset or generated as part of processing a package’s build script

(package.bld).

Options

-h display usage help and exit

-k if an error occurs during a build, do not stop (keep building as

much as possible)

-n show the make command but don't execute it

-P[RD] pkg … build specified goal(s) in all directories named after -P that

contain a build script (i.e., package.bld); if –PR is

specified, xdc recursively descends into all specified

directories and builds in any package directory that contains a

build script; if –PD is specified, xdc builds in the specified

package directories and the package directories of all other

packages “required” by these packages.

Usage

Any option passed on the xdc command line that is not listed above is passed

directly to the underlying invocation of GNU make. In this way, one can control

the build process with as much flexibility as a normal GNU make. In particular,

the goals specified on the command line may be any file that make knows how to

build.

Although it is always possible to name one or more specific buildable files on the

xdc command line, it is often desirable to build collections of executables or

libraries or run collections of tests. For example, building a test suite consisting

of hundreds of executables would be difficult if each program had to be explicitly

named on an xdc command line.

The xdc command supports a number of build goals that facilitate the building of

collections of files. The following table summarizes some standard build goals

supported by the xdc command.

Goal Description

all
builds all package files and all executables; this is

the default goal if no goals are specified on the

command line.

clean removes all generated files

release
create the default release; a tar file containing all

files that are to be distributed to a consumer of the

package.

test
runs all package tests declared in the package’s

build script

.make builds the generated makefiles only

.libraries builds all libraries exported by this package

.executables
builds all executables declared in the package’s

build script

.interfaces
builds the package’s schema and generates all

header files for interfaces exported by the package

In addition to the target independent goals above, target specific goals are also

supported. These goals allow one to restrict a build to just the libraries for a

particular target, for example. In addition, these goals are used internally to

prevent unnecessarily building libraries for all targets before building a specific

executable. The following table summarizes the target specific goals currently

supported.

Goal Description

all, trg
builds all libraries and all executables for the

target whose suffix is trg.

clean, trg
removes all generated files for the target whose

suffix is trg.

release, name create the release named name.

test, trg
run all tests for all executables built using the

target whose suffix is trg.

.libraries, trg
builds all libraries for the target whose suffix is

trg

.executables, trg
builds all executables for the target whose suffix

is trg

The -P and –PR options are very useful when working with multiple packages.

Not only does it allow one to avoid building each package using a separate

command it automatically handles any package inter-dependencies. A package

may depend on another package; for example, any package that contains a

program depends on at least one platform package. If two or more dependent

packages are under development at the same time, it is important that the

interfaces for the packages referenced are built before any libraries referencing

these packages are built and that any libraries referenced are built before linking

any executable. Thus, when building multiple packages, the xdc command

builds the packages in several “phases”; it first builds all interfaces for all

packages, then all libraries for all packages, and finally, all executables for all

packages. By making several passes over the packages, it is possible to

simultaneously develop multiple packages without having to worry about package

build order due to package dependencies (which are subject to change).

Examples

Building a Package

The following command will remove all generated files from the package

located in the current working directory.

xdc clean

To build all files for the package in the current working directory:

xdc

Building Specific Files

While it is valuable to (re)build a package in its entirety, during

development, it is often more convenient to build a specific file. The xdc

command allows one to specify any generated file as the goal to be built.

For example, the following command will build the program Hello.x62

and files unrelated to this program will not be built.

xdc Hello.x62

It is also possible to name several goals and, again, xdc will only build

the files required to create the build goals named. For example, the

following command will build both executables Hello.x62 and

Hello.x62e .

xdc Hello.x62 Hello.x62e

Running Package Tests

The XDC build environment supports the ability to not only build

executables and packages but also run executables. The XDC

environment defines a test as an executable and a set of command line

arguments for the executable. Tests may be specified in the package’s

build script and every program defined in a package has one implicitly

created test; the executable with no command line arguments. The xdc

command allows one to easily run a package’s tests.

The following command runs all tests defined by the package in the

current working directory.

xdc test

As with building individual files, it is often desirable to run individual

tests. The following command runs the implicitly created test for the

Hello.x62 executable.

xdc Hello.x62.test

Building Multiple Packages

The following command will remove all generated files from the packages

pkg1 , pkg2 , and pkg3 located in the current working directory.

xdc clean -P pkg1 pkg2 pkg3

To build all files in multiple packages:

xdc all -P pkg1 pkg2 pkg3

Because the build goal all is the default goal, the following command is

equivalent to the one above.

xdc -P pkg1 pkg2 pkg3

Note that the xdc command will silently ignore directories that do not

contain a package build script (package.bld). Thus, even if a

directory contains sub-directories that are not package directories it is

possible to build all packages contained in this directory using a wildcard.

Suppose, for instance, that the directory named examples contains

multiple sub-directories and only some are package directories. It is

possible to build all packages in the examples directory with the

following command.

xdc -P examples/*

Since a package’s name must match the directory names containing the

package, it is not uncommon for packages to be located at different levels

of a directory tree or even inside other packages. In these cases, it is

desirable to be able to build all packages contained under a specified root

directory. The following command builds all packages located under the

examples directory.

xdc -PR examples

Rather than build all packages found at or below a specified directory, it is

sometimes more efficient to build a specified package and (recursively)

any of its prerequisites. The following command builds the package in

the specified directory and any prerequisite packages declared by the

“requires ” statement in the package’s specification file (i.e., package
.xdc).

xdc -PD examples/basic/vers/app

By default, if an error occurs during the build of any package the xdc

command will terminate the build and not attempt to build other packages.

While this is convenient during interactive builds, during an overnight

build of many packages it is preferable to continue building as much as

possible. In the morning, one can correct the errors and re-execute the

command. Only goals that failed to build or those that depend on the

fixed files will be rebuilt.

To prevent the xdc command from stopping on the first error in the

example above, use the -k option.

xdc -k -PR examples

Running Tests in Multiple Packages

In addition to building multiple packages at a time, it is also valuable to

run all tests for multiple packages using a single command. A regression

test suite can be structured as a collection of packages, for example. The

following command runs all tests for the packages pkg1 , pkg2 , and

pkg3 located in the current working directory.

xdc test -P pkg1 pkg2 pkg3

Since tests have a tendency to fail (otherwise they are not good tests), it is

often valuable to continue running all tests even if a test fails. This is

especially true when running over-night regression test suites containing

hundreds of tests. The following command runs all tests and continues

even if one or more tests fail.

xdc -k test -P pkg1 pkg2 pkg3

Building and Running for a Particular Target

In the examples above, we built and ran executables for all targets. Recall

a target defines a CPU ISA and a compiler runtime model (big endian,

little endian, near, far, etc.). Since packages often need to support

multiple targets, it is often desirable to restrict a build or a test to a

particular target. The xdc command supports target specific versions of

the build goals al l, clean , test , .libraries , and

.executables .

The following command runs only the tests for the target whose suffix is

“62” for all packages in the examples directory and tries to run each

test even if a test fails.

 xdc -k test,62 -P examples/*

The following command removes all generated files related to the target

whose suffix is “62” for all packages in the examples directory.

 xdc clean,62 -P examples/*

The following command builds all generated files related to the target

whose suffix is “62” for all packages in the examples directory.

 xdc all,62 -P examples/*

Environment Variables

In addition to the command line options, the xdc command also uses the

following environment variables to control its behavior. Except for XDCPATH,
XDCARGS, and XDCBUILDCFG, no environment variable changes the contents of

any goal produced by xdc ; the results of a build are unaffected by environment

variables (unless a user-specified tool invoked by xdc is affected by an

environment variable).

XDCARGS This variable names arguments that are passed to the

package’s build script, package.bld. The package’s build

script references the arguments from the global array

arguments . For example, the command

 xdc XDCARGS="foo bar"

 causes the arguments array (in the package build script)

to be initialized as follows:

 arguments[0] = "foo";

 arguments[1] = "bar";

XDCBUILDCFG if defined and the file “./config.bld ” does not exist,

this variable names a file that will be used in-lieu of the

config.bld file found along the “import” path (i.e.,

“.;$(XDCPATH); xdcroot; xdcroot/etc ”) to

configure the build environment prior to running a build

script.

 However, if XDCBUILDCFG is specified in the command

line, any package specific “./config.bld ” will be

ignored. Thus, with respect to specifying which

config.bld to use, the package has precedence over the

environment variable but the command line has precedence

over the package.

 Why distinguish between setting XDCBUILDCFG on the

command line verses setting it in the environment? Some

packages need to override the setting of XDCBUILDCFG;
e.g., in order to clean and rebuild a package of targets

(which may be referenced by the file named by the

environment variable XDCBUILDCFG), the package may

define a “local” config.bld that does not reference any

targets.

XDCOPTIONS a string of options that affect the messages displayed by

xdc while it runs. Only three options are currently

supported: “v”, “q”, and “t ”.

 If this string contains “-v” or “v”, each command executed

by xdc is displayed before execution. This makes it easy

to create “shell scripts” that re-create the build without the

need for the xdc command or make.

 If this string contains “-q” or “q”, banners normally

displayed during multi-package builds are not displayed.

Since the banners contain date and time information, this

option is useful when the output from the xdc command

must not vary between successive builds; e.g., when

running regression tests.

 If this string contains “-t” or “t”, banners are displayed

during multi-package builds but no dates or times are

displayed. This option is useful when running regression

tests on a fixed set of packages; when an error occurs, the

banners make it easy to tell which package(s) failed.

XDCPATH a string of ‘;’ separated directories that contain packages.

This path is used to locate packages that are used by the

package being built.

It is usually a mistake to put a relative path in the

XDCPATH environment variable. Relative paths in

XDCPATH reference directories relative to the package

being built rather than the directory where the xdc

command was invoked. Thus, a relative path will refer to a

different repository for each package being built.

It is possible, however, to use the ‘^ ’character in the

XDCPATH definition to refer to the current package’s

repository. So, if you have a repository that is always in a

fixed location relative to all of your packages repositories,

it is possible to create a single XDCPATH setting that does

not include any absolute paths. Suppose, for example, that

your build system places all prerequisite packages in an

“imports ” repository prior to building the packages in a

“src ” repository and the imports and src repositories

are sibling directories in the file system. The following

XDCPATH setting is sufficient to build all packages in the

src repository.

set XDCPATH=^/../imports

Note that multiple versions of the same package can appear

along the XDCPATH. The package path can name multiple

“package repositories” which can contain a package

directory with the same name. When searching for a

package, the first repository that contains a directory

matching the package’s name will be used. Thus, even if

two packages with the same name appear in the package

path, only one will ever be found; i.e., the first one in the

order specified in the package path.

XDCTARGETS a string of white space separated target names that name all

supported build targets. Each name is interpreted as a

regular expression and is used to select from the set of all

available targets included in the build “startup” script

(see config.bld in the Files section below). This

environment variable can be used to re-build packages with

a subset of the available targets. The current set of targets

include the following:

ti.targets.C54 , ti.targets.C54_far

ti.targets.C55 , ti.targets.C55_large

ti.targets.C28_large

ti.targets.C62

ti.targets.C62_big_endian

ti.targets.C64

ti.targets.C64_big_endian

 If a specified target name does not match any available

target, the prefix “ti.targets. ” is added and the match

is retried. If no match occurs, a warning is displayed and

processing continues uninterrupted. Thus, the target

“ti.targets.C62 ” may be abbreviated to just “C62”

Any change to an environment variable that may affect the results of the build

will trigger a rebuild of the goals that may be affected (as well as some that may

not be affected).

Note that these environment variables may be specified on the xdc command

line. In this case, the value specified on the command overrides any value in the

environment. For example, the following command causes the package in the

current working directory to be built for just the C62 and C54 targets.

xdc XDCTARGETS="C62 C54"

Exit Status

The exit status of the xdc command is the exit status of the underlying make

command whenever make is executed; otherwise, the following exit values are

returned:

 0 Successful completion.

 1 An error occurred.

Files

config.bld

The build model “startup” script; this script, located along the import path

“.;$(XDCPATH); xdcroot; xdcroot/etc ”, configures the build

model’s modules so that common settings can be shared among multiple

package build scripts. It is possible to override this behavior using the

XDCBUILDCFG environment variable.

package.bld

The package’s build script; this script, located in the package’s working

directory, specifies all of the physical files (libraries, executables, etc.) that

are part of the package.

.xdcenv.mak

This file is a generated file that captures the environment setting that can

affect the contents of the generated makefile; changes to this file trigger a

re-build of the makefile.

See Also

http://www.gnu.org/software/make/manual/html_mono/make.html

