
OMAP5910/5912 Multimedia Processor
DSP Subsystem
Reference Guide

Literature Number: SPRU890A
May 2005

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

3DSP SubsystemSPRU890A

Preface

Read This First

About This Manual

This document describes the OMAP5910/5912 multimedia processor DSP
subsystem.

Notational Conventions

This document uses the following conventions.

� Hexadecimal numbers are shown with the suffix h. For example, the fol-
lowing number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

Documentation that describes the OMAP5910/5912 devices, related
peripherals, and other technical collateral, is available in the OMAP5910
Product Folder on TI’s website: www.ti.com/omap5910, and in the OMAP5912
Product Folder on TI’s website: www.ti.com/omap5912.

Trademarks

OMAP and the OMAP symbol are trademarks of Texas Instruments.

4 DSP Subsystem SPRU890A

Contents

5DSP SubsystemSPRU890A

Contents

1 Digital Signal Processor Subsystem Overview 17.
1.1 Architecture Overview 17.
1.2 Features 17.
1.3 Differences Between the OMAP5910 and OMAP5912 DSP Subsystems 19.
1.4 Functional Block Diagrams 19.

2 C55x DSP Core Overview 21.
2.1 DSP Core Features 21.
2.2 Introduction to the DSP Core 22.
2.3 Introduction to the Hardware Accelerators 24.

3 DSP Subsystem Memory 26.
3.1 Internal Memory Space 26.
3.2 DSP External Memory Space 28.
3.3 I/O Memory Space 28.
3.4 Memory Maps 29.

4 Instruction Cache 30.
4.1 Introduction 30.

4.1.1 Features 30.
4.1.2 Functional Block Diagram 30.
4.1.3 Supported Cache Configurations 31.

4.2 Instruction Cache Architecture 32.
4.2.1 Introduction to the I-Cache 32.
4.2.2 Instruction Cache Blocks 32.
4.2.3 Instruction Cache Operation 35.
4.2.4 DSP Core Bits for Controlling the I-Cache 39.
4.2.5 Initialization 41.
4.2.6 Reset Considerations 41.
4.2.7 Clock Control 41.
4.2.8 Power Management 42.
4.2.9 Emulation Considerations 42.
4.2.10 Timing Considerations 42.

4.3 Configuring the I-Cache With the 2-Way Cache and No RAM Set Blocks 44.
4.3.1 Architectural/Operational Description 44.
4.3.2 Software Configuration 44.
4.3.3 System Traffic Considerations 44.

Contents

6 DSP Subsystem SPRU890A

4.4 Configuring the I-Cache With the 2-Way Cache and One RAM Set 45.
4.4.1 Architectural/Operational Description 45.
4.4.2 Software Configuration 45.
4.4.3 System Traffic Considerations 46.

4.5 Configuring the I-Cache With the 2-Way Cache and Two RAM Sets 46.
4.5.1 Architectural/Operational Description 46.
4.5.2 Software Configuration 47.
4.5.3 System Traffic Considerations 47.

4.6 Instruction Cache Registers 48.
4.6.1 Overview 48.
4.6.2 I-Cache Global Control Register (GCR) 49.
4.6.3 I-Cache Line Flush Registers (FLR0, FLR1) 51.
4.6.4 I-Cache N-Way Control Register (NWCR) 52.
4.6.5 I-Cache RAM Set Control Registers (RCR1 and RCR2) 53.
4.6.6 I-Cache RAM Set Tag Registers (RTR1 and RTR2) 55.
4.6.7 I-Cache Status Register (ISR) 57.

5 DSP External Memory Interface 58.
5.1 Overview 58.
5.2 Peripheral Architecture 58.

5.2.1 Clock Control 58.
5.2.2 Memory Map 58.
5.2.3 DSP External Memory Accesses 58.
5.2.4 EMIF Requests 60.
5.2.5 Write Posting: Buffering Write to DSP External Memory 61.
5.2.6 Reset Considerations 62.
5.2.7 Power Management 62.

5.3 EMIF Registers 63.
5.3.1 Overview 63.
5.3.2 EMIF Global Control Register (GCR) 63.
5.3.3 EMIF Global Reset Register (GRR) 64.

6 DSP Memory Management Unit 65.
6.1 Overview 65.

6.1.1 Purpose of the MMU 65.
6.1.2 Features 66.
6.1.3 Functional Block Diagram 67.
6.1.4 Supported Usage of the DSP MMU 67.

Contents

7DSP SubsystemSPRU890A

6.2 MMU Architecture 68.
6.2.1 Summary of Address Translation Process 68.
6.2.2 Translation Look-Aside Buffer (TLB) 69.
6.2.3 Table Walking Logic 79.
6.2.4 Memory Address Translation 82.
6.2.5 First-Level Translation Table 83.
6.2.6 Second-Level Translation Tables 87.
6.2.7 MMU Error Handling 93.
6.2.8 Reset Considerations 94.
6.2.9 Clock Control 95.
6.2.10 Initialization 95.
6.2.11 Interrupt Support 95.
6.2.12 Power Management 96.

6.3 Using the MPU to Manage the TLB 96.
6.3.1 Architectural/Operational Description 96.
6.3.2 Software Configuration 97.
6.3.3 System Traffic Considerations 98.

6.4 Using Table Walking Logic to Manage the TLB 98.
6.4.1 Architectural/Operational Description 98.
6.4.2 Software Configuration 99.
6.4.3 System Traffic Considerations 100.

6.5 DSP MMU Registers 101.
6.5.1 Overview 101.
6.5.2 MMU Pre-Fetch Register (PREFETCH_REG) 102.

DSP Side 103.
MPU Side 103.

6.5.3 MMU Pre-Fetch Status Register (WALKING_ST_REG) 103.
6.5.4 MMU Control Register (CNTL_REG) 104.
6.5.5 MMU Fault Address Registers (FAULT_AD_H_REG, FAULT_AD_L_REG) 105. .
6.5.6 MMU Fault Status Register (FAULT_ST_REG) 107.
6.5.7 MMU Interrupt Acknowledge Register (IT_ACK_REG) 108.
6.5.8 MMU Translation Table Registers (TTB_H_REG, TTB_L_REG) 109.
6.5.9 MMU Lock/Protect Entry Register (LOCK_REG) 110.
6.5.10 MMU Read/Write TLB Entry Register (LD_TLB_REG) 111.
6.5.11 MMU CAM Entry Registers (CAM_H_REG, CAM_L_REG) 112.
6.5.12 MMU RAM Entry Registers (RAM_H_REG, RAM_L_REG) 114.
6.5.13 MMU TLB Global Flush Register (GFLUSH_REG) 115.
6.5.14 MMU TLB Entry Flush Register (FLUSH_ENTRY_REG) 116.
6.5.15 MMU Read CAM Entry Registers

(READ_CAM_H_REG, READ_CAM_L_REG) 117.
6.5.16 MMU Read RAM Entry Registers

(READ_RAM_H_REG, READ_RAM_L_REG) 119.
6.5.17 MMU Idle Control Register (DSPMMU_IDLE_CTRL) 120.

Contents

8 DSP Subsystem SPRU890A

7 DSP DMA 121.
7.1 Overview 121.

7.1.1 Purpose of the DSP DMA 121.
7.1.2 Features 121.
7.1.3 Block Diagram of the DMA Controller 122.

7.2 DSP DMA Controller Architecture 124.
7.2.1 Clock Control 124.
7.2.2 Memory Map 124.
7.2.3 Channels and Port Accesses 125.
7.2.4 Channel Auto-Initialization Capability 127.
7.2.5 MPUI Access Configurations 131.
7.2.6 Service Chain 132.
7.2.7 Units of Data: Byte, Element, Frame, and Block 137.
7.2.8 Start Address in a Channel 137.
7.2.9 Updating Addresses in a Channel 139.
7.2.10 Data Packing Capability 139.
7.2.11 Data Burst Capability 141.
7.2.12 Synchronizing Channel Activity 142.
7.2.13 DSP GDMA Handler (OMAP5912 Only) 146.

Functional Multiplexing DSP DMA Register A
(FUNC_MUX_DSP_DMA_A) 149.
Functional Multiplexing DSP DMA Register B
(FUNC_MUX_DSP_DMA_B) 151.
Functional Multiplexing DSP DMA Register C
(FUNC_MUX_DSP_DMA_C) 152.
Functional Multiplexing DSP DMA Register D
(FUNC_MUX_DSP_DMA_D) 154.

7.2.14 Reset Considerations 154.
7.2.15 Interrupt Support 155.
7.2.16 Power Management 158.
7.2.17 Emulation Considerations 158.
7.2.18 Latency in DMA Transfers 159.

7.3 DSP DMA Controller Registers 160.
7.3.1 Overview 160.
7.3.2 DMA Global Control Register (DMAGCR) 161.
7.3.3 DMA Global Software Compatibility Register (DMAGSCR) 162.
7.3.4 DMA Global Timeout Control Register (DMAGTCR) 163.
7.3.5 DMA Channel Control Register (DMACCR) 164.
7.3.6 DMA Interrupt Control Register (DMACICR) and Status

Register (DMACSR) 170.
7.3.7 DMA Source and Destination Parameters Register (DMACSDP) 174.
7.3.8 DMA Source Start Address Registers (DMACSSAU and DMACSSAL) 179.
7.3.9 DMA Destination Start Address Registers (DMACDSAU

and DMACDSAL) 180.

Contents

9DSP SubsystemSPRU890A

7.3.10 DMA Element Number Register (DMACEN) and Frame
Number Register (DMACFN) 181.

7.3.11 DMA Element Index Registers (DMACSEI, DMACDEI) and Frame
Index Registers (DMACSFI, DMACDFI) 182.

7.3.12 DMA Source Address Counter (DMACSAC) and Destination
Address Counter (DMACDAC) 186.

8 TI Peripheral Bus Bridges 187.
8.1 Introduction 187.
8.2 DSP Private Peripherals 187.
8.3 DSP Public Peripherals 188.
8.4 DSP/MPU Shared Peripherals 188.
8.5 Peripheral Access Rate 188.
8.6 Peripheral Access Timeout 191.
8.7 TIPB Register 191.

8.7.1 Overview 191.
8.7.2 TIPB Control Mode Register (CMR) 191.

DSP Side 192.
MPU Side 192.

9 MPU Interface Port 194.
9.1 Introduction 194.
9.2 MPUI and MPUI Port Overview 194.

9.2.1 MPUI Port Modes 195.
9.2.2 HOM/SAM Change Outside of Reset 196.

10 DSP Subsystem Endianess 197.
10.1 Endianess Within OMAP 197.
10.2 Endianess Conversion 198.
10.3 Endianess Conversion Modules 199.

10.3.1 Endianess Conversion by the DSP MMU 200.
10.3.2 Endianess Conversion by the MPUI 201.

11 DSP Subsystem Interrupts 204.
11.1 Overview 204.

11.2 First Level Interrupts 207.
11.2.1 OMAP5910 First Level Interrupt Mapping and Interrupt Registers 207.
11.2.2 OMAP5912 First Level Interrupt Mapping and Interrupt Registers 210.

11.3 Second Level Interrupts 213.

Contents

10 DSP Subsystem SPRU890A

12 DSP Subsystem Reset, Clocking, Idle Control, and Boot 216.
12.1 Reset Control 216.

12.1.1 Hardware (Cold) Resets 216.
12.1.2 Software (Warm) Resets 216.

12.2 Clock Source 217.
12.3 Idle Control 218.

12.3.1 Idle Control at the DSP Subsystem Level 219.
12.3.2 Idle Control at the DSP Module Level 219.

Condition 1: CPU Domain Active 222.
Condition 2: CPU Domain Idle 222.
Placing the DSP DMA in Idle 224.
Placing the Entire DSP Module Domain in Idle 224.

12.4 DSP Bootloader 228.
12.4.1 Introduction 228.
12.4.2 Bootloader Operation 229.

DSP Side 230.
MPU Side 230.

12.4.3 Boot Modes 230.
12.4.4 Bootloader Sequence 233.

Revision History 234.

Figures

11DSP SubsystemSPRU890A

Figures

1 OMAP5910 DSP Subsystem and Modules 19.
2 OMAP5912 DSP Subsystem and Modules 20.
3 DSP Core Diagram 23.
4 Internal Memory Connections in the DSP Subsystem 27.
5 Conceptual Block Diagram of the I-Cache in the DSP Subsystem 31.
6 2-Way Cache 33.
7 RAM Sets 1 and 2 34.
8 Fetch Address Fields for the 2-Way Cache Register 36.
9 Fetch Address Fields for a RAM Set 36.
10 Flow Chart of the Line Load Process 39.
11 CAFRZ, CAEN, and CACLR Bits in ST3_55 40.
12 I-Cache Global Control Register (GCR) 49.
13 I-Cache Line Flush Registers (FLR0, FLR1) 52.
14 I-Cache N-Way Control Register (NWCR) 53.
15 I-Cache RAM Set Control Registers (RCR1 and RCR2) 54.
16 I-Cache RAM Set Tag Registers (RTR1 and RTR2) 56.
17 I-Cache Status Register (ISR) 57.
18 DSP Subsystem External Memory Connections 59.
19 EMIF Global Control Register (GCR) 63.
20 EMIF Global Reset Register (GRR) 64.
21 Memory Defragmentation 65.
22 Task Protection 66.
23 DSP Subsystem Memory Interface 67.
24 MMU Address Translation 68.
25 MMU Translation Process 69.
26 TLB Entry Structure 70.
27 Determining Virtual Address Tags for TLB CAM Entries 71.
28 Determining Physical Address Tags for TLB RAM Entries 73.
29 Physical Address Generation Using TLB Entry with Size = 00b (Section) 74.
30 Physical Address Generation Using TLB Entry with Size = 01b (Large Page) 75.
31 Physical Address Generation Using TLB Entry with Size = 10b (Small Page) 75.
32 Physical Address Generation Using TLB Entry with Size = 11b (Tiny Page) 76.
33 TLB Entry Lock Mechanism 77.
34 Physical Address Calculation 80.
35 Sample Translation Table Hierarchy 82.
36 DSP Subsystem Virtual Address Space Divided Into Sections 84.

Figures

12 DSP Subsystem SPRU890A

37 First-Level Descriptor Address Calculation 85.
38 First-Level Descriptor Format Based on Two Least-Significant Bits 86.
39 Translation for a Virtual Memory Section 87.
40 Second-Level Descriptor Format Based on Two Least-Significant Bits 88.
41 Translation for a Large Page 89.
42 Translation for a Small Page 90.
43 Translation for a Tiny Page 90.
44 Calculating the Descriptor Address in a Coarse Page Table 91.
45 Calculating the Descriptor Address in a Fine Page Table 92.
46 DSP Subsystem External Memory Interface 97.
47 DSP Subsystem External Memory Interface 99.
48 MMU Pre-Fetch Register (PREFETCH_REG) 103.
49 MMU Pre-Fetch Status Register (WALKING_ST_REG) 103.
50 MMU Control Register (CNTL_REG) 104.
51 MMU Fault Address Registers (FAULT_AD_H_REG, FAULT_AD_L_REG) 106.
52 MMU Fault Status Register (FAULT_ST_REG) 107.
53 MMU Interrupt Acknowledge Register (IT_ACK_REG) 108.
54 MMU Translation Table Registers (TTB_H_REG, TTB_L_REG) 109.
55 MMU Lock/Protect Entry Register (LOCK_REG) 110.
56 MMU Read/Write TLB Entry Register (LD_TLB_REG) 111.
57 MMU CAM Entry Registers (CAM_H_REG, CAM_L_REG) 112.
58 MMU RAM Entry Registers (RAM_H_REG, RAM_L_REG) 114.
59 MMU TLB Global Flush Register (GFLUSH_REG) 115.
60 MMU TLB Entry Flush Register (FLUSH_ENTRY_REG) 116.
61 MMU CAM Entry Read Registers (READ_CAM_H_REG, READ_CAM_L_REG) 117.
62 MMU Read RAM Entry Registers (READ_RAM_H_REG, READ_RAM_L_REG) 119.
63 MMU Idle Control Register (DSPMMU_IDLE_CTRL) 120.
64 Conceptual Block Diagram of the DMA Controller Connections 123.
65 High-Level Data Memory Map for DSP Subsystem 124.
66 High-Level I/O Memory Map for DSP Subsystem 125.
67 The Two Parts of a DMA Controller Transfer 125.
68 Registers for Controlling the Context of a Channel 126.
69 DMA Channel Control Register (DMACCR) 127.
70 Auto-Initialization Sequence With Unchanging Context (REPEAT = 1) 130.
71 Auto-initialization Sequence With Changing Context (REPEAT = 0) 131.
72 MPUI Access Configurations 132.
73 One Possible Configuration for the Service Chains 133.
74 Service Chain Applied to Three DMA Ports 136.
75 DSP GDMA Handler 147.
76 Functional Multiplexing DSP DMA Register A (FUNC_MUX_DSP_DMA_A) 150.
77 Functional Multiplexing DSP DMA Register B (FUNC_MUX_DSP_DMA_B) 151.
78 Functional Multiplexing DSP DMA Register C (FUNC_MUX_DSP_DMA_C) 153.
79 Functional Multiplexing DSP DMA Register D (FUNC_MUX_DSP_DMA_D) 154.
80 Triggering a Channel Interrupt Request 156.

Figures

13DSP SubsystemSPRU890A

81 DMA Global Control Register (DMAGCR) 161.
82 DMA Global Software Compatibility Register (DMAGSCR) 162.
83 DMA Global Timeout Control Register (DMAGTCR) 163.
84 DMA Channel Control Register (DMACCR) 165.
85 DMA Interrupt Control Register (DMACICR) and Status Register (DMACSR) 171.
86 DMA Source and Destination Parameters Register (DMACSDP) 175.
87 DMA Source Start Address Registers (DMACSSAU and DMACSSAL) 179.
88 DMA Destination Start Address Registers (DMACDSAU and DMACDSAL) 181.
89 DMA Element Number Register (DMACEN) and Frame Number

Register (DMACFN) 182.
90 DMA Source Element Index Registers (DMACSEI, DMACDEI) and Frame

Index Registers (DMACSFI, DMACDFI) 185.
91 DMA Source Address Counter (DMACSAC) and Destination Address

Counter (DMACDAC) 186.
92 TIPB Control Mode Register (CMR) 192.
93 MPUI Mode Change Bits in ST3_55 196.
94 DSP MMU Endianess Control Register (DSP_ENDIAN_CONV) 201.
95 MPUI Control Register (CTRL_REG) 203.
96 OMAP5910 DSP Subsystem Interrupts 205.
97 OMAP5912 DSP Subsystem Interrupts 206.
98 IFR0 and IER0 Bit Locations (OMAP5910) 209.
99 IFR1 and IER1 Bit Locations (OMAP5910) 210.
100 IFR0 and IER0 Bit Locations (OMAP5912) 212.
101 IFR1 and IER1 Bit Locations (OMAP5912) 212.
102 OMAP Clock Generation 217.
103 DSP Clock Domain 217.
104 Generation of DSP Subsystem Master Clock and DSP MMU Clock 218.
105 Idle Configuration Process 221.
106 Idle Control Register (ICR) 225.
107 Idle Status Register (ISTR) 226.
108 DSP Boot Configuration Register (DSP_BOOT_CONFIG) 230.

Tables

14 DSP Subsystem SPRU890A

Tables

1 OMAP5910/5912 DSP Subsystem Global Memory Map 29.
2 Fetch Address Field Descriptions for the 2-Way Cache Register Field Descriptions 36.
3 Fetch Address Field Descriptions for a RAM Set 36.
4 Instruction Presence Check and I-Cache Response 37.
5 Summary of the I-Cache Registers 48.
6 I-Cache Global Control Register (GCR) Bits Field Descriptions 50.
7 I-Cache Line Flush Register 0 (FLR0) Field Descriptions 52.
8 I-Cache Line Flush Register 1 (FLR1) Field Descriptions 52.
9 I-Cache N-way Control Register (NWCR) Field Descriptions 53.
10 I-Cache RAM Set 1 Control Register (RCR1) and RAM Set 2 Control Register

(RCR2) Field Descriptions 55.
11 I-Cache RAM Set 1 Tag Register (RTR1) Field Descriptions 56.
12 I-Cache RAM Set 2 Tag Register (RTR2) Field Descriptions 56.
13 I-Cache Status Register (ISR) Field Descriptions 57.
14 EMIF Requests and Their Priorities 60.
15 EMIF Requests Associated with Dual and Long Data Accesses 61.
16 Summary of the EMIF Registers 63.
17 EMIF Global Control Register (GCR) Field Descriptions 64.
18 EMIF Global Reset Register (GRR) Field Descriptions 64.
19 First−Level Descriptor Contents 86.
20 First−Level Descriptor Contents 89.
21 Summary of DSP MMU Registers 101.
22 MMU Pre-Fetch Register (PREFETCH_REG) Field Descriptions 103.
23 MMU Pre-Fetch Status Register (WALKING_ST_REG) Field Descriptions 104.
24 Control Register (CNTL_REG) Field Descriptions 105.
25 MMU MSB Fault Address Register (FAULT_AD_H_REG) Field Descriptions 106.
26 MMU LSB Fault Address Register (FAULT_AD_L_REG) Field Descriptions 106.
27 MMU Fault Status Register (FAULT_ST_REG) Field Descriptions 107.
28 MMU Interrupt Acknowledge Register (IT_ACK_REG) Field Descriptions 109.
29 MMU MSB Translation Table Register (TTB_H_REG) Field Descriptions 110.
30 MMU LSB Translation Table Register (TTB_L_REG) Field Descriptions 110.
31 MMU Lock/Protect Entry Register (LOCK_REG) Field Descriptions 111.
32 MMU Read/Write TLB Entry Register (LD_TLB_REG) Field Descriptions 112.
33 MMU MSB CAM Entry Register (CAM_H_REG) Field Descriptions 113.
34 MMU LSB CAM Entry Register (CAM_L_REG) Field Descriptions 113.
35 MMU MSB RAM Entry Register (RAM_H_REG) Field Descriptions 114.

Tables

15DSP SubsystemSPRU890A

36 MMU LSB RAM Entry Register (RAM_L_REG) Field Descriptions 114.
37 MMU TLB Global Flush Register (GFLUSH_REG) Field Descriptions 115.
38 MMU TLB Entry Flush Register (FLUSH_ENTRY_REG) Field Descriptions 116.
39 MMU MSB CAM Entry Read Register (READ_CAM_H_REG) Field Descriptions 117.
40 MMU LSB CAM Entry Read Register (READ_CAM_L_REG) Field Descriptions 118.
41 MMU MSB RAM Entry Read Register (READ_RAM_H_REG) Field Descriptions 119.
42 MMU LSB RAM Entry Read Register (READ_RAM_L_REG) Field Descriptions 120.
43 MMU Idle Control Register (DSPMMU_IDLE_CTRL) Field Descriptions 120.
44 DMA Channel Control Register (DMACCR) Field Descriptions 128.
45 Activity Shown in 74 135.
46 Registers Used to Define the Start Addresses for a DMA Transfer 137.
47 DMA Controller Ports 139.
48 DMA Controller Data Packing 140.
49 Read/Write Synchronization 143.
50 DSP DMA Controller Synchronization Events for OMAP5910 145.
51 DSP DMA Controller Synchronization Events for OMAP5912 146.
52 DSP GDMA Handler Input Request Lines 147.
53 Registers of the OMAP5912 DSP GDMA Handler 149.
54 Functional Multiplexing DSP DMA Register A (FUNC_MUX_DSP_DMA_A)

Field Descriptions 150.
55 Functional Multiplexing DSP DMA Register B (FUNC_MUX_DSP_DMA_B)

Field Descriptions 152.
56 Functional Multiplexing DSP DMA Register C (FUNC_MUX_DSP_DMA_C)

Field Descriptions 153.
57 Functional Multiplexing DSP DMA Register D (FUNC_MUX_DSP_DMA_D)

Field Descriptions 154.
58 DMA Controller Operational Events and Their Associated Bits and Interrupts 155.
59 Registers of the DMA Controller 160.
60 DMA Global Control Register (DMAGCR) Field Descriptions 161.
61 DMA Global Software Compatibility Register (DMAGSCR) Field Descriptions 163.
62 DMA Global Timeout Control Register (DMAGTCR) Field Descriptions 164.
63 DMA Channel Control Register (DMACCR) Field Descriptions 165.
64 DMA Interrupt Control Register (DMACICR) Fields Descriptions 171.
65 DMA Status Register (DMACSR) Field Descriptions 173.
66 DMA Source and Destination Parameters Register (DMACSDP) Field Descriptions 175. . . .
67 DMA Source Start Address Register − Upper Part (DMACSSAU) Field Descriptions 180. . .
68 DMA Source Start Address Register − Lower Part (DMACSSAL) Field Descriptions 180. . .
69 DMA Destination Start Address Register − Upper Part (DMACDSAU)

Field Descriptions 181.
70 DMA Destination Start Address Register − Lower Part (DMACDSAL)

Field Descriptions 181.
71 DMA Element Number Register (DMACEN) Field Descriptions 182.
72 Frame Number Register (DMACFN) Field Descriptions 182.
73 DMA Source Element Index Register (DMACSEI/DMACEI) Field Descriptions 185.
74 DMA Source Frame Index Register (DMACSFI / DMACFI) Field Descriptions 185.

Tables

16 DSP Subsystem SPRU890A

75 DMA Destination Element Index Register (DMACDEI) Field Descriptions 186.
76 DMA Destination Frame Index Register (DMACDFI) Field Descriptions 186.
77 DMA Source Address Counter (DMACSAC) Field Descriptions 186.
78 DMA Destination Address Counter (DMACDAC) Field Descriptions 186.
79 TIPB Access Rates 189.
80 Peripherals Affected by Access Factor Bits (OMAP5912) 190.
81 Peripherals Affected by Access Factor Bits (OMAP5910) 190.
82 Register of the TIPB Bridge 191.
83 TIPB Control Mode Register (CMR) Field Descriptions 192.
84 HOM_R and HOM_P Bits in DSP Core Register ST3_55 197.
85 Little-Endian versus Big-Endian Data Format 197.
86 Big-Endian Access of Little-Endian Data 199.
87 Effect of DSP MMU Endianess Conversion Settings 200.
88 DSP MMU Endianess Control Register (DSP_ENDIAN_CONV) Field Descriptions 201. . . .
89 Effect of MPUI Endianess Conversion Settings 202.
90 MPUI Control Register (CTRL_REG) Field Descriptions 203.
91 OMAP5910 Level 1 Interrupt Mapping 208.
92 OMAP5912 Level 1 Interrupt Mapping 210.
93 OMAP5910 Level 2 Interrupt Mapping 213.
94 OMAP5912 Level 2.0 Interrupt Mapping 214.
95 OMAP5912 Level 2.1 Interrupt Mapping 214.
96 Idle Domains in the DSP 219.
97 Changing Idle Configurations 222.
98 DSP Core Response After Reactivation 223.
99 Registers for DSP Module Idle Control 225.
100 Idle Control Register (ICR) Field Descriptions 226.
101 Idle Status Register (ISTR) Field Descriptions 227.
102 DSP PDROM Contents 229.
103 Bootloader Initialization 229.
104 DSP Boot Configuration Register (DSP_BOOT_CONFIG) Field Descriptions 230.
105 Registers for DSP Module Idle Control 231.
106 Document Revision History 234.

17DSP SubsystemSPRU890A

DSP Subsystem

1 Digital Signal Processor Subsystem Overview

1.1 Architecture Overview

The Digital Signal Processor (DSP) Subsystem is a collection of modules
which include the TMS320C55x CPU processor along with its hardware
accelerators, tightly coupled memory, instruction cache, and dedicated DMA,
the interfaces it uses to communicate with rest of the OMAP device, as well
as a number of peripherals.

The TMS320C55x core processor (also referred to as the DSP core) and the
peripherals included in the DSP subsystem communicate with:

� The MPU core via the microprocessor unit interface (MPUI)

� Various standard memories via the external memory interface (EMIF)

� Various system peripherals via two TI peripheral bus (TIPB) bridges

Figure 1 and Figure 2 in section 1.4 show block diagrams for the OMAP5910
and OMAP5912 DSP subsystems.

1.2 Features

The DSP subsystem is composed of several portions: the DSP module, the
peripherals that surround that module, and several interfaces used to
communicate with the rest of the OMAP modules. Each portion has the
following components:

� DSP module:

� TMS320C55x (C55x) DSP core

� Tightly coupled hardware accelerators: discrete cosine
transform/inverse discrete cosine transform (DCT/IDCT), motion
estimation, and half-pixel interpolation

� Tightly coupled memories and their interfaces: dual-access RAM
(DARAM), single-access RAM (SARAM), programmable dynamic
ROM, and an instruction cache (I-Cache)

� Six-channel DMA controller that can copy memory contents from one
address to another without DSP core intervention

Digital Signal Processor Subsystem Overview

DSP Subsystem18 SPRU890A

� DSP subsystem interfaces:

� External memory interface (EMIF) that connects the DSP core to
external and loosely coupled memories

� MPUI port that permits access to DSP resources by the MPU and
system DMA

� TIPB that provides two external bus interfaces for private and public
peripherals

� DSP subsystem peripherals:

� Private peripherals are on the DSP private peripheral bus, and can
only be accessed by the DSP core. DSP private peripherals include:

� Three 32-bit timers

� Watchdog timer

� Interrupt handlers

� Public peripherals are on the DSP public peripheral bus. These
peripherals are directly accessible by the DSP core and DSP DMA.
The MPU core can also access these peripherals through the MPUI
port. DSP public peripherals include:

� Two multichannel buffered serial ports (McBSPs)

� Two multichannel serial interfaces (MCSIs)

� The DSP core and DMA controller also have access to system
peripherals (also referred to as shared peripherals). Shared
peripherals are connected to both the MPU public peripheral bus and
the DSP public peripheral bus. Shared peripherals include:

� Mailbox module to permit interrupt-based signaling between the
DSP and MPU cores

� Three universal asynchronous receiver/transmitter (UART)
modules

� General-purpose input/output (GPIO) module

� The OMAP5912 also adds these shared peripherals:

� Eight general purpose timers

� Serial port interface (SPI)

� I2C master/slave interface

� Extra McBSP

� Multimedia card/secure digital interface (MMC/SDIO)

� 32-KHz synchronization counter

This document describes all of the DSP module components listed above. The
DSP subsystem peripherals are described in separate documents.

Digital Signal Processor Subsystem Overview

19DSP SubsystemSPRU890A

1.3 Differences Between the OMAP5910 and OMAP5912 DSP
Subsystems

The OMAP5910 and OMAP5912 DSP subsystems are very similar. The
difference between the subsystems lies in the mix of the MPU/DSP shared
peripherals.

1.4 Functional Block Diagrams

Figure 1 and Figure 2 show functional block diagrams of the OMAP5910 and
OMAP5912 DSP subsystems.

Figure 1. OMAP5910 DSP Subsystem and Modules

SARAM

DARAM

I-Cache

EMIF

Memory
I/F

Configuration

DMA

(EMIF)
(DARAM)
(SARAM)
(MPUI)
(TIPB)

HWA

TMS320C55x
DSP core

Internal
memory
buses

Shared
TIPB

bridge

Private

bridge
TIPB

DSP Module

MPUI port

Timers

DSP private
peripherals

Watchdog
timer

Interrupt

GPIO I/F

Mailbox

UART1,2,3

Static UART
sharing switch

MPU/DSP shared
peripherals

Pseudo
dynamic
sharing

Endianess conversion

16

System
DMA

MPU

MPU public
TIPB bridge

MPUI

MPU
subsystem

DSP private
peripheral bus

DSP public
peripheral bus

MPU public
peripheral
bus

16

McBSP1

McBSP3

MCSI2

MCSI1

DSP public
peripherals

Endianess
conversion

DSP
MMU

Traffic
controller

ROM,
SRAM,
Flash,

SBFlash

SDRAM

On-chip
SRAM

DSP Subsystem and Interfaces

interface

Interrupt
handlers

Digital Signal Processor Subsystem Overview

DSP Subsystem20 SPRU890A

Figure 2. OMAP5912 DSP Subsystem and Modules

SARAM

DARAM

I-Cache

EMIF

Memory
I/F

Configuration

DMA

(EMIF)
(DARAM)
(SARAM)
(MPUI)
(TIPB)

HWA

TMS320C55x
DSP core

Internal
memory
buses

Shared
TIPB

bridge

Private

bridge
TIPB

DSP Module

MPUI port

Timers

DSP private
peripherals

Watchdog
timer

handlers
Interrupt

Interrupt
interface

MPU/DSP shared
peripherals

Pseudo
dynamic
sharing

Endianess conversion

16

System
DMA

MPU

MPU public
TIPB bridge

MPUI

MPU
subsystem

DSP private
peripheral bus

DSP public
peripheral bus

MPU public
peripheral
bus

16

McBSP1

McBSP3

MCSI2

MCSI1

DSP public
peripherals

Endianess
conversion

DSP
MMU

Traffic
controller

ROM,
SRAM,
Flash,

SBFlash

SDRAM

On-chip
SRAM

DSP Subsystem and Interfaces

Mailbox

MPU/DSP static
shared

8xGPTIMERS
SPI

UART1,2,3
I2C

MMCSDIO2
McBSP2

MPU/DSP
Dynamic shared

GPIO1,2,3,4
32-KHz synchro timer

C55x DSP Core Overview

21DSP SubsystemSPRU890A

2 C55x DSP Core Overview

The DSP subsystem is based on the TMS320C55x DSP generation processor
core. This section is intended to give a mere overview of the C55x DSP core.
For detailed information, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

2.1 DSP Core Features

Features of the high-performance, low-power DSP core include:

� Advanced multiple-bus architecture with one internal program memory
bus and five internal data buses (three dedicated to reads and two
dedicated to writes)

� Unified program/data memory architecture

� Dual 17-bit x 17-bit multipliers coupled to 40-bit dedicated adders for
non-pipelined single-cycle multiply accumulate (MAC) operations

� Two address generators with eight auxiliary registers and two auxiliary
register arithmetic units

� 8M x 16 bits (16M bytes) of total addressable memory space

� Single-instruction repeat or block repeat operations for program code

� Conditional execution

� Seven-stage pipeline for high instruction throughput

� Instruction buffer unit that loads, parses, queues, and decodes
instructions to decouple the program fetch function from the pipeline

� Program flow unit that coordinates program actions among multiple
parallel DSP core functional units

� Address data flow unit that provides data address generation and includes
a 16-bit arithmetic unit capable of performing arithmetical, logical, shift,
and saturation operations

� Data computation unit containing the primary computation units of the
DSP core, including a 40-bit arithmetic logic unit, two MAC units, and a
shifter

� Software-programmable idle domains that provide configurable
low-power modes

� Automatic power management

C55x DSP Core Overview

DSP Subsystem22 SPRU890A

2.2 Introduction to the DSP Core

The DSP core supports an internal bus structure composed of one program
bus, three data read buses, two data write buses, and additional buses
dedicated to peripheral and DMA controller activity. These buses provide the
ability to perform up to three data reads and two data writes in a single cycle.

The DSP core provides two multiply-accumulate (MAC) units, each capable
of 17-bit x 17-bit multiplication in a single cycle. A central 40-bit arithmetic/logic
unit (ALU) is supported by an additional 16-bit ALU. Use of the ALUs is under
instruction set control, providing the ability to optimize parallel activity and
power consumption. These resources are managed in the address unit (AU)
and data unit (DU) of the DSP core.

The DSP core supports a variable byte width instruction set for improved code
density. The instruction unit (IU) performs 32-bit program fetches from internal
or DSP external memory and queues instructions for the program unit (PU).
The program unit decodes the instructions, directs tasks to AU and DU
resources, and manages the fully protected pipeline. Predictive branching
capability avoids pipeline flushes on execution of conditional instructions.

Figure 3 shows a conceptual block diagram of the DSP core. Detailed
information on each of the buses and units represented in this figure are given
in the TMS320C55x DSP CPU Reference Guide (SPRU371).

C55x DSP Core Overview

23DSP SubsystemSPRU890A

Figure 3. DSP Core Diagram

Memory
interface unit

External data
buses

External
program buses

CPU

Data-write data buses EB, FB (each 16 bits)

Data-write address buses EAB, FAB (each 23 bits)

Program-read data bus PB (32 bits)

Program-read address bus PAB (24 bits)

Data-read data buses BB, CB, DB (each 16 bits)

Data-read address buses BAB, CAB, DAB (each 23 bits)

Instruction
buffer unit

(I unit)

Program
flow unit
(P unit)

Address-data
flow unit
(A unit)

Data
computation

unit
(D unit)

Other useful documents include:

� TMS320C55x DSP Mnemonic Instruction Set Reference Guide
(SPRU374): Describes the mnemonic instructions individually. It also
includes a summary of the instruction set, a list of the instruction opcodes,
and a cross-reference to the algebraic instruction set.

� TMS320C55x Programmer’s Guide (SPRU376): Describes ways to
optimize C and assembly code for the TMS320C55x DSPs and explains
how to write code that uses the special features and instructions of the
DSP.

� TMS320C55x Optimizing C Compiler User’s Guide (SPRU281):
Describes the TMS320C55x C Compiler. This C compiler accepts ANSI
standard C source code and produces assembly language source code
for TMS320C55x devices.

C55x DSP Core Overview

DSP Subsystem24 SPRU890A

� TMS320C55x Assembly Language Tools User’s Guide (SPRU280):
Describes the assembly language tools (assembler, linker, and other tools
used to develop assembly language code), assembler directives, macros,
common object file format, and symbolic debugging directives for
TMS320C55x devices.

2.3 Introduction to the Hardware Accelerators

Three powerful C55x hardware accelerator modules assist the DSP core in
implementing algorithms that are commonly used in video compression
applications such as MPEG4 encoders/decoders. These accelerators allow
implementation of such algorithms using fewer DSP instruction cycles and
dissipating less power than if the DSP core were operating alone. The
hardware accelerators are utilized via functions from the TMS320C55x
Image/Video Processing Library available from Texas Instruments.

The Image/Video Processing Library implements many useful functions
utilizing the hardware accelerators, including:

� Forward and Inverse Discrete Cosine Transform (DCT) (used for video
compression/decompression)

� Motion Estimation (used for compression standards such as MPEG video
encoding and H.26x encoding)

� Pixel Interpolation (enabling high-performance fractal pixel motion
estimation)

� Quantization/Dequantization (useful for JPEG, MPEG, H.26x
encoding/decoding)

� Flexible 1D/2D Wavelet Processing (useful for JPEG2000, MPEG4, and
other compression standards)

� Boundary and Perimeter Computation (useful for Machine Vision
applications)

� Image Threshold and Histogram Computations (useful for various Image
Analysis applications)

More information on the C55x Image/Video Processing Library can be found
in the TMS320C55x Image/Video Processing Library Programmer’s
Reference (SPRU037).

C55x DSP Core Overview

25DSP SubsystemSPRU890A

There are three hardware accelerators included along with the C55x DSP
core:

� DCT/IDCT Accelerator: This hardware accelerator implements Forward
and Inverse DCT algorithms. These DCT/IDCT algorithms can enable a
wide range of video compression standards including JPEG
Encode/Decode, MPEG Video Encode/Decode, and H.26x
Encode/Decode.

� Motion Estimation Accelerator: This hardware accelerator implements a
high-performance motion estimation algorithm, enabling MPEG Video
encoder or H.26x encoder applications. Motion estimation is typically one
of the most computation-intensive operations in video-encoding systems.

� Pixel Interpolation Accelerator: This hardware accelerator enables
high-performance pixel-interpolation algorithms, which allow for powerful
fractal pixel motion estimation when used in conjunction with the Motion
Estimation Accelerator. Such algorithms provide significant improvement
to video-encoding applications.

Detailed information on the C55x Hardware Accelerators can be found in the
TMS320C55x Hardware Extensions for Image/Video Applications
Programmer’s Reference (SPRU098).

DSP Subsystem Memory

DSP Subsystem26 SPRU890A

3 DSP Subsystem Memory
The DSP subsystem requires access to three different types of memory:
program memory, data memory, and I/O memory. The DSP subsystem
architecture uses a unified program and data memory space composed of
memory internal and external to the DSP subsystem. Internal memory is made
up of tightly coupled memory blocks, whereas DSP external memory is
mapped to OMAP system memory. The DSP subsystem architecture provides
access to a maximum of 8M words (16M bytes) of program/data memory
space.

The DSP subsystem I/O memory space is separate from the data/program
memory space. The I/O space includes the configuration and data registers
for all peripherals accessible by the DSP subsystem.

3.1 Internal Memory Space
The DSP subsystem memory consists of four types of tightly coupled
memories which provide the DSP core with maximum efficiency.

� Dual-access RAM (DARAM)

The DARAM memory consists of 8 blocks of 8K bytes each. The DARAM
(64K bytes) can support up to two memory accesses into each RAM block
in one DSP core clock cycle. Accesses can be made from any internal
data, program, or DMA bus.

� Single-access RAM (SARAM)

The SARAM memory consists of 12 blocks of 8K bytes each. The SARAM
(96K bytes) can support one memory access into each RAM block in one
DSP core clock cycle. This access can be a 32-bit value. Accesses can be
made from any internal data, program, or DMA bus.

� Programmable dynamic ROM (PDROM)

The PDROM memory consists of 1 block of 32K bytes. The programmable
dynamic ROM (32K bytes) can support one memory read in one DSP core
clock cycle. This access can be a 32-bit value. Accesses can be made
from any internal data read or program bus.

The PDROM contains a program called a bootloader, which is executed by
the DSP core when it is taken out of reset. Depending on the boot mode
selected, the DSP core will either branch to an internal or DSP external
memory address, or go into idle. Note that the memory at the destination
address must be initialized with valid code before the bootloader is
executed. Selecting boot mode 000b will disable the PDROM. The MPU
core specifies the boot mode through the DSP_BOOT_CONFIG register.
For more information on the DSP subsystem bootloader and the
DSP_BOOT_CONFIG register, see section 12.4.

DSP Subsystem Memory

27DSP SubsystemSPRU890A

� Configurable I-Cache structure

The DSP instruction cache (I-Cache) module is a special-purpose, tightly
coupled, RAM-based program memory. The module is designed to
significantly improve DSP core performance by buffering the instructions
most recently fetched from DSP external memory. The entire external
program memory space is cacheable. Section 4 describes the I-Cache in
more detail.

Figure 4 shows the connections between the internal memory blocks and the
buses of the DSP core.

Figure 4. Internal Memory Connections in the DSP Subsystem

D buses

C buses

B buses

P buses

A

D

E buses

F bus

To
external
 memory

I/F

PDROM

1 block of 32K bytes

8 blocks of 8K bytes
12 blocks of 8K bytes

SARAM DARAM

The DSP core uses the six sets of buses to simultaneously fetch up to 32 bits
of program code and to read up to 48 bits of data from memory (or to write up
to 32 bits of data to memory). To achieve maximum performance from the
architecture, pay close attention to placement of code and data structures
within the on-chip memory resources. For more details, see the TMS320C55x
Programmer’s Guide (SPRU376).

DSP Subsystem Memory

DSP Subsystem28 SPRU890A

3.2 DSP External Memory Space

The DSP core and DMA controller use the external memory interface (EMIF)
to access the DSP external memory. External memory for the DSP subsystem
ranges from byte address 0x02 8000 to 0xFF 8000 if the internal PDROM is
enabled, or to 0xFF FFFF if the PDROM is not enabled. See Figure 18 for more
details.

Note:

The term DSP external memory refers to memory outside of the DSP
subsystem internal memory space. This includes program addresses in the
range of 0x02 8000 to 0xFF 8000 if the internal PDROM is enabled, or to
0xFF FFFF if the PDROM is not enabled.

All DSP external memory access requests are passed through the DSP
memory management unit (MMU). If this unit is enabled and configured by the
MPU core, it translates the DSP external memory access request address,
also called a virtual address, into a system memory address, also called a
physical address, that is then passed to the traffic controller. The traffic
controller completes the memory access through one of the three system
memory interfaces: internal memory (IMIF), slow external memory (EMIFS),
or fast external memory (EMIFF).

If the MMU is not enabled, then the access request is passed directly to the
system traffic controller. In this case, the DSP virtual address is mapped to the
first 16M bytes of chip select space 0 (CS0) of the system memory.

3.3 I/O Memory Space

The DSP subsystem I/O space is a separate address space from the
data/program memory space. Configuration and data registers for all
peripherals reside in the DSP subsystem I/O space, which consists of
64K-word addresses. Each peripheral maps into a 1K-word section of I/O
memory.

OMAP devices include sets of peripherals grouped into three main categories:
shared, public, or private.

� DSP/MPU shared peripherals are connected to both the MPU public
peripheral bus and the DSP public peripheral bus. Connections are routed
through a TI peripheral bus switch, which must be configured to allow MPU
domain or DSP domain access. Some shared peripherals have
permanent connections to both public peripheral buses, although read
and write accesses to each peripheral register may differ.

DSP Subsystem Memory

29DSP SubsystemSPRU890A

� DSP public peripherals are connected to the DSP public peripheral bus
and are directly accessible by the DSP core and DSP DMA. These
peripherals may also be accessed by the MPU core and system DMA
controller via the MPUI.

� DSP private peripherals are on the DSP private peripheral bus, and thus,
can only be accessed by the DSP core.

To read or write to these registers, you must access the DSP subsystem I/O
space either through C language constructs or, in the case of
assembly-language code, by using a special instruction qualifier called the
memory-mapped register access qualifier. For more details about this
qualifier, see TMS320C55x DSP Mnemonic Instruction Set Reference Guide
(SPRU374).

Note:

Byte access to I/O space is not supported.

The TI peripheral bus bridges manage accesses to the I/O memory space via
two peripheral buses: a private TI peripheral bus and a public TI peripheral
bus. Section 8 describes the TI peripheral bus bridges and their buses.

3.4 Memory Maps

Table 1 shows the high-level program/data memory map for the DSP
subsystem. DSP core data accesses utilize 16-bit word addresses, while DSP
core program fetches utilize byte addressing. DSP DMA data fetches always
use byte addresses.

Table 1. OMAP5910/5912 DSP Subsystem Global Memory Map

Byte Address Range Word Address Range Internal Memory DSP External
Memory†

0x00 0000-0x00 FFFF 0x00 0000-0x00 7FFF DARAM 64K bytes

0x01 0000-0x02 7FFF 0x00 8000-0x01 3FFF SARAM 96K bytes

0x02 8000-0xFF 7FFF 0x01 4000-0x7F BFFF Managed by DSP
MMU

0xFF 8000-0xFF FFFF 0x7F C000-0x7F FFFF PDROM
(MPNMC = 0)

Managed by DSP
MMU (MPNMC = 1)

† This space could be DSP external memory or internal shared system memory, depending on the DSP MMU configuration.

The I/O memory map varies from device to device, due to the different peripheral
mixes. For a detailed I/O memory map, see the device-specific data manual.

Instruction Cache

DSP Subsystem30 SPRU890A

4 Instruction Cache

4.1 Introduction

On the OMAP5912/10 applications processors, instructions for the C55x DSP
core can reside in internal memory or in DSP external memory. When
instructions reside in DSP external memory, the instruction cache (I-Cache)
can improve the overall system performance by buffering the most recent
instructions accessed by the DSP core.

Note:

The term DSP external memory refers to memory outside of the DSP
subsystem internal memory space. This includes program addresses in the
range of 0x02 8000 to 0xFF 8000 if the internal PDROM is enabled, or to
0xFF FFFF if the PDROM is not enabled.

4.1.1 Features

For storing instructions, the I-Cache contains:

� One 2-way cache. The 2-way cache uses 2-way set associative mapping
and holds up to 16K bytes: 512 sets, two lines per set, four 32-bit words
per line. In the 2-way cache, each line is identified by a unique tag.

� Two RAM sets (1 and 2). These two banks of RAM are available to hold
blocks of code. Each RAM set holds up to 4K bytes: 256 lines, four 32-bit
words per line. Each RAM set uses a single tag to identify a continuous
range of memory addresses that is represented in the RAM set. Before
enabling the I-Cache, configure the I-Cache to use zero, one, or both RAM
sets.

The DSP core status register, ST3_55, contains three cache control bits for
enabling, freezing, and flushing the I-Cache (see section 4.2.4). To configure
the I-Cache and check its status, the DSP core accesses a set of registers in
the I-Cache (see section 4.6).

4.1.2 Functional Block Diagram

Figure 5 shows how the I-Cache fits into the DSP subsystem.

Instruction Cache

31DSP SubsystemSPRU890A

Figure 5. Conceptual Block Diagram of the I-Cache in the DSP Subsystem

2-way cache

Instruction storage

RAM set 1

RAM set 2

I-Cache registers

Control logic

I-Cache

Cache control bits in
ST3_55 to enable, freeze,

Data read/write logic

queue
Instruction buffer

I-Cache
enabled

I-Cache
disabled

DSP core

EMIF

DSP MMU

OMAP device

memory banks

and flush I-Cache

to configure and
monitor I-Cache

Traffic controller

External memory

DSP subsystem

Internal SRAM

4.1.3 Supported Cache Configurations

The I-Cache supports the following configurations:

� 2-way 16KB cache with no RAM set blocks
� 2-way 16KB cache with one 4KB RAM set block
� 2-way 16KB cache with two 4KB RAM set blocks

Sections 4.3, 4.4, and 4.5 detail the steps required to implement these cache
configurations.

Instruction Cache

DSP Subsystem32 SPRU890A

4.2 Instruction Cache Architecture

4.2.1 Introduction to the I-Cache

When the DSP core requests instructions, it requests 32 bits at a time. To
initiate an instruction fetch, the DSP core sends a fetch request and a fetch
address to the I-Cache.

If the I-Cache is enabled, it handles the fetch request as follows. If the
requested word is in the I-Cache (a hit), the I-Cache delivers the word to the
DSP core. If the requested word is not in the I-Cache (a miss), the I-Cache
uses the external memory interface (EMIF) to fetch the 4-word DSP external
memory block that contains the requested word. As soon as the requested
word arrives in the I-Cache, it is delivered to the DSP core. Section 4.2.10
describes timing information for I-Cache hits and misses.

If the I-Cache is disabled, it is not checked. Instead, the fetch request and fetch
address are passed to the EMIF. Once fetched by the EMIF, the requested
32-bit word is passed directly to the DSP core.

Notes:

1) The DSP external memory address generated by the EMIF is a virtual
address. This virtual address is mapped to a physical address within the
memory space of the OMAP device by the DSP Memory Management
Unit (MMU). Before enabling the I-Cache, you must configure the DSP
MMU such that the correct physical address is read during line-fill
operations. Section 6 describes the DSP MMU.

2) The I-Cache does not automatically maintain coherency. If you write to
a location in program memory, the corresponding line in the I-Cache is
not updated. To regain coherency you must flush the I-Cache as
described in section 4.2.4.2.

4.2.2 Instruction Cache Blocks

4.2.2.1 2-Way Cache

As shown in Figure 6, the 2-way cache has two memory banks. Each memory
bank includes a:

� Data array. Each data array contains 512 lines (0 through 511) that the
I-Cache can fill individually in response to misses in the 2-way cache.

� Line valid (LV) bit array. Each line has a line valid bit. Once a line has been
loaded, its line valid bit is set. Whenever the I-Cache is flushed, all 512 line
valid bits are cleared, invalidating all the lines. For more information on
flushing the I-Cache, see section 4.2.4.2.

Instruction Cache

33DSP SubsystemSPRU890A

� Tag array. Each line has a tag field. When the I-Cache receives a 24-bit
fetch address from the DSP core, the I-Cache interprets bits 23-13 as a
tag. When a line gets filled, the associated tag is stored in the tag field for
that line.

Across the two memory banks, every two lines with the same number belong
to one set. For example, line 0 of memory bank 1 and line 0 of memory bank
2 belong to set 0. When the I-Cache receives a fetch address, the I-Cache
finds the set number in bits 12-4. If the I-Cache must replace one of the lines
in the set, it uses a least-recently used (LRU) algorithm: The line replaced is
the one that has been unused for the longest time. Each set has an LRU bit
that is toggled to indicate which line should be replaced.

Figure 6. 2-Way Cache

DataLVTagLRUTagLVData

Memory bank 1 Memory bank 2

Line 0

Line 1

Line 254

Line 255

Line 510

Line 511

Line 0

Line 1

Line 254

Line 255

Line 510

Line 511

Set 0

Set 1

Set 254

Set 255

Set 510

Set 511

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4.2.2.2 RAM Set Blocks

As shown in Figure 7, RAM set 1 and RAM set 2 each include the following
parts:

� Data array. The data array contains 256 lines (0 through 255).

� Line valid (LV) bit array. Each line has a line valid bit. When a line has been
loaded, its line valid bit is set. Whenever the I-Cache is flushed, all 256 line
valid bits are cleared, invalidating all the lines. For more information on
flushing the I-Cache, see section 4.2.4.2.

Instruction Cache

DSP Subsystem34 SPRU890A

� Tag field. The RAM set has one 12-bit tag field that indicates which range
of DSP external memory addresses are mapped to the RAM set. To select
a tag for RAM set n (1 or 2), write to RAM set tag register n. When you write
to the tag register, the I-Cache immediately fills the RAM set with all the
32-bit words in the address range specified by the tag. As each line is
loaded, the associated line valid bit is set.

� Tag valid (TV) bit. The RAM set has one tag valid bit. Just before filling the
RAM set, the I-Cache clears the tag valid bit. When the filling is complete,
the I-Cache sets the tag valid bit. For RAM set n (1 or 2), the tag valid bit
is reflected in RAM set control register n.

Figure 7. RAM Sets 1 and 2

DataLVTagTV

Line 0

Line 1

Line 254

Line 255

.

.

.

DataLVTagTV

Line 0

Line 1

Line 254

Line 255

.

.

.

RAM set 2RAM set 1

The code that loads the RAM sets cannot be read from DSP external memory
at the same time that the RAM sets are being loaded from memory. Therefore,
place the RAM-set load code in internal memory.

The following pseudo-code example demonstrates the correct way to load the
RAM set blocks.

Instruction Cache

35DSP SubsystemSPRU890A

Address Type Pseudo Instruction
...
Ext Memory DSP code
Ext Memory GCR = #0xce2f ; Select 2−way cache and two RAM sets
Ext Memory NWCR = #0x000f ; Initialize logic for 2−way cache
Ext Memory RCR1 = #0x000f ; Initialize logic for RAM set 1
Ext Memory RCR2 = #0x000f ; Initialize logic for RAM set 2
Ext Memory Set CAEN in ST3_55 ; Turn on I-Cache
Ext Memory Poll ENABLE bit of ISR ; Wait until cache is enabled
Ext Memory goto Load_RAM_sets
...

Load_RAM_sets:
Int Memory RTR1 = #0x0800 ; Update RAM set tag for bank1
Int Memory Poll TAG_VALID in RCR1 ; Wait until line is filled in RAM set 1
Int Memory RTR2 = #0x0801 ; Update RAM set tag for bank2
Int Memory Poll TAG_VALID in RCR2 ; Wait until line is filled in RAM set 2
Int Memory goto Back_from_RAM_set_preload
...

Back_from_RAM_set_preload:
Ext Memory DSP code
Ext Memory DSP code
...

4.2.3 Instruction Cache Operation

When the DSP core requests instructions, it requests 32 bits at a time. With
each request, the DSP core sends a fetch address that indicates where to read
the 32 bit requested word. When a fetch request arrives, the I-Cache performs
an instruction presence check; that is, it determines whether the requested
word is available in the 2-way cache and/or any RAM sets included in the
I-Cache configuration.

Because the 2-way cache and RAM-set architectures are different, the
I-Cache interprets the fetch address differently when searching the 2-way
cache and when searching the RAM set. Section 4.2.3.1 explains the
differences.

Section 4.2.3.2 describes the steps of the instruction presence check and
explains the factors that determine whether the I-Cache fetches the requested
word from a RAM set, from the 2-way cache, or from DSP external memory.
Whenever possible, the I-Cache gets the requested word from a RAM set. If
the requested word is in a RAM set but not in the 2-way cache, the word is
fetched from the RAM set and the 2-way cache is not loaded with that word.

4.2.3.1 How the I-Cache Uses the DSP core Fetch Address

Figure 8 and Table 2 describe how the I-Cache uses the fetch address for the
2-way cache. Figure 9 and Table 3 describe the same for a RAM set.

Instruction Cache

DSP Subsystem36 SPRU890A

Figure 8. Fetch Address Fields for the 2-Way Cache Register

23 13 12 4 3 2 1 0

Tag Index Offset Byte

11 bits 9 bits 2 bits 2 bits

Note: R = Read, W = Write

Table 2. Fetch Address Field Descriptions for the 2-Way Cache Register Field
Descriptions

Bits Field Value Description

23−13 Tag Whenever a line of the 2-way cache is loaded from DSP external memory,
the tag portion of the fetch address is stored with the line (in the tag array).
During an instruction presence check, the I-Cache uses the Index field to find
the addressed set and then compares both tags in the set with the tag portion
of the fetch address.

12−4 Index This 9-bit value references one of the 512 sets of the 2-way cache. As shown
in Figure 6, each set has two lines.

3−2 Offset When the I-Cache must read a 32-bit word from one of the lines of the 2-way
cache, the offset field indicates which of the four 32-bit words in the line
should be read.

1−0 Byte This field is not used by the I-Cache but is the part of the fetch address that
indicates the specific byte being addressed.

Figure 9. Fetch Address Fields for a RAM Set

23 12 11 4 3 2 1 0

Tag Index Offset Byte

12 bits 8 bits 2 bits 2 bits

Note: R = Read, W = Write

Table 3. Fetch Address Field Descriptions for a RAM Set

Bits Field Value Description

23−13 Tag During an instruction presence check, the I-Cache compares the tag portion
of the fetch address with the tag defined in the RAM-set tag register.

11−4 Index This 8-bit value references one of the 256 lines of the RAM set.

3−2 Offset When the I-Cache must read a 32-bit word from one of the lines of the RAM
set, the offset field indicates which of the four 32-bit words in the line should
be read.

1−0 Byte This field is not used by the I-Cache but is the part of the fetch address that
indicates the specific byte being addressed.

Instruction Cache

37DSP SubsystemSPRU890A

4.2.3.2 Instruction Presence Check and Corresponding I-Cache Response

When a fetch request arrives, the I-Cache performs an instruction presence
check to determine whether the 32-bit requested word is available in the
I-Cache. During the instruction presence check, the I-Cache performs two
operations on both the 2-way cache and the RAM sets:

1) Compares the tag portion of the fetch address with the tag in the data array
at the location referenced by the Index portion of the fetch address.

2) Checks the line valid bit at the referenced location to determine whether
the line associated with the tag is valid.

If the tag comparison fails and/or the line valid bit is 0, this qualifies as a miss.
If the instruction presence check finds a tag match and the line valid bit is 1,
this qualifies as a hit. Table 4 summarizes the possible presence check cases
(1 through 6) and the corresponding I-Cache responses. Whenever a line in
the I-Cache must be loaded from DSP external memory (cases 1, 2, and 5),
the I-Cache uses the line load process described in section 4.2.3.3.

Table 4. Instruction Presence Check and I-Cache Response

Case 2-Way Case RAM Sets Presence I-Cache Response

1 Miss Miss
(no tag match)

True 2-way cache line loaded from DSP external memory,
requested 32-bit word delivered to DSP core

2 Miss Miss
but tag match

True RAM set line loaded from DSP external memory,
requested 32-bit word delivered to DSP core

3 Miss Hit True Requested 32-bit word taken directly from RAM set;
2-way cache line not loaded

4 Hit Miss
(no tag match)

True Requested 32-bit word taken directly from 2-way cache

5 Hit Miss
but tag match

True RAM set line loaded from DSP external memory,
requested 32-bit word delivered to DSP core

6 Hit Hit True Requested 32-bit word taken directly from RAM set

Instruction Cache

DSP Subsystem38 SPRU890A

4.2.3.3 Line Load Process

When an instruction presence check results in a fetch from the DSP external
memory, the 4-word DSP external memory block that contains the requested
word is fetched and loaded into a line in the I-Cache. Figure 10 illustrates this
line load process. The I-Cache uses the external memory interface (EMIF) to
fetch the 4-word block. These four 32-bit words are written to the line in the
I-Cache one word at a time. The I-Cache delivers the requested word to the
DSP core as soon as the word arrives in the data array, even if the rest of the
line is still being loaded. When the entire line is loaded in the data array, the
corresponding tag is written to the tag array and the line valid bit is set to
validate the line.

Note:

The DSP external memory address generated by the EMIF is a virtual
address. This virtual address is mapped to a physical address within the
memory space of the OMAP device by the DSP Memory Management Unit
(MMU). Before enabling the I-Cache, you must configure the DSP MMU
such that the correct physical address is read during line fill operations.
Section 6 describes the DSP MMU).

Instruction Cache

39DSP SubsystemSPRU890A

Figure 10. Flow Chart of the Line Load Process

I-Cache must load
2-way cache line
or RAM set line

Command EMIF to read
four 32-bit words from
DSP external memory

Is
word

received
?

No

Write word to line

Yes

it the
requested

word

Is

?

Yes

Deliver word to
I unit of DSP core

load done
?

LineNo

Wait for
next word

No

End

Yes

4.2.4 DSP Core Bits for Controlling the I-Cache

The I-Cache is controlled not only through the I-Cache registers but also
through three bits located in status register ST3_55 of the DSP core. These
bits are highlighted in Figure 11. For more details about ST3_55, see the
TMS320C55x DSP CPU Reference Guide (SPRU371).

Instruction Cache

DSP Subsystem40 SPRU890A

Figure 11. CAFRZ, CAEN, and CACLR Bits in ST3_55

15 14 13 12 11 10 9 8

CAFRZ CAEN CACLR HINT† Reserved‡ HOM_R HOM_P

RW-0 RW-0 RW-0 RW-1 RW-11b RW-x RW-x

7 6 5 4 3 2 1 0

CBERR MPNMC SATA Reserved Reserved CLKOFF§ SMUL SST

RW-0 RW-x RW-0 RW-0 R-0 RW-0 RW-0 RW-0
† This bit is not used in OMAP5910/5912, always keep this bit as 1.
‡ Always write 11b to these bits.
§ This bit must always be kept as 0.

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

4.2.4.1 CAEN to Enable and Disable the I-Cache

To enable the I-Cache, set the cache enable (CAEN) bit of ST3_55. To disable
the I-Cache, clear the CAEN bit. When disabled, the lines of the I-Cache data
arrays are not checked; instead, the I-Cache forwards instruction-fetch
requests directly to the external memory interface (EMIF).

For proper I-Cache operation, configure the I-Cache before enabling it and
disable the I-Cache before making any changes to its configuration. The
procedures for configuring and enabling the I-Cache are in sections 4.3, 4.4,
and 4.5.

A DSP subsystem reset forces CAEN = 0 (I-Cache disabled).

Note:

The DSP external memory address generated by the EMIF is a virtual
address. This virtual address is mapped to a physical address within the
memory space of the OMAP device by the DSP Memory Management Unit.
Before enabling the I-Cache, you must configure the DSP MMU such that the
correct physical address is read during line fill operations. Section 6
describes the DSP MMU).

4.2.4.2 CACLR Bit to Flush the I-Cache

The flush operation is defined as the invalidation of all of the lines in the
I-Cache.

To flush the I-Cache, write 1 to the cache clear (CACLR) bit of ST3_55. In
response, all the line valid bits of the 2-way cache and of the RAM sets are
cleared. In addition, the tag valid bit of each RAM set is cleared. The
CACLR bit remains 1 until the flush process is complete, at which time CACLR
is automatically reset to 0.

A DSP subsystem reset forces CACLR = 0 (no flush in process).

Instruction Cache

41DSP SubsystemSPRU890A

4.2.4.3 CAFRZ Bit to Freeze the Contents of the I-Cache

When you write 1 to the cache freeze (CAFRZ) bit of ST3_55, the contents of
the I-Cache are locked. Instruction words that were cached prior to the freeze
are still accessible in the case of an I-Cache hit, but the data arrays are not
updated in response to an I-Cache miss. To re-enable updates, clear CAFRZ.

A DSP subsystem reset forces CAFRZ = 0 (I-Cache not frozen).

Note:

When the I-Cache is frozen (CAFRZ = 1), each I-Cache miss still causes a
4-word (16-byte) fetch cycle in the EMIF. One of those words is returned to
the DSP core and the rest are discarded. It is recommended that you profile
your code to minimize the number of misses during an I-Cache freeze.

4.2.5 Initialization

Sections 4.3, 4.4, and 4.5 outline the procedures for configuring and enabling
the I-Cache for the three I-Cache configurations:

� 2-way 16KB cache with no RAM set blocks
� 2-way 16KB cache with one 4KB RAM set block
� 2-way 16KB cache with two 4KB RAM set blocks

Section 4.6 describes the I-Cache registers. Section 4.2.4.1 describes the
cache enable (CAEN) bit that is used to enable and disable the I-Cache.

Write to the control registers (GCR, NWCR, RCR1, and RCR2) only when the
I-Cache is disabled (CAEN = 0 in ST3_55).

Write to the RAM-set tag registers (RTR1 and RTR2) only when the I-Cache
is enabled (after making CAEN = 1 in ST3_55, wait for ENABLE = 1 in ISR).

4.2.6 Reset Considerations

After a DSP subsystem reset, the I-Cache is not automatically reconfigured for
use. Make sure that your DSP initialization code configures the I-Cache as
described in sections 4.3, 4.4, and 4.5 after every reset.

4.2.7 Clock Control

The DSP I-Cache is part of the DSP module within the DSP subsystem (see
section 1.2) and is therefore clocked by the DSP subsystem master clock,
DSP_CK. Section 12.2 describes the DSP subsystem master clock.

Instruction Cache

DSP Subsystem42 SPRU890A

4.2.8 Power Management

If you want to temporarily halt the I-Cache to reduce power, you can place its
domain in idle mode:

1) Select the idle mode for the I-Cache domain by making CACHEI = 1 in the
idle configuration register (ICR) of the DSP subsystem. Section 12.3.2.8
describes ICR.

2) Execute the IDLE instruction from the DSP core.

When the I-Cache is in its idle mode or is disabled, instruction-fetch requests
are handled by the external memory interface (EMIF).

To wake the I-Cache from its idle mode:

1) Deselect the idle mode by making CACHEI = 0 in ICR.

2) Execute the IDLE instruction.

4.2.9 Emulation Considerations

The software emulator reads the contents of the I-Cache during the debug
mode. The contents of the I-Cache are not modified by emulator read
operations.

If you set or remove a software breakpoint at an instruction during emulation,
the corresponding line in the I-Cache is automatically invalidated.

4.2.10 Timing Considerations

As the I-Cache fetches and returns 32-bit words requested by the DSP core,
two key time periods affect the speed of the I-Cache: hit time and miss penalty.

4.2.10.1 Hit Time

The hit time is the time required for the I-Cache to deliver the 32-bit requested
word to the DSP core in the case of a hit (when the word is present in the
I-Cache). The hit time is either 1 or 2 DSP core clock cycles:

� An initial request (a request that follows a period of inactivity) has a hit time
of 2 cycles.

� Subsequent requests have a hit time of 1 cycle if:

� The requests are consecutive (no inactivity in between) and
� The requests are to sequential addresses

� Subsequent requests have a hit time of 2 cycles if:

� The requests are not consecutive or
� The requests are to non-sequential addresses

Instruction Cache

43DSP SubsystemSPRU890A

4.2.10.2 Miss Penalty

The miss penalty is the time required for the I-Cache to deliver the 32-bit
requested word to the DSP core in the case of a miss (when the word must be
fetched from DSP external memory). In response to a miss, the I-Cache
requests four words from the external memory interface (EMIF) to load the
appropriate line.

The miss penalty due to an initial request to the EMIF is:

1) Four cycles for the I-Cache to receive the fetch request, detect an I-Cache
miss, and forward the fetch request to the EMIF.

2) X cycles for the EMIF to get the requested word to the I-Cache, where X
depends on factors such as:

a) The access latency introduced by the traffic controller.

b) The position of the requested word in the I-Cache line. For example,
if the requested word is the third word of the line, two words are
fetched before the requested word.

c) Whether the four words are fetched in a burst access (if synchronous
memory is used).

3) Three cycles for the I-Cache to get the requested 32-bit word to the
instruction fetch unit (I unit) of the DSP core.

Subsequent requests can incur a smaller miss penalty if the DSP external
memory is synchronous. After accessing the first word from synchronous
memory, the EMIF can return each of the remaining words in a single cycle.

The I-Cache includes a feature that reduces overall miss penalties. The
I-Cache gives the requested word to the DSP core as soon as it arrives in the
I-Cache line, rather than after the whole line is loaded.

Note:

The DSP external memory address generated by the EMIF is a virtual
address. This virtual address is mapped to a physical address within the
memory space of the OMAP device by the DSP Memory Management Unit
(MMU). Before enabling the I-Cache, you must configure the DSP MMU
such that the correct physical address is read during line fill operations.
section 6 describes the DSP MMU).

Instruction Cache

DSP Subsystem44 SPRU890A

4.3 Configuring the I-Cache With the 2-Way Cache and No RAM Set
Blocks

The instruction cache is used to store recently-used instructions stored in DSP
external memory. The I-Cache automatically fills its 2-way cache with
instructions accesses from DSP external memory, in this manner subsequent
accesses are essentially fetched from internal memory.

This section describes how to configure the I-Cache such that the 16KB 2-way
cache is enabled with no RAM set blocks.

4.3.1 Architectural/Operational Description

When the DSP core fetches an instruction from DSP external memory, the
I-Cache performs an instruction presence check to determine whether the
32-bit requested word is available in the I-Cache. If the instruction is found, the
I-Cache returns the requested instruction to the DSP core; otherwise a DSP
external memory access request is forwarded to the external memory
interface (EMIF). The EMIF passes that request to the DSP Memory
Management Unit (if enabled). After address translation, the DSP MMU places
a request to the traffic controller which accesses shared memory via the
OMAP external memory interfaces (EMIFF and EMIFS).

4.3.2 Software Configuration

Follow this procedure to select the 2-way cache and no RAM sets:

1) Write to the appropriate control registers:

a) Write CA0Fh to GCR to indicate N-way cache is used in a 2-way
configuration and that no RAM sets are needed.

b) Write 000Fh to NWCR to initialize the logic for the 2-way cache.

2) Set the cache enable bit (CAEN) bit of DSP core status register ST3_55
to send an enable request to the I-Cache.

3) Poll the I-Cache-enabled (ENABLE) bit of ISR until ENABLE = 1. (The
I-Cache is not instantaneously enabled.)

4.3.3 System Traffic Considerations

All DSP subsystem accesses to DSP external memory eventually go through
the traffic controller. The access time for a DSP external memory request will
depend on the amount of competing accesses in the traffic controller as well
as the configurations of the OMAP external memory interfaces (EMIFF and
EMIFS).

Instruction Cache

45DSP SubsystemSPRU890A

4.4 Configuring the I-Cache With the 2-Way Cache and One RAM Set

The instruction cache is used to store recently-used instructions in the DSP
external memory. The I-Cache automatically fills its two-way cache with
instruction accesses from DSP external memory, thus, subsequent accesses
are essentially fetched from internal memory. Blocks of instructions can also
be pre-fetched into the RAM set blocks.

This section describes how to configure the I-Cache such that the 16KB
two-way cache is enabled with one 4KB RAM set block.

4.4.1 Architectural/Operational Description

When the DSP core fetches an instruction from DSP external memory, the
I-Cache performs an instruction presence check to determine whether the
32-bit requested word is available in the I-Cache. If the instruction is found, the
I-Cache returns the requested instruction to the DSP core. Otherwise, a DSP
external memory access request is forwarded to the external memory
interface (EMIF). The EMIF passes that request to the DSP Memory
Management Unit (if enabled). After address translation, the DSP MMU places
a request to the traffic controller which accesses shared memory via the
OMAP external memory interfaces (EMIFF and EMIFS).

4.4.2 Software Configuration

Follow this procedure to configure with 2-way cache and one RAM set:

1) Write to the appropriate control registers:
Write CE0Fh to GCR to indicate one RAM set.
Write 000Fh to NWCR to initialize the logic for the 2-way cache.
Write 000Fh to RCR1 to initialize the logic for RAM set 1.

2) Set the cache enable bit (CAEN) bit of DSP core status register ST3_55
to send an enable request to the I-Cache.

3) Poll the I-Cache-enabled (ENABLE) bit of ISR until ENABLE = 1. (The
I-Cache is not instantaneously enabled.)

4) Write the desired tag to RTR1. When you write to the tag register, the tag
is used to immediately fill RAM set 1 from DSP external memory.

While the I-Cache is enabled, you can write to the tag register at any time
to change the RAM-set address range. Each time you load the tag register,
RAM set 1 is immediately filled from the selected address range.

5) To monitor the RAM-set filling, poll the tag-valid bit: When TAG_VALID = 1
in RCR1, the I-Cache has finished filling RAM set 1.

Instruction Cache

DSP Subsystem46 SPRU890A

Note:

The code that loads the RAM sets cannot be read from DSP external
memory at the same time that the RAM sets are being loaded from memory.
Therefore, place the RAM-set load code in memory that is internal to the DSP
subsystem.

4.4.3 System Traffic Considerations

All DSP subsystem accesses to DSP external memory eventually go through
the traffic controller. The access time for a DSP external memory request will
depend on the amount of competing accesses in the traffic controller, as well
as the configurations of the OMAP external memory interfaces (EMIFF and
EMIFS).

4.5 Configuring the I-Cache With the 2-Way Cache and Two RAM Sets

The instruction cache is used to store recently-used instructions stored in DSP
external memory. The I-Cache automatically fills its two-way cache with
instruction accesses from DSP external memory, thus, subsequent accesses
are essentially fetched from internal memory. Blocks of instructions can also
be pre-fetched into the RAM set blocks.

This section describes how to configure the I-Cache such that the 16KB
two-way cache is enabled with two 4KB RAM set blocks.

4.5.1 Architectural/Operational Description

When the DSP core fetches an instruction from DSP external memory, the
I-Cache performs an instruction presence check to determine whether the
32-bit requested word is available in the I-Cache. If the instruction is found, the
I-Cache returns the requested instruction to the DSP core, otherwise a DSP
external memory access request is forwarded to the DSP external memory
interface (EMIF). The EMIF passes that request to the DSP Memory
Management Unit (if enabled). After address translation, the DSP MMU places
a request to the traffic controller, which accesses shared memory via the
OMAP external memory interfaces (EMIFF and EMIFS).

Instruction Cache

47DSP SubsystemSPRU890A

4.5.2 Software Configuration

Follow this procedure to configure with 2-way cache and two RAM sets:

1) Write to the appropriate control registers:
Write CE2Fh to GCR to indicate two RAM sets.
Write 000Fh to NWCR to initialize the logic for the 2-way cache.
Write 000Fh to RCR1 to initialize the logic for RAM set 1.
Write 000Fh to RCR2 to initialize the logic for RAM set 2.

2) Set the cache enable bit (CAEN) bit of DSP core status register ST3_55
to send an enable request to the I-Cache.

3) Poll the I-Cache-enabled (ENABLE) bit of ISR until ENABLE = 1,
indicating that the I-Cache is enabled. (The I-Cache is not instantaneously
enabled.)

4) Write to the RAM set tag registers:

a) Write the desired tag to RTR1. When you write to the tag register, the
tag is used to immediately fill RAM set 1 from DSP external memory.

b) Write the desired tag to RTR2. When you write to the tag register, the
tag is used to immediately fill RAM set 2 from DSP external memory.

While the I-Cache is enabled, you can write to a tag register at any time to
change the address range as necessary. Each time you load a tag register,
the corresponding RAM set is immediately filled from the selected address
range.

5) To monitor the RAM-set filling, poll the tag-valid bits:

a) When TAG_VALID = 1 in RCR1, the I-Cache is done filling RAM set 1.

b) When TAG_VALID = 1 in RCR2, the I-Cache is done filling RAM set 2.

Notes:

1) Do not write the same value to both RAM set tag registers.

2) The code that loads the RAM sets cannot be read from DSP external
memory at the same time that the RAM sets are being loaded from
memory. Therefore, place the RAM-set load code in memory that is
internal to the DSP subsystem.

4.5.3 System Traffic Considerations

All DSP subsystem accesses to DSP external memory eventually go through
the traffic controller. The access time for a DSP external memory request will
depend on the amount of competing accesses in the traffic controller, as well
as the configurations of the OMAP external memory interfaces (EMIFF and
EMIFS).

Instruction Cache

DSP Subsystem48 SPRU890A

4.6 Instruction Cache Registers

4.6.1 Overview

Control of the I-Cache is maintained through a set of registers within the
I-Cache. These registers are accessible only at addresses in the I/O memory
space of the DSP subsystem.

Note:

Not every function documented in these registers is supported on
OMAP5910 and OMAP5912. The functions not supported are listed in the
section describing each register. Sections 4.3, 4.4, and 4.5 detail the steps
needed to correctly configure and initialize the DSP I-Cache in the three
supported modes of operation.

Table 5. Summary of the I-Cache Registers

Name Description
DSP I/O

Address†
See

Section

GCR Global control register. Use this register to select the number of active
RAM sets.

0x1400 4.6.2

FLR0
FLR1

Flush line registers. Use these registers to flush a line from the cache. 0x1401
0x1402

4.6.3

NWCR N-way control register. Use this register to initialize the logic for the
2-way cache.

0x1403 4.6.4

RCR1 RAM set 1 control register. Use this register to initialize the logic for
RAM set 1 and to check the corresponding tag-valid flag.

0x1405 4.6.5

RCR2 RAM set 2 control register. Use this register to initialize the logic for
RAM set 2 and to check the corresponding tag-valid flag.

0x1407 4.6.5

RTR1 RAM set 1 tag register. Use the register to define the 12-bit tag for
RAM set 1.

0x1406 4.6.6

RTR2 RAM set 2 tag register. Use this register to define the 12-bit tag for
RAM set 2.

0x1408 4.6.6

ISR Status register. Use this register to verify that the I-Cache is enabled
before you write to either of the RAM set tag registers.

0x1404 4.6.7

† DSP I/O addresses apply to both OMAP5910 and OMAP5912.

Instruction Cache

49DSP SubsystemSPRU890A

4.6.2 I-Cache Global Control Register (GCR)

Before enabling the I-Cache (by setting CAEN = 1), use the global control
register (GCR) to select from the different cache options.

Note that not all functions described in the GCR are supported on OMAP5912
and OMAP5910. For example, the I-Cache supports the 2-way option for the
N-way cache and zero, one, or two RAM sets. The following bits must be set
as specified:

� CUT_CLOCK = 1

� AUTO_GATING = 1

� FLUSH_LINE = 0; line flushing is not supported, instead the entire cache
must be flushed as a whole.

� GLOBAL_FLUSH = 1; flushing individual portions of the cache is not
supported.

� WAY_NUMR = X1b; only 2-way cache is supported.

� GLOBAL_ENABLE = 1; enabling individual portions of the cache
separately is not supported, instead the entire cache must be enabled as
a whole.

Figure 12. I-Cache Global Control Register (GCR)

15 14 13 12 11 10 9 8

CUT_
CLOCK

AUTO_
GATING

Reserved
FLUSH_

LINE
GLOBAL_

FLUSH

HLFRAM-
SET_

PRESENCE

WAY_
PRESENCE

HLFRAM-
SET_
NUMR

RW-1 RW-1 RW-0 RW-0 RW-0 RW-0 RW-0 RW-00

7 5 4 3 2 1 0

HLFRAMSET_
NUMR

WAY_NUMR
STREAM-

ING
RAM_FILL_

MODE
GLOBAL_
ENABLE

RW-00 RW-00 RW-1 RW-1 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined

Instruction Cache

DSP Subsystem50 SPRU890A

Table 6. I-Cache Global Control Register (GCR) Bits Field Descriptions

Bits Field Value Description

15 CUT_CLOCK This bit determines whether the I-Cache module clock is disabled or
enabled when the I-Cache is disabled.

0 Disabled.

1 Enabled.

14 AUTO_GATING Enables automatic clock gating

0 Disabled.

1 Enabled.

13 Reserved This reserved bit must be kept as 0.

12 FLUSH_LINE Setting this bit flushes the lines specified by the flush line registers.

0 No flush.

1 Flush the specified line. Once the line flush occurs, the flush line bit is
automatically cleared by the I-Cache.

11 GLOBAL_FLUSH Setting the CACLR bit of the DSP core ST3_55 register begins a flush
process within the I-Cache. The N-way cache and the two RAM set
blocks contain a flush bit in their control registers, NWCR and RCR1/2,
respectively. The GLOBAL_FLUSH bit determines whether the local
flush bits are taken into consideration when CACLR is set.

0 The N-way cache and the RAM set blocks are flushed when CACLR
is set only if their local flush bits are set.

1 The entire cache is flushed when CACLR is set; the local flush bits are
ignored.

10 HLFRAMSET_
PRESENCE

This bit is used to enable the RAM set blocks. The number of RAM set
blocks that are enabled is specified through the HLFRAMSET_NUMR
bits.

0 RAM set blocks are disabled.

1 RAM sets blocks are enabled.

9 WAY_PRESENCE This bit is used to enable the N-way cache block. The number of ways
is specified in through the WAY_NUMR bits.

0 N-way cache block is disabled.

1 N-way cache block is enabled.

Instruction Cache

51DSP SubsystemSPRU890A

Table 6. I-Cache Global Control Register (GCR) Bits Field Descriptions (Continued)

Bits DescriptionValueField

8−5 HLFRAMSET_NUMR Specifies the number of RAM set blocks to enable when
HLFRAMSET_PRESENCE is set.

0000b Enable only RAM set block 1.

xxx1b Enable both RAM set block1 and 2.

4−3 WAY_NUMR Sets the number of ways active in the N-way cache block.

x0b Set N-way cache as 1-way (direct-mapped).

x1b Set N-way cache as 2-way (set-associative).

2 STREAMING The principle of streaming is used in order to reduce the miss penalty:
when a read miss occurs, a line load from external memory is started,
and as soon as the requested word of the line arrives, it is sent to the
DSP core. In this manner, the DSP core can continue its execution
before the entire line is loaded. This bit must always be set.

0 Disabled.

1 Enabled. You must always set this bit.

1 RAM_FILL_MODE

0 This bit must always be set.

1 Always set this bit to 1.

0 GLOBAL_ENABLE Setting the CAEN bit of the DSP core ST3_55 register enables the
I-Cache. The N-way cache and the two RAM set blocks contain a local
enable bit in their control registers, NWCR and RCR1/2, respectively.
The GLOBAL_ENABLE bit determines whether the local enable bits
are taken into consideration when CAEN is set.

0 The N-way cache and the RAM set blocks are enabled when CAEN
is set only if their local enable bits are set.

1 The entire cache is enabled when CAEN is set; the local enable bits
are ignored.

4.6.3 I-Cache Line Flush Registers (FLR0, FLR1)

The I-Cache line flush registers are used to specify the address to be flushed
from the cache.

Note:

These registers are not used, as line flushing is not supported on OMAP5910
and OMAP5912.

Instruction Cache

DSP Subsystem52 SPRU890A

Figure 13. I-Cache Line Flush Registers (FLR0, FLR1)

FLR0

15 0

LINE_ADDRS_LOWER

RW-0

FLR1

15 8 7 0

Reserved LINE_ADDRS_UPPER

R-0 RW-0

Note: R = Read, W = Write; −n = Value after reset;, −x = Value after reset is not defined

Table 7. I-Cache Line Flush Register 0 (FLR0) Field Descriptions

Bits Field Value Description

15−0 LINE_ADDRS_LOWER 0000h−
FFFFh

Lower address bits of the line to be flushed.

Table 8. I-Cache Line Flush Register 1 (FLR1) Field Descriptions

Bits Field Value Description

15−8 Reserved These bits are not used.

7−0 LINE_ADDRS_UPPER 00h−
FFh

Upper address bits of the line to be flushed.

4.6.4 I-Cache N-Way Control Register (NWCR)

The N-way control register (NWCR) controls certain features of the N-way
cache. You must configure this register before enabling the I-Cache through
CAEN.

The size of each way in the N-way cache must always be set to 8KB for all
devices.

The local flush and enable capabilities of the N-way cache are not supported
on OMAP5912 and OMAP5910. Always use the following configuration for the
N-way Control Register:

� FLUSH = 1; the N-way cache is always flushed when CACLR is set.

� ENABLE = 1; the N-way cache is always enabled when CACLR is set.

Any other setting for these bits is not supported.

Instruction Cache

53DSP SubsystemSPRU890A

Figure 14. I-Cache N-Way Control Register (NWCR)

15 8

Reserved

R-0

7 5 4 2 1 0

Reserved WAY_SIZE FLUSH ENABLE

R-0 RW-11 RW-0 RW-1

Note: R = Read, W = Write; −n = Value after reset;, −x = Value after reset is not defined

Table 9. I-Cache N-way Control Register (NWCR) Field Descriptions

Bits Field Value Description

15−5 Reserved These bits are not used.

4−2 WAY_SIZE These bits set the size of each way in the N-way cache. The size must
always be set to 8Kbytes.

011b Each way size is set to 8Kbytes.

1 FLUSH This bit determines whether the N-way cache is flushed when the
CACLR bit of the DSP core ST3_55 register is set. These bit is ignored
(N-way cache is always flushed) when GLOBAL_FLUSH is set.

0 The N-way cache is not flushed when CACLR is set.

1 The N-way cache is flushed when the CACLR is set.

0 ENABLE This bit determines whether the N-way cache is enabled when the
CAEN bit of the DSP core ST3_55 register is set. This bit is ignored
(N-way cache is always enabled) when GLOBAL_ENABLE is set.

0 The N-way cache is not enabled when CACLR is set.

1 The N-way cache is enabled when the CACLR is set.

4.6.5 I-Cache RAM Set Control Registers (RCR1 and RCR2)

Each RAM set control register contains two initialization fields and a tag-valid
bit.

� Initialization fields (FLUSH and ENABLE). If you have selected one RAM
set with the global control register, you must initialize the logic for RAM set
1 before you enable the I-Cache. If you have selected two RAM sets with
the global control register, you must also initialize the logic for RAM set 2.
To perform the initialization for each RAM set, write the appropriate value
(000Fh) to its RAM set control register before enabling the I-Cache.

Instruction Cache

DSP Subsystem54 SPRU890A

� Tag-valid bit (TAG_VALID). When the I-Cache completes the process of
filling a RAM set, the I-Cache sets TAG_VALID in that RAM set’s control
register. You can poll this bit to determine when the RAM set is ready.

Note:

On OMAP5910 and OMAP5912, you must always set FLUSH and ENABLE
in RCR1 and RCR2.

Figure 15. I-Cache RAM Set Control Registers (RCR1 and RCR2)

RCR1

15 14 2 1 0

TAG_
VALID

Reserved FLUSH ENABLE

R-0 R-0x3 RW-0 RW-1

RCR2

15 14 2 1 0

TAG_
VALID

Reserved FLUSH ENABLE

R-0 R-0x3 RW-0 RW-1

Note: R = Read, W = Write; −n = Value after reset;, −x = Value after reset is not defined

Instruction Cache

55DSP SubsystemSPRU890A

Table 10. I-Cache RAM Set 1 Control Register (RCR1) and RAM Set 2 Control Register
(RCR2) Field Descriptions

Bits Field Value Description

15 TAG_VALID RAM set tag-valid bit. Check this bit to determine when the I-Cache
has completed the process of filling the RAM set.

0 The fill is not started or is not complete.

1 The fill is complete.

14−2 Reserved These read-only bits are not used.

1 FLUSH This bit determines whether the RAM set is flushed when the CACLR
bit of the DSP core ST3_55 register is set. These bit is ignored (RAM
set is always flushed) when GLOBAL_FLUSH is set.

0 The RAM set is not flushed when CACLR is set.

1 The RAM set is flushed when the CACLR is set.

0 ENABLE This bit determines whether the RAM set is enabled when the CAEN
bit of the DSP core ST3_55 register is set. This bit is ignored (RAM set
is always enabled) when GLOBAL_ENABLE is set.

0 The RAM set is not enabled when CACLR is set.

1 The RAM set is enabled when the CACLR is set.

4.6.6 I-Cache RAM Set Tag Registers (RTR1 and RTR2)

For each active RAM set (selected with the global control register), you must
give the I-Cache a 12-bit tag that defines the range of addresses assigned to
that RAM set. Load the tag into the appropriate RAM set tag register. Write a
value with zeros in bits 15-12 and the tag in bits 11-0.

Note:

Do not set the RTR1 and RTR2 registers to the same value.

Instruction Cache

DSP Subsystem56 SPRU890A

Figure 16. I-Cache RAM Set Tag Registers (RTR1 and RTR2)

RTR1

15 0

R1TAG

RW-0

RTR2

15 0

R2TAG

RW-0

Note: R = Read, W = Write; −n = Value after reset;, −x = Value after reset is not defined

Table 11. I-Cache RAM Set 1 Tag Register (RTR1) Field Descriptions

Bits Field Value Description

15−0 R1TAG 0000h−
0FFFh

RAM set 1 tag bits. Write a value with zeros in bits 15-12 and the tag in bits
11-0. This register is only applicable if you have selected one or two RAM
sets with the global control register.

Table 12. I-Cache RAM Set 2 Tag Register (RTR2) Field Descriptions

Bits Field Value Description

15−0 R2TAG 0000h−
0FFFh

RAM set 2 tag bits. Write a value with zeros in bits 15-12 and the tag in bits
11-0. This register is only applicable if you have selected one or two RAM
sets with the global control register.

Instruction Cache

57DSP SubsystemSPRU890A

4.6.7 I-Cache Status Register (ISR)

The status register contains the ENABLE bit that indicates when the I-Cache
is enabled. When you send an enable request to the I-Cache (CAEN = 1 in the
DSP core status register ST3_55), poll for ENABLE = 1 before writing to either
of the RAM set tag registers.

Figure 17. I-Cache Status Register (ISR)

15 3 2 1 8

Reserved ENABLE Reserved

R-0 R-0 R-0

Note: R = Read, W = Write; −n = Value after reset;, −x = Value after reset is not defined

Table 13. I-Cache Status Register (ISR) Field Descriptions

Bits Field Value Description

15−3 Reserved These read-only bits are not used.

2 ENABLE I-Cache-enabled bit. When you send an enable request to the
I-Cache, poll for ENABLE = 1 before writing to either of the RAM set
tag registers.

0 The I-Cache is disabled.

1 The I-Cache is enabled.

1−0 Reserved These bits are not used.

DSP External Memory Interface

DSP Subsystem58 SPRU890A

5 DSP External Memory Interface

5.1 Overview

The external memory interface (EMIF) gives the DSP core and the DSP DMA
controller access to the shared system memory managed by the traffic
controller. The EMIF interfaces directly to a 32-bit-wide system bus. This bus
can operate at the DSP subsystem clock rate with sustained throughput during
burst accesses.

Note:

Internally, 8-bit data read requests from DSP external memory are converted
to 16-bit data read requests by the EMIF. The appropriate byte is fetched
from this read request and placed in internal memory.

The relationship of the DSP EMIF to other DSP subsystem modules can be
seen from the system block diagrams in section 1.4.

5.2 Peripheral Architecture

5.2.1 Clock Control

The EMIF is clocked by the DSP subsystem clock DSP_CK (see section 12.2
for more details).

5.2.2 Memory Map

The EMIF controls accesses to DSP subsystem external memory. Section 3.4
details the memory map of the DSP subsystem.

5.2.3 DSP External Memory Accesses

Four major steps are taken when the DSP subsystem accesses DSP external
memory.

1) The DSP core or the DSP DMA requests an access to DSP external
memory.

2) The DSP EMIF receives that request and forwards it to the DSP MMU.

DSP External Memory Interface

59DSP SubsystemSPRU890A

3) The MMU checks its translation look-aside buffer (TLB, section 6.2.2) for
a match on the virtual address tag. If there is a TLB hit and the correct
access permissions for the type of access (read or write) are found, the
MMU translates the virtual address from the EMIF into a physical address
and forwards the request to the traffic controller with the appropriate
endianess conversion.

If the virtual address tag is not found, the MMU uses its table walking logic
to fetch the translation from translation tables and updates the TLB. If
correct access permissions are found, the MMU carries out the
virtual-to-physical address translation and forwards the request to the
traffic controller. If the correct access permissions are not found, MMU
generates an interrupt to the MPU core and stalls the DSP EMIF until the
error is cleared. When the MPU core clears this error, the DSP MMU
repeats this entire step.

4) The traffic controller accesses the actual OMAP resource.

Figure 18 shows the major blocks involved during an access to DSP external
memory by the DSP subsystem.

Figure 18. DSP Subsystem External Memory Connections

DMA

DSP core
data buses

DSP core
program buses

DSP MMU

Endianess
conversion

Access
checking

Addr.

Data

DSP subsystem

IMIF
Internal
SRAM

Flash

SDRAM

EMIFS

EMIFF

Requestors

Traffic
controllerE

M
IF

Resources

Address
conversion

Addr.

Data

OMAP device

DSP External Memory Interface

DSP Subsystem60 SPRU890A

5.2.4 EMIF Requests

The EMIF services the requests shown in Table 14. If multiple requests arrive
simultaneously, the EMIF prioritizes them as shown in the Priority column.

Table 14. EMIF Requests and Their Priorities

EMIF Requester Priority Description

E bus 1 (highest) A write request from the E bus of the DSP core.

F bus 2 A write request from the F bus of the DSP core.

D bus 3 A read request from the D bus of the DSP core.

C bus 4 A read request from the C bus of the DSP core.

P bus 5 An instruction fetch request from the DSP core or instruction cache.
In the core, instructions are received on the P bus.

DMA controller 6 A write or read request from the DSP DMA controller.

As shown in Table 15, there is a subtle difference between dual data accesses
and long data accesses requested by the DSP core. The following two
instructions are examples of these access types:

ADD *AR0, *AR1, AC0 ; Dual data access. Two separate
 ; 16−bit values referenced by
 ; pointers AR0 and AR1.
ADD dbl(*AR2), AC1 ; Long data access. One 32−bit
 ; value referenced by pointer AR2.

Both access types require two 16-bit data buses in the DSP core, but they
require different numbers of EMIF requests. A dual data access involves two
separate 16-bit values and, therefore, requires two EMIF requests. A long data
access involves a single 32-bit value and, therefore, a single EMIF request.
This EMIF request corresponds to the address bus used. For example, if a long
data read is performed, the DAB address bus is used, and the EMIF receives
a D-bus request.

DSP External Memory Interface

61DSP SubsystemSPRU890A

Table 15. EMIF Requests Associated with Dual and Long Data Accesses

Access Type
DSP Core Data
Buses Used

DSP Core Address
Bus(es) Used Request(s) Sent To EMIF

Dual data read CB and DB
(carrying two 16-bit values)

CAB and DAB C-bus request to read 16 bits
D-bus request to read 16 bits

Dual data write EB and FB
(carrying two 16-bit values)

EAB and FAB E-bus request to write 16 bits
F-bus request to write 16 bits

Long data read CB and DB
(carrying one 32-bit value)

DAB D-bus request to read 32 bits

Long data write EB and FB
(carrying one 32-bit value)

EAB E-bus request to write 32 bits

5.2.5 Write Posting: Buffering Write to DSP External Memory

Typically, when a DSP core write request arrives at the EMIF, the EMIF does
not send acknowledgment to the DSP core until the EMIF has driven the data
on the external bus. As a result, the DSP core does not begin the next
operation until the data is actually sent to the DSP external memory.

If write posting is enabled, the EMIF acknowledges the DSP core as soon as
the EMIF receives the address and data. The address and data are stored in
dedicated write posting registers in the EMIF. When a time slot becomes
available, the EMIF runs the posted write operation. If the next DSP core
access is not for the EMIF and is for internal memory, that access is able to run
concurrently with the posted write operation.

The EMIF supports two levels of write posting. That is, the write posting
registers can hold data and addresses for up to two DSP core accesses at a
time. The EMIF allocates the write posting registers on a first requested, first
served basis. However, if the E bus and the F bus make requests
simultaneously, the E bus is given priority.

To enable write posting for all accesses to DSP external memory, set the WPE
bit in the EMIF global control register. It might be useful to disable write posting
(WPE = 0) during debugging.

There are no write posting registers for requests from the DMA controller.
However, the EMIF sends acknowledgement to the DSP DMA controller prior
to the actual write to DSP external memory. This early acknowledgement
allows the DMA controller to transfer the next address early, avoiding dead
cycles during burst transfers or between back-to-back single transfers.

DSP External Memory Interface

DSP Subsystem62 SPRU890A

5.2.6 Reset Considerations

The EMIF registers can be reset by hardware and software resets. Section 5.3
details the contents of the EMIF configuration registers after reset.

5.2.6.1 Effect of Hardware Reset

The EMIF configuration registers are always reset by an OMAP hardware
reset. Section 12.1 describes OMAP hardware resets.

5.2.6.2 Effect of Software Reset

The DSP_RST bit of the ARM_RSTCT1 register controls whether the priority
registers of the TIPB module, the EMIF configuration registers, and the MPUI
control logic (partially) in the DSP subsystem are reset when the DSP_EN bit
(also in ARM_RSTCT1) is cleared. See your device-specific data manual for
more information on ARM_RSTCT1. Clearing the DSP_EN bit always resets
the DSP subsystem. When DSP_RST = 0, clearing the DSP_EN bit resets the
DSP subsystem and also the priority registers, the EMIF configuration
registers, and the MPUI control logic. If DSP_RST = 1, the registers are not
reset.

The DSP_RST bit of the ARM_RST1 register must be set before the DSP
subsystem is taken out of reset.

5.2.7 Power Management

If you want to temporarily turn off the clock to the EMIF module to reduce
power, you can place its domain in idle mode:

1) Select the idle mode for the EMIF domain by making EMIFI = 1 in the idle
configuration register (ICR) of the DSP subsystem (see section 12.3.2.8).

2) Execute the IDLE instruction in the DSP core.

External memory requests should not be made when the EMIF is in its idle
mode.

To wake the EMIF from its idle mode:

1) Deselect the idle mode by making EMIFI = 0 in ICR.

2) Execute the IDLE instruction.

DSP External Memory Interface

63DSP SubsystemSPRU890A

5.3 EMIF Registers

5.3.1 Overview

Control of the EMIF is maintained through a set of registers within the EMIF.
These registers are accessible only at addresses in the I/O memory space of
the DSP subsystem.

Table 16. Summary of the EMIF Registers

Name Description
DSP I/O

Address†
See

Section

GCR Global control register. Use this register to enable or disable
write-posting.

0x0800 5.3.2

GRR Global reset register. Use this register to reset the EMIF state
machine.

0x0801 5.3.3

† DSP I/O addresses apply to both OMAP5910 and OMAP5912.

5.3.2 EMIF Global Control Register (GCR)

The EMIF Global Control Register is used to enable or disable write-posting.

Figure 19. EMIF Global Control Register (GCR)

15 12 11 8

Reserved Reserved

R-0 RW-0

7 6 5 4 1 0

WPE Reserved Reserved Reserved

RW-0 RW-0 R-0 RW-0

Note: R = Read, W = Write; −n = Value after reset;, −x = Value after reset is not defined

DSP External Memory Interface

DSP Subsystem64 SPRU890A

Table 17. EMIF Global Control Register (GCR) Field Descriptions

Bits Field Value Description

15−8 Reserved These bits are not used. Writable bits should be kept as 0 during writes
to this register.

7 WPE Write posting enable bit. Use WPE to enable or disable the write
posting feature of the EMIF. WPE affects all accesses to DSP external
memory.

0 Disabled.

1 Enabled.

6−0 Reserved These bits are not used. Writable bits should be kept as 0 during writes
to this register.

5.3.3 EMIF Global Reset Register (GRR)

The EMIF Global Reset Register is used to reset the EMIF state machine.

Figure 20. EMIF Global Reset Register (GRR)

15 8

EMIFRST

W-x

Note: R = Read, W = Write; −n = Value after reset;, −x = Value after reset is not defined

Table 18. EMIF Global Reset Register (GRR) Field Descriptions

Bits Field Value Description

15−0 EMIFRST Any write to this register resets the EMIF state machine.

DSP Memory Management Unit

65DSP SubsystemSPRU890A

6 DSP Memory Management Unit

6.1 Overview

DSP core and DSP DMA accesses to DSP external memory are handled by
the DSP external memory interface (EMIF) in conjunction with the DSP
Memory Management Unit (MMU). The DSP MMU maps external memory
requests to the OMAP physical address space. The MMU also provides fault
and permission checking, and performs endianess conversion. It is configured
by the MPU core. Section 10 describes MMU endianess.

6.1.1 Purpose of the MMU

The use of an MMU offers two major benefits:

� Memory defragmentation: Fragmented physical memory can be
translated into continuous virtual memory without moving any data.

� Task protection: Illegal, non-allowed accesses to memory locations can be
detected and prevented.

Figure 21 and Figure 22 illustrate the benefits of using an MMU.

Figure 21. Memory Defragmentation

Virtual memory Physical memory

Memory region 1 Memory region 1

Memory region 2
Memory region 2

In Figure 21, memory region 1 and memory region 2 are fragmented in
physical memory. Using the MMU, they can be translated to appear as one
contiguous memory region in the virtual memory space.

DSP Memory Management Unit

DSP Subsystem66 SPRU890A

Figure 22. Task Protection

Virtual memory Physical memory

Task 1
Task 1

Task 2

Task 2

Error

In Figure 22, task 1 and task 2 are located adjacent in physical memory. In
systems without an MMU, there is a danger that task 1 will accidentally write
into the memory area allocated to task 2, and vice versa. Using an MMU,
unmapped memory regions can be placed between tasks. Therefore, the
MMU can easily detect any erroneous accesses to unmapped memory
regions in the virtual address space.

6.1.2 Features

The DSP MMU in OMAP5910 and OMAP5912 devices includes the following
features:

� A translation look-aside buffer (TLB), which stores recently-used
translations. The TLB acts like a cache of recently read translation table
entries. Translations can also be manually written to the TLB by the MPU
core.

� Table walking logic, which automatically retrieves a translation from a set
of translation tables and updates the TLB.

DSP Memory Management Unit

67DSP SubsystemSPRU890A

6.1.3 Functional Block Diagram

Figure 23 shows the role of the DSP MMU within the DSP subsystem memory
structure.

Figure 23. DSP Subsystem Memory Interface

DMA

DSP core
data buses

DSP core
program buses

DSP MMU

Endianess
conversion

Access
checking

Addr.

Data

DSP subsystem

IMIF
Internal
SRAM

Flash

SDRAM

EMIFS

EMIFF

Requestors

Traffic
controllerE

M
IF

Resources

Address
conversion

Addr.

Data

OMAP device

6.1.4 Supported Usage of the DSP MMU

There are two ways to use the MMU:

� The contents of the TLB can be written manually by the MPU core.

Using this approach does not require any translation tables. However, the
MPU core has to update the TLB when no valid address translation is
found (TLB miss).

� The MMU table walking logic can be enabled to automatically update the
TLB by reading a structure of translation tables.

The translation table structure has to be set up by the MPU core before the
MMU is enabled. However, no action from the MPU core is required on a
TLB miss.

You can also combine these two options. For instance, the MPU core can set
up time-critical translations in the TLB and other non-time-critical address
translations in translation tables, which the table walking logic reads later. The
DSP MMU can also be disabled, in which case all DSP subsystem external
memory requests would be mapped to the first 16M-bytes of OMAP system
memory (CS0).

Sections 6.3 and section 6.4 give more detail on using one of these two
supported usage options.

DSP Memory Management Unit

DSP Subsystem68 SPRU890A

6.2 MMU Architecture

6.2.1 Summary of Address Translation Process

As shown in Figure 24, the MMU translates virtual addresses generated by the
DSP EMIF to physical addresses. These physical addresses are used to
access the actual OMAP resource.

Figure 24. MMU Address Translation

DSP external memory
space (virtual memory)

OMAP memory space
(physical memory)

MMU
address translation

P
hy

si
ca

l a
dd

re
ss

es

V
irt

ua
l a

dd
re

ss
es

Whenever an address translation is requested (that is, for every memory
access with the DSP MMU enabled), the DSP MMU checks first to see whether
the TLB contains the requested translation. The TLB acts like a cache, storing
recent translations.

If the translation is contained in the TLB and the access permissions are correct,
the corresponding physical address is calculated and the memory request is
forwarded to the traffic controller. If the memory request lacks the correct access
permissions, the MMU generates a fault interrupt to the MPU core.

When the requested translation is not in the TLB, the table walking logic (if
enabled) retrieves the translation by reading a set of translation tables. If the table
walking logic is disabled, the MMU generates a fault interrupt to the MPU core.

When the table walking logic finds a valid translation, it updates the TLB and,
if the access permissions are correct, the corresponding physical address is
calculated and the memory request is sent to the traffic controller. If the request
does not have the correct permissions, or if no valid translation is found in the
translation tables, then the MMU generates a fault interrupt to the MPU core.

Figure 25 summarizes the entire DSP MMU translation process.

DSP Memory Management Unit

69DSP SubsystemSPRU890A

Figure 25. MMU Translation Process

Translation request

Translation
in TLB

?

Yes

(Hit)

No
(Miss)

Retrieve
translation

Send memory
request to

traffic
controller

Access
permissions

correct
?

Update
TLB

Yes

No

valid
Descriptors

?

Yes

Table
walking
enabled

?

Read
translation
tables and

retrieve
descriptor

Yes

Translation
fault

No No

Permission
fault

6.2.2 Translation Look-Aside Buffer (TLB)

To increase the virtual-to-physical address translation process speed, a cache
mechanism (the TLB) is introduced to store the results of recent translations.

For every translation request, the MMU internal logic checks first whether this
translation already exists in the TLB. If the translation is in the TLB (a TLB hit),
then this translation is used. If the address translation is not in the TLB (a TLB
miss), the table walking logic (described in section 6.2.3) retrieves the address
translation from the translation tables and updates the TLB. If the table walking
logic is disabled, a translation fault is generated and the MPU core is
interrupted.

Entries in the TLB are replaced, or evicted, by the table walking logic when the
TLB is full. The table walking logic selects the entry to be replaced at random.

DSP Memory Management Unit

DSP Subsystem70 SPRU890A

Entries in the TLB can be protected, or locked, against being overwritten if
necessary. A maximum of 31 of the 32 TLB entries can be user-written and
protected. One entry must always remain unprotected for use by the table
walking logic. Section 6.2.2.4 describes the locking process, while section
6.2.2.2 describes the process for writing entries into the TLB.

When time-critical program routines are used, it is preferable to avoid the
performance impact of retrieving the translations via table walking logic by
locking TLB entries.

The MPU core can manually write address translations to the TLB.
Alternatively, table walking logic can be used to automatically carry out the
address translation (using the translation tables) and update the TLB.

The TLB entries can be read to determine the currently buffered translations
(section 6.2.2.5). Unused translations can be deleted (section 6.2.2.6).

6.2.2.1 TLB Entry Format

TLB entries consist of two parts:

� CAM. Contains a virtual address tag used to locate the translation in the
TLB. The TLB acts as a fully associative cache addressed by the virtual
address tag. The CAM part also contains the memory block size (section,
large page, small page, or tiny page) and the preserved and valid flags.

� RAM. Contains the address translation that belongs to the virtual address
tag. It also contains the access permissions (no access, read-only access,
and full access).

The TLB entry structure is shown in Figure 26.

Figure 26. TLB Entry Structure

P

Virtual address tags
(14 bits)

31

0 = Not preserved 0 = Not valid 00 = Section
1 = Preserved 1 = Valid 01 = Large page

10 = Small page
11 = Tiny page

Virtual address tag 31

Preserved bits
(1 bit)

V

Valid bits
(1 bit)

S

Size bits
(2 bits)

Physical address tags
(22 bits)

Physical address tag 31 AP

Access
permission
bits (2 bits)

PVirtual address tag 30 V S Physical address tag 30 AP30

P V AP

P V AP

P2 Virtual address tag 2 V S Physical address tag 2 AP

PVirtual address tag 1 V S Physical address tag 1 AP1

P V AP

P V AP

PVirtual address tag 0 V S Physical address tag 0 AP0 P V AP

0X = No access
10 = Read only
 access
11 = Full access

CAM part RAM part

...

DSP Memory Management Unit

71DSP SubsystemSPRU890A

The virtual address tag is a 14-bit field derived from the virtual address of the
memory request being processed. Not all the bits in the virtual address tag are
needed for translation. Instead, the size of the memory block described by the
entry determines the number of bits used. For example, only bits 13:10 of the
virtual address tag are used for a section. When writing entries to the TLB,
unused bits in the virtual address tags must always be kept as zeros. The read
value of unused bits is not predictable. Figure 27 shows how to determine the
virtual address tag from the DSP virtual address. Note that a section
corresponds to 1 Mbytes of memory, a large page corresponds to 64 Kbytes
of memory, a small page corresponds to 4 Kbytes of memory, and a tiny page
corresponds to 1 Kbyte of memory.

Figure 27. Determining Virtual Address Tags for TLB CAM Entries

091013
Section base address

DSP virtual address

23 1920

Page index

0

0 Virtual address tag

06 513
Large page base address

DSP virtual address

23 15

Page index

0

Virtual address tag

Section

Large page

02 113

Small page base address DSP virtual address

23 11

Page index

0

Virtual address tag

Small page
12

Small page base address

013

Tiny page base address DSP virtual address

23 9

Page index

0

Virtual address tag

Tiny page
10

Tiny page base address

16

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0

The valid parameter of the TLB entry value specifies whether an entry is valid.
The table walking logic can overwrite non-valid entries. The table walking logic
first attempts to fill all non-protected, non-valid entries before replacing valid
entries.

DSP Memory Management Unit

DSP Subsystem72 SPRU890A

The preserved parameter of the TLB entry value determines the behavior of
an entry in the event of a TLB flush. If an entry is preserved, it is not deleted
upon a TLB global flush. Section 6.2.2.6 describes the TLB flushing
mechanism.

The size bits determine the range of memory addresses to which the TLB entry
corresponds. All addresses that fall within the same range will have the same
section or base address. For example, external memory addresses between
virtual address 0x10 0000 − 0x1F FFFF will have the same section base
address (0x1).

The physical address tag of the RAM value is a 22-bit field which is used in the
virtual-to-physical address translation, as described in section 6.2.2.2. The
physical address tag is derived from the physical address corresponding to the
virtual address. Note that, like the virtual address tag, not all the bits in the
physical address tag are used. When writing RAM entries to the TLB, unused
bits in the physical address tags must always be kept as zeros. Figure 28
shows how to determine the physical address tag from the physical address.

The access permission bits of the RAM value define the type of access that
is permitted to the physical memory range described by the TLB entry. The
memory range is specified by the physical address tag and the size bits. A
forbidden access to the physical memory will cause the MMU to generate a
permission fault and an interrupt to the MPU core.

DSP Memory Management Unit

73DSP SubsystemSPRU890A

Figure 28. Determining Physical Address Tags for TLB RAM Entries

091021

Section base address Physical
address

31 1920

Page index

0

0 Physical
address
tag

Physical
address

Physical
address
tag

Section

Physical
address

Physical
address
tag

Section base address

05621

Large page base address

31 1516

Page index

0
Large page

Large page base address

0121

Small page base address

31 1112

Page index

0
Small page

Small page base address

Physical
address

Physical
address
tag

21

Tiny page base address

31 910

Page index

0
Tiny page

Tiny page base address

2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0

6.2.2.2 TLB Address Translation Process

When an external memory request is generated by the DSP EMIF, the DSP
MMU first checks the contents of the TLB to determine whether a
corresponding address translation is present. To determine if the address
translation is in the TLB, the MMU performs these steps:

1) Generates a virtual address tag by taking the 14 most-significant address
bits of the virtual address (bits 23:10).

2) Compares the virtual address tag to the tags contained in valid TLB entries

Note that although the number of bits needed for an address translation
depends on the size of the memory block described by the entry, the entire
contents of the virtual address tags are compared. Therefore, as
described in section 6.2.2.1, it is important to keep unneeded bits as zero
when writing entries in the TLB.

DSP Memory Management Unit

DSP Subsystem74 SPRU890A

3) Reads the corresponding physical address tag from the TLB entry.

4) Checks the access permission bits.

5) Generates a corresponding physical address by using the physical
address tag and the page index (taken from the virtual address).

The number of physical address tags and virtual address bits used in this
step depends on the size field of the TLB entry. Figure 29 through
Figure 32 illustrate how a physical address is generated from the physical
address tag and the page index.

If the access permission bits do not allow the type of access being requested,
the MMU generates a permission fault and interrupts the MPU core. An
interrupt is also generated if no matching virtual address tag is found and the
table walking logic is disabled (translation fault).

Figure 29. Physical Address Generation Using TLB Entry with Size = 00b (Section)

0 0 0 0 0 0 0 0 0 0

0

Section base address

91021

0192023

Page index

0192031

Section base address Page index

Physical address

DSP virtual address

Physical address tag

DSP Memory Management Unit

75DSP SubsystemSPRU890A

Figure 30. Physical Address Generation Using TLB Entry with Size = 01b (Large Page)

0 0 0 0 0 0

0

Large page base address

5621

01523

Page index

0151631

Page index

Physical address

DSP virtual address

Physical address tag

Large page base address

Large page base address

16

Figure 31. Physical Address Generation Using TLB Entry with Size = 10b (Small Page)

0 0

0

Small page base address

221

0111223

Page index

0111231

Small page base address Page index

Physical address

DSP virtual address

Physical address tag

Small page base address

1

DSP Memory Management Unit

DSP Subsystem76 SPRU890A

Figure 32. Physical Address Generation Using TLB Entry with Size = 11b (Tiny Page)

0

Tiny page base address

21

091023

Page index

091031

Tiny page base address Page index

Physical address

DSP virtual address

Physical address tag

Tiny page base address

6.2.2.3 Writing Entries to the TLB

Four registers (CAM_H_REG, CAM_L_REG, RAM_H_REG, and
RAM_L_REG) are used to store the CAM and RAM parts of a TLB entry that
will be written.

The CAM registers hold the virtual address tag, that is, the 14 most significant
bits of the virtual address. Additionally, they contain some status bits that
define whether to preserve the entry upon a TLB global flush operation,
whether the entry is valid or contains only random uninitialized content, and
the size of the memory block (section, large, small, or tiny page) described by
this entry.

The RAM registers hold the physical address tag, that is, the 22 most
significant bits of the physical address. Additionally, they define the access
permissions of the memory region.

A victim pointer identifies the next entry to be written. The same victim pointer
can be used to select an entry to be read. The victim pointer is controlled
through the Lock/Protect Entry Register (LOCK_REG). The Lock/Protect
Entry Register can only be modified by the MPU core when the table walking
logic is disabled.

To write an entry to the TLB, follow these steps:

1) Disable the table walking logic by clearing the TWL_EN bit in the Control
Register (CNTL_REG).

2) Determine CAM and RAM parameters and write them into the CAM and
RAM registers (CAM_H_REG, CAM_L_REG, RAM_H_REG, and
RAM_L_REG).

DSP Memory Management Unit

77DSP SubsystemSPRU890A

3) Select the TLB entry to be written by setting the victim pointer through the
Lock/Protect Entry Register (LOCK_REG). For example, to update entry
0 in the TLB, write 0 to the victim pointer field of LOCK_REG.

4) Set the WRITE_ENTRY bit in the Read/Write TLB Entry Register
(LD_TLB_REG).

5) Enable the table walking logic by setting the TWL_EN bit in the Control
Register (CNTL_REG). This step can be omitted if the table walking logic
is not used.

Section 6.5 gives detailed descriptions of all TLB control registers.

6.2.2.4 Protecting TLB Entries

The first n TLB entries (with n < 32) can be protected, or locked, against being
overwritten with new translations retrieved by the table walking logic. This is
done by setting the TLB base pointer to n (see Figure 33). The remaining
entries are overwritten, if necessary, on a random basis. The victim pointer
indicates the next TLB entry to be read/written.

Figure 33. TLB Entry Lock Mechanism

TLB

Entry 31

Entry 3
Entry 2
Entry 1
Entry 0

Victim pointer = 30

Base pointer = 3

Entries 3...31 can be
overwritten

Entries 0,1, and 2 are
locked

Locking TLB entries ensures that certain commonly used or time-critical
translations are always in the TLB and do not have to be retrieved via the table
walking process.

To protect the first n TLB entries, follow these steps:

1) Disable the table walking logic by clearing the TWL_EN bit in the Control
Register (CNTL_REG).

2) Set the base pointer field in the Lock/Protect Entry Register (LOCK_REG)
to n, and set the current victim pointer (also in the Lock/Protect Entry
Register) to a value equal to or greater than n. For example, to protect

DSP Memory Management Unit

DSP Subsystem78 SPRU890A

entries 0 through 10 of the TLB, write 11 to the base pointer field and load
the victim pointer field with a value from 11 to 31.

3) Enable the table walking logic by setting the TWL_EN bit in the Control
Register (CNTL_REG).

Locking entries in the TLB does not protect against a TLB global flush
operation. Therefore, when locking entries in the TLB, it is recommended that
all locked entries be written with their preserved bit set. Section 6.2.2.2
describes the process for writing entries into the TLB.

6.2.2.5 Reading TLB Entries

Entries in the TLB can be read by using the victim pointer to specify the entry
number. The entry is read via the CAM/RAM read registers
(READ_CAM_H_REG, READ_CAM_L_REG, READ_RAM_H_REG, and
READ_RAM_L_REG).

To read an entry from the TLB, follow these steps:

1) Disable the table walking logic by clearing the TWL_EN bit in the Control
Register (CNTL_REG).

2) Select the TLB entry to be read by setting the victim pointer through the
Lock/Protect Entry Register (LOCK_REG). For example, to read entry 0,
write 0 to the victim pointer field in the Lock/Protect Register.

3) Set the read TLB-entry bit in the Read/Write TLB Entry Register
(LD_TLB_REG).

4) Read the CAM and RAM parameters from the CAM and RAM read registers
(READ_CAM_H_REG, READ_CAM_L_REG, READ_RAM_H_REG, and
READ_RAM_L_REG).

5) Enable the table walking logic by setting the TWL_EN bit in the Control
Register (CNTL_REG). This step can be skipped if the table walking logic
is not being used.

Section 6.5 summarizes the relevant TLB control registers.

6.2.2.6 Deleting TLB Entries

Two mechanisms exist to delete (flush) TLB entries. Invoking a TLB global
flush deletes all unpreserved TLB entries (TLB entries that were written with
the preserved bit as zero). The flush is invoked by setting the global flush bit
in the TLB Global Flush Register (GFLUSH_REG).

An individual TLB entry can be flushed, regardless of its preserved bit setting,
by selecting it using the victim pointer (LOCK_REG) and setting the flush entry

DSP Memory Management Unit

79DSP SubsystemSPRU890A

bit in the Flush Entry Register (FLUSH_ENTRY_REG). The valid and
preserved bits of the TLB entry are cleared when the flush command is
completed.

To flush individual entries from the TLB, follow these steps:

1) Disable the table walking logic by clearing the TWL_EN bit in the Control
Register (CNTL_REG).

2) Select the TLB entry to be flushed by setting the victim pointer through the
Lock/Protect Entry Register (LOCK_REG). For example, to flush entry 0,
write 0 to the victim pointer field in the Lock/Protect Register.

3) Set the flush entry bit in the Flush Entry Register (FLUSH_ENTRY_REG).

4) Enable the table walking logic by setting the TWL_EN bit in the Control
Register (CNTL_REG). This step can be skipped if the table walking logic
is not being used.

6.2.3 Table Walking Logic

When an address translation is not present in the TLB (a TLB miss), the table
walking logic automatically carries out the address translation using the
translation tables and then updates the TLB. Figure 34 is a flow diagram of the
steps taken by the table walking logic to translate a virtual address to a physical
address using the translation tables. Details on each step can be found in the
indicated sections.

DSP Memory Management Unit

DSP Subsystem80 SPRU890A

Figure 34. Physical Address Calculation

Address
calculator

Section index

calculator
Address

Section view of
DSP virtual address

Physical address

23 20 19 0

Section
translation

?

Yes

2nd level translation
table base address

calculator
Address Descriptor

2nd level table

calculator
Address

2nd level
descriptor
address

Large/
small/tiny

page
base

address

Physical address

23 20 19

Page view of DSP
virtual addressPage index

0

1st level
table index

2nd level
table index

1st level
table index

Large/small/tiny
page index

1st level
descriptor

address

1st level translation
table base address
(TTB_HREG, TTB_LREG)

Section base
address

Descriptor

1st level table

n† m‡

No

† The value of n depends on the type of table being accessed (see sections 6.2.6.5 and 6.2.6.6).
‡ The value of m depends on the type of page being accessed (see sections 6.2.6.2 through 6.2.6.4).

DSP Memory Management Unit

81DSP SubsystemSPRU890A

The table walking logic starts an address translation by accessing a descriptor
from a first-level translation table (section 6.2.5). To determine the address of
the descriptor, add a first-level table index (taken from the virtual address) and
the base address of the first-level translation table (taken from the translation
table base registers TTB_MSB_REG and TTB_LSB_REG). The first-level
translation table divides the DSP memory space into 16 1MB-sections.

The contents of the first-level descriptor determine whether the section to
which the virtual address corresponds is further divided into pages or if the
section is directly linked to a physical memory section. In the latter case, the
descriptor provides a section base address which is joined to a section index
(taken from the virtual address) to generate a physical address.

When a section is further divided into pages, the first-level descriptor provides
a base address for a second-level translation table (section 6.2.6). A
descriptor is accessed from the second-level translation table to determine the
page base address corresponding to the virtual address. Determine the base
address of the descriptor by adding a second-level table index (taken from the
virtual address) and the second-level translation table base address. Finally,
the physical address is determined by adding a page base address provided
by the descriptor and a page index taken from the virtual address.

After an address translation has been carried out, the table walking logic
updates the selected TLB entry with the translation result. The victim pointer
selects this TLB entry, then selects the next unlocked entry to be replaced.

The table walking logic is enabled through the Control Register (CNTL_REG).
If the table walking logic is not enabled, an interrupt will be generated to the
MPU core on every TLB miss, see section 6.2.7 for more details.

Note:

When the table walking logic is enabled, the TLB cannot be manually
updated; you should not write to the LD_TLB_REG, TTB_H_REG,
TTB_L_REG, and LOCK_REG.

The DSP core can force the table walking logic to perform an address
translation pre-fetch before the occurrence of a TLB miss. For this, a pre-fetch
register is visible in DSP I/O memory space. The DSP initiates a pre-fetch by
writing the DSP virtual address tag to the pre-fetch register.

Note:

The table walking logic must be enabled to carry out the pre-fetch request.

DSP Memory Management Unit

DSP Subsystem82 SPRU890A

6.2.4 Memory Address Translation

The table walking logic carries out address translations by accessing a
first-level translation table and (if necessary) multiple second-level translation
tables. Each translation table is made up of descriptors containing the
information needed to map a range of virtual memory addresses to a
corresponding range of physical memory addresses.

Figure 35 shows a sample translation table hierarchy.

Figure 35. Sample Translation Table Hierarchy

First-level translation table

Virtual address Translation result

Second-level translation table

Translation resultPage

Section

The first-level translation table divides the DSP virtual address space (16MB)
into 16 sections (1MB per section). It contains first-level descriptors, each of
which can specify one of two types of information:

� The translation information for a virtual memory section.

The descriptor provides the base address for the 1MB physical memory
section assigned to that virtual memory section. The table entry also
specifies all access permission information.

� A pointer to a second-level translation table.

Second-level translation tables are used when a translation granularity
smaller than the size of one section is desired.

DSP Memory Management Unit

83DSP SubsystemSPRU890A

Two types of second-level tables can be used:

� Coarse page tables with 256 entries.

Each entry in a coarse page table contains a descriptor which describes
the translation information for either a large page (64KB) or a small page
(4KB) of memory.

Notice that 256 small pages is the equivalent of a section, yet 256 large
pages is the equivalent of 16 sections. As described in section 6.2.6.5, the
descriptor must be copied 16 times in the course page table when using a
descriptor to map a large page.

� Fine page tables with 1024 entries.

Each entry in a fine page table contains a descriptor which contains the
translation information for either a large page (64KB), a small page (4KB),
or a tiny page (1KB) of memory.

As for coarse page tables, descriptors used to map large pages must be
copied 64 times in the fine page table and descriptors used to map small
pages must be copied 16 times. This requirement is described in section
6.2.6.6.

One of the most important parameters in developing a table-based address
translation scheme is the memory page size, that is, the size of the memory
region described by each translation table entry. Using large pages results in
a smaller translation table, whereas using small pages greatly increases the
efficiency of dynamic memory allocation and defragmentation. However, this
small size also implies more complex (and larger) translation tables.

Sections 6.2.5 and 6.2.6 describe the structure of the first- and second-level
translation tables, as well as the descriptors format.

6.2.5 First-Level Translation Table

The first-level translation table describes the translation properties of the DSP
subsystem virtual address space by dividing it into 1M-byte sections. Sixteen
sections are needed to encompass the entire 16M-byte virtual address space.
The translation table contains sixteen entries, each of which carries a four-byte
first-level descriptor.

Figure 36 shows the virtual address space of the DSP subsystem divided into
sections and their relationship to the entries in the first-level translation table.

Virtual memory address range 0x00 0000 through 0x02 8000 corresponds to
the DSP subsystem internal memory; therefore, section 0 is not a full 1MB. The
DSP MMU only controls the mapping of addresses considered external to the
DSP subsystem.

DSP Memory Management Unit

DSP Subsystem84 SPRU890A

If MPNMC in ST3_55 is 0, the virtual memory address range 0xFF 8000
through 0xFF FFFF will be mapped to the DSP subsystem internal PDROM.
Conversely, if MPNMC = 1, the internal PDROM will be disabled and the
addresses will be mapped to external memory. The DSP MMU only controls
the mapping of these addresses when MPNMC = 1.

Figure 36. DSP Subsystem Virtual Address Space Divided Into Sections

DSP subsystem
virtual memory

Byte address

Corresponding
translation table

entry

Entry 0
0x00 0000

Section 0

Entry 1
0x10 0000

Section 1

Entry 2
0x20 0000

Section 2

0x30 0000

Entry 13
0xD0 0000

Section 13

Entry 14
0xE0 0000

Section 14

Entry 15
0xF0 0000

Section 15
0xFF FFFF

...

The following restrictions apply when using a first-level translation table:

� A total of 64-bytes (four bytes per descriptor) of memory must be allocated
for the table.

� The start address of the translation table must be aligned to a 128-byte
boundary; that is, the least significant seven address bits of the 32-bit start
address must be zeros.

DSP Memory Management Unit

85DSP SubsystemSPRU890A

The 25 most-significant bits of the first-level translation table start address are
called the translation table base. The translation table base is set by writing
to the MMU Translation Table Registers (TTB_H_REG and TTB_L_REG). The
four most-significant bits of the DSP virtual address are called the table index.
The translation table base and the table index are used to calculate the
address of the first-level descriptor (see Figure 37).

Figure 37. First-Level Descriptor Address Calculation

0

06731

Translation table base Translation table
base address

06731

Translation table base
First-level
descriptor
address

5 12

23 1920

Section indexDSP virtual
address

0

First-level
table index

0 0 0 0 0 0

0 00 0

Notice that first-level descriptors have 32-bit addresses; consequently, they
are aligned on 4-byte boundaries and the two least-significant bits of their
addresses are zeros.

Once the descriptor address is known, the descriptor contents can be decoded
to determine the translation information for the section. The next section
describes the information contained in the descriptor.

6.2.5.1 First-Level Descriptor

Each first-level descriptor provides either the complete address translation for
a section or a pointer to a second-level translation table. The descriptor can
also indicate that a fault error must be generated if the section in virtual
memory is accessed.

The least-significant two bits of the descriptor contents determine the type of
information contained in the descriptor. Figure 38 shows how the contents of
the first-level descriptor are interpreted based on the two least-significant bits.
Table 19 further explains the meaning of each combination.

DSP Memory Management Unit

DSP Subsystem86 SPRU890A

Figure 38. First-Level Descriptor Format Based on Two Least-Significant Bits

AP

Course page table base address

01231
X

Fault

01231
Pointer to course page table

0

X
10 9

Section base address

01231
Pointer to section in physical memory

X
1011

X
20 19

Fine page table base address

01231
Pointer to fine page table

X
12 11

Legend: AP = Access Permissions: 00 or 01 = no access, 10 = read only, 11 = full access; X = don’t care

9

0

0 1

1 0

1 1

Table 19. First−Level Descriptor Contents

Least-Significant
Two Bits of Des-
criptor Contents

Descriptor Contents Meaning

00b Any access to this section in virtual memory will generate a fault error. As described in
section 6.2.7, the fault error must be addressed by the MPU core. Until the error is
cleared, the DSP EMIF will be stalled, therefore stalling the original requestor (either
the DSP core or DMA).

01b The descriptor contains the base address for a coarse page table. The coarse page
table base address is used in conjunction with a second-level table index to determine
the address of a second−level descriptor. The second-level descriptor provides the
translation information for either a large page or a small page. Section 6.2.6.5 de-
scribes coarse page tables.

10b The descriptor contains the base address for a section in physical memory. The section
base address and the section index (bits 19−0 of the virtual address) are used
determine the physical memory address. Section 6.2.5.2 describes this process.

11b The descriptor contains the base address for a fine page table. The fine page table
base address is used in conjunction with a second-level table index to determine the
address of a second-level descriptor. The second-level descriptor provides the
translation information for a large page, a small page, or a tiny page. Section 6.2.6.6
describes fine page tables.

DSP Memory Management Unit

87DSP SubsystemSPRU890A

6.2.5.2 Translating Sections

When the first-level descriptor contains a pointer to a section in physical
memory, the section base address contained in the descriptor is used to
calculate the physical memory address for the original DSP virtual address
(Figure 39).

Figure 39. Translation for a Virtual Memory Section

APSection base address 01

01231

X
1011

X
20 19

31

First-level descriptor contents

20 19

Legend: AP = Access Permissions: 00 or 01 = no access, 10 = read only, 11 = full access; X = don’t care

Section base address

23
1st level
table index

0
Section index

0
Section index

DSP virtual address

Physical memory address

20 19

912

Once the physical address is known, the data is accessed from physical
memory, assuming the AP bits provide the correct access permissions.

6.2.6 Second-Level Translation Tables

First-level descriptors can provide a pointer to the base address of a
second-level translation table. Second-level translation tables are used when
a granularity smaller than a section is required.

There are two types of second-level translation tables:

� Coarse page tables with 256 entries.

Descriptors for large and small pages can be used with coarse page
tables.

� Fine page tables with 1024 entries.

Descriptors for large, small, and tiny pages can be used with fine page
tables.

The type of second-level translation table used depends on the system
requirements. Fine page tables provide a finer granularity, plus they support
all three page sizes; however, they require more space in memory. Coarse
page tables require less space; however, they do not support tiny pages.

DSP Memory Management Unit

DSP Subsystem88 SPRU890A

Both types of page tables contain second-level descriptors which provide the
translation information for a large page, a small page, or a tiny page. Note that
the format of the second-level descriptor is the same regardless of the type of
second-level page table in which it is used. The type of the page table,
however, determines the total number of descriptors needed.

6.2.6.1 Second-Level Descriptors

Second-level descriptors provide all the necessary information for the
translation of a large, small, or tiny page. The descriptor can also indicate that
a fault error must be generated if the page is accessed in virtual memory,
similar to first-level section descriptors.

As with first-level descriptors, the least-significant two bits of the second-level
descriptor contents determine the type of information contained in the
descriptor. Figure 40 shows how the contents of the second-level descriptor
are interpreted based on the two least-significant bits. Table 20 further
explains the meaning of each combination.

Figure 40. Second-Level Descriptor Format Based on Two Least-Significant Bits

AP

Large page base address

01231
X

Fault

10

01231
Pointer to large page

00

X
16 15

Small page base address 01
01231

Pointer to small page

X
12 11

X

Tiny page base address 11

01231
Pointer to tiny page

X
10 9

Legend: AP = Access Permissions: 00 or 01 = no access, 10 = read only, 11 = full access; X = don’t care

3

AP

456
X

3456

AP X
3456

DSP Memory Management Unit

89DSP SubsystemSPRU890A

Table 20. First−Level Descriptor Contents

Least-Significant
Two Bits of Des-
criptor Contents

Descriptor Contents Meaning

00b Any access to the page in virtual memory corresponding to this descriptor will generate
a fault. As described in section 6.2.7, the fault error must be addressed by the MPU
core. Until the error is cleared, the DSP EMIF will be stalled, therefore stalling the
original requestor (either the DSP core or DMA).

01b The descriptor contains the base address for a large page. Section 6.2.6.2 describes
the translation process for a large page.

10b The descriptor contains the base address for a small page. Section 6.2.6.3 describes
the translation process for a small page.

11b The descriptor provides the base address of a tiny page (fine page tables only).
Section 6.2.6.3 describes the translation process for a tiny page.

6.2.6.2 Translating Large Pages

Figure 41 describes how the contents of a large page descriptor are used to
calculate the physical address of the DSP virtual address.

Figure 41. Translation for a Large Page

3
XLarge page base address 0 1

01231 4
X

31

Second-level descriptor contents

15

Legend: AP = Access Permissions: 00 or 01 = no access, 10 = read only, 11 = full access; X = don’t care
Large page base address

23 0
Page index

0
Page index

DSP virtual address

Physical address
16 15

AP
6 516 15

X

16

DSP Memory Management Unit

DSP Subsystem90 SPRU890A

6.2.6.3 Translating Small Pages

Figure 42 describes how the contents of a small page descriptor are used to
calculate the physical address of the DSP virtual address.

Figure 42. Translation for a Small Page

3
XSmall page base address 1 0

01231 4
X

31

Second-level descriptor contents

11

Legend: AP = Access Permissions: 00 or 01 = no access, 10 = read only, 11 = full access; X = don’t care
Small page base address

23 0
Page index

0
Page index

DSP virtual address

Physical address
12 11

AP
6 512 11

X
12

6.2.6.4 Translating Tiny Pages

Figure 43 describes how the contents of a tiny page descriptor are used to
calculate the physical address of the DSP virtual address.

Figure 43. Translation for a Tiny Page

3
XTiny page base address 1 1

01231 4
X

31

Second-level descriptor contents

9

Legend: AP = Access Permissions: 00 or 01 = no access, 10 = read only, 11 = full access; X = don’t care
Tiny page base address

23 0
Page index

0
Page index

DSP virtual address

Physical address
10 9

AP
6 510 9

X

10

DSP Memory Management Unit

91DSP SubsystemSPRU890A

6.2.6.5 Coarse Page Tables

Coarse page tables can be used to map large and small pages of virtual
memory to physical memory. Each coarse table must contain 256 entries.

Follow these rules when using coarse page tables:

� The start address of a coarse page table must be aligned on a 1024-byte
boundary; that is, the last 10 bits of its start address must be zeros.

� A descriptor for a large page must be repeated sixteen times. The
repeated descriptor must start at an entry number that is a multiple of
sixteen. As described in section 6.2.2, only one entry is required in the TLB
to translate a large page.

� Descriptors for tiny pages cannot be used.

The address of the second-level descriptor is determined by using the course
page table base address (contained in the first-level descriptor) and a
second-level table index. The second-level table index is taken from the DSP
virtual address.

Figure 44 describes how to generate the descriptor address for coarse page
tables.

Figure 44. Calculating the Descriptor Address in a Coarse Page Table

XCourse page table base address 0 1

01231

X

31

First-level descriptor contents

11

Legend: AP = Access Permissions: 00 or 01 = no access, 10 = read only, 11 = full access; X = don’t care
Page table base address

23 0

0

DSP virtual address

Second-level descriptor address

10 9

20 19

10 9

X

12

0 0
12

2nd level table index

2nd level table index

Notice that the MMU indexes the coarse table as if the entries were specifying
small pages. That is, it always selects 1 of 256 entries. However, the MMU
uses 16 bits from the second-level descriptor as a base address for a large
page and 20 bits for a small page (see Figure 41 and Figure 42, respectively).
This behavior means that when large pages are used, the descriptor for a large
page must be repeated sixteen times in the coarse page table.

DSP Memory Management Unit

DSP Subsystem92 SPRU890A

As described in section 6.2.2, the TLB can be used to bypass the translation
tables. Using this approach, only one TLB entry is required to translate a large
page.

6.2.6.6 Fine Page Tables

Fine page tables can be used to map large, small, and tiny pages of virtual
memory to physical memory. The added granularity comes at a cost, because
each fine page table must contain 1024 entries.

Follow these rules when using fine page tables:

� The start address of fine tables must be aligned on a 4096-byte boundary;
that is, the last 12 bits of its start address must be zeros.

� A descriptor for a large page must be repeated 64 times. The repeated
descriptor must start at an entry number that is a multiple of 64. As
described in section 6.2.2, only one entry is required in the TLB to translate
a large page.

� A descriptor for a small page must be repeated four times. The repeated
descriptor must start at an entry number that is a multiple of four. As
described in section 6.2.2, only one entry is required in the TLB to translate
a small page.

The address of the second-level descriptor is determined by using the fine
page table base address (contained in the first-level descriptor) and a
second-level table index. The second-level table index is taken from the DSP
virtual address.

Figure 45 describes how the descriptor address is generated for fine page
tables.

Figure 45. Calculating the Descriptor Address in a Fine Page Table

XFine page table base address 1 1

01231

X

31

First-level descriptor contents

Legend: AP = Access Permissions: 00 or 01 = no access, 10 = read only, 11 = full access; X = don’t care
Fine page table base address

23 0

0

DSP virtual address

Second-level descriptor address

12 11

20 19 10 9

X

12

0 0
12

2nd level table index

2nd level table index

11

DSP Memory Management Unit

93DSP SubsystemSPRU890A

Notice that the MMU indexes the coarse table as if the entries were specifying
tiny pages. That is, it always selects 1 of 1024 entries. However, the MMU uses
16 bits from the second−level descriptor as a base address for a large page
and 22 bits for a tiny page (see Figure 41 and Figure 43, respectively). This
behavior means that when large pages are used, the descriptor for a large
page must be repeated 64 times in the coarse page table. For similar reasons,
a descriptor for a small page must be repeated 16 times in the coarse page
table.

As described in section 6.2.2, the TLB can be used to bypass the translation
tables. Using this approach, only one TLB entry is required to translate a large
page or a small page.

6.2.7 MMU Error Handling

The following types of faults can occur in the address translation process:

� Pre-fetch error.

An error occurred during an address-translation pre-fetch request from
the DSP core. The error may have occurred due to a TLB miss or a
translation fault as described below.

� TLB miss (table walker disabled).

No translation is found in the TLB for the virtual address issued. The
hardware table walker is disabled, and hence the translation cannot be
retrieved from the translation table(s).

� Translation fault (table walker enabled).

No translation is found for the virtual address required (TLB miss). The
table walker is enabled, but no valid page table entry exists for the given
virtual address.

� Permission fault.

The section/page access permissions do not match the access type.

When a fault occurs, an interrupt is signaled to the MPU core. The interrupt
service routine (ISR) is then responsible for fault recovery. For example, for a
TLB miss, the ISR might load the missing entry from a page table.

The ISR can determine the cause of the interrupt by reading the fault status
register (FAULT_ST_REG). The virtual address that caused the fault can be
determined by reading the fault address registers (FAULT_AD_H_REG and
FAULT_AD_L_REG).

DSP Memory Management Unit

DSP Subsystem94 SPRU890A

Note:

The DSP EMIF will be stalled, thus stalling the original requestor (either the
DSP core or DMA), while the error is cleared by the MPU core.

The ISR can service each error as follows:

� For a pre-fetch or translation fault, the ISR must write a valid entry to the
TLB and acknowledge the interrupt through the interrupt acknowledge
register (IT_ACK_REG). The translation table(s) can also be updated
such that the error is not generated again if the TLB entry is evicted or
flushed.

� For a TLB miss, the ISR must write a valid entry to the TLB and
acknowledge the interrupt through the interrupt acknowledge register
(IT_ACK_REG).

� For a permission fault, the MPU core must write a valid entry to the TLB
to allow for the requested access type and then acknowledge the interrupt
through the interrupt acknowledge register (IT_ACK_REG). The
translation table(s) can also be updated such that the error is not
generated again if the TLB entry is evicted or flushed.

The ISR may also reset the DSP subsystem in response to any MMU interrupt.

6.2.8 Reset Considerations

6.2.8.1 Software Reset Considerations

A software reset of the DSP MMU can be initiated by setting the MMU_RESET
bit in the CNTL_REG register of the MMU. After a software reset, the
preserved and valid bits of all the entries in the TLB are cleared. The victim and
base pointers are not affected by a software reset. Also, the table walking logic
does not become disabled after a software reset.

6.2.8.2 Hardware Reset Considerations

After a hardware reset (section 12.1), the MMU is disabled and the DSP
external memory space is mapped to the first 16M bytes of system memory.
Also, the MMU does not perform any permission checks on DSP external
memory accesses. All MMU registers return to their default state as indicated
in section 6.5.

DSP Memory Management Unit

95DSP SubsystemSPRU890A

6.2.9 Clock Control

The DSP MMU module is clocked by the DSPMMU_CK included in the DSP
clock domain. The DSP domain clock can be divided by 1, 2, 4, or 8 to generate
the MMU clock by using the DSPMMUDIV bits of the ARM_CKCTL register.
By default, the DSPMMUDIV bits are set to divide-by-one mode.
DSPMMU_CK can be shut off by setting the GL_PDE bit of the
DSPMMU_IDLE_CTRL register (section 6.5.17).

Note:

The DSP MMU clock must follow these rules:

� The DSP MMU clock frequency must be greater than or equal to the
traffic controller clock frequency.

� The DSP MMU clock frequency must be 1 or 1/2 times the DSP
subsystem clock frequency.

6.2.10 Initialization

The DSP MMU clock must be configured as described in section 6.2.9 before
programming the DSP MMU.

Preferably, the DSP MMU should be configured before the DSP core is taken
out of reset. Note that the LD_TLB_REG, TTB_H_REG, TTB_L_REG, and the
LOCK_REG registers cannot be written to once the table walking logic has
been enabled (TWL_EN = 1 in CNTL_REG).

6.2.11 Interrupt Support

6.2.11.1 Interrupt Events and Requests

The DSP MMU generates a single interrupt to the MPU core in response to a
translation error. The ISR then determines the cause of the interrupt by reading
the fault status register (FAULT_ST_REG). The ISR may take one of two
actions to clear the interrupt from the MMU:

� The ISR may clear the error condition as described in section 6.2.7.

� The ISR may reset the DSP subsystem through the DSP_EN bit of the
MPU-Reset-Control-1 Register (ARM_RSTCT1) and reset the DSP MMU
through the MMU_RESET bit of the control register (CNTL_REG).

6.2.11.2 Interrupt Multiplexing

The DSP MMU interrupt is managed by the MPU level 2 interrupt handler.
Before the MPU core can see the DSP MMU interrupt, DSP_MMU_IRQ
(IRQ_28) must be enabled and configured as a level-sensitive interrupt. More
information on the MPU level 2 interrupt handler can be found in the
OMAP5912 Multimedia Processor Interrupts Reference Guide (SPRU757).

DSP Memory Management Unit

DSP Subsystem96 SPRU890A

6.2.12 Power Management

The clock to the DSP MMU can be shut off to save power. The GL_PDE bit of
the DSPMMU_IDLE_CTRL register can be set to completely shut off the clock
to the DSP MMU. Alternatively, the AUTOGATING_EN bit can be set such that
the clock to the DSP MMU is only shut off when DSP MMU is not active.

6.3 Using the MPU to Manage the TLB

The DSP MMU generates a physical address for every virtual address
generated by the DSP external memory interface (EMIF) by using
address-translation information stored in its TLB. The DSP MMU includes
table walking logic, which automatically fetches the address-translation
information from a set of translation tables and updates the TLB. As an
alternative to using the table walking logic, the MPU core can be used to write
entries to the TLB. No translation tables are needed when using this approach.

6.3.1 Architectural/Operational Description

Four major steps are taken when the DSP subsystem accesses DSP external
memory.

1) The DSP core or the DSP DMA requests an access to DSP external
memory.

2) The DSP EMIF receives that request and forwards it to the DSP MMU.

3) The MMU checks its TLB for a match on the virtual address tag. If there
is a TLB hit and the correct access permissions for the type of access (read
or write) are present, the MMU translates the virtual address from the
EMIF into a physical address and forwards the request to the traffic
controller with the appropriate endianess conversion. If the virtual address
tag is not found or if incorrect access permissions are present, the MMU
generates an interrupt to the MPU core and stalls the DSP EMIF until the
error is cleared. When the MPU core clears this error, the DSP MMU
repeats this entire step.

4) The traffic controller accesses the actual OMAP resource.

Figure 46 shows the major blocks involved during an access to DSP external
memory.

DSP Memory Management Unit

97DSP SubsystemSPRU890A

Figure 46. DSP Subsystem External Memory Interface

DMA

DSP core
data buses

DSP core
program buses

DSP MMU

Endianess
conversion

Access
checking

Addr.

Data

DSP subsystem

IMIF
Internal
SRAM

Flash

SDRAM

EMIFS

EMIFF

Requestors

Traffic
controllerE

M
IF

Resources

Address
conversion

Addr.

Data

OMAP device

6.3.2 Software Configuration

The DSP MMU is initialized by the MPU core. To prevent a DSP access to DSP
external memory while the MMU is disabled, it is recommended that the MMU
be initialized and enabled before the DSP subsystem is taken out of reset.

The MPU core must follow these steps to initialize and enable the DSP MMU:

1) Configure and enable the DSP MMU clock:

a) The MMU clock is derived from the CK_GEN2 clock domain. The
DSPMMUDIV bits of the ARM_CKCTL register are used to divide the
CK_GEN2 clock by 1, 2, 4, or 8. The MMU clock has specific
restrictions. See section 6.2.9 for more details.

2) Take the DSP MMU out of reset by setting the MMU_RESET of the
CNTL_REG.

3) Write entries to the TLB.

a) Determine CAM and RAM parameters and write them into the CAM
and RAM registers (CAM_H_REG, CAM_L_REG, RAM_H_REG,
and RAM_L_REG). See section 6.2.2.1 for information on CAM and
RAM values.

b) Select the TLB entry to be written by setting the victim pointer through
the Lock/Protect Entry Register (LOCK_REG). For example, to
update entry 0 in the TLB, write 0 to the victim pointer field of
LOCK_REG.

c) Set the WRITE_ENTRY bit in the Read/Write TLB Entry Register
(LD_TLB_REG).

d) Repeat these steps for every entry that is to be written to the TLB.

DSP Memory Management Unit

DSP Subsystem98 SPRU890A

4) Configure the MPU level 2 interrupt handler such that DSP MMU interrupts
are enabled and can be serviced by the MPU core. More information on
the MPU level 2 interrupt handler can be found in the OMAP5912
Multimedia Processor Interrupts Reference Guide (SPRU757).

5) Enable the DSP MMU by setting the MMU_EN bit in CNTL_REG.

6) Take the DSP subsystem out of reset by setting the DSP_EN bit in the
MPU-Reset-Control-1 Register (ARM_RSTCT1).

6.3.3 System Traffic Considerations

All DSP subsystem accesses to DSP external memory eventually go through
the traffic controller. The access time for a DSP external memory request will
depend on the amount of competing accesses in the traffic controller, as well
as the configurations of the OMAP external memory interfaces (EMIFF and
EMIFS).

6.4 Using Table Walking Logic to Manage the TLB

The DSP MMU generates a physical address for every virtual address
generated by the DSP external memory interface (EMIF) by using
address-translation information stored in its TLB. The DSP MMU includes table
walking logic, which automatically fetches the address-translation information
from a set of translation tables and updates the TLB. This section describes the
steps needed to set up the table walking logic to manage the TLB.

6.4.1 Architectural/Operational Description

Four major steps are taken when the DSP subsystem accesses DSP external
memory.

1) The DSP core or the DSP DMA requests an access to DSP external
memory.

2) The DSP EMIF receives that request and forwards it to the DSP MMU.

DSP Memory Management Unit

99DSP SubsystemSPRU890A

3) The MMU checks its TLB for a match on the virtual address tag. If there
is a TLB hit and the correct access permissions for the type of access (read
or write) are found, the MMU translates the virtual address from the EMIF
into a physical address and forwards the request to the traffic controller
with the appropriate endianess conversion.

Otherwise, if the virtual address tag is not found, the MMU uses its table
walking logic to fetch the translation from translation tables and updates
the TLB. If correct access permissions are found, the MMU carries out the
virtual-to-physical address translation and forwards the request to the
traffic controller. If the correct access permissions are not found, MMU
generates an interrupt to the MPU core and stalls the DSP EMIF until the
error is cleared. When the MPU core clears this error, the DSP MMU
repeats this entire step.

4) The traffic controller accesses the actual OMAP resource.

Figure 47 shows the major blocks involved during an access to DSP external
memory by the DSP subsystem.

Figure 47. DSP Subsystem External Memory Interface

DMA

DSP core
data buses

DSP core
program buses

DSP MMU

Endianess
conversion

Access
checking

Addr.

Data

DSP subsystem

IMIF
Internal
SRAM

Flash

SDRAM

EMIFS

EMIFF

Requestors

Traffic
controllerE

M
IF

Resources

Address
conversion

Addr.

Data

OMAP device

6.4.2 Software Configuration

The DSP MMU is initialized by the MPU core. To prevent a DSP access to DSP
external memory while the MMU is disabled, it is recommended that the MMU
be initialized and enabled before the DSP subsystem is taken out of reset.

DSP Memory Management Unit

DSP Subsystem100 SPRU890A

The MPU core must follow these steps to initialize and enable the DSP MMU:

1) Set up the translation tables.

The translation tables can be placed anywhere in shared memory (CS0,
CS1, etc.). Depending on the table structure selected, one or more tables
may be needed.

See sections 6.2.5 and 6.2.6 for more information on first- and
second-level translation tables.

2) Configure and enable the DSP MMU clock.

The MMU clock is derived from the CK_GEN2 clock domain. The
DSPMMUDIV bits of the ARM_CKCTL register are used to divide the
CK_GEN2 clock by 1, 2, 4, or 8.

The MMU clock has specific restrictions, see section 6.2.9 for more
details.

3) Take the DSP MMU out of reset by setting the MMU_RESET of the
CNTL_REG.

4) Write the first-level translation table base address to the Translation Table
Registers (TTB_H_REG and TTB_L_REG).

The table base address corresponds to the 25 most-significant bits of the
32-bit shared memory address of the first-level translation table.

5) Configure the MPU level 2 interrupt handler such that DSP MMU interrupts
are enabled and can be serviced by the MPU core. More information on
the MPU level 2 interrupt handler can be found in the OMAP5912
Multimedia Processor Interrupts Reference Guide (SPRU757).

6) Enable the DSP MMU and the table walking logic by setting both the
MMU_EN bit and the TWL_EN bit in CNTL_REG.

7) Take the DSP subsystem out of reset by setting the DSP_EN bit in the
MPU-Reset-Control-1 Register (ARM_RSTCT1).

Notice that TLB entries can also be written to the TLB before the MMU is
enabled. In this case, make sure to set the base pointer such that the entries
written to the TLB are protected from eviction by the table walking logic (see
section 6.2.2.4 for more details).

6.4.3 System Traffic Considerations

All DSP subsystem accesses to DSP external memory eventually go through the
traffic controller. The access time for a DSP external memory request will depend
on the amount of competing accesses in the traffic controller, as well as the
configurations of the OMAP external memory interfaces (EMIFF and EMIFS).

DSP Memory Management Unit

101DSP SubsystemSPRU890A

6.5 DSP MMU Registers

6.5.1 Overview

The DSP MMU is programmed by the MPU core via a set of configuration
registers. Table 21 shows these registers, their access types, and their
addresses.

Table 21. Summary of DSP MMU Registers

Name Description
MPU Byte
Address†

See
Section

PREFETCH_REG‡ Pre-fetch register. An entry for the TLB can be
pre-fetched by writing a virtual address tag into this
register.

0xFFFE D200 6.5.2

WALKING_ST_REG Pre-fetch status register. Use this register to determine
if the table walking logic is performing an address
translation or if a pre-fetch operation has completed.

0xFFFE D204 6.5.3

CNTL_REG Control register. Use this register to enable the MMU
and the table walking logic, and to reset the MMU.

0xFFFE D208 6.5.4

FAULT_AD_H_REG
FAULT_AD_L_REG

Fault address registers. These registers display the
virtual address of an access which caused an MMU
error.

0xFFFE D20C
0xFFFE D210

6.5.5

FAULT_ST_REG Fault status register. When an MMU error is generated,
use this register to determine the cause of the error.

0xFFFE D214 6.5.6

IT_ACK_REG Interrupt acknowledge register. Use this register to
notify the MMU that an error has been corrected.

0xFFFE D218 6.5.7

TTB_H_REG
TTB_L_REG

TTB registers. Use these registers to specify the
first-level translation table base address.

0xFFFE D21C
0xFFFE D220

6.5.8

LOCK_REG Lock/protect entry. Use this register to set the base
pointer and the victim pointer of the TLB.

0xFFFE D224 6.5.9

LD_TLB_REG Read/write TLB entry. Use this register to start a TLB
entry read or TLB entry write operation.

0xFFFE D228 6.5.10

CAM_H_REG
CAM_L_REG

CAM entry registers. Use these registers to specify the
CAM value to be written to the entry pointed to by the
victim pointer.

0xFFFE D22C
0xFFFE D230

6.5.11

RAM_H_REG
RAM_L_REG

RAM entry registers. Use these registers to specify the
RAM value to be written to the entry pointed to by the
victim pointer.

0xFFFE D234
0xFFFE D238

6.5.12

† MPU byte addresses apply to both OMAP5910 and OMAP5912.
‡ This register is accessible by the DSP core at I/O address 0x4400.

DSP Memory Management Unit

DSP Subsystem102 SPRU890A

Table 21. Summary of DSP MMU Registers (Continued)

Name
See

Section
MPU Byte
Address†Description

GFLUSH_REG Global flush register. Use this bit to flush all
non-preserved entries from the TLB.

0xFFFE D23C 6.5.13

FLUSH_ENTRY_REG Individual flush register. Use this register to flush a
single entry from the TLB.

0xFFFE D240 6.5.14

READ_CAM_H_REG
READ_CAM_L_REG

Read CAM registers. When reading from the TLB, the
CAM value is retrieved from these registers.

0xFFFE D244
0xFFFE D248

6.5.15

READ_RAM_H_REG
READ_RAM_L_REG

Read RAM registers. When reading from the TLB, the
RAM value is retrieved from these registers.

0xFFFE D24C
0xFFFE D250

6.5.16

DSPMMU_IDLE_CTRL MMU Idle Control register. Use this register to control
the power-down capabilities of the DSP MMU.

0xFFFE D254 6.5.17

† MPU byte addresses apply to both OMAP5910 and OMAP5912.
‡ This register is accessible by the DSP core at I/O address 0x4400.

6.5.2 MMU Pre-Fetch Register (PREFETCH_REG)

The table walking logic automatically fetches an entry for the TLB when a TLB
miss is generated. The DSP core can force the table walking logic to pre-fetch
an entry for the TLB by writing a virtual address tag to the PREFETCH_REG.
Note that the virtual address tag corresponds to the 14 most-significant bits of
a virtual address.

The status of the pre-fetch operation is shown in the PREFETCH_ON bit of the
WALKING_ST_REG.

This register is visible from both the DSP side and the MPU side; however, on
the DSP side this register is write-only; and on the MPU side this register is
read-only.

DSP Memory Management Unit

103DSP SubsystemSPRU890A

Figure 48. MMU Pre-Fetch Register (PREFETCH_REG)

DSP Side

16 14 13 0

Reserved PREFETCH_ADDR

R-0 W-0

MPU Side

31 14 13 0

Reserved PREFETCH_ADDR

R-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 22. MMU Pre-Fetch Register (PREFETCH_REG) Field Descriptions

Bits Field Value Description

31−14 Reserved These bits are not used.

13−0 PREFETCH_ADDR Virtual address tag of the TLB entry to be pre-fetched.

6.5.3 MMU Pre-Fetch Status Register (WALKING_ST_REG)

Use the WALKING_ST_REG to determine when the table walking logic has
completed a TLB-entry pre-fetch operation. This register can also be used to
determine when the table walking logic is busy handling a miss in the TLB.

Figure 49. MMU Pre-Fetch Status Register (WALKING_ST_REG)

31 2 1 0

Reserved
WALK_

WORKING
PREFETCH_

ON

R-0 R-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Memory Management Unit

DSP Subsystem104 SPRU890A

Table 23. MMU Pre-Fetch Status Register (WALKING_ST_REG) Field Descriptions

Bits Field Value Description

31−2 Reserved These bits are not used.

1 WALK_WORKING This bit is used to indicate when the table walking logic is performing
an address translation after a miss in the TLB.

0 Table walking logic is not performing any action.

1 Table walking logic is performing an address translation.

0 PREFETCH_ON This bit is used to indicate the status of a TLB-entry pre-fetch
operation. When a value is written into the PREFETCH_REG register,
the pre-fetch operation is started and this bit is set. When the pre-fetch
operation finishes, this bit is automatically cleared by the MMU.

0 The pre-fetch operation has been completed.

1 A value has been written to the PREFETCH_REG and the table
walking logic is fetching the entry for the TLB.

6.5.4 MMU Control Register (CNTL_REG)

The Control Register (CNTL_REG) is used to reset and enable the DSP MMU
module and to enable the table walking logic.

Note:

The DSP MMU module must be reset through the MMU_RESET bit of the
CNTL_REG register before the MMU is enabled.

Figure 50. MMU Control Register (CNTL_REG)

31 3 2 1 0

Reserved TWL_EN MMU_EN
MMU_
RESET

R-0 RW-0 RW-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Memory Management Unit

105DSP SubsystemSPRU890A

Table 24. Control Register (CNTL_REG) Field Descriptions

Bits Field Value Description

31−3 Reserved These bits are not used.

2 TWL_EN Enables the table walking logic.

Note: When the table walking logic is enabled, the TLB cannot be manually
updated; you should not write to the LD_TLB_REG, TTB_H_REG,
TTB_L_REG, and LOCK_REG.

0 Table walking logic is disabled; access to the TLB is permitted.

1 Table walking logic is enabled; access to the TLB is not permitted.

1 MMU_EN Enables the MMU.

Note: Before enabling the MMU, you must reset it using the MMU_RESET
bit.

0 The MMU is disabled.

1 The MMU is enabled.

0 MMU_RESET Resets the MMU module. Writing a 0 to this bit resets the MMU to its
default configuration.

Note: You must clear this bit before enabling the MMU.

0 The MMU is in reset.

1 The MMU has been reset successfully.

6.5.5 MMU Fault Address Registers (FAULT_AD_H_REG, FAULT_AD_L_REG)

When a fault is generated, the fault address registers are used to determine
the virtual address that generated the fault. The eight most-significant bits of
the 24-bit virtual address are displayed in FAULT_AD_H_REG, while the rest
of the address bits are displayed in FAULT_AD_L_REG.

To determine the type of fault generated, see the Fault Status Register
(FAULT_ST_REG) in section 6.5.6.

DSP Memory Management Unit

DSP Subsystem106 SPRU890A

Figure 51. MMU Fault Address Registers (FAULT_AD_H_REG, FAULT_AD_L_REG)

FAULT_AD_H_REG

31 8 7 0

Reserved FAULT_ADDRESS_MSB

R-0 RW-0

FAULT_AD_L_REG

31 16 15 0

Reserved FAULT_ADDRESS_LSB

R-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 25. MMU MSB Fault Address Register (FAULT_AD_H_REG) Field Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−0 FAULT_ADDRESS_MSB Most-significant bits of the 24-bit virtual address which caused a
fault.

Table 26. MMU LSB Fault Address Register (FAULT_AD_L_REG) Field Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−0 FAULT_ADDRESS_LSB Least-significant bits of the 24-bit virtual address which caused a
fault.

DSP Memory Management Unit

107DSP SubsystemSPRU890A

6.5.6 MMU Fault Status Register (FAULT_ST_REG)

When an error is generated by the MMU, the MMU Fault Status Register
(FAULT_ST_REG) determines the cause of the error. The MMU generates
errors based on the following conditions:

� TLB miss (table walker disabled):

No translation is found in the TLB for the virtual address issued. The
hardware table walker is disabled, and thus, the translation cannot be
retrieved from the translation table(s).

� Translation fault (table walker enabled):

No translation is found for the virtual address required (TLB miss). The
table walker is enabled, but no valid page table entry exists for the given
virtual address.

� Permission fault:

The section/page access permissions do not match the access type.

� Table walker logic pre-fetch error:

An error occurred during an address-translation pre-fetch request from
the DSP core. The error may have occurred due to a TLB miss or a
translation fault.

After the MPU core clears the error condition, it must acknowledge the error
using the Interrupt Acknowledge Register (IT_ACK_REG). Section 6.2.7
describes the steps needed to clear the MMU error conditions.

Figure 52. MMU Fault Status Register (FAULT_ST_REG)

31 4 3 2 1 0

Reserved
PREFETCH_

ERR
PERM_
FAULT

TLB_
MISS

TRANS_
FAULT

R-0 R-0 R-0 R-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 27. MMU Fault Status Register (FAULT_ST_REG) Field Descriptions

Bits Field Value Description

31−4 Reserved These bits are not used.

3 PREFETCH_ERR This bit indicates when table walking logic was unable to pre-fetch an
entry for the TLB.

0 No pre-fetch error has occurred.

1 A pre-fetch error has occurred.

DSP Memory Management Unit

DSP Subsystem108 SPRU890A

Table 27. MMU Fault Status Register (FAULT_ST_REG) Field Descriptions (Continued)

Bits DescriptionValueField

2 PERM_FAULT This bit indicates when the DSP core attempted to access a
section/page without the proper access permissions.

0 No permission fault exists.

1 A permission fault has been generated.

1 TLB_MISS This bit indicates a TLB miss has been generated and the table
walking logic is disabled.

0 No error of this type has occurred.

1 A TLB miss has been generated and the table walking logic is not
enabled.

0 TRANS_FAULT This bit indicates a TLB miss has been generated and the table
walking logic was unable to find a valid section/page table entry for the
given virtual address.

0 No error of this type has occurred.

1 The table walking logic was not able to find a valid section/page table
entry to service the TLB miss.

6.5.7 MMU Interrupt Acknowledge Register (IT_ACK_REG)

Use this register to signal to the MMU that the MPU core has taken care of the
error condition displayed by the Fault Status Register (FAULT_ST_REG). See
section 6.2.7 for more details.

Figure 53. MMU Interrupt Acknowledge Register (IT_ACK_REG)

31 1 0

Reserved IT_ACK

R-0 W-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Memory Management Unit

109DSP SubsystemSPRU890A

Table 28. MMU Interrupt Acknowledge Register (IT_ACK_REG) Field Descriptions

Bits Field Value Description

31−1 Reserved These bits are not used.

0 IT_ACK The MPU core must write a 1 to this bit to acknowledge the interrupt
from the DSP MMU.

0 Writing 0 has no effect.

1 Writing a 1 to this bit acknowledges the interrupt from the DSP MMU.

6.5.8 MMU Translation Table Registers (TTB_H_REG, TTB_L_REG)

These registers together specify the base address of the first-level translation
table. The base address corresponds to the 25 most-significant bits of the
32-bit address of the first-level translation table.

Note:

TTB_H_REG and TTB_L_REG can only be modified by the MPU core when
the table walking logic is disabled.

Figure 54. MMU Translation Table Registers (TTB_H_REG, TTB_L_REG)

TTB_H_REG

31 16 15 0

Reserved TTB_H

R-0 RW-0

TTB_L_REG

31 16

Reserved

R-0

15 7 6 0

TTB_L Reserved

RW-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Memory Management Unit

DSP Subsystem110 SPRU890A

Table 29. MMU MSB Translation Table Register (TTB_H_REG) Field Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−0 TTB_H 0x0000−
0xFFFF

Most-significant bits of the 25-bit base address of the first-level
translation table.

Table 30. MMU LSB Translation Table Register (TTB_L_REG) Field Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−7 TTB_L 0x0000−
0x01FF

Least-significant bits of the 25-bit base address of the first-level
translation table.

6−0 Reserved These bits are not used.

6.5.9 MMU Lock/Protect Entry Register (LOCK_REG)

The Lock/Protect Entry Register is used to set the victim and base pointers of
the TLB.

The victim pointer identifies the TLB entry which is due for eviction by the table
walking logic. The MPU core can also set it to select a TLB entry for reading
or writing.

The base pointer specifies which entries in the TLB are protected against
eviction by the table walking logic.

Note:

The LOCK_REG can only be modified by the MPU core when the table
walking logic is disabled.

Figure 55. MMU Lock/Protect Entry Register (LOCK_REG)

31 15 14 10

Reserved BASE_VALUE

RW-0 RW-0

9 8 4 3 0

Reserved CURRENT_VICTIM Reserved

R-0 RW-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Memory Management Unit

111DSP SubsystemSPRU890A

Table 31. MMU Lock/Protect Entry Register (LOCK_REG) Field Descriptions

Bits Field Value Description

31−15 Reserved These bits are not used. Always write 0 to these bits.

14−10 BASE_VALUE 0−31 TLB lock base pointer. The value, n, that is written to these bits locks
the first n TLB entries. Entries 0 to n-1 will not be evicted by the table
walking logic when the TLB becomes full. Notice that n must be less
than or equal to 31; that is, at least one entry must always be
unprotected in the TLB.

9 Reserved This bit is not used.

8−4 CURRENT_VICTIM 0−31 TLB victim pointer. This field displays the entry number currently
selected by the victim pointer. The victim pointer identifies the TLB
entry which is next to be overwritten by the table walking logic. The
victim pointer is also used when reading or writing TLB entries.

3−0 Reserved These bits are not used. Always write 0 to these bits.

6.5.10 MMU Read/Write TLB Entry Register (LD_TLB_REG)

The Read/Write TLB Entry Register is used to read or write entries from or to
the TLB. The victim pointer (set through the Lock/Protect Entry Register)
selects the entry to be read or written.

When the WRITE_ENTRY bit is set, the values in the CAM Entry Registers and
the RAM Entry Registers are written to the entry pointed to by the TLB.

When the READ_ENTRY bit is set, the TLB entry CAM and RAM values are
copied to the CAM Entry Read Registers and the RAM Entry Read Registers.

Note:

LD_TLB_REG can only be modified by the MPU core when the table walking
logic is disabled.

Figure 56. MMU Read/Write TLB Entry Register (LD_TLB_REG)

31 2 1 0

Reserved
READ_
ENTRY

WRITE_
ENTRY

R-0 RW-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Memory Management Unit

DSP Subsystem112 SPRU890A

Table 32. MMU Read/Write TLB Entry Register (LD_TLB_REG) Field Descriptions

Bits Field Value Description

31−2 Reserved These bits are not used.

1 READ_ENTRY Read the TLB entry. Writing 1 to this field causes an entry to be read
from the TLB. This bit is always 0 when read.

0 Writing a 0 to this bit has no effect.

1 Read the TLB entry specified by the victim pointer.

0 WRITE_ENTRY Write the TLB entry. Writing 1 to this field causes an entry to be loaded
into the TLB. This bit is always 0 when read.

0 Writing a 0 to this bit has no effect.

1 Write the programmed entry to the TLB at location specified by the
victim pointer.

6.5.11 MMU CAM Entry Registers (CAM_H_REG, CAM_L_REG)

The CAM Entry Registers specify a CAM value to be written into the TLB.

Figure 57. MMU CAM Entry Registers (CAM_H_REG, CAM_L_REG)

CAM_H_REG

31 16

Reserved

R-0

15 2 1 0

Reserved VA_TAG_H

R-0 RW-0

CAM_L_REG

31 16

Reserved

R-0

15 4 3 2 1 0

VA_TAG_L PRE-
SERVED

VALID SLST

RW-0 RW-0 R-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Memory Management Unit

113DSP SubsystemSPRU890A

Table 33. MMU MSB CAM Entry Register (CAM_H_REG) Field Descriptions

Bits Field Value Description

31−2 Reserved These bits are not used.

1−0 VA_TAG_H 0x0−
0x3

Most-significant bits of the virtual address tag. The VA_TAG bits
correspond to bits 23−10 of the DSP virtual address. Note that,
depending on the page size, not all of the VA_TAG bits are needed;
these unneeded bits must be written as zeros.

Table 34. MMU LSB CAM Entry Register (CAM_L_REG) Field Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−4 VA_TAG_L Least-significant bits of the virtual address tag. The VA_TAG bits
correspond to bits 23−10 of the DSP virtual address. Note that,
depending on the page size, not all of the VA_TAG bits are needed;
these unneeded bits must be written as zeros.

3 PRESERVED Preserve bit for the TLB entry. This bit specifies whether the TLB
entry should be kept during a TLB global flush.

0 TLB entry is not preserved during a TLB global flush.

1 TLB entry is preserved during a TLB global flush.

2 VALID Valid bit for the TLB entry. This bit specifies whether the TLB entry
is valid.

0 TLB entry is not valid.

1 TLB entry is valid.

1−0 SLST Size of physical memory covered by the TLB entry.

00 TLB entry covers an entire section.

01 TLB entry covers a large page.

10 TLB entry covers a small page.

11 TLB entry covers a tiny page.

DSP Memory Management Unit

DSP Subsystem114 SPRU890A

6.5.12 MMU RAM Entry Registers (RAM_H_REG, RAM_L_REG)

The RAM Entry Registers specify a RAM value to be written into the TLB.

Figure 58. MMU RAM Entry Registers (RAM_H_REG, RAM_L_REG)

RAM_H_REG

31 16 15 0

Reserved PHYS_TAG_H

R-0 RW-0

RAM_L_REG

31 16

Reserved

R-0

15 10 9 8 7 0

PHYS_TAG_L AP Reserved

RW-0 RW-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 35. MMU MSB RAM Entry Register (RAM_H_REG) Field Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−0 PHYS_TAG_H These are the most-significant bits of the physical address tag
corresponding to the TLB entry. The PHYS_TAG bits correspond
to bits 31−10 of the physical memory address. Note that,
depending on the page size, not all of the PHYS_TAG bits are
needed; these unneeded bits must be written as zeros.

Table 36. MMU LSB RAM Entry Register (RAM_L_REG) Field Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−10 PHYS_TAG_L These are the least-significant bits of the physical address tag
corresponding to the TLB entry. The PHYS_TAG bits correspond to
bits 31−10 of the physical memory address. Note that, depending on
the page size, not all of the PHYS_TAG bits are needed; these
unneeded bits must be written as zeros.

DSP Memory Management Unit

115DSP SubsystemSPRU890A

Table 36. MMU LSB RAM Entry Register (RAM_L_REG) Field Descriptions
(Continued)

Bits DescriptionValueField

9−8 AP Access permission bits. These bits determine the access permission
for the physical memory covered by the TLB entry.

00 or
01

No access.

10 Read-only access.

11 Full access.

7−0 Reserved These bits are not used.

6.5.13 MMU TLB Global Flush Register (GFLUSH_REG)

The Global Flush Register flushes all TLB entries that are not preserved. When
the GLOBAL_FLUSH bit is set, the VALID bit of all entries with
PRESERVED = 0 is cleared.

Note:

A global flush does not change the first-level table base address or the victim
pointer and base pointer.

Figure 59. MMU TLB Global Flush Register (GFLUSH_REG)

31 1 0

Reserved
GLOBAL_

FLUSH

R-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 37. MMU TLB Global Flush Register (GFLUSH_REG) Field Descriptions

Bits Field Value Description

31−1 Reserved These bits are not used.

0 GLOBAL_FLUSH TLB global flush. Setting this bit flushes all TLB entries that are not
preserved. After the flush operation has completed, this bit is
automatically cleared.

0 TLB global flush completed.

1 Flush the TLB.

DSP Memory Management Unit

DSP Subsystem116 SPRU890A

6.5.14 MMU TLB Entry Flush Register (FLUSH_ENTRY_REG)

The TLB Entry Flush Register deletes individual entries from the TLB. When
the FLUSH_ENTRY bit is set, the preserved and valid bits of the entry pointed
to by the victim pointer are cleared.

Figure 60. MMU TLB Entry Flush Register (FLUSH_ENTRY_REG)

31 1 0

Reserved
FLUSH_
ENTRY

R-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 38. MMU TLB Entry Flush Register (FLUSH_ENTRY_REG) Field Descriptions

Bits Field Value Description

31−1 Reserved These bits are not used.

0 FLUSH_ENTRY TLB entry flush. Setting this bit flushes the entry pointed to by the
victim pointer.

0 The TLB entry flush is complete.

1 Flush the TLB entry pointed to by the victim pointer.

DSP Memory Management Unit

117DSP SubsystemSPRU890A

6.5.15 MMU Read CAM Entry Registers (READ_CAM_H_REG,
READ_CAM_L_REG)

The Read CAM Entry Registers hold the last CAM value read from the TLB.

Figure 61. MMU CAM Entry Read Registers (READ_CAM_H_REG,
READ_CAM_L_REG)

READ_CAM_H_REG

31 16

Reserved

R-0

15 2 1 0

Reserved VA_TAG_H

R-0 R-0

READ_CAM_L_REG

31 16

Reserved

R-0

15 4 3 2 1 0

VA_TAG_L PRE-
SERVED

VALID SLST

R-0 R-0 R-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 39. MMU MSB CAM Entry Read Register (READ_CAM_H_REG) Field
Descriptions

Bits Field Value Description

31−2 Reserved These bits are not used.

1-0 VA_TAG_H Most-significant bits of the virtual address tag. The VA_TAG bits
correspond to bits 23−10 of the DSP virtual address.

DSP Memory Management Unit

DSP Subsystem118 SPRU890A

Table 40. MMU LSB CAM Entry Read Register (READ_CAM_L_REG) Field
Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−4 VA_TAG_L Least-significant bits of the virtual address tag. The VA_TAG bits
correspond to bits 23−10 of the DSP virtual address.

3 PRESERVED Preserve bit for the TLB entry. This bit specifies whether the TLB
entry should be kept during a TLB global flush.

0 TLB entry is not preserved during a TLB global flush.

1 TLB entry is preserved during a TLB global flush.

2 VALID Valid bit for the TLB entry.

0 TLB entry is not valid.

1 TLB entry is valid.

1−0 SLST Size of physical memory covered by the TLB entry.

00 TLB entry covers an entire section.

01 TLB entry covers a large page.

10 TLB entry covers a small page.

11 TLB entry covers a tiny page.

DSP Memory Management Unit

119DSP SubsystemSPRU890A

6.5.16 MMU Read RAM Entry Registers (READ_RAM_H_REG,
READ_RAM_L_REG)

The Read RAM Entry Registers hold the last RAM value read from the TLB.

Figure 62. MMU Read RAM Entry Registers (READ_RAM_H_REG,
READ_RAM_L_REG)

READ_RAM_H_REG

31 16 15 0

Reserved PHYS_TAG_H

R-0 R-0

READ_RAM_L_REG

31 16

Reserved

R-0

15 10 9 8 7 0

PHYS_TAG_L AP Reserved

R-0 R-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 41. MMU MSB RAM Entry Read Register (READ_RAM_H_REG) Field
Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−0 PHYS_TAG_H These are the most-significant bits of the physical address tag
corresponding to the TLB entry. The PHYS_TAG bits correspond
to bits 31−10 of the physical memory address.

DSP Memory Management Unit

DSP Subsystem120 SPRU890A

Table 42. MMU LSB RAM Entry Read Register (READ_RAM_L_REG)
Field Descriptions

Bits Field Value Description

31−16 Reserved These bits are not used.

15−10 PHYS_TAG_L These are the least-significant bits of the physical address tag
corresponding to the TLB entry. The PHYS_TAG bits correspond to
bits 31−10 of the physical memory address.

9−8 AP Access permission bits. These bits determine the access permission
for the physical memory covered by the TLB entry.

00 or
01

No access.

10 Read-only access.

11 Full access.

7−0 Reserved These bits are not used.

6.5.17 MMU Idle Control Register (DSPMMU_IDLE_CTRL)

The Idle Control Register controls the DSP MMU clock.

Figure 63. MMU Idle Control Register (DSPMMU_IDLE_CTRL)

31 2 1 0

Reserved GL_PDE AUTOGATING_EN

R-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 43. MMU Idle Control Register (DSPMMU_IDLE_CTRL) Field Descriptions

Bits Field Value Description

31−2 Reserved These bits are not used.

1 GL_PDE Global power-down enable bit. This bit is used to shut down the clock
feeding the DSP MMU module.

0 The DSP MMU clock is running.

1 The DSP MMU clock is disabled.

0 AUTOGATING_EN Autogating enable bit

0 Autogating is disabled.

1 Autogating is enabled.

DSP DMA

121DSP SubsystemSPRU890A

7 DSP DMA

7.1 Overview

7.1.1 Purpose of the DSP DMA

Acting in the background of DSP core operation, the DMA controller can:

� Transfer data among internal memory, DSP external memory, and
peripherals residing on the DSP public peripheral bus

� Transfer data between the Microprocessor Unit Interface (MPUI) and
memory internal to the DSP subsystem

7.1.2 Features

The DMA controller has the following important features:

� Operation that is independent of the DSP core

� Four standard ports, one for each data resource: internal dual-access
RAM (DARAM), internal single-access RAM (SARAM), DSP external
memory (via the External Memory Interface [EMIF]), and peripherals (via
the shared TI peripheral bus bridge)

� An auxiliary port to enable certain transfers between the MPUI and
memory

� Six channels, which allow the DMA controller to keep track of the context
of six independent block transfers among the standard ports

� Bits for assigning each channel a low priority or a high priority. For details,
see section 7.2.6, Service Chain.

� Event synchronization. DMA transfers in each channel can be made
dependent on the occurrence of selected events. For details, see section
7.2.12, Synchronizing Channel Activity.

� An interrupt for each channel. Each channel can send an interrupt to the
DSP core on completion of certain operational events. See section 7.2.15,
Interrupt Support.

� Software-selectable options for updating addresses for the sources and
destinations of data transfers.

� A dedicated idle domain. The DMA controller can be put into a low-power
state by turning off this domain. Each multichannel buffered serial port
(McBSP) has the ability to temporarily take the DMA domain out of this idle
state when the McBSP needs the DMA controller. See Power
Management in section 7.2.16.

To read about the registers that program the DMA controller, see section 7.3.

DSP DMA

DSP Subsystem122 SPRU890A

7.1.3 Block Diagram of the DMA Controller

Figure 64 is a conceptual diagram of connections between the DMA controller
and other parts of the DSP subsystem. The DMA controller ports in the
diagram are:

� Four standard ports. The DMA controller has a standard port for each of
the following resources: internal dual-access RAM (DARAM), internal
single-access RAM (SARAM), DSP external memory, and peripherals.
Data transfers among the standard ports occur in the six DMA channels.
(The DMA channels are described in section 7.2.3).

� Auxiliary port. A fifth port supports data transfers between memory and the
MPUI. The MPUI cannot access the peripheral port. Transfers between
the MPU and the DSP peripherals are supported through a direct
connection that does not involve the DSP DMA controller. Transfers
between the MPUI and the memory ports are handled by the DMA
controller but do not use a DMA channel.

It is possible for multiple channels (or for one or more channels and the MPUI)
to request access to the same standard port at the same time. To arbitrate
simultaneous requests, the DMA controller has one programmable service
chain configuration that is used by each of the standard ports. For details on
the service chain, see section 7.2.6.

DSP DMA

123DSP SubsystemSPRU890A

Figure 64. Conceptual Block Diagram of the DMA Controller Connections

MPU subsystem DSP subsystem

EMIF

Shared
TIPB
bridge

DARAM

Endianess conversion

Peripherals

SARAM

MPUI port

System
DMA

MPU core

MPUI

Port

Channels
0−5

E
nd

ia
ne

ss
co

nv
er

si
on

DSP MMU
Traffic

controller

External
memory

DSP public
peripheral bus

Port

Port

Port

Port

DMA
controller

DSP DMA

DSP Subsystem124 SPRU890A

7.2 DSP DMA Controller Architecture

7.2.1 Clock Control

The DSP DMA controller is part of the DSP module within the DSP subsystem
(see section 1.2) and thus is clocked by the DSP subsystem clock, DSP_CK.
Section 12.2 describes the DSP subsystem clock.

7.2.2 Memory Map

Figure 65 is a high-level memory map for the DSP subsystem data memory
space. The diagram shows both the word addresses (23-bit addresses) used
by the DSP core and byte addresses (24-bit addresses) used by the DMA
controller.

Note:

Word addresses 00 0000h − 00 005Fh (which correspond to byte addresses
00 0000h − 00 00BFh) are reserved for the memory-mapped registers
(MMRs) of the DSP core.

Figure 65. High-Level Data Memory Map for DSP Subsystem

00 0000-00 00BF

Memory

Main data page 0

Main data page 1

Main data page 2

Main data page 127

.

.

.

Word addresses

02 0000-03 FFFF

04 0000-05 FFFF

FE 0000-FF FFFF

(Hexadecimal ranges)

MMRs

00 00C0-01 FFFF00 0060-00 FFFF

01 0000-01 FFFF

02 0000-02 FFFF

7F 0000-7F FFFF

00 0000-00 005F

Byte addresses
(Hexadecimal ranges)

.

.

.

.

.

.

Figure 66 is an I/O space map for the DSP subsystem. The diagram shows
both the word addresses (16-bit addresses) used by the DSP core and byte
addresses (17-bit addresses) used by the DMA controller.

DSP DMA

125DSP SubsystemSPRU890A

Note:

The I/O memory map varies from device to device due to the different mixes
of peripherals. For a detailed I/O memory map, see the device-specific data
manual.

Figure 66. High-Level I/O Memory Map for DSP Subsystem

I/O space
Word addresses

(Hexadecimal range)

0000-FFFF

Byte addresses
(Hexadecimal range)

0 0000-1 FFFF

7.2.3 Channels and Port Accesses

The DMA controller has six paths, called channels, to transfer data among the
four standard ports (for DARAM, SARAM, DSP external memory, and
peripherals). Each channel reads data from one port (from the source) and
writes data to that same port or another port (to the destination).

Each channel has a first in, first out (FIFO) buffer that allows the data transfer
to occur in two stages (see Figure 67):

� Port read access: Transfer of data from the source port to the channel
FIFO buffer.

� Port write access: Transfer of data from the channel FIFO buffer to the
destination port.

Figure 67. The Two Parts of a DMA Controller Transfer

n = 0, 1, 2, 3, 4, or 5

Source
port

Destination
port

Channel n
FIFO buffer

Read access Write access

DSP DMA

DSP Subsystem126 SPRU890A

The set of conditions under which transfers occur in a channel is called the
channel context. Each of the six channels contains a register structure for
programming and updating the channel context (see Figure 68). The
programming code modifies the configuration registers. When it is time for
data transferring, the contents of the configuration registers are copied to the
working registers, and the DMA controller uses the working register values to
control channel activity. The copy from the configuration registers to the
working registers occurs whenever the code enables the channel (EN = 1 in
DMACCR). In addition, if the auto-initialization mode is on (AUTOINIT = 1 in
DMACCR), the copy occurs between block transfers. For more information
about the auto-initialization mode, see section 7.2.4.

Some configuration registers can be programmed for the next block transfer
while the DMA controller is still running the current context from the working
registers. The next transfer will use the new configuration without stopping the
DMA controller. The registers DMACSDP, DMACCR, DMACICR, DMACSR,
DMAGCR, DMAGSCR, and DMAGTCR should not be configured in this
manner. Modification of these registers while the DMA channel is running may
cause unpredictable channel operation.

Figure 68. Registers for Controlling the Context of a Channel

DMACFI/DMACSFI copy

DMACEI/DMACSEI copy

DMACSDP

DMACCR

DMACICR

DMACSR

DMACSSAL

DMACSSAU

DMACDSAL

DMACDSAU

DMACEN

DMACFN

DMACFI/DMACSFI

DMACEI/DMACSEI

Configuration registers
(programmed by code)

DMACSDP copy

DMACCR copy

DMACICR copy

DMACSR copy

DMACSSAL copy

DMACSSAU copy

DMACDSAL copy

DMACDSAU copy

DMACEN copy

DMACFN copy

Working registers
(used by DMA controller)

Automatically copied
when channel enabled,

and between block transfers
in auto-initialization mode

DMACDEI

DMACDFI

DMACSAC

DMACDAC

DMACDEI copy

DMACDFI copy

DMACSAC copy

DMACDAC copy

DSP DMA

127DSP SubsystemSPRU890A

7.2.4 Channel Auto-Initialization Capability

After a block transfer is completed (all of the elements and frames in a block
have been moved), the DMA controller automatically disables the channel. If
the channel must be used again, the DSP core can reprogram the new channel
context and re-enable the DMA channel, or the DMA controller can
automatically initialize the new context and re-enable the channel.

When auto-initialization is used, the DMA controller automatically copies the
channel context (identical or new) after each block transfer is completed from
the configuration registers to the working registers and re-enables the
channel, allowing the channel to run again. Auto-initialization is enabled by
setting the AUTOINIT bit in the channel controller register (DMACCR).

Two additional bits in DMACCR, REPEAT and ENDPROG, are used during
the auto-initialization operation. REPEAT controls whether the DMA controller
waits for an indication from the DSP core that the configuration registers are
ready to be copied. ENDPROG is a handshaking bit used to communicate
between the DSP core and the DMA controller regarding the state of the
register copy process. Figure 69 shows DMACCR and Table 44 describes
AUTOINIT, REPEAT, and ENDPROG. For a complete description of
DMACCR, see section 7.3.5.

There are two methods for using auto-initialization. The same channel context
can be repeated on each block transfer, or a new context can be provided for
each transfer. The following sections explain these two cases are explained.

Figure 69. DMA Channel Control Register (DMACCR)

15 12 11 10 9 8

ENDPROG REPEAT AUTOINIT

RW-0 RW-0 RW-0

7 0

Note: R = Read, W = Write, −n = Value after DSP reset

DSP DMA

DSP Subsystem128 SPRU890A

Table 44. DMA Channel Control Register (DMACCR) Field Descriptions

Bits Field Value Description

15−12 Reserved Reserved

11 ENDPROG End-of-programming bit. Each DMA channel has two sets of
registers: configuration registers and working registers. When
block transfers occur repeatedly because of auto-initialization
(AUTOINIT = 1), you can change the context for the next DMA
transfer by writing to the configuration registers during the current
block transfer. At the end of the current transfer, the contents of the
configuration registers are copied into the working registers, and
the DMA controller begins the next transfer using the new context.
For proper auto-initialization, the DSP core must finish
programming the configuration registers before the DMA controller
copies their contents.

The DMA controller automatically clears the ENDPROG bit after
copying the configuration registers to the working registers. The
DSP core can then program the DMA channel context for the next
iteration of the transfer by programming the configuration registers.

To ensure that auto-initialization waits for the DSP core, follow this
procedure:

1) Make auto-initialization wait for ENDPROG = 1 by clearing
the REPEAT bit (REPEAT = 0)

2) Poll for ENDPROG = 0, which indicates that the DMA
controller has finished copying the previous context. The
configuration registers can now be programmed for the next
iteration.

3) Program the configuration registers.

4) Set ENDPROG (ENDPROG = 1) to indicate the end of
register programming.

0 Configuration registers ready for programming/Programming in
progress.

1 End of programming.

10 Reserved Reserved.

DSP DMA

129DSP SubsystemSPRU890A

Table 44. DMA Channel Control Register (DMACCR) Field Descriptions (Continued)

Bits DescriptionValueField

9 REPEAT Repeat condition bit. If auto-initialization is selected for a channel
(AUTOINIT = 1), REPEAT specifies one of two special repeat
conditions:

0 Repeat only if ENDPROG = 1.

Once the current DMA transfer is complete, auto-initialization will
wait for the end-of-programming bit (ENDPROG) bit to be set.

1 Repeat regardless of ENDPROG.

Once the current DMA transfer is complete, auto-initialization
occurs regardless of the ENDPROG bit state.

8 AUTOINIT Auto-initialization bit. The DMA controller supports
auto-initialization, which is the automatic reinitialization of the
channel between DMA block transfers. Use AUTOINIT to enable
or disable this feature.

0 Auto-initialization is disabled.

Activity in the channel stops at the end of the current block transfer.
To stop a transfer immediately, clear the channel enable bit (EN).

1 Auto-initialization is enabled.

Once the current block transfer is complete, the DMA controller
reinitializes the channel and starts a new block transfer. To stop
activity in the channel you have two options:

� To stop activity immediately, clear the channel enable bit
(EN = 0).

� To stop activity after the current block transfer, clear AUTOINIT
(AUTOINIT= 0).

7−0 Reserved Reserved.

7.2.4.1 Auto-initialization With Unchanging Context

If the desired context for the channel needs to be repeated but does not need
to be changed, then the DMA controller is configured with AUTOINIT = 1 and
REPEAT = 1. When REPEAT = 1, the DMA controller ignores the state of the
ENDPROG handshaking bit. After the DSP core has initially configured the
DMA channel, no other DSP core intervention is required to keep the channel
running. Figure 70 shows a detailed sequence of events in this mode.

DSP DMA

DSP Subsystem130 SPRU890A

Figure 70. Auto-Initialization Sequence With Unchanging Context (REPEAT = 1)

The DSP core sets
AUTOINIT=1 and

REPEAT=1 to select the
correct auto-initialization

mode

The DSP core
programs desired

channel context into the
configuration registers

The DSP core sets EN=1
to enable the DMA channel

The DMA controller
transfers the block of data
according to the channel

context

When the block transfer is
complete, the DMA disables

the channel (EN = 0) and
recopies the configuration
registers to the working

registers

The DMA controller
reenables the channel

(EN = 1)

7.2.4.2 Auto-Initialization With Changing Context

If the desired context for the channel needs to be repeated and is not the same
on each block transfer, then the DMA controller must be configured with
AUTOINIT = 1 and REPEAT = 0. When REPEAT = 0, the DMA controller
waits for the DSP core to write ENDPROG = 1 before it copies the
configuration registers. This provides handshaking for the DMA controller to
prevent it from copying the registers while they are still being configured by the
DSP core. Figure 71 shows a detailed sequence of events in this mode.

DSP DMA

131DSP SubsystemSPRU890A

Figure 71. Auto-initialization Sequence With Changing Context (REPEAT = 0)

The DSP core sets AUTOINIT=1
and clears REPEAT= 0 to select

the correct auto-initialization mode

The DSP core programs the
desired channel context for the first
block transfer into the configuration
registers and enables the channel

(EN = 1)

The DSP core sets ENDPROG=1
to indicate it is finished

programming the configuration
registers

The DMA controller copies
the configuration registers to

the working registers

The DMA controller clears
ENDPROG=0 to indicate it is

finished copying the
configuration registers and

they are available to be
reprogrammed by the DSP

core

The DMA controller enables
the channel and transfers

the block of data according
to the channel context.

ENDPROG = 0 after reset

DSP core
detects

ENDPROG=0
?

The DSP core programs the
desired channel context for the

next block transfer into the
configuration registers

DMA detects
ENDPROG = 1

?

Yes

No

No

Yes

When the block transfer is
complete, the DMA disables

the channel (EN = 0).

Handshaking
Using ENDPROG

7.2.5 MPUI Access Configurations

As shown in Figure 72, the MPUI_EXCL bit in DMAGCR determines the
relationship between the MPUI and the DMA channels:

� When MPUI_EXCL = 0, the MPUI shares memory with the channels.

� When MPUI_EXCL = 1, the MPUI cannot access DSP external memory,
but it can access internal RAM without interruptions from the channels.
The DARAM port and the SARAM port operate as if all the channels were
disconnected from the service chain. Section 7.2.6 describes the service
chain.

DSP DMA

DSP Subsystem132 SPRU890A

Figure 72. MPUI Access Configurations

MPUI DMA channelsDARAM port

MPUI EXCL = 0

SARAM port

External memory port

Peripheral port

Port read/write
requests

Port read/write
requests

MPUI DMA channelsDARAM port

MPUI EXCL = 1

SARAM port

External memory port

Peripheral port

Port read/write
requests

Port read/write
requests

7.2.6 Service Chain

Each of the standard ports can arbitrate simultaneous access requests sent
by the six DMA channels and the Microprocessor Unit Interface (MPUI). Each
of the standard ports has an independently functioning service chain, which
is a software and hardware controlled scheme for servicing access requests.
Although the four service chains function independently, they share a common
configuration. For example, if channel 2 is disabled, it is disabled in all four
ports, and if channel 4 is made a high priority, it is high priority in all four of the
ports. One possible configuration for the service chains is shown in Figure 73.
Important characteristics of the service chain are listed after the figure.

DSP DMA

133DSP SubsystemSPRU890A

Section 7.2.6.1 contains an example that shows a service chain configuration
applied to three ports.

Figure 73. One Possible Configuration for the Service Chains

Channel
0

High priority

Channel
1

Low priority

Channel
2

High priority

Channel
3

Low priority

Channel
4

Low priority

Channel
5

High priority

MPUI

Low priority
MPUI _EXCL = 0

� The channels and the MPUI have a programmable priority level. Each
channel has a PRIO bit in DMACCR for selecting a high priority or a low
priority. The MPUI is assigned a high or low priority with the MPUI_PRIO
bit in DMAGCR. The DMA controller only services the low-priority items
when all the high-priority items are done or stalled. After a DSP subsystem
reset, all channels and the MPUI are low priority.

In the figure, channels 0, 2, and 5 are high-priority (in each of these
channels, PRIO = 1). DMA channels 1, 3, and 4 and the MPUI are low
priority (in each of these channels, PRIO = 0, and for the MPUI,
MPUI_PRIO = 0).

� The channels and the MPUI have fixed positions in the service chain. The
port checks the channels and the MPUI in a repeating circular sequence:
0, 1, 2, 3, 4, 5, MPUI, 0, 1, 2, 3, 4, 5, MPUI, and so on. At each position
in the service chain, the port checks whether the channel/MPUI is ready
and able to be serviced. If the channel is ready to be serviced and a higher
priority request is not pending in another channel, it is serviced; otherwise,
the port skips to the next position. After a DSP subsystem reset, the port
restarts its circular sequence, beginning with channel 0.

DSP DMA

DSP Subsystem134 SPRU890A

� The channels can be individually connected or disconnected from the
service chain through software. If a channel is enabled (EN = 1 in
DMACCR), it is connected to the service chain; if it is disabled (EN = 0),
it is disconnected. After a DSP subsystem reset, all channels are
disconnected. In the figure, only channel 1 is disconnected. As a port
checks the channels and the MPUI in its repeating circular sequence, it will
keep skipping channel 1 until the channel is reconnected.

The MPUI cannot access the peripheral port. The peripheral port operates
as if the MPUI is disconnected from the service chain.

� Writing a 1 to the MPUI_EXCL bit in DMAGCR gives the MPUI exclusive
access to the DARAM and SARAM ports. The DARAM and SARAM ports
operate as if only the MPUI is connected to the service chain (as if none
of the channels are connected, regardless of whether the channels are
enabled). For more details, see MPUI Access Configurations in section
7.2.5.

In the figure, MPUI_EXCL = 0. The MPUI shares the RAM ports with the
channels.

� If a channel is tied to a synchronization event, the channel does not
generate a DMA request (and, therefore, cannot be serviced) until the
synchronization event occurs.

7.2.6.1 Service Chain Example

Figure 74 shows a DMA service chain configuration applied to the DARAM
port, the DSP external memory port, and the peripheral port. Each service
chain has the following programmed characteristics.

� Channels 0, 2, and 5 are high-priority (PRIO = 1 in DMACCR). Channels
1, 3, and 4 are low-priority (PRIO = 0).

� Channels 1, 2, and 4 are enabled (EN = 1 in DMACCR). Channels 0, 3,
and 5 are disabled (EN = 0).

� The MPUI is sharing the internal memory with the channels
(MPUI_EXCL = 0 in DMAGCR) and is treated like a low-priority channel
(MPUI_PRIO = 0 in DMAGCR). Notice that the MPUI is shown as
disconnected in the peripheral port. This is because the MPUI cannot
access the peripheral port.

DSP DMA

135DSP SubsystemSPRU890A

Table 45 summarizes the activity at the ports in Figure 74.

Table 45. Activity Shown in Figure 74

Port This Port Arbitrates

DARAM Write access requests from channel 2
Read access requests from channel 4
Read or write access requests from the MPUI

External Memory Write access requests from channel 1
Write access requests from channel 4
Read or write access requests from the MPUI

Peripheral Read access requests from channel 1
Read access requests from channel 2

Finally, notice that for each port in the figure, there is a channel that is
connected to the service chain but does not use the port. For example, the
peripheral port is not used by channel 4. If channel 4 were redefined to include
the peripheral port as source or destination, the port would handle channel 4
according to its position and priority in the service chain.

DSP DMA

DSP Subsystem136 SPRU890A

Figure 74. Service Chain Applied to Three DMA Ports

Ch 0 Ch 2 Ch 5

Ch 1 Ch 3 Ch 4 MPUI

DARAM port: Only used by channel 2, channel 4, and MPUI

External memory port: Only used by channel 1, channel 4, and MPUI

Peripheral port: Only used by channel 1 and channel 2

Channel 2
FIFO buffer

Channel 4
FIFO buffer

Read access

Write access

Write access

Read access

Ch 0 Ch 2 Ch 5

Ch 1 Ch 3 Ch 4 MPUI

Ch 0 Ch 2 Ch 5

Ch 1 Ch 3 Ch 4 MPUI

Channel 1
FIFO buffer

Write access

Read access

MPUI

High-priority: 0, 2, 5
Low-priority: 1, 3, 4, MPUI

Disabled: 0, 3, 5
Enabled: 1, 2, 4

MPUI shares with channelsConfiguration for

Note: The MPUI can never access the peripherals port.

the service chains

DSP DMA

137DSP SubsystemSPRU890A

7.2.7 Units of Data: Byte, Element, Frame, and Block

This documentation on the DMA controller refers to data in four levels of
granularity:

� Byte: An 8-bit value. A byte is the smallest unit of data transferred in a DMA
channel.

� Element: One or more bytes to be transferred as a unit. Depending on the
programmed data type, an element is an 8-bit, 16-bit, or a 32-bit value. An
element transfer cannot be interrupted; all of its bytes are transferred to
a port before another channel or the MPUI can take control of the port.

� Frame: One or more elements to be transferred as a unit. A frame transfer
can be interrupted between element transfers.

� Block: One or more frames to be transferred as a unit. Each channel can
transfer one block of data (once or multiple times). A block transfer can be
interrupted between frame transfers and element transfers.

For each of the six DMA channels, you can define the number of frames in a
block (with DMACFN), the number of elements in a frame (with DMACEN), and
the number of bytes in an element (with the DATATYPE bits in DMACSDP).
For descriptions of DMACFN, DMACEN, DMACSDP, and other registers of
the DMA controller, see section 7.3.

7.2.8 Start Address in a Channel

During a data transfer in a DMA channel, the first address at which data is read
is called the source start address. The first address to which the data is written
is called the destination start address. These are byte addresses. From the
standpoint of the DMA controller, every 8 bits in memory or I/O space has its
own address. Each channel contains the following registers for specifying the
start addresses:

Table 46. Registers Used to Define the Start Addresses for a DMA Transfer

Register Load With:

DMACSSAL Source start address (lower part)

DMACSSAU Source start address (upper part)

DMACDSAL Destination start address (lower part)

DMACDSAU Destination start address (upper part)

The following sections explain how to load the start address registers for
memory accesses and I/O accesses. The DMA controller can access all of the
internal and DSP external memory and all of I/O space (which contains
registers for the DSP peripherals).

DSP DMA

DSP Subsystem138 SPRU890A

7.2.8.1 Start Address in DSP Subsystem Data Memory

Figure 65 is a high-level memory map for the DSP subsystem. The diagram
shows both the word addresses (23-bit addresses) used by the DSP core and
byte addresses (24-bit addresses) used by the DMA controller. To load the
source/destination start address registers:

1) Identify the correct start address. Check for any alignment constraint for
the data type; see the description for the DATATYPE bits of DMACSDP
(section 7.3.7). If you have a word address, shift it left by 1 bit to form a byte
address with 24 bits. For example, word address 02 4000h should be
converted to byte address 04 8000h.

2) Load the 16 least significant bits (LSBs) of the byte address into
DMACSSAL (for source) or DMACDSAL (for destination).

3) Load the 8 most significant bits (MSBs) of the byte address into the 8 LSBs
of DMACSSAU (for source) or DMACDSAU (for destination).

Note:

Word addresses 00 0000h-00 005Fh (which correspond to byte addresses
(00 0000h-00 00BFh) are reserved for the memory-mapped registers
(MMRs) of the DSP core.

7.2.8.2 Start Address in I/O Space

Figure 66 is an I/O space map for the DSP subsystem. The diagram shows
both the word addresses (16-bit addresses) used by the DSP core and byte
addresses (17-bit addresses) used by the DMA controller. To load the
source/destination start address registers:

1) Identify the correct start address. Check for any alignment constraint for
the data type; see the description for the DATATYPE bits of DMACSDP
(section 7.3.7). If you have a word address, shift it left by 1 bit to form a byte
address with 17 bits. For example, word address 8000h should be
converted to byte address 1 0000h.

2) Load the 16 least significant bits (LSBs) of the byte address into
DMACSSAL (for source) or DMACDSAL (for destination).

3) Load the most significant bit (MSB) of the byte address into the LSB of
DMACSSAU (for source) or DMACDSAU (for destination).

DSP DMA

139DSP SubsystemSPRU890A

7.2.9 Updating Addresses in a Channel

During data transfers in a DMA channel, the DMA controller begins its read and
write accesses at the start addresses you specify (see section 7.2.8). In many
cases, these addresses must be updated so that data is read and written at
consecutive or indexed locations after a data transfer has begun. You can
configure address updates at two levels:

� Block-level address updates. In the auto-initialization mode
(AUTOINIT = 1 in DMACCR), block transfers can occur one after another
until you turn off auto-initialization or disable the channel. If you want
different start addresses for the block transfers, you can update the start
addresses between the block transfers.

� Element-level address updates. You can have the DMA controller update
the source address and/or the destination address after each element
transfer. At the end of an element transfer, the source address held by the
DMA controller is the address of the last byte that was read from the
source. Likewise, after a transfer, the destination address held by the DMA
controller is the address of the last byte that was modified at the
destination. Through software control, you can make sure the source
address points to the start of the next element, and you can make sure the
element will be precisely positioned at the destination. Choose an
addressing mode for the source with the SRCAMODE bits in DMACCR.
Choose an addressing mode for the destination with the DSTAMODE bits
in DMACCR. If you choose a single-index or double-index addressing
mode, you must load the appropriate index register or registers (see
section 7.3.11).

7.2.10 Data Packing Capability

The five DMA controller ports have various widths and support various sizes
of data accesses.

Table 47. DMA Controller Ports

DMA Port Port Width Access Sizes Supported (bytes)

SARAM 32 2, 4

DARAM 32 2, 4

EMIF 32 1, 2, 4

Peripheral 16 2, 4

MPUI 16 2

DSP DMA

DSP Subsystem140 SPRU890A

A DMA channel has the ability to pack and unpack.

� Pack: Pack several consecutive element transfers into wider accesses.
For example, if the element size is 16 bits, the 32-bit-wide SARAM port can
pack two accesses so that 4 bytes at a time are written into the channel
FIFO. Packing effectively reduces the frequency at which that channel
must be serviced by the port service chain. This can reduce overhead and
improve channel throughput in some cases. Packing options are
determined by port access capabilities and element size. Packing at the
source or destination port can be disabled by software control.

� Unpack: Split a single element transfer into several byte accesses. This
occurs when the DMA port size is less than the size of the element type.
For example, when the element size is programmed as 32 bits and the
destination port is 16 bits wide, the transfer write operation is split into two
16-bit write operations.

The value programmed for channel element size determines the width of the
read access at the source port and write access at the destination port. If the
element size is smaller than the source port width and source packing is
enabled, the source port controller receives 4 bytes per service-chain request.
This reduces overhead because four times as much data is written into the
channel FIFO per service-chain cycle. Similarly, if packing is enabled at the
destination port, 4 bytes are written per iteration of the destination port service
chain.

The DMA controller performs packing as shown in Table 48.

Table 48. DMA Controller Data Packing

Data Type Port Bus Size Data Packing

8-bit 16-bit Two data values packed into 16 bits

8-bit 32-bit Four data values packed into 32 bits

16-bit 32-bit Two data values packed into 32 bits

DSP DMA

141DSP SubsystemSPRU890A

7.2.11 Data Burst Capability

Data bursts can be used to improve DMA controller throughput if one or both
of the ports associated with the DMA channel support burst capability. When
bursting is enabled, the DMA controller executes a burst of four elements each
time a channel is serviced instead of moving a single element. The SARAM
and DARAM ports support burst capability. The EMIF port will burst data only
if the traffic controller memory interface used to fetch the data supports
bursting. The traffic controller memory interfaces include the internal memory
interface (IMIF on OMAP5910 and OCP-T1 on OMAP5912), the external
memory interface slow (EMIFS), and external memory interface fast (EMIFF).
If the traffic controller interface does not support bursting, the DMA controller
will perform four single accesses to move the burst of data. The peripheral port
does not support burst capability; therefore, the DMA controller will perform
four single peripheral port accesses to move the burst data. More information
on the traffic controller interfaces can be found in the OMAP5910 Dual-Core
Processor Memory Interface Traffic Controller Reference Guide (SPRU673)
and the OMAP5912 Multimedia Processor OMAP3.2 Subsystem Reference
Guide (SPRU749).

If bursting is used, the start addresses for the source and destination should
be aligned on a burst boundary. Burst boundaries correspond to byte
addresses with 0h as the least significant four bits.

To use bursting, the following conditions should be met:

� The start address for the port with bursting enabled should be on a burst
boundary.

� The element index should be 1.

� The frame index should cause each burst access to align on a burst
boundary.

� The result of the equation (Element number x Element size) should align
on a burst boundary. This means at the end of each frame, the address
should be aligned on a burst boundary.

If both the source and destination have bursting enabled, but the source
address does not start on a burst boundary, the source burst will be
automatically disabled internally. The source will load the channel FIFO and,
when enough data is available, a destination burst will be executed. If the
destination does not start on a burst boundary, the destination accesses will
be performed as single accesses.

If the frame size is not a multiple of 4 elements, the remaining 1 to 3 elements
at the end of the frame will be transferred in single (nonburst) accesses.

Burst mode is not supported when the source and destination are both
configured to be the EMIF port.

DSP DMA

DSP Subsystem142 SPRU890A

7.2.12 Synchronizing Channel Activity

Activity in a channel can be synchronized to a request from a DSP public
peripheral or MPU/DSP shared peripheral. Each peripheral request is tied to
a DMA synchronization event. You can use a DMA synchronization event to
trigger channel activity using the SYNC bits of DMACCR.

Each channel has an FS bit in DMACCR that allows you to choose between
two synchronization modes:

� Element synchronization mode (FS = 0) requires one event per element
transfer. When the selected synchronization event occurs, a read access
request is sent to the source port and then a write access request is sent
to the destination port. When all the bytes of the current element are
transferred, the channel makes no more requests until the next
synchronization event occurrence.

� Frame synchronization mode (FS = 1) requires one event to trigger an
entire frame of elements. When the event occurs, the channel sends a
read access request and a write access request for each element in the
frame. When all the elements are transferred, the channel makes no more
requests until the next occurrence of the event.

If you specify a synchronization event, the DMA access to the source and
destination are handled as described in section 7.2.12.1. Once the request is
received, it is handled according to the predefined position and the
programmed priority of the channel in the DMA service chain (section 7.2.6).

If you choose not to synchronize the channel (SYNC = 00000b), the channel
sends an access request to the source port as soon as the channel is enabled
(EN = 1 in DMACCR). Setting EN = 1 initiates the transfer of the entire block
defined for the channel.

If the DMA controller is configured to recognize a synchronization event
(SYNC is something other than 00000b) and the synchronization event occurs
before the channel is enabled, the synchronization event will be latched and
serviced as soon as the channel is enabled. Set the SYNC field to 00000b
while the channel is disabled to ignore the synchronization events that occur
before the channel is enabled.

7.2.12.1 DMA Channel Read Synchronization vs. Write Synchronization

When a DMA channel is configured for synchronization, the synchronization
event is tied to the element read operation or the element write operation
depending on the source and destination ports.

DSP DMA

143DSP SubsystemSPRU890A

There are three general cases (see Table 49).

� Case 1: Source port is peripheral; destination port is SARAM, DARAM, or
EMIF.

The channel waits for the synchronization event before reading from the
peripheral port into the channel FIFO (source synchronization). Once the
FIFO is filled, the DMA channel begins writing to the destination port to
empty the FIFO.

� Case 2: Source port is SARAM, DARAM, or EMIF; destination is
peripheral.

As soon as the channel is enabled (EN = 1 in DMACCR), reads from the
source port are performed to load the channel FIFO. The FIFO writes to
the peripheral port do not begin until the synchronization event is detected
(destination synchronization). When the channel is operating in
frame-synchronization mode (FS = 1 in DMACCR), several prereads may
occur that might fill the FIFO while the channel is awaiting the
synchronization event.

� Case 3: Source port is SARAM, DARAM, or EMIF; destination port is
SARAM, DARAM, or EMIF.

The channel waits for the synchronization event before reading from the
source port into the channel FIFO (source synchronization). Once the
FIFO is filled, the DMA channel begins writing to the destination port to
empty the FIFO.

Table 49. Read/Write Synchronization

SYNC Field of DMACCR Source Port Destination Port
Synchronization
Event Triggers

00000b Any port Any port No activity

Not 00000b Peripheral port SARAM, DARAM or
EMIF port

Source read

Not 00000b SARAM, DARAM or
EMIF port

Peripheral port Destination write

Not 00000b SARAM, DARAM or
EMIF port

SARAM, DARAM or
EMIF port

Source read

DSP DMA

DSP Subsystem144 SPRU890A

7.2.12.2 Checking the Synchronization Status

Each channel has a synchronization flag (SYNC) in its status register,
DMACSR. When the synchronization event occurs, the DMA controller sets
the flag (SYNC = 1). The flag is cleared (SYNC = 0) when the DMA controller
has completed the first read access (transfer from source port to channel
FIFO) after receiving synchronization.

7.2.12.3 Dropped Synchronization Events

If a synchronization event occurs in a channel before the DMA controller is
done servicing the previous event in that channel (before the DMA controller
clears the SYNC bit in DMACSR), a synchronization event has been dropped.
The DMA controller responds to an event drop in the following manner:

� After the current element transfer, the DMA controller disables the channel
(EN = 0 in DMACCR) and activity in the channel stops.

� If the corresponding interrupt enable bit is set (DROPIE = 1 in DMACICR),
the DMA controller also sets the event drop status bit (DROP = 1 in
DMACSR) and sends an interrupt request to the DSP core. For more
details on interrupts, see section 7.2.15.

7.2.12.4 Synchronization Event Sources

Table 50 and Table 51 list the source for each synchronization event on the
OMAP5910 and OMAP5912 devices, respectively. To have a DMA channel
transfer data based on a specific synchronization event, set the SYNC bits of
the DMACCR to the value listed in these tables.

Note:

On the OMAP5910, the synchronization events of the DSP DMA controller
are tied to the peripheral requests specified in Table 50. However, on the
OMAP5912, the source for each synchronization event can be changed
using the DSP GDMA Handler, as described in section 7.2.13. For
compatibility with OMAP5910, the OMAP5912 DSP GDMA Handler defaults
to the configuration shown in Table 51 after the DSP subsystem is reset.

DSP DMA

145DSP SubsystemSPRU890A

Table 50. DSP DMA Controller Synchronization Events for OMAP5910

DMA Event Generated By (On OMAP5910): Setting For SYNC Bits

DMA_EVT1 MCSI1 Transmit Request (MCSI1TX) 00001b

DMA_EVT2 MCSI1 Receive Request (MCSI1RX) 00010b

DMA_EVT3 MCSI2 Transmit Request (MCSI2TX) 00011b

DMA_EVT4 MCSI2 Receive Request (MCSI2RX) 00100b

DMA_EVT5 MPU Request (through MPUIO2) 00101b

DMA_EVT6 MPU Request (through MPUIO4) 00110b

DMA_EVT7 Reserved 00111b

DMA_EVT8 McBSP1 Transmit Request (McBSP1TX) 01000b

DMA_EVT9 McBSP1 Receive Request (McBSP2RX) 01001b

DMA_EVT10 McBSP3 Transmit Request (McBSP3TX) 01010b

DMA_EVT11 McBSP3 Receive Request (McBSP3RX) 01011b

DMA_EVT12 UART1 Transmit Request (UART1TX) 01100b

DMA_EVT13 UART1 Receive Request (UART1RX) 01101b

DMA_EVT14 UART2 Transmit Request (UART2TX) 01110b

DMA_EVT15 UART2 Receive Request (UART2RX) 01111b

DMA_EVT16 Reserved 10000b

DMA_EVT17 Reserved 10001b

DMA_EVT18 UART3 Transmit Request (UART3TX) 10010b

DMA_EVT19 UART3 Receive Request (UART3RX) 10011b

DSP DMA

DSP Subsystem146 SPRU890A

Table 51. DSP DMA Controller Synchronization Events for OMAP5912†

DMA Event Generated By (On OMAP5912): Setting For SYNC Bits

DMA_EVT1 MCSI1 Transmit Request (MCSI1TX) 00001b

DMA_EVT2 MCSI1 Receive Request (MCSI1RX) 00010b

DMA_EVT3 MCSI2 Transmit Request (MCSI2TX) 00011b

DMA_EVT4 MCSI2 Receive Request (MCSI2RX) 00100b

DMA_EVT5 MMC/SDIO2 Transmit Request
(MMC/SDIO2TX)

00101b

DMA_EVT6 MMC/SDIO2 Receive Request (MMC/SDIO2RX) 00110b

DMA_EVT7 Free‡ 00111b

DMA_EVT8 McBSP1 Transmit Request (McBSP1TX) 01000b

DMA_EVT9 McBSP1 Receive Request (McBSP2RX) 01001b

DMA_EVT10 McBSP3 Transmit Request (McBSP3TX) 01010b

DMA_EVT11 McBSP3 Receive Request (McBSP3RX) 01011b

DMA_EVT12 UART1 Transmit Request (UART1TX) 01100b

DMA_EVT13 UART1 Receive Request (UART1RX) 01101b

DMA_EVT14 UART2 Transmit Request (UART2TX) 01110b

DMA_EVT15 UART2 Receive Request (UART2RX) 01111b

DMA_EVT16 I2C Receive Request (I2CRX) 10000b

DMA_EVT17 I2C Transmit Request (I2CTX) 10001b

DMA_EVT18 UART3 Transmit Request (UART3TX) 10010b

DMA_EVT19 UART3 Receive Request (UART3RX) 10011b

† This table lists the default mapping for the DMA synchronization events after a DSP subsystem reset. The source for each
synchronization event can be changed through the GDMA Handler.

‡ After a DSP subsystem reset, DMA_EVT7 is not associated with any particular peripheral request. You can use the Functional
Multiplexing DSP DMA Register B to associate a peripheral request (from Table 52) with this DMA synchronization event.

7.2.13 DSP GDMA Handler (OMAP5912 Only)

7.2.13.1 Operation

As mentioned in section 7.2.12.4, the source for a synchronization event can
be changed on the OMAP5912 DSP DMA. Altogether, the DSP public
peripherals and MPU/DSP shared peripherals can generate up to 28 different
peripheral requests. The OMAP5912 DSP GDMA Handler acts as a crossbar
which maps these incoming peripheral requests to the 19 DSP DMA
synchronization events (see Figure 75).

DSP DMA

147DSP SubsystemSPRU890A

Figure 75. DSP GDMA Handler

DMA_EVT1 DMA_EVT19

5

5

x19
x19

DSP DMA

MPU and shared peripherals

PERIPH_REQ28PERIPH_REQ1

MPU GDMA Handler

GDMA
Handler
registers

Table 52 lists the source of the 28 input lines of the GDMA Handler.

Table 52. DSP GDMA Handler Input Request Lines

Input Request Line Generated By:

PERIPH_REQ1 MCSI1 Transmit Request (MCSI1TX)

PERIPH_REQ2 MCSI1 Receive Request (MCSI1RX)

PERIPH_REQ3 MCSI2 Transmit Request (MCSI2TX)

PERIPH_REQ4 MCSI2 Receive Request (MCSI2RX)

PERIPH_REQ5 MMC/SDIO2 Transmit Request (MMC/SDIO2TX)

PERIPH_REQ6 MMC/SDIO2 Receive Request (MMC/SDIO2RX)

PERIPH_REQ7 Reserved

PERIPH_REQ8 McBSP1 Transmit Request (McBSP1TX)

PERIPH_REQ9 McBSP1 Receive Request (McBSP2RX)

PERIPH_REQ10 McBSP3 Transmit Request (McBSP3TX)

PERIPH_REQ11 McBSP3 Receive Request (McBSP3RX)

PERIPH_REQ12 UART1 Transmit Request (UART1TX)

PERIPH_REQ13 UART1 Receive Request (UART1RX)

PERIPH_REQ14 UART2 Transmit Request (UART2TX)

PERIPH_REQ15 UART2 Receive Request (UART2RX)

PERIPH_REQ16 I2C Receive Request (I2CRX)

PERIPH_REQ17 I2C Transmit Request (I2CTX)

PERIPH_REQ18 UART3 Transmit Request (UART3TX)

DSP DMA

DSP Subsystem148 SPRU890A

Table 52. DSP GDMA Handler Input Request Lines (Continued)

Input Request Line Generated By:

PERIPH_REQ19 UART3 Receive Request (UART3RX)

PERIPH_REQ20 CMT-APE Transmit Request , channel 1 (CMTAPE1TX)

PERIPH_REQ21 CMT-APE Receive Request, channel 1 (CMTAPE1RX)

PERIPH_REQ22 CMT-APE Transmit Request, channel 2 (CMTAPE2TX)

PERIPH_REQ23 CMT-APE Receive Request, channel 2 (CMTAPE2RX)

PERIPH_REQ24 NAND Flash End of Burst (NANDEB)

PERIPH_REQ25 SPI Transmit Request (SPITX)

PERIPH_REQ26 SPI Receive Request (SPIRX)

PERIPH_REQ27 McBSP2 Transmit Request (McBSP2TX)

PERIPH_REQ28 McBSP2 Receive Request (McBSP2RX)

7.2.13.2 Configuration

Each peripheral request can be mapped to a specific DMA synchronization
event through the Functional Multiplexing DSP DMA registers. Each register
contains a 5-bit field associated with each DMA synchronization event. The
value written to this field represents the peripheral request associated with that
synchronization event.

To associate a specific peripheral request with a DMA event, follow these
steps:

1) Using Table 53, identify which functional multiplexing register controls the
desired DMA event.

2) Determine the number of the peripheral request you want to associate with
the DMA event using Table 52.

3) Write the peripheral request number as n-1, not n, to the bit field for the
desired DMA event within the functional multiplexing register.

For example, to associate the McBSP3 transmit request with DMA event
number 6 (DMA_EVT6), write 0x09 to the CONF_DSP_DMA_EVT_06 field of
the FUNC_MUX_DSP_DMA_A register.

After reset, the OMAP5912 DSP GDMA Handler is configured to the default
configuration shown in Table 51. However, the handler gives you the flexibility
to specify the peripheral request associated with each of the 19 DMA events
according to your application task requirements.

DSP DMA

149DSP SubsystemSPRU890A

7.2.13.3 Registers

Table 53 lists the registers associated with the OMAP5912 DSP GDMA
Handler. These registers can be accessed by the MPU through the
OMAP15912 configuration module. The descriptions for each register follow
the table.

Table 53. Registers of the OMAP5912 DSP GDMA Handler

Name Description
MPU Byte
Address

FUNC_MUX_DSP_DMA_A Functional Multiplexing DSP DMA Register A
Controls the mapping for DSP DMA events 1 through 6

0xFFFE 10D0

FUNC_MUX_DSP_DMA_B Functional Multiplexing DSP DMA Register B
Controls the mapping for DSP DMA events 7 through 12

0xFFFE 10D4

FUNC_MUX_DSP_DMA_C Functional Multiplexing DSP DMA Register C
Controls the mapping for DSP DMA events 13 through 18

0xFFFE 10D8

FUNC_MUX_DSP_DMA_D Functional Multiplexing DSP DMA Register D
Controls the mapping for DSP DMA event 19

0xFFFE 10DC

Functional Multiplexing DSP DMA Register A (FUNC_MUX_DSP_DMA_A)

This global control register (see Figure 76 and Table 54) is a 32-bit read/write
register. Use this OMAP configuration register to set the peripheral request
associated with DMA events 1 through 6.

DSP DMA

DSP Subsystem150 SPRU890A

Figure 76. Functional Multiplexing DSP DMA Register A (FUNC_MUX_DSP_DMA_A)

31 30 29 25

Reserved CONF_DSP_DMA_EVT_06

RW-0 RW-0x05

24 20 19 15

CONF_DSP_DMA_EVT_05 CONF_DSP_DMA_EVT_04

RW-0x04 RW-0x03

14 10 9 8

CONF_DSP_DMA_EVT_03 CONF_DSP_DMA_
EVT_02

RW-0x02 RW-0x01

7 5 4 0

CONF_DSP_DMA_EVT_02 CONF_DSP_DMA_EVT_01

RW-0x01 RW-0x00

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 54. Functional Multiplexing DSP DMA Register A (FUNC_MUX_DSP_DMA_A)
Field Descriptions

Bits Field Value Description

31−30 Reserved These read-only bits return 0s when read.

29−25 CONF_DSP_DMA_
EVT_06

0−27 Configuration bits for DMA event 6. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
6. The value n must be between 0 and 27.

24−20 CONF_DSP_DMA_
EVT_05

0−27 Configuration bits for DMA event 5. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
5. The value n must be between 0 and 27.

19−15 CONF_DSP_DMA_
EVT_04

0−27 Configuration bits for DMA event 4. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
4. The value n must be between 0 and 27.

14−10 CONF_DSP_DMA_
EVT_03

0−27 Configuration bits for DMA event 3. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
3. The value n must be between 0 and 27.

DSP DMA

151DSP SubsystemSPRU890A

Table 54. Functional Multiplexing DSP DMA Register A (FUNC_MUX_DSP_DMA_A)
Field Descriptions (Continued)

Bits DescriptionValueField

9−5 CONF_DSP_DMA_
EVT_02

0−27 Configuration bits for DMA event 2. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
2. The value n must be between 0 and 27.

4−0 CONF_DSP_DMA_
EVT_01

0−27 Configuration bits for DMA event 1. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
1. The value n must be between 0 and 27.

Functional Multiplexing DSP DMA Register B (FUNC_MUX_DSP_DMA_B)

This global control register (see Figure 77 and Table 55) is a 32-bit read/write
register. Use this OMAP configuration register to set the peripheral request
associated with DMA events 7 through 12.

Figure 77. Functional Multiplexing DSP DMA Register B (FUNC_MUX_DSP_DMA_B)

31 30 29 25 24

Reserved CONF_DSP_DMA_EVT_12 CONF_DSP_
DMA_EVT_11

RW-0 RW-0x0B RW-0x0A

23 20 19 16

CONF_DSP_DMA_EVT_11 CONF_DSP_DMA_EVT_10

RW-0x0A RW-0x09

15 14 10 9 8

CONF_DSP_
DMA_EVT_10

CONF_DSP_DMA_EVT_09 CONF_DSP_DMA_
EVT_08

RW-0x09 RW-0x08 RW-0x07

7 5 4 0

CONF_DSP_DMA_EVT_08 CONF_DSP_DMA_EVT_07

RW-0x07 RW-0x06

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP DMA

DSP Subsystem152 SPRU890A

Table 55. Functional Multiplexing DSP DMA Register B (FUNC_MUX_DSP_DMA_B)
Field Descriptions

Bits Field Value Description

31−30 Reserved These read-only bits return 0s when read.

29−25 CONF_DSP_DMA_
EVT_12

0−27 Configuration bits for DMA event 12. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
12. The value n must be between 0 and 27.

24−20 CONF_DSP_DMA_
EVT_11

0−27 Configuration bits for DMA event 11. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
11. The value n must be between 0 and 27.

19−15 CONF_DSP_DMA_
EVT_10

0−27 Configuration bits for DMA event 10. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
10. The value n must be between 0 and 27.

14−10 CONF_DSP_DMA_
EVT_09

0−27 Configuration bits for DMA event 9. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
9. The value n must be between 0 and 27.

9−5 CONF_DSP_DMA_
EVT_08

0−27 Configuration bits for DMA event 8. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
8. The value n must be between 0 and 27.

4−0 CONF_DSP_DMA_
EVT_07

0−27 Configuration bits for DMA event 7. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
7. The value n must be between 0 and 27.

Functional Multiplexing DSP DMA Register C (FUNC_MUX_DSP_DMA_C)

This global control register (see Figure 78 and Table 56) is a 32-bit read/write
register. Use this OMAP configuration register to set the peripheral request
associated with DMA events 13 through 18.

DSP DMA

153DSP SubsystemSPRU890A

Figure 78. Functional Multiplexing DSP DMA Register C (FUNC_MUX_DSP_DMA_C)

31 30 29 25 24

Reserved CONF_DSP_DMA_EVT_18 CONF_DSP_
DMA_EVT_17

RW-0 RW-0x11 RW-0x10

23 20 19 16

CONF_DSP_DMA_EVT_17 CONF_DSP_DMA_EVT_16

RW-0x10 RW-0x0F

15 14 10 9 8

CONF_DSP_
DMA_EVT_16

CONF_DSP_DMA_EVT_15 CONF_DSP_DMA_
EVT_14

RW-0x0F RW-0x0E RW-0x0D

7 5 4 0

CONF_DSP_DMA_EVT_14 CONF_DSP_DMA_EVT_13

RW-0x0D RW-0x0C

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 56. Functional Multiplexing DSP DMA Register C (FUNC_MUX_DSP_DMA_C)
Field Descriptions

Bits Field Value Description

31−30 Reserved These read-only bits return 0s when read.

29−25 CONF_DSP_DMA_
EVT_18

0−27 Configuration bits for DMA event 18. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
18. The value n must be between 0 and 27.

24−20 CONF_DSP_DMA_
EVT_17

0−27 Configuration bits for DMA event 17. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
17. The value n must be between 0 and 27.

19−15 CONF_DSP_DMA_
EVT_16

0−27 Configuration bits for DMA event 16. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
16. The value n must be between 0 and 27.

14−10 CONF_DSP_DMA_
EVT_15

0−27 Configuration bits for DMA event 15. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
15. The value n must be between 0 and 27.

DSP DMA

DSP Subsystem154 SPRU890A

Bits DescriptionValueField

9−5 CONF_DSP_DMA_
EVT_14

0−27 Configuration bits for DMA event 14. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
14. The value n must be between 0 and 27.

4−0 CONF_DSP_DMA_
EVT_13

0−27 Configuration bits for DMA event 13. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
13. The value n must be between 0 and 27.

Functional Multiplexing DSP DMA Register D (FUNC_MUX_DSP_DMA_D)

This global control register (see Figure 79 and Table 57) is a 32-bit read/write
register. Use this OMAP configuration register to set the peripheral request
associated with DMA event 19.

Figure 79. Functional Multiplexing DSP DMA Register D (FUNC_MUX_DSP_DMA_D)

31 16

Reserved

RW-0

15 5 4 0

Reserved CONF_DSP_DMA_EVT_19

RW-0x00 RW-0x00

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 57. Functional Multiplexing DSP DMA Register D (FUNC_MUX_DSP_DMA_D)
Field Descriptions

Bits Field Value Description

31−5 Reserved These read-only bits return 0s when read.

4−0 CONF_DSP_DMA_
EVT_19

0−27 Configuration bits for DMA event 19. Writing a value n to this
register maps peripheral request source n+1 to DSP DMA event
19. The value n must be between 0 and 27.

7.2.14 Reset Considerations

A DSP subsystem reset resets the DMA controller and the DMA configuration
registers. Some of the registers are initialized after reset and some are not.
The register definitions included in section 7.3 indicate the register contents
after a DSP subsystem reset.

DSP DMA

155DSP SubsystemSPRU890A

7.2.15 Interrupt Support

The DMA controller can send an interrupt to the DSP core in response to the
operational events listed in Table 58. Each channel has interrupt enable (IE)
bits in the interrupt control register (DMACICR) and some corresponding
status bits in the status register (DMACSR). (DMACICR and DMACSR are
described in section 7.3.6). If one of the operational events in the table occurs,
the DMA controller checks the corresponding IE bit and acts accordingly:

� If the IE bit is 1 (the interrupt is enabled), the DMA controller sets the
corresponding status bit and sends the associated interrupt request to the
DSP core. DMACSR is automatically cleared if your program reads the
register.

� If the IE bit is 0, no interrupt is sent and the status bit is not affected.
DMACSR also has a SYNC bit that is used if you choose a synchronization
event for the channel. SYNC indicates when the selected synchronization
event has occurred (SYNC = 1) and when it has been serviced
(SYNC = 0). For more details about synchronization events, see section
7.2.12.

Table 58. DMA Controller Operational Events and Their Associated Bits and Interrupts

Operational Event
Interrupt

Enable Bit Status Bit
Associated

Interrupt

Block transfer is complete BLOCKIE BLOCK Channel interrupt

Last frame transfer has started LASTIE LAST Channel interrupt

Frame transfer is complete FRAMEIE FRAME Channel interrupt

First half of current frame has been transferred† HALFIE HALF Channel interrupt

Synchronization event has been dropped DROPIE DROP Channel interrupt

Timeout error has occurred TIMEOUTIE TIMEOUT Bus-error interrupt

† For a frame with an odd number of elements, the half-frame event occurs as soon as the number of elements transferred is
greater than the number that remains to be transferred. For example, for a frame of five elements, the half-frame event occurs
when the DMA controller has transferred three of the elements.

DSP DMA

DSP Subsystem156 SPRU890A

7.2.15.1 Channel Interrupt

Each of the six channels has its own interrupt. As shown in Figure 80, the
channel interrupt is the logical OR of all the enabled operational events except
the timeout event (the timeout event generates a bus-error interrupt request).
You can choose any combination of these five events by setting or clearing the
appropriate interrupt enable (IE) bits in the interrupt control register
(DMACICR) for the channel. You can determine which event(s) caused the
interrupt by reading the bits in the status register (DMACSR) for the channel.
The bits in DMACSR are not automatically cleared. A read of DMACSR clears
all of the status bits. DMACSR should be read each time an interrupt occurs
to clear the pending status bits.

Figure 80. Triggering a Channel Interrupt Request

Channel interrupt

DROP event

DROPIE

HALF event

HALFIE

FRAME event

FRAMEIE

LAST event

LASTIE

BLOCK event

BLOCKIE

Á
Á

Á
ÁÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

As an example of using the interrupt enable bits, suppose you are monitoring
activity in channel 1, and suppose that in DMACICR:

BLOCKIE = 0
LASTIE = 0
FRAMEIE = 1
HALFIE = 0
DROPIE = 1

When the current frame transfer is done or if a synchronization event is
dropped (see section 7.2.12.3), the channel 1 interrupt request is sent to the
DSP core. No other event can generate the channel 1 interrupt. To determine
whether one or both of the events triggered the interrupt, you can read the
FRAME and DROP bits in DMACSR.

The channel 1 interrupt sets its corresponding flag bit in an interrupt flag
register of the DSP core. The DSP core can respond to the interrupt or ignore
the interrupt.

For more details about DMACICR and DMACSR, see section 7.3.6.

DSP DMA

157DSP SubsystemSPRU890A

7.2.15.2 Interrupt Multiplexing

Each channel interrupt is routed directly to the DSP core via the DSP Level 1
Interrupt Handler. A timeout event generates a bus error interrupt to the DSP
core.

For more information on the DSP subsystem interrupt handlers, see the
OMAP5910 Dual-Core Processor DSP Subsystem Interrupts Reference
Guide (SPRU923) or the OMAP5912 Multimedia Processor Interrupts
Reference Guide (SPRU757).

7.2.15.3 Timeout Error Conditions

A timeout error condition exists when a memory access has been stalled for
too many cycles. Three of the four standard ports of the DMA controller are
supported by hardware to detect a timeout error:

� DARAM port: A timeout counter in the DARAM port counts how many
cycles have passed since a request was made to access the DARAM.
When the counter reaches its timeout value of 255 DSP core clock cycles,
the DARAM port generates an internal timeout signal. This counter can be
enabled or disabled by writing to the DARAM timeout counter enable bit
(DTCE in DMAGTCR). A timeout error on the DARAM port can occur
because the DSP core is using the port and preventing access by the DMA
controller, or because an address was specified that does not exist in the
DARAM of the DSP subsystem.

� SARAM port: A timeout counter in the SARAM port counts how many
cycles have passed since a request was made to access the SARAM.
When the counter reaches its timeout value of 255 DSP core clock cycles,
the SARAM port generates a timeout signal. This counter can be enabled
or disabled by writing to the SARAM timeout counter enable bit (STCE in
DMAGTCR). A timeout error on the SARAM port can occur because the
DSP core is using the port and preventing access by the DMA controller,
or because an address was specified that does not exist in the SARAM of
the DSP subsystem.

� External memory port: The EMIF port does not support a timeout feature.

� Peripheral port: A timeout counter in the TIPB bridge module counts how
many cycles have passed since a request was made to access a
peripheral. When the counter reaches its timeout value of 127 DSP core
clock cycles, the peripheral bus controller sends a timeout signal to the
DMA controller. A timeout error on the peripheral port can occur because
an address was specified that does not exist in I/O space on the DSP.

DSP DMA

DSP Subsystem158 SPRU890A

In response to a timeout signal, the DMA controller disables the channel
(EN = 0 in DMACCR) and activity in the channel stops. If the corresponding
interrupt enable bit is set (TIMEOUTIE = 1 in DMACICR), the DMA controller
also sets the timeout status bit (TIMEOUT = 1 in DMACSR) and sends the
timeout signal to the DSP core as an interrupt request. The interrupt request
sets the bus-error interrupt (BERRINT) flag bit in the DSP core. The DSP core
can respond to the interrupt request or ignore the interrupt request.

7.2.16 Power Management

The DSP module is divided into idle domains that can be programmed to be
idle or active. The state of all domains is called the idle configuration. Any idle
configuration that disables the DMA domain stops the DMA clock and,
therefore, stops activity in the DMA controller.

Note:

There is no hardware handshaking to ensure all ongoing transfers are
completed before the DMA controller goes into the idle state. All ongoing
transfers are immediately suspended when the DMA controller is placed in
the idle state.

When the DMA domain is idle, it can be temporarily reactivated without a
change in the idle configuration in the following case. If one of the multichannel
buffered serial ports (McBSPs) needs the DMA controller for a data transfer,
the DMA controller will leave its idle state to perform the data transfer and then
enter its idle state again.

7.2.17 Emulation Considerations

The FREE bit of DMAGCR controls the behavior of the DMA controller when
an emulation breakpoint is encountered. If FREE = 0 (the reset value), a
breakpoint suspends DMA transfers. If FREE = 1, DMA transfers are not
interrupted by a breakpoint.

DSP DMA

159DSP SubsystemSPRU890A

7.2.18 Latency in DMA Transfers

Each element transfer in a channel is composed of a read access (a transfer
from the source location to the channel buffer) and a write access (a transfer
from the channel buffer to the destination location). The time to complete this
activity depends on factors such as:

� The selected frequency of the DSP core clock signal. This signal, as
propagated to the DMA controller, determines the timing for all DMA
transfers.

� Wait states or other extra cycles added by or resulting from an interface.

� Activity on other channels. As channels are serviced in a sequential order,
the number of pending DMA service requests in the other channels affects
how often a given channel can be serviced. For more details on how the
channels are serviced, see section 7.2.6.

� Competition from the Microprocessor Port Interface (MPUI). If the MPUI
is sharing internal RAM with the channels, the DMA controller allocates
cycles to the MPUI like it does to channels. If the MPUI is given exclusive
access to the internal RAM, no channels can access the internal RAM until
the MPUI access configuration is changed (see section 7.2.5).

� Competition from the DSP core. If the DMA controller and the DSP core
request access to the same internal memory block in the same cycle and
the memory block cannot service both requests at the same time, the DSP
core request has higher priority. The DMA request is serviced as soon as
there are no pending DSP core requests.

� The timing of synchronization events (if the channel is synchronized). The
DMA controller cannot service a synchronized channel until the
synchronization event has occurred. For more details on synchronization,
see section 7.2.12.

The minimum (best-case) latency is determined by the ports used. On the
SARAM and DARAM ports, the DMA controller can initiate one access per
cycle, if the DMA controller is not competing with the DSP core for access to
the same memory block. SARAM memory can support one access per cycle
per memory block from either the DMA controller or the DSP core. A DSP core
access to the same SARAM block used by the DMA controller (in the same
cycle) will cause stalls on the DMA access. DARAM memory can support two
accesses per cycle per memory block. If more than two DSP core accesses
are pending to the same DARAM block used by the DMA controller, this
causes stalls on the DMA access. The best-case transfer rate for channels
using these ports would be one cycle to read at the source and one cycle to
write at the destination. External memory accesses through the EMIF port are
handled by the traffic controller; therefore, the minimum latency of the EMIF
port is determined by factors such as pending traffic controller accesses, and
EMIFF and EMIFS configurations. The minimum latency for the peripheral port
is approximately 5 cycles per access.

DSP DMA

DSP Subsystem160 SPRU890A

7.3 DSP DMA Controller Registers

7.3.1 Overview

Table 59 lists the types of registers in the DMA controller. There are three
global control registers (DMAGCR, DMAGSCR, and DMAGTCR) that affect
all channel activity. In addition, for each of the DMA channels, there are
individual channel configuration registers. For the I/O address of each register,
see the data manual for your OMAP device.

Table 59. Registers of the DMA Controller

Name Description
See

Section

DMAGCR Global control register (only one) 7.3.2

DMAGSCR Global software compatibility register (only one) 7.3.3

DMAGTCR Global timeout control register (only one) 7.3.4

DMACCR Channel control register (one for each channel) 7.3.5

DMACICR Interrupt control register (one for each channel) 7.3.6

DMACSR Status register (one for each channel) 7.3.6

DMACSDP Source and destination parameters register (one for each channel) 7.3.7

DMACSSAL Source start address (lower part) register (one for each channel) 7.3.8

DMACSSAU Source start address (upper part) register (one for each channel) 7.3.8

DMACDSAL Destination start address (lower part) register (one for each channel) 7.3.9

DMACDSAU Destination start address (upper part) register (one for each channel) 7.3.9

DMACEN Element number register (one for each channel) 7.3.10

DMACFN Frame number register (one for each channel) 7.3.10

DMACEI/
DMACSEI

Element index register/source element index register
(one for each channel)

7.3.11

DMACFI/
DMACSFI

Frame index register/source frame index register
(one for each channel)

7.3.11

DMACDEI Destination element index register (one for each channel) 7.3.11

DMACDFI Destination frame index register (one for each channel) 7.3.11

DMACSAC Source address counter register (one for each channel) 7.3.12

DMACDAC Destination address counter register (one for each channel) 7.3.12

DSP DMA

161DSP SubsystemSPRU890A

7.3.2 DMA Global Control Register (DMAGCR)

The global control register (see Figure 81 and Table 60) is a 16-bit read/write
register. Use this I/O-mapped register to set the emulation mode of the DMA
controller (FREE) and to define how the DMA controller treats the host port
interface (MPUI_EXCL and MPUI_PRIO).

Figure 81. DMA Global Control Register (DMAGCR)

15 8

Reserved

R-0

7 4 3 2 1 0

Reserved Reserved† FREE MPUI_EXCL MPUI_PRIO

R-0 RW-1 RW-0 RW-0 RW-0
† Always write 1 to this reserved bit.
Note: R - Read, W = Write

Table 60. DMA Global Control Register (DMAGCR) Field Descriptions

Bits Field Value Description

15−4 Reserved These read-only bits return 0s when read.

3 Reserved Always write 1 to this reserved bit.

2 FREE Emulation mode bit. FREE controls the behavior of the DMA controller
when an emulation breakpoint is encountered:

0 A breakpoint suspends DMA transfers.

1 DMA transfers continue uninterrupted when a breakpoint occurs.

1 MPUI_EXCL MPUI exclusive access bit. MPUI_EXCL determines whether the
Microprocessor Port Interface (MPUI) has exclusive access to the
internal RAM of the DSP.

Note: Regardless of the value of MPUI_EXCL, the MPUI cannot
access the peripheral port.

0 The MPUI shares the internal RAM with the DMA channels. The MPUI
can access any internal and DSP external memory in its address
reach.

1 The MPUI has exclusive access to the internal RAM. If any channels
must access the DARAM port or the SARAM port, activity in these
channels is suspended.
In this MPUI access configuration, the MPUI can only access the
DARAM port and the SARAM port. It cannot access the DSP external
memory port.

DSP DMA

DSP Subsystem162 SPRU890A

Table 60. DMA Global Control Register (DMAGCR) Field Descriptions (Continued)

Bits DescriptionValueField

0 MPUI_PRIO MPUI priority bit. MPUI_PRIO assigns the MPUI a high or low priority
level in the service chain of the DMA controller.

Note: When the MPUI has exclusive access to the DARAM and
SARAM ports (MPUI_EXCL = 1), the MPUI priority is irrelevant at
these ports because none of the DMA channels can access the
DARAM and SARAM ports.

0 Low priority level.

1 High priority level.

7.3.3 DMA Global Software Compatibility Register (DMAGSCR)

The global software compatibility register is a 16-bit read/write register that
controls how the DMA controller gets the destination element index and the
destination frame index. The original DMA controller design used one element
index register (DMACEI) for both source and destination, and one frame index
register (DMACFI) for both source and destination. Later designs were
enhanced to allow separate source and destination indexes. In the enhanced
mode:

� DMACEI is DMACSEI, the source element index register. DMACFI is
DMACSFI, the source frame index register.

� The destination element index is stored in a separate destination element
index register (DMACDEI) and the destination frame index is stored in a
separate destination frame index register (DMACDEI).

DMAGSCR provides the ability to choose either the original method of
indexing (to maintain software compatibility with code written for the original
design) or the enhanced method of indexing.

DMAGSCR is summarized by Figure 82 and Table 61.

Figure 82. DMA Global Software Compatibility Register (DMAGSCR)

15 1 0

Reserved DINDXMD

R-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP DMA

163DSP SubsystemSPRU890A

Table 61. DMA Global Software Compatibility Register (DMAGSCR) Field Descriptions

Bits Field Value Description

15−1 Reserved These read-only bits return 0s when read.

0 DINDXMD Destination element and frame index mode bit. This bit determines
which registers will be used to indicate the destination element and
frame indexes.

0 Compatibility mode.

One element index for both the source and destination is stored in the
channel source element index register (DMACSEI).

One frame index for both the source and destination is stored in the
channel source frame index register (DMACSFI).

1 Enhanced mode.

The source element index is stored in the channel source element
index register (DMACSEI).

The destination element index is stored in the channel destination
element index register (DMACDEI).

The source frame index is stored in the channel source frame index
register (DMACSFI).

The destination frame index is stored in the channel destination frame
index register (DMACDFI).

7.3.4 DMA Global Timeout Control Register (DMAGTCR)

The global timeout control register (see Figure 83 and Table 62) is a 16-bit
read/write register that enables or disables timeout counters on the SARAM
and DARAM ports. If the timeout counters are disabled, the DMA controller will
never generate a timeout error for these ports. For details about the timeout
error conditions, see section 7.2.15.3.

Figure 83. DMA Global Timeout Control Register (DMAGTCR)

15 2 1 0

Reserved DTCE STCE

R-0 RW-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP DMA

DSP Subsystem164 SPRU890A

Table 62. DMA Global Timeout Control Register (DMAGTCR) Field Descriptions

Bits Field Value Description

15−2 Reserved These read-only bits return 0s when read.

1 DTCE DARAM timeout counter enable bit. This bit enables/disables the
timeout counter used to monitor delays on DMA requests to the
DARAM port.

0 DARAM timeout counter disabled.

1 DARAM timeout counter enabled.

0 STCE SARAM timeout counter enable bit. This bit enables/disables the
timeout counter used to monitor delays on DMA requests to the
SARAM port.

0 SARAM timeout counter disabled.

1 SARAM timeout counter enabled.

7.3.5 DMA Channel Control Register (DMACCR)

Each channel has a channel control register as shown in Figure 84. This
I/O-mapped register enables you to:

� Choose how the source and destination addresses are updated
(SRCAMODE and DSTAMODE)

� Enable and control repeated DMA transfers (AUTOINIT, REPEAT, and
ENDPROG)

� Enable or disable the channel (EN)

� Choose a low or high priority level for the channel (PRIO)

� Select element synchronization or frame synchronization (FS)

� Determine what synchronization event (if any) initiates a transfer in the
channel (SYNC)

Table 63 describes the register fields.

DSP DMA

165DSP SubsystemSPRU890A

Figure 84. DMA Channel Control Register (DMACCR)

15 14 13 12 11 10 9 8

DSTAMODE SRCAMODE ENDPROG Reserved† REPEAT AUTOINIT

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 0

EN PRIO FS SYNC

RW-0 RW-0 RW-0 RW-0
† Bit 10 must be kept 0 for proper operation of the DMA controller.

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 63. DMA Channel Control Register (DMACCR) Field Descriptions

Bits Field Value Description

15−14 DSTAMODE Destination addressing mode bits. DSTAMODE determines the
addressing mode used by the DMA controller when it writes to the
destination port of the channel. At the end of a transfer, but before any
incrementing, the destination address is the address of the last byte
that was modified at the destination.

00b Constant address. The same address is used for each element
transfer.

01b Automatic post increment. After each element transfer, the address is
incremented according to the selected data type:

If data type is 8-bit

 Address = Address + 1

If data type is 16-bit

 Address = Address + 2

If data type is 32-bit

 Address = Address + 4

10b Single index. After each element transfer, the address is incremented
by the programmed element index amount:

 Address = Address + element index

See section 7.3.11 for more details.

11b Double index (sort). After each element transfer, the address is
incremented by the appropriate index amount:

If there are more elements to transfer in the current frame

 Address = Address + element index

If the last element in the frame has been transferred

 Address = Address + frame index

See section 7.3.11 for more details.

DSP DMA

DSP Subsystem166 SPRU890A

Table 63. DMA Channel Control Register (DMACCR) Field Descriptions (Continued)

Bits DescriptionValueField

13−12 SRCAMODE Source addressing mode bits. SRCAMODE determines the
addressing mode used by the DMA controller when it reads from the
source port of the channel. At the end of a transfer, but before any
incrementing, the source address is the address of the last byte that
was read from the source.

00b Constant address. The same address is used for each element
transfer.

01b Automatic post increment. After each element transfer, the address is
incremented according to the selected data type:

If data type is 8-bit

 Address = Address + 1

If data type is 16-bit

 Address = Address + 2

If data type is 32-bit

 Address = Address + 4

10b Single index. After each element transfer, the address is incremented
by the programmed element index amount:

 Address = Address + element index

See section 7.3.11 for more details.

11b Double index (sort). After each element transfer, the address is
incremented by the appropriate index amount:

If there are more elements to transfer in the current frame:

 Address = Address + element index

If the last element in the frame has been transferred:

 Address = Address + frame index

See section 7.3.11 for more details.

DSP DMA

167DSP SubsystemSPRU890A

Table 63. DMA Channel Control Register (DMACCR) Field Descriptions (Continued)

Bits DescriptionValueField

11 ENDPROG End-of-programming bit. Each DMA channel has two sets of registers:
configuration registers and working registers. When block transfers
occur repeatedly because of auto-initialization (AUTOINIT = 1), you
can change the context for the next DMA transfer by writing to the
configuration registers during the current block transfer. At the end of
the current transfer, the contents of the configuration registers are
copied into the working registers, and the DMA controller begins the
next transfer using the new context. For proper auto-initialization, the
DSP core must finish programming the configuration registers before
the DMA controller copies their contents.

The DMA controller automatically clears the ENDPROG bit after
copying the configuration registers to the working registers. The DSP
core can then program the DMA channel context for the next iteration
of the transfer by programming the configuration registers.

To make sure auto-initialization waits for the DSP core, follow this
procedure:

1) Make auto-initialization wait for ENDPROG = 1 by clearing the
REPEAT bit (REPEAT = 0).

2) Poll for ENDPROG = 0, which indicates that the DMA controller
has finished copying the previous context. The configuration
registers can now be programmed for the next iteration.

3) Program the configuration registers.

4) Set ENDPROG (ENDPROG = 1) to indicate the end of register
programming.

0 The configuration registers are ready for programming, or
programming is in progress.

1 End of programming. The programming of the configuration registers
is complete.

10 Reserved 0 This reserved bit must be kept 0. Make sure that whenever your
program modifies DMACCR, it writes a 0 to bit 10.

DSP DMA

DSP Subsystem168 SPRU890A

Table 63. DMA Channel Control Register (DMACCR) Field Descriptions (Continued)

Bits DescriptionValueField

9 REPEAT Repeat condition bit. If auto-initialization is selected for a channel
(AUTOINIT = 1), REPEAT specifies one of two special repeat
conditions:

0 Repeat only if ENDPROG = 1. Once the current DMA transfer is
complete, auto-initialization will wait for the end-of-programming bit
(ENDPROG) bit to be set.

1 Repeat regardless of ENDPROG. Once the current DMA transfer is
complete, auto-initialization occurs regardless of whether ENDPROG
is 0 or 1.

8 AUTOINIT Auto-initialization bit. The DMA controller supports auto-initialization,
which is the automatic re-initialization of the channel between DMA
block transfers. Use AUTOINIT to enable or disable this feature.

0 Auto-initialization is disabled. Activity in the channel stops at the end
of the current block transfer. To stop a transfer immediately, clear the
channel enable it (EN).

1 Auto-initialization is enabled. Once the current block transfer is
complete, the DMA controller reinitializes the channel and starts a new
block transfer.

There are two options to stop activity in the channel:

� To stop activity immediately, clear the channel enable bit
(EN = 0).

� To stop activity after the current block transfer, clear AUTOINIT
(AUTOINIT= 0).

7 EN Channel enable bit. Use EN to enable or disable transfers in the
channel. The DMA controller clears EN when a block transfer in the
channel is complete.

Note: If the DSP core attempts to write to EN at the same time that the
DMA controller must clear EN, the DMA controller is given higher
priority. EN is cleared, and the value from the DSP core is discarded.

0 The channel is disabled. The channel cannot be serviced by the DMA
controller. If a DMA transfer is already active in the channel, the DMA
controller stops the transfer and resets the channel.

1 The channel is enabled. The channel can be serviced by the DMA
controller at the next available time slot.

DSP DMA

169DSP SubsystemSPRU890A

Table 63. DMA Channel Control Register (DMACCR) Field Descriptions (Continued)

Bits DescriptionValueField

6 PRIO Channel priority bit. All six of the DMA channels are given a fixed
position and programmable priority level on the service chain of the
DMA controller. PRIO determines whether the associated channel
has a high priority or a low priority. High-priority channels are serviced
before low-priority channels.

0 Low priority.

1 High priority.

5 FS Frame/element synchronization bit. You can use the SYNC bits of
DMACCR to specify a synchronization event for the channel. The FS
bit determines whether the synchronization event initiates the transfer
of an element or an entire frame of data:

0 Element synchronization. When the selected synchronization event
occurs, one element is transferred in the channel. Each element
transfer waits for the synchronization event.

1 Frame synchronization. When the selected synchronization event
occurs, an entire frame is transferred in the channel. Each frame
transfer waits for the synchronization event.

4−0 SYNC (see
section

7.2.12.4)

Synchronization control bits. SYNC in DMACCR determines the
peripheral request (for example, a serial port transmit request).

A DSP subsystem reset selects SYNC = 00000b (no synchronization
event). When SYNC = 00000b, the DMA controller does not wait for
a synchronization event before beginning a DMA transfer in the
channel; channel activity begins as soon as the channel is enabled
(EN = 1).

If the DMA is configured to recognize a synchronization event (SYNC
is something other than 00000b) and the synchronization event
occurs before the channel is enabled, the synchronization event will
be latched and serviced as soon as the channel is enabled. If it is
preferable to ignore the synchronization events that occur before the
channel is enabled, then the SYNC field should be set to 00000b while
the channel is disabled.

Each peripheral request can be mapped to a specific DMA
synchronization event through the GDMA Handler. However, at reset,
a default mapping is implemented.

DSP DMA

DSP Subsystem170 SPRU890A

7.3.6 DMA Interrupt Control Register (DMACICR) and Status Register (DMACSR)

Each channel has an interrupt control register (DMACICR) and a status
register (DMACSR). DMACICR and DMACSR are I/O-mapped registers.
Their bits are shown in Figure 85 and described in Table 64 and Table 65.

Use DMACICR to specify if one or more operational events in the DMA
controller trigger an interrupt. If an operational event occurs and its interrupt
enable (IE) bit is 1, an interrupt request is sent to the DSP core, where it can
be serviced or ignored. Each channel has its own interrupt line to the DSP core
and one set of flag and enable bits in the DSP core. In addition, the DMA
controller can send a bus-error interrupt request to the DSP core in response
to a timeout error. The bus-error interrupt also has a set of flag and enable bits
in the DSP core.

To see which operational event or events have occurred in the DMA controller,
your program can read DMACSR. The DMA controller only sets one of the
interrupt flag bits (bits 5-0) if the operational event occurs and the associated
interrupt enable bit is set in DMACICR. After your program reads DMACSR,
all of its bits are cleared automatically.

The SYNC bit (bit 6) of DMACSR can be used to detect when a
synchronization event has occurred (SYNC = 1) and when the resulting
access request has been serviced (SYNC = 0).

DSP DMA

171DSP SubsystemSPRU890A

Figure 85. DMA Interrupt Control Register (DMACICR) and Status Register (DMACSR)

DMACICR

15 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved BLOCKIE LASTIE FRAMEIE HALFIE DROPIE TIMEOUTIE

R-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-1

DMACSR

15 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved SYNC BLOCK LAST FRAME HALF DROP TIMEOUT

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 64. DMA Interrupt Control Register (DMACICR) Fields Descriptions

Bits Field Value Description

15−6 Reserved These read-only bits returns 0s when read.

5 BLOCKIE Whole block interrupt enable bit. BLOCKIE determines how the DMA
controller responds when all of the current block has been transferred
from the source port to the destination port.

0 Do not record the event.

1 Set the BLOCK bit and send the channel interrupt request to the DSP
core.

4 LASTIE Last frame interrupt enable bit. LASTIE determines how the DMA
controller responds when the DMA controller starts transferring the
last frame from the source port to the destination port.

0 Do not record the event.

1 Set the LAST bit and send the channel interrupt request to the DSP
core.

DSP DMA

DSP Subsystem172 SPRU890A

Table 64. DMA Interrupt Control Register (DMACICR) Fields Descriptions (Continued)

Bits DescriptionValueField

3 FRAMEIE Whole frame interrupt enable bit. FRAMEIE determines how the DMA
controller responds when the all of the current frame has been
transferred from the source port to the destination port.

0 Do not record the event.

1 Set the FRAME bit and send the channel interrupt request to the DSP
core.

2 HALFIE Half frame interrupt enable bit. HALFIE determines how the DMA
controller responds when the first half of the current frame has been
transferred from the source port to the destination port. For a frame
with an odd number of elements, the half-frame event occurs as soon
as the number of elements transferred is greater than the number that
remains to be transferred. For example, for a frame of five elements,
the half-frame event occurs when the DMA controller has transferred
three of the elements.

0 Do not record the event.

1 Set the HALF bit and send the channel interrupt request to the DSP
core.

1 DROPIE Synchronization event drop interrupt enable bit. An error occurs if a
DMA synchronization event occurs again before the DMA controller
has finished servicing the previous DMA request. This error is called
a synchronization event drop. DROPIE determines how the DMA
controller responds when a synchronization event drop occurs in the
channel.

0 Do not record the drop.

1 Set the DROP bit and send the channel interrupt request to the DSP
core.

0 TIMEOUTIE Timeout interrupt enable bit. TIMEOUTIE determines how the DMA
controller responds to a timeout error at the source port or the
destination port of the channel. Section 7.2.15.3 describes the timeout
error conditions.

0 Do not record the timeout error.

1 Set the TIMEOUT bit and send the bus-error interrupt request to the
DSP core.

DSP DMA

173DSP SubsystemSPRU890A

Table 65. DMA Status Register (DMACSR) Field Descriptions

Bits Field Value Description

15−7 Reserved These read-only bits returns 0s when read.

6 SYNC Synchronization event status bit. The DMA controller updates SYNC
to indicate when the synchronization event for the channel has
occurred or when the synchronized channel has been serviced.

An error occurs if a DMA synchronization event occurs again before
the DMA controller has finished servicing the previous DMA request.
This error is called a synchronization event drop. You can track this
type of error using the DROPIE bit and the DROP bit.

To select a synchronization event for a channel, use the SYNC bits of
DMACCR.

0 The DMA controller has finished servicing the previous access
request.

1 A synchronization event has occurred. In response to the event, the
synchronized channel submits an access request to its source port.

5 BLOCK Whole block status bit. The DMA controller only sets BLOCK if
BLOCKIE = 1 in DMACICR and all of the current block has been
transferred from the source port to the destination port.

0 The whole-block event has not occurred yet, or BLOCK has been
cleared.

1 The whole block has been transferred. A channel interrupt request has
been sent to the DSP core.

4 LAST Last frame status bit. The DMA controller sets LAST only if
LASTIE = 1 in DMACICR and the DMA controller has started
transferring the last frame from the source port to the destination port.

0 The last-frame event has not occurred yet, or LAST has been cleared.

1 The DMA controller has started transferring the last frame. A channel
interrupt request has been sent to the DSP core.

3 FRAME Whole frame status bit. The DMA controller sets FRAME only if
FRAMEIE = 1 in DMACICR and all of the current frame has been
transferred from the source port to the destination port.

0 The whole-frame event has not occurred yet, or FRAME has been
cleared.

1 The whole frame has been transferred. A channel interrupt request
has been sent to the DSP core.

DSP DMA

DSP Subsystem174 SPRU890A

Table 65. DMA Status Register (DMACSR) Field Descriptions (Continued)

Bits DescriptionValueField

2 HALF Half frame status bit. The DMA controller sets HALF only if
HALFIE = 1 in DMACICR and the first half of the current frame has
been transferred from the source port to the destination port. For a
frame with an odd number of elements, the half-frame event occurs as
soon as the number of elements transferred is greater than the
number that remains to be transferred. For example, for a frame of five
elements, the half-frame event occurs when the DMA controller has
transferred three of the elements.

0 The half-frame event has not occurred yet, or HALF has been cleared.

1 The first half of the frame has been transferred. A channel interrupt
request has been sent to the DSP core.

1 DROP Synchronization event drop status bit. An error occurs if a DMA
synchronization event occurs again before the DMA controller has
finished servicing the previous DMA request. This error is called a
synchronization event drop. The DMA controller sets DROP only if
DROPIE = 1 in DMACICR and a synchronization event drop has
occurred in the channel.

0 A synchronization event drop has not occurred, or DROP has been
cleared.

1 A synchronization event drop has occurred. A channel interrupt
request has been sent to the DSP core.

0 TIMEOUT Timeout status bit. The DMA controller sets TIMEOUT only if
TIMEOUTIE = 1 in DMACICR and a timeout error has occurred at the
source port or the destination port of the channel. The timeout error
conditions are described in section 7.2.15.3.

0 A timeout error has not occurred, or TIMEOUT has been cleared.

1 A timeout error has occurred. A bus-error interrupt request has been
sent to the DSP core.

7.3.7 DMA Source and Destination Parameters Register (DMACSDP)

Each channel has a source and destination parameters register of the form
shown in Figure 86. This I/O-mapped register enables you to choose a source
port (SRC) and a destination port (DST), specify a data type (DATATYPE) for
port accesses, enable or disable data packing (SRCPACK and DSTPACK),
and enable or disable burst transfers (SRCBEN and DSTBEN). Table 66
describes the fields of this register.

DSP DMA

175DSP SubsystemSPRU890A

Figure 86. DMA Source and Destination Parameters Register (DMACSDP)

15 14 13 12 9 8

DSTBEN DSTPACK DST SRCBEN

RW-0 RW-0 RW-0 RW-0

7 6 5 2 1 0

SRCBEN SRCPACK SRC DATATYPE

RW-0 RW-0 RW-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 66. DMA Source and Destination Parameters Register (DMACSDP)
Field Descriptions

Bits Field Value Description

15−14 DSTBEN Destination burst enable bits. A burst in the DMA controller is four
consecutive 32-bit accesses at a DMA port. DSTBEN determines
whether the DMA controller performs a burst at the destination port of
the channel.

Bursting is not supported when both the source and destination are
configured to be the EMIF port (SRC = DST = XX10b).

00b Bursting disabled (single access enabled) at the destination.

01b Bursting disabled (single access enabled) at the destination.

10b Bursting enabled at the destination. When writing to the destination,
the DMA controller performs four consecutive 32-bit accesses.

11b Reserved (do not use).

13 DSTPACK Destination packing enable bit. The DMA controller can perform data
packing to double or quadruple the amount of data passed to the
destination in a single transfer. For example, if an 8-bit data type is
selected and the destination port has a 32-bit data bus, four 8-bit
pieces of data can be packed into 32 bits before being sent to the
destination. DSTPACK determines whether data packing is used at
the destination port.

0 Packing disabled at the destination.

1 Packing enabled at the destination. Where possible, the DMA
controller packs data before each write to the destination. Table 48
shows the instances where data packing is performed.

DSP DMA

DSP Subsystem176 SPRU890A

Table 66. DMA Source and Destination Parameters Register (DMACSDP)
Field Descriptions (Continued)

Bits DescriptionValueField

12−9 DST Destination selection bits. DST selects which DMA port is the
destination for data transfers in the channel.

0000b SARAM (single-access RAM inside the DSP subsystem).

0001b DARAM (dual-access RAM inside the DSP subsystem).

0010b External memory (via the external memory interface, EMIF).

Internally, 8-bit data read requests from the DSP external memory are
converted to 16-bit data read requests by the EMIF. The appropriate
byte is fetched from this read request and placed in internal memory.

0011b Peripherals (via the shared TI peripheral bus bridge). Connection of
a channel configured to have an 8-bit data type to the peripheral port
is not supported.

Others Reserved.

8−7 SRCBEN Source burst enable bits. A burst in the DMA controller is four
consecutive 32-bit accesses at a DMA port. SRCBEN determines
whether the DMA controller performs a burst at the source port of the
channel.

This field will be ignored if:

� The source port does not support burst capability, or
� Constant address mode is selected for the source port, or
� The channel is element synchronized.

Bursting is not supported when both the source and destination are
configured to be the EMIF port (SRC = DST = XX10b).

00b Bursting disabled (single access enabled) at the source.

01b Bursting disabled (single access enabled) at the source.

10b Bursting enabled at the source. When reading from the source, the
DMA controller performs four consecutive 32-bit accesses.

11b Reserved (do not use).

DSP DMA

177DSP SubsystemSPRU890A

Table 66. DMA Source and Destination Parameters Register (DMACSDP)
Field Descriptions (Continued)

Bits DescriptionValueField

6 SRCPACK Source packing enable bit. The DMA controller can perform data
packing to double or quadruple the amount of data gathered at the
source before a transfer. For example, if an 8-bit data type is selected
and the source port has a 32-bit data bus, four 8-bit pieces of data can
be packed into 32 bits before being sent through the channel.
SRCPACK determines whether data packing is used at the source
port.

0 Packing disabled at the source.

1 Packing enabled at the source. Where possible, the DMA controller
packs data from the source before beginning a data transfer in the
channel. Table 48 shows the instances where data packing is
performed.

5−2 SRC Source selection bits. SRC selects which DMA port is the source for
data transfers in the channel.

0000b SARAM (single-access RAM inside the DSP subsystem).

0001b DARAM (dual-access RAM inside the DSP subsystem).

0010b External memory (via the external memory interface, EMIF).

Internally, 8-bit data read requests from the DSP external memory are
converted to 16-bit data read requests by the EMIF. The appropriate
byte is fetched from this read request and placed in internal memory.

0011b Peripherals (via the shared TI peripheral bus bridge). Connection of
a channel configured to have an 8-bit data type to the peripheral port
is not supported.

Others Reserved.

DSP DMA

DSP Subsystem178 SPRU890A

Table 66. DMA Source and Destination Parameters Register (DMACSDP)
Field Descriptions (Continued)

Bits DescriptionValueField

1−0 DATATYPE Data type bits. DATATYPE indicates how data is to be accessed at the
source and at the destination of the channel. Note that the DMA
controller uses byte addresses for its accesses; each byte in data
space or I/O space has its own address. For information on how
addresses are updated between element transfers, see the
descriptions for the DSTAMODE bits and the SRCAMODE bits of
DMACCR, section 7.3.5.

00b 8-bit. The DMA controller makes 8-bit accesses at the source and at
the destination of the channel. The source and destination start
addresses have no alignment constraint:

 Start address: XXXX XXXX XXXX XXXXb (X can be 0 or 1)

If you choose the automatic post increment addressing mode at the
source or the destination, the corresponding address is updated by an
increment of 1 after each element transfer.

Connection of a channel configured as 8-bit data type to the peripheral
port is not supported.

Internally, 8-bit data read requests from the DSP external memory are
converted to 16-bit data read requests by the EMIF. The appropriate
byte is fetched from this read request and placed in internal memory.

01b 16-bit. The DMA controller makes 16-bit accesses at the source and
at the destination. The source and destination start addresses must
each be on an even 2-byte boundary; the least significant bit (LSB)
must be 0:

 Start address: XXXX XXXX XXXX XXX0b (X can be 0 or 1)

If you choose the automatic post increment addressing mode at the
source or the destination, the address is updated by an increment of
2 after each element transfer.

10b 32-bit. The DMA controller makes 32-bit accesses at the source and
at the destination. The source and destination start addresses must
be on an even 4-byte boundary; the 2 LSBs must be 0:

 Start address: XXXX XXXX XXXX XX00b (X can be 0 or 1)

If you choose the automatic post increment addressing mode at the
source or the destination, the address is updated by an increment of
4 after each element transfer.

11b Reserved (do not use).

DSP DMA

179DSP SubsystemSPRU890A

7.3.8 DMA Source Start Address Registers (DMACSSAU and DMACSSAL)

Each channel has two source start address registers, which are shown in
Figure 87 and described in Table 68 and Table 67. For the first access to the
source port of the channel, the DMA controller generates a byte address by
concatenating the contents of these two I/O-mapped registers. DMACSSAU
supplies the upper bits, and DMACSSAL supplies the lower bits:

Source start address = DMACSSAU:DMACSSAL

Notes:

1) You must load the source start address registers with a byte address. If
you have a word address, shift it left by 1 before loading the registers.

2) If you have a 16-bit or 32-bit data type, the start address must be aligned
properly. See the description for the DATATYPE bits of DMACSDP in
section 7.3.7.

3) Ensure that the start address, element index, and frame index will
produce valid addresses within the range of the port. If an invalid address
is generated, a timeout error will occur.

The destination start address is supplied by DMACDSAL and DMACDSAU,
which are described in section 7.3.9.

Figure 87. DMA Source Start Address Registers (DMACSSAU and DMACSSAL)

DMACSSAU

15 0

SSAU

RW-x

DMACSSAL

15 0

SSAL

RW-x

Note: R = Read; W = Write; −n = Value after reset; −x = Value after DSP reset is not defined.

DSP DMA

DSP Subsystem180 SPRU890A

Table 67. DMA Source Start Address Register − Upper Part (DMACSSAU) Field
Descriptions

Bits Field Value Description

15−0 SSAU 0000h−
00FFh

Upper part of source start address (byte address).

0100h−
FFFFh

Reserved (do not use).

Table 68. DMA Source Start Address Register − Lower Part (DMACSSAL) Field
Descriptions

Bits Field Value Description

15−0 SSAL 0000h−
FFFFh

Lower part of source start address (byte address).

7.3.9 DMA Destination Start Address Registers (DMACDSAU and DMACDSAL)

Each channel has two destination start address registers, which are shown in
Figure 88 and described in Table 70 and Table 69. For the first access to the
destination port of the channel, the DMA controller generates a byte address
by concatenating the contents of the two I/O-mapped registers. DMACDSAU
supplies the upper bits, and DMACDSAL supplies the lower bits:

Destination start address = DMACDSAU:DMACDSAL

Notes:

1) You must load the source start address registers with a byte address. If
you have a word address, shift it left by 1 before loading the registers.

2) If you have a 16-bit or 32-bit data type, the start address must be aligned
properly. See the description for the DATATYPE bits of DMACSDP in
section 7.3.7.

3) Ensure that the start address, element index, and frame index will
produce valid addresses within the range of the port. If an invalid address
is generated, a timeout error will occur.

The source start address is supplied by DMACSSAU and DMACSSAL,
described in section 7.3.8.

DSP DMA

181DSP SubsystemSPRU890A

Figure 88. DMA Destination Start Address Registers (DMACDSAU and DMACDSAL)

DMACDSAU

15 0

DSAU

RW-x

DMACDSAL

15 0

DSAL

RW-x

Note: R = Read; W = Write; −n = Value after reset; −x = Value after DSP reset is not defined.

Table 69. DMA Destination Start Address Register − Upper Part (DMACDSAU) Field
Descriptions

Bits Field Value Description

15−0 DSAU 0000h−
00FFh

Upper part of source start address (byte address).

0100h−
FFFFh

Reserved (do not use).

Table 70. DMA Destination Start Address Register − Lower Part (DMACDSAL) Field
Descriptions

Bits Field Value Description

15−0 DSAL 0000h−
FFFFh

Lower part of source start address (byte address).

7.3.10 DMA Element Number Register (DMACEN) and Frame Number Register
(DMACFN)

Each channel has an element number register and a frame number register
(see Figure 89, Table 71, and Table 72). Load DMACFN with the number of
frames you want in each block. Load DMACEN with the number of elements
you want in each frame. You must have at least one frame and one element,
and you can have as many as 65535 of each:

1 ≤ frame number ≤ 65535
1 ≤ element number ≤ 65535

DMACEN and DMACFN are uninitialized after a DSP subsystem reset.

DSP DMA

DSP Subsystem182 SPRU890A

Figure 89. DMA Element Number Register (DMACEN) and Frame Number Register
(DMACFN)

DMACEN

15 0

ELEMENTNUM

RW-x

DMACFN

15 0

FRAMENUM

RW-x

Note: R = Read; W = Write; −n = Value after reset; −x = Value after DSP reset is not defined.

Table 71. DMA Element Number Register (DMACEN) Field Descriptions

Bits Field Value Description

15−0 ELEMENTNUM 0000h Reserved (do not use).

0001h−
FFFFh

Number of elements per frame (1−65535).

Table 72. Frame Number Register (DMACFN) Field Descriptions

Bits Field Value Description

15−0 FRAMENUM 0000h Reserved (do not use).

0001h−
FFFFh

Number of frames per block (1−65535).

7.3.11 DMA Element Index Registers (DMACSEI, DMACDEI) and Frame Index
Registers (DMACSFI, DMACDFI)

The single- or double-index addressing mode can be selected separately for
the source and destination ports by using the SRCAMODE bits and the
DSTAMODE bits, respectively, of DMACCR (see section 7.3.5). To support the
index addressing modes, there are four index registers: two source index
registers (DMACSEI and DMACSFI) and two destination index registers
(DMACDEI and DMACDFI). The way these registers are used depends on the
destination index mode chosen with the DINDXMD bit of DMAGSCR.

DSP DMA

183DSP SubsystemSPRU890A

When DINDXMD = 0 (the default forced by a DSP subsystem reset), a
compatibility mode is selected. In the original DMA controller design, the
source and the destination shared one element index register called DMACEI
and one frame index register called DMACFI. When DINDXMD = 0,
compatible behavior is enabled; DMACSEI is used as DMACEI, and
DMACSFI is used as DMACFI. The destination index registers are not used.

When DINDXMD=1, an enhanced mode is selected. In this mode, the source
index registers are used only for the source, and the destination index
registers are used for the destination.

The element and frame indexes are 16-bit signed numbers, providing the
following range:

−32768 bytes ≤ frame index ≤ 32767 bytes
−32768 bytes ≤ element index ≤ 32767 bytes

After each transfer, the source and destination address registers contain the
address for the last byte of the transferred element. For example, if the DMA
channel is reading a 32-bit element at byte address 0x2000, the source
address will be 0x2003 after the element is read because the DMA channel
will read a total of four bytes. If the DMA channel reads a 16-bit element, the
source address would be 0x2001 after the element read because only two
bytes are read. For a byte read, the source address would stay at 0x2000 after
the byte read.

When the single index mode is used, the element index is added to the source
or destination address at the end of each element transfer. The modified
address will then be used at the beginning of the next element transfer.

When the double index mode is used for the source or the destination address,
the element index is added to the source or destination address at the end of
each element transferred as described above, except for the last element in
the frame. For the last element in the frame, the frame index is added to the
source or destination address instead of the element index. For example, if the
last element in the frame starts at byte address 0x801E where the data type
is 16-bit and the frame index is set to 0x0003, the DMA controller will move the
first byte (0x801E), then the second byte (0x801F) of the element. The frame
index will then be added to 0x801F to create the address for the first byte of
the next element to be moved (0x801F + 0x0003 = 0x8022).

The element index that is added to the source or destination address must
produce an aligned address according to the data type selected in the
DATATYPE field of DMACSDP. Therefore, only certain values are valid for the
element index.

DSP DMA

DSP Subsystem184 SPRU890A

Valid values for the element index are:

� [4 x N] + 1 (where N = ...−2, −1, 0, 1, 2...) if the data type is 32-bit

� [2 x N] + 1 (where N = ...−2, −1, 0, 1, 2...) if the data type is 16-bit

� Any value if the data type is 8-bit

As with the element index, the frame index must produce an aligned address
according to the data type selected in the DATATYPE field of DMACSDP. Valid
values for the frame index are:

� [4 x N] + 1 (where N = ...−2, −1, 0, 1, 2...) if the data type is 32-bit

� [2 x N] + 1 (where N = ...−2, −1, 0, 1, 2...) if the data type is 16-bit

� Any value if the data type is 8-bit

The start address, element index, and frame index must produce valid
addresses within the range of the port. If an invalid address is generated, a
timeout error will occur.

If the DSP core attempts to load an index register with an element or a frame
index that would cause an unaligned address, the DMA controller will send a
bus error interrupt (BERRINT) request to the DSP core. This occurs even if
address indexing is not used.

The index registers are summarized by Figure 90 and Table 73−Table 76. All
of the element index and frame index registers are uninitialized after a DSP
subsystem reset.

DSP DMA

185DSP SubsystemSPRU890A

Figure 90. DMA Source Element Index Registers (DMACSEI, DMACDEI) and Frame
Index Registers (DMACSFI, DMACDFI)

DMACEI/DMACSEI

15 0

ELEMENTNDX

RW-x

DMACFI/DMACSFI

15 0

FRAMENDX

RW-x

DMACDEI

15 0

ELEMENTNDX

RW-x

DMACDFI

15 0

FRAMENDX

RW-x

Note: R = Read; W = Write; −n = Value after reset; −x = Value after DSP reset is not defined.

Table 73. DMA Source Element Index Register (DMACSEI/DMACEI) Field Descriptions

Bits Field Value Description

15−0 ELEMENTNDX −32768
to 32767

When DINDXMD = 0, DMACSEI is used as DMACEI; it contains the
element index (in bytes) for both the source and the destination.

When DINDXMD = 1, DMACSEI contains the source element index
(in bytes).

Table 74. DMA Source Frame Index Register (DMACSFI / DMACFI) Field Descriptions

Bits Field Value Description

15−0 FRAMENDX −32768
to 32767

When DINDXMD = 0, DMACSFI is used as DMACFI; it contains the
frame index (in bytes) for both the source and the destination.

When DINDXMD = 1, DMACSFI contains the source frame index (in
bytes).

DSP DMA

DSP Subsystem186 SPRU890A

Table 75. DMA Destination Element Index Register (DMACDEI) Field Descriptions

Bits Field Value Description

15−0 ELEMENTNDX −32768
to 32767

When DINDXMD = 1, DMACDEI contains the destination element
index (in bytes).

Table 76. DMA Destination Frame Index Register (DMACDFI) Field Descriptions

Bits Field Value Description

15−0 FRAMENDX −32768
to 32767

When DINDXMD = 1, DMACDFI contains the destination frame index
(in bytes).

7.3.12 DMA Source Address Counter (DMACSAC) and Destination Address
Counter (DMACDAC)

The progress of each DMA channel can be monitored by reading the source
and destination address counters (DMACSAC and DMACDAC). DMACSAC
shows the low 16 bits of the current source address. DMACDAC shows the low
16 bits of the current destination address. The address counters are
summarized by Figure 91, Table 77, and Table 78. DMACSAC and
DMACDAC are uninitialized after a DSP subsystem reset.

Figure 91. DMA Source Address Counter (DMACSAC) and Destination Address Counter
(DMACDAC)

DMACSAC

15 0

SAC

RW-x

DMACDAC

15 0

DAC

RW-x

Note: R = Read; W = Write; −n = Value after reset; −x = Value after DSP reset is not defined.

Table 77. DMA Source Address Counter (DMACSAC) Field Descriptions

Bits Field Value Description

15−0 SAC 0000h−
FFFFh

Low 16 bits of current source address.

Table 78. DMA Destination Address Counter (DMACDAC) Field Descriptions

Bits Field Value Description

15−0 DAC 0000h−
FFFFh

Low 16 bits of current destination address.

TI Peripheral Bus Bridges

187DSP SubsystemSPRU890A

8 TI Peripheral Bus Bridges

8.1 Introduction

The TI peripheral bus (TIPB) bridges manage accesses to peripheral control
and data registers by the DSP core, DSP DMA controller, and MPU Interface
(MPUI) via two peripheral buses (see the DSP subsystem block diagram in
section 1.4):

� DSP private peripheral bus. Peripherals connected here cannot be
accessed by the MPU via the MPUI port.

� DSP public peripheral bus. Peripherals connected here can be accessed
by the MPU via the MPUI port.

There are two TIPB bridges in the DSP subsystem:

� The private TIPB bridge provides a preconfigured bus interface to
peripherals residing on the DSP private peripherals bus.

� The public TIPB bridge provides a user-configurable interface to
peripherals on the DSP public peripheral bus. It includes functions to
configure the interface timing to the complement of peripherals operating
at a given time.

All peripheral control and data registers are located in the I/O space. To read
from or write to these registers, you must access the DSP subsystem I/O
space either through C language constructs or by using the assembly
language peripheral port register access qualifier. See the TMS320C55x DSP
Mnemonic Instruction Set Reference Guide (SPRU374) for more details.

Note:

Byte access to I/O space is not supported.

8.2 DSP Private Peripherals

Peripherals on the DSP private peripheral bus are considered private
peripherals. The MPU cannot access these peripherals. DSP private
peripherals on OMAP5910 and OMAP5912 include:

� Three timers
� Watchdog timer
� Interrupt handlers

TI Peripheral Bus Bridges

DSP Subsystem188 SPRU890A

8.3 DSP Public Peripherals

Peripherals on the DSP public peripheral bus are considered public
peripherals. These peripherals are directly accessible by the DSP core and
DSP DMA. The MPU core can also access these peripherals through the
MPUI port (see section 9). DSP public peripherals on OMAP5910 and
OMAP5912 include:

� Two Multichannel Buffered Serial Ports (McBSP1 and McBSP3)

� Two Multichannel Serial Interfaces (MCSI1 and MCSI2)

8.4 DSP/MPU Shared Peripherals

The shared peripherals are connected to both the MPU public peripheral bus
and the DSP public peripheral bus. Connections are achieved via a TI
peripheral bus switch, which must be configured to allow MPU or DSP access.
The other shared peripherals have permanent connections to both public
peripheral buses, although read and write accesses to each peripheral
register may differ.

DSP/MPU shared peripherals on OMAP5910 and OMAP5912 include:

� Mailbox registers

� Three Universal Asynchronous Receiver/Transmitter modules (UART1,
UART2, and UART3)

� General-purpose I/O (GPIO)

OMAP5912 also includes the following DSP/MPU shared peripherals:

� Eight general purpose timers

� Serial Port Interface (SPI)

� I2C master/slave interface

� Multichannel Buffered Serial Port 2 (McBSP2)

� Multimedia Card/Secure Digital Interface (MMC/SDIO2)

� 32-KHz synchronization timer

8.5 Peripheral Access Rate

The TIPB bridges control the access rate to peripherals by inserting a
configurable amount of wait states into the strobe cycle of a peripheral register
access. The access factor bits of the TIPB control mode register (CMR) specify
the number of wait states of the strobe signal. The access rate to a peripheral
depends on the number of wait states used. Table 79 lists the equivalent
access rate for each of the possible number of wait states.

TI Peripheral Bus Bridges

189DSP SubsystemSPRU890A

Table 79. TIPB Access Rates

Number of Wait States
Total Strobe Period

(in DSP core clock cycles) Equivalent Access Rate

0 2 DSP clock divided by 2

1 3 DSP clock divided by 3

2 4 DSP clock divided by 4

3 5 DSP clock divided by 5

4 6 DSP clock divided by 6

5 7 DSP clock divided by 7

6 8 DSP clock divided by 8

7 9 DSP clock divided by 9

Each access factor field in the control mode register controls the access rate
for a group of peripherals. Table 80 and Table 81 show the peripherals that are
affected by the ACCESS_FACTOR0 and ACCESS_FACTOR1 bits for
OMAP5912 and OMAP5910, respectively.

TI Peripheral Bus Bridges

DSP Subsystem190 SPRU890A

Table 80. Peripherals Affected by Access Factor Bits (OMAP5912)

Access Factor Bits Peripherals Affected

TIPB registers

ACCESS FACTOR0
CLKM2 registers

ACCESS_FACTOR0
DSP interrupt handler 2.0

DSP interrupt handler 2.1

UART3

McBSP1

McBSP3

MCSI1

MCSI2

GPIO

Mailbox

ACCESS_FACTOR1 DSP MPUI register_

TIPB switch

GP timers (x8)

32-KHz synchronization timer

SPI

I2C

MMCSDIO2

GPIO (x4)

Table 81. Peripherals Affected by Access Factor Bits (OMAP5910)

Access Factor Bits Peripherals Affected

ACCESS FACTOR0
TIPB registers

ACCESS_FACTOR0
CLKM2 registers

UART3

McBSP1

McBSP3

ACCESS FACTOR1
MCSI1

ACCESS_FACTOR1
MCSI2

GPIO

Mailbox

DSP MPUI register

TI Peripheral Bus Bridges

191DSP SubsystemSPRU890A

8.6 Peripheral Access Timeout

A timeout counter in TIPB bridge module counts how many cycles have
passed since a request was made to access a peripheral. When the counter
reaches 127 (default) DSP subsystem clock cycles, the TIPB bridge module
sends a timeout signal the original requestor. The default timeout value can
be changed with the TIMEOUT bits in the control mode register.

In response to a timeout, the TIPB bridge module sends the timeout signal to
the requestor and sets the bus error bit of the CMR register. In the case of the
DSP core access, the timeout signal sets the bus-error interrupt flag bit in the
DSP core. The DSP core can respond to the interrupt request or ignore the
interrupt request.

8.7 TIPB Register

8.7.1 Overview

The DSP TIPB bridge module is configured through a single register
accessible through the DSP I/O space (see Table 82). The MPU core can also
read the contents of this register.

Table 82. Register of the TIPB Bridge

Name Description
DSP I/O

Address†
MPU Byte
Address†

CMR Control mode register. This register is used to
control the TIPB bridge module.

0x0000 0xE100
0000

† DSP I/O and MPU byte addresses apply to both OMAP5910 and OMAP5912.

8.7.2 TIPB Control Mode Register (CMR)

The control mode register (CMR) indicates the access mode of the MPUI and
the bus error condition status for accesses to the TIPB bridge module. It also
controls DSP core priority versus the MPUI and DSP DMA controller for
accesses to peripherals on the DSP public peripheral bus. This register is
accessible through both the MPU side and the DSP side; however, the MPU
core has read access only. Figure 92 and Table 83 summarize CMR.

TI Peripheral Bus Bridges

DSP Subsystem192 SPRU890A

Figure 92. TIPB Control Mode Register (CMR)

DSP Side

15 9 8

TIMEOUT ACCESS_
FACTOR1

RW-0x7F RW-1

7 6 5 3 2 1 0

ACCESS_FACTOR1 ACCESS_FACTOR0 CPU_
PRIORITY

BUS_
ERROR

MPUI_
MODE

RW-1 RW-1 RW-1 R-0 R-1

MPU Side

31 16

Reserved

R-0

15 9 8

TIMEOUT ACCESS_
FACTOR1

R-0x7F R-0

7 6 5 3 2 1 0

ACCESS_FACTOR1 ACCESS_FACTOR0 CPU_
PRIORITY

BUS_
ERROR

MPUI_
MODE

R-0 R-1 R-1 R-0† R-1

† The MPU core always reads this bit as a 0 when host-only mode is selected (see section 9.2.1).

Note: R = Read; W = Write; −n = Value after reset; -x = Value after reset is not defined.

Table 83. TIPB Control Mode Register (CMR) Field Descriptions

Bits Field Value Description

15−9 TIMEOUT This field determines the number of DSP subsystem clock cycles that
can elapse before the TIPB bridge module returns a bus-error
condition. The timeout period is determined as:

Timeout Period = TIMEOUT + 2

8−6 ACCESS_
FACTOR1

0−7 These bits set the number of wait states inserted when communicating
with peripherals as listed in Table 80 and Table 81.

TI Peripheral Bus Bridges

193DSP SubsystemSPRU890A

Table 83. TIPB Control Mode Register (CMR) Field Descriptions (Continued)

Bits DescriptionValueField

5−3 ACCESS_
FACTOR0

0−7 These bits set the number of wait states inserted when communicating
with peripherals as listed in Table 80 and Table 81.

2 CPU_PRIORITY This bit determines the priority of the DSP core, MPUI, and DSP DMA
controller in the case of simultaneous accesses to the TIPB bridge.

0 Accesses to the TIPB bridge are arbitrated in a rotating priority
fashion: DSP core, MPUI, DSP DMA, DSP core, and so on.

1 Accesses to the TIPB bridge have the following priorities in arbitration:

1) DSP core
2) MPUI
3) DSP DMA

1 BUS_ERROR This bit is set when the TIPB generates a bus error to the DSP core
because of a timeout condition or a host-only mode (HOM) change
error or shared-access mode (SAM) change error.

The BUS_ERROR bit is cleared when this register is read by the DSP
core. This bit cannot be read when the MPUI is operating in host-only
mode (register always reads as zero).

0 No bus error has been generated by the TIPB.

1 TIPB has generated a bus error to the DSP core.

0 MPUI_MODE This bit indicates whether the MPUI is in host-only mode (HOM) or in
shared-access mode (SAM) for peripherals. Section 9 describes
these modes of the MPUI.

0 MPUI is in shared-access mode.

1 MPUI is in host-only mode.

MPU Interface Port

DSP Subsystem194 SPRU890A

9 MPU Interface Port

9.1 Introduction

The MPU interface (MPUI) port is a 16-bit parallel port that allows the MPU
core and the system DMA controller to communicate with the DSP subsystem
internal memory and its peripherals, facilitating software downloads and data
transfers. The MPUI port is part of the DSP subsystem domain.

Note that there is also a module called MPUI in the MPU subsystem domain
that connects to the MPUI port (see system block diagrams in section 1.4).
MPU controllers, like the MPU core and system DMA, access DSP subsystem
resources (internal memory and public peripherals) through the MPUI.

This section is intended to give a brief introduction of the communication
between the MPUI port and the MPUI. For additional information, see the
OMAP5910 Dual-Core Processor MPU Subsystems Reference Guide
(SPRU671) or the OMAP5912 Multimedia Processor OMAP3.2 Subsystem
Reference Guide (SPRU749).

9.2 MPUI and MPUI Port Overview

The MPUI port provides MPU controllers with access to the full internal
memory space of the DSP subsystem. In addition, the MPUI port allows MPU
controllers to access devices on the DSP public peripheral bus through
duplicate memory-mapped peripheral registers in the MPU address space.
The MPU controllers can also access the control registers of the TIPB bridge
module and the CLKM2 configuration registers. The DSP private peripherals
are not accessible via the MPUI port.

MPUI port transfers are facilitated by an auxiliary channel of the DSP
subsystem DMA controller; however, this dedicated DMA channel is
preconfigured and does not need to be configured for MPUI support.

The MPUI is always the master in the transfer operation. It initiates the reading
or writing of DSP subsystem memory or peripherals. The MPU core also
controls the parameters of the MPUI by configuring the MPUI_CTRL_REG
and the MPUI_DSP_MPUI_CONFIG registers. There are five additional
registers the MPU can read to observe the state of the MPUI:

� MPUI_DEBUG_ADDR
� MPUI_DEBUG_DATA
� MPUI_DEBUG_FLAG
� MPUI_STATUS_REG
� MPUI_DSP_STATUS_REG

MPU Interface Port

195DSP SubsystemSPRU890A

For complete information on these registers, see the OMAP5910 Dual-Core
Processor MPU Subsystems Reference Guide (SPRU671) and the
OMAP5912 Multimedia Processor OMAP3.2 Subsystem Reference Guide
(SPRU749).

9.2.1 MPUI Port Modes

The MPUI port supports two access modes for the DSP subsystem internal
memory:

� Shared-access mode for internal memory (SAM_M). The DSP subsystem
SARAM and DARAM are shared between the DSP domain and the MPU
domain.

� Host-only mode for internal memory (HOM_M). In this mode, the MPU
domain can only access SARAM. However, it can completely lock out the
DSP controllers from a portion of the SARAM. The API_SIZE bits in the
MPUI_DSP_CONFIG register specify the amount of SARAM that is
dedicated to MPU domain accesses.

Similarly, the MPUI port supports two access modes for DSP subsystem
peripherals on the DSP public peripheral bus:

� Shared-access mode for peripherals (SAM_P). The peripherals on the
DSP public peripheral bus are shared between the DSP controllers and
the MPU domain.

� Host-only mode for peripherals (HOM_P). The MPU domain has exclusive
access to the peripherals on the DSP public peripheral bus.

SAM_M and SAM_P are the normal operating modes in which all the DSP
subsystem internal memory and the public peripherals are accessible by the
MPUI controllers, as well as the DSP controllers. When the DSP subsystem
is taken out of reset, SAM_M and SAM_P are invoked automatically. In
SAM_M, if both the DSP controllers and the MPU controllers access the same
memory at the same time, priority is given to the DSP controllers. An MPU
controller access in SAM_M is synchronized to the internal DSP core clock,
which can add access latency to transfers.

HOM_M and HOM_P provide the MPU controllers with exclusive access to the
DSP subsystem SARAM or public peripherals, primarily to support high-speed
transfers from or to the DSP domain during DSP subsystem reset or IDLE
conditions. When the DSP subsystem is placed in reset, HOM_M and HOM_P
are invoked automatically. In HOM_M, the MPUI interface does not have
access to the DARAM, but it has access to all of SARAM. Additionally, only the
MPU controllers can access the DSP public peripheral bus in HOM_P.

MPU Interface Port

DSP Subsystem196 SPRU890A

9.2.2 HOM/SAM Change Outside of Reset

Only the DSP core can invoke a change between the host-only and
shared-access modes outside of reset. OMAP devices use two bits in the DSP
core’s ST3_55 register to change between SAM_M and HOM_M and between
SAM_P and HOM_P: the HOM_R bit (bit 9) and the HOM_P bit (bit 8),
respectively (see Figure 93 and Table 84).

The mode change is initiated by a DSP core write to the HOM_P bit and/or the
HOM_R bit. When the appropriate bit is written to request the change, the
mode change is not reflected on the HOM_P and HOM_R bits until an internal
controller completes the mode switch. Therefore, the DSP core should poll the
HOM_P and HOM_R bits after requesting a mode change to determine if the
mode change is complete.

The mode status can be observed by the MPU core by reading the DSP Status
Register (DSP_STATUS_REG).

Figure 93. MPUI Mode Change Bits in ST3_55

15 10 9 8

HOM_R HOM_P

RW-0 RW-0

7 0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Subsystem Endianess

197DSP SubsystemSPRU890A

Table 84. HOM_R and HOM_P Bits in DSP Core Register ST3_55

Bits Field Value Description

9 HOM_R Memory access mode bit. This bit determines whether the MPUI port
operates in SAM_M or HOM_M.

0 SAM_M. The DSP SARAM and DARAM are shared by the MPUI and
the DSP controllers.

1 HOM_M. The DSP SARAM can be configured for exclusive access by
the MPUI. The API_SIZE bits of the MPUI_DSP_CONFIG register
specify the amount of SARAM that is dedicated to MPUI accesses.

8 HOM_P DSP public peripherals access mode bit. This bit determines whether
the MPUI port operates in SAM_P or HOM_P.

0 SAM_P. DSP public peripherals are shared by the MPU and DSP
domains.

1 HOM_P. DSP public peripherals are owned only by the MPU domain.

10 DSP Subsystem Endianess

10.1 Endianess Within OMAP

The DSP subsystem modules operate in Big-Endian mode, contrary to the rest
of the OMAP modules (including the MPU core and system DMA), which
operate in Little-Endian mode. Shared data between the DSP subsystem and
the rest of the OMAP modules must be converted to their respective formats
before any processing. This process is called endianess conversion.

Table 85 details the Little- and Big-Endian data formats, assuming a
byte-addressable architecture.

Table 85. Little-Endian versus Big-Endian Data Format

32-bit Value:
0x1234 5678

16-bit Value:
0x1234

8-bit Value:
0x12

4 LSBs of
Byte Address

Little
Endian

Big
Endian

Little
Endian

Big
Endian

Little
Endian

Big
Endian

XX00b 0x78 0x12 0x34 0x12 0x12 0x12

XX01b 0x56 0x34 0x12 0x34

XX10b 0x34 0x56

XX11b 0x12 0x78

Note: X = Don’t care.

MPU Interface Port / DSP Subsystem Endianess

DSP Subsystem Endianess

DSP Subsystem198 SPRU890A

10.2 Endianess Conversion

Endianess conversion is not always necessary. Conversion is required when
the following two conditions are met:

� Shared data is accessed using different Endian formats. For example,
when the MPU core stores data in memory using Little-Endian format and
the DSP core reads the same data using Big-Endian data format.

� Shared data is accessed using different access sizes. For example, when
the MPU core stores data using 32-bit accesses while the DSP core reads
the same data with 16-bit accesses.

The following statements can be made about endianess data formats and data
access size.

� For shared data stored as a 32-bit element:

� If this 32-bit element is accessed with one 32-bit access, then no
endianess conversion is required; this is independent of the
endianess of the accessing processor.

� If this 32-bit element is accessed with two 16-bit accesses using a
different Endian format, then the two 16-bit halves within this 32-bit
element must be swapped.

� If this 32-bit element is accessed with four 8-bit accesses using a
different Endian format, then the order of the four bytes within this
32-bit word must be reversed.

� For shared data stored as a 16-bit element:

� If this 16-bit element is accessed with one 16-bit access, then no
endianess conversion is required; this is independent of the
endianess of the accessing processor.

� If this16-bit element is accessed with two 8-bit accesses using a
different Endian format, then the two bytes within this 16-bit element
must be swapped.

Table 86 shows the results of different accesses from a Big-Endian processor
to Little-Endian byte-addressable memory storing the 32-bit data element
0x1234 5678.

DSP Subsystem Endianess

199DSP SubsystemSPRU890A

Table 86. Big-Endian Access of Little-Endian Data

4 LSBs of
Byte Address

32-bit Value
(0x1234 5678)

stored as Little
Endian

Single 32-Bit Read
Access

Two 16-Bit Read
Accesses

Four 8-Bit Read
Accesses

XX00b 0x78 0x1234 5678 0x5678 0x78

XX01b 0x56 0x56

XX10b 0x34 0x1234 0x34

XX11b 0x12 0x12

Note: X = Don’t care.

10.3 Endianess Conversion Modules

There are three distinct scenarios where the DSP subsystem modules and the
rest of the OMAP modules access the same resources, and endianess
conversion might be required.

� MPU core or system DMA accesses to the DSP subsystem internal
memory via the MPU Interface (MPUI). Endianess conversion is
performed in the MPUI.

� DSP core or DSP DMA accesses to DSP external memory via the DSP
memory management unit (MMU) and the traffic controller. Endianess
conversion is performed in the DSP MMU.

� DSP core and MPU core accesses to shared peripherals. No endianess
conversion is performed, as both the DSP core and the MPU core see the
same data.

Because the endianess conversion is performed in hardware, data swapping
is transparent to software. This reduces the software overhead needed to
format the data. The swapping logic can be disabled and the conversion
handled by software, as desired.

DSP Subsystem Endianess

DSP Subsystem200 SPRU890A

10.3.1 Endianess Conversion by the DSP MMU

Endianess conversion is performed at the boundary between the DSP
subsystem and the DSP MMU. The endianess conversion unit of the DSP
MMU splits data accesses into individual bytes and reorders them according
to the access type and chosen configuration.

The DSP MMU endianess conversion logic is configured by the MPU core
through the DSP MMU endianess configuration register (see section
10.3.1.1). This register contains two configuration bits that control whether,
and how, endianess conversion is performed:

� The first bit, EN, enables or disables endianess conversion.

� The second bit, SWAP, selects the type of endianess conversion to be
performed− either swapping the 16-bit words only or swapping both the
16-bit words and the bytes within the words. Note that the 16-bit word
swapping applies only to 32-bit accesses.

Table 87 lists the effects of the different configuration settings of the DSP MMU
endianess conversion logic.

Table 87. Effect of DSP MMU Endianess Conversion Settings

DSP-Side Read Access to MPU-Side Data Value 0x1234 5678

Conversion Enable Word/Byte Swap 16-Bit Access 32-Bit Access

Disabled (EN = 0) Don’t care (SWAP = X) 0x5678 0x1234 5678

Enabled (EN = 1) Byte and word swap
(SWAP = 0)

0x7856 0x7856 3412

Enabled (EN = 1) Word swap only
(SWAP = 1)

0x5678 0x5678 1234

Typically, both the 16-bit words and the bytes within each 32-bit word are
swapped if the MPU has written data using four 8-bit accesses and is read as
one 32-bit word by the DSP. In contrast, only the 16-bit words (but not the bytes
within them) are swapped when the MPU has written data in two 16-bit
accesses and the DSP reads them using one 32-bit access. No endianess
conversion is required if both the MPU and the DSP access the data as 32-bit.

10.3.1.1 DSP MMU Endianess Control Register (DSP_ENDIAN_CONV)

The DSP MMU endianess conversion unit is configured by the MPU core using
the DSP MMU endianess control register (Figure 94 and Table 88) located at
address 0xFFFE CC34.

DSP Subsystem Endianess

201DSP SubsystemSPRU890A

Figure 94. DSP MMU Endianess Control Register (DSP_ENDIAN_CONV)

31 16

Reserved

R-0

15 2 1 0

Reserved SWAP EN

R-0 RW-0 RW-0

Note: R = Read, W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 88. DSP MMU Endianess Control Register (DSP_ENDIAN_CONV) Field
Descriptions

Bits Field Value Description

31−2 Reserved These bits are not used.

1 SWAP When the DSP MMU endianess conversion unit is enabled, this bit
selects the swapping mode.

0 Swap bytes and 16-bit words.

1 Swap 16-bit words only.

0 EN This bit is used to enable the endianess configuration unit of the DSP
MMU.

0 Endianess conversion unit is disabled.

1 Endianess conversion unit is enabled. Endianess conversion is
carried out as dictated by the SWAP bit.

10.3.2 Endianess Conversion by the MPUI

The MPU Interface (MPUI) enables accesses from MPU core and system
DMA to the DSP subsystem internal resources. Internal resources include the
DSP subsystem internal memory (through the MPUI port, section 9) and the
DSP public peripherals (through the public TIPB Bridge, section 8).

The endianess conversion unit within the MPUI offers the options of controlling
byte swapping and word swapping depending on the access type (memory or
peripheral). Its architecture is similar to that used within the DSP MMU.

DSP Subsystem Endianess

DSP Subsystem202 SPRU890A

The endianess conversion unit of the MPUI is configured by the MPU core
through the MPUI control register (see section 10.3.2.1). This register contains
two configuration bit fields that control the way the endianess conversion is
handled:

� The WORD_SWAP bit field determines whether word swapping is
performed on accesses to DSP subsystem internal memory, shared
peripherals, or both.

� The BYTE_SWAP bit field determines whether byte swapping is
performed on accesses to DSP subsystem internal memory, shared
peripherals, or both.

The results of the different endianess settings for MPUI memory accesses are
shown in Table 89.

Table 89. Effect of MPUI Endianess Conversion Settings

MPU-Side Read Access to DSP-Side Data Value 0x1234 5678

Word Swap Byte Swap 16-Bit Access 32-Bit Access

Off Off 0x1234 0x12345678

Off On 0x3412 0x34127856

On Off 0x1234 0x56781234

On On 0x3412 0x78563412

When using the same access size on the MPU and the DSP, no endianess
conversion is required. In this case, both word swapping and byte swapping
should be disabled. Otherwise, word and byte swapping must be used as
specified by your application.

Typically, neither byte nor word swapping are needed when accessing the
DSP peripheral registers, as the register size is predefined.

10.3.2.1 MPUI Control Register (CTRL_REG)

The endianess conversion unit of the MPUI is configured by the MPU core
using the MPUI control register (CTRL_REG). The MPUI control register is
located at address 0xFFFE C900 in the memory space of the MPU core.
Figure 95 and Table 90 describe the bits in the MPUI control register that affect
the endianess of DSP subsystem accesses through the MPUI.

DSP Subsystem Endianess

203DSP SubsystemSPRU890A

Figure 95. MPUI Control Register (CTRL_REG)

31 23 22 21 20 18 17 16

WORD
SWAP

BYTE
SWAP

RW-0 RW-3

15 0

Note: R = Read, W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 90. MPUI Control Register (CTRL_REG) Field Descriptions

Bits Field Value Description

31−23 Reserved These bits are not used.

22−21 WORD SWAP These bits enable/disable word-swapping in the endianess conversion
logic of the MPUI.

00 Word-swap all accesses.

01 Word-swap only peripheral accesses.

10 Word-swap only memory accesses.

11 Disable word-swapping.

20−18 Reserved These bits are not used.

17−16 BYTE SWAP These bits enable/disable byte-swapping in the endianess conversion
logic of the MPUI.

00 Disable byte-swapping.

01 Byte-swap only peripheral accesses.

10 Byte-swap all accesses.

11 Byte-swap only memory accesses.

15−0 Reserved These bits are not used.

DSP Subsystem Interrupts

DSP Subsystem204 SPRU890A

11 DSP Subsystem Interrupts

A number of interrupts can be generated inside and outside the DSP
subsystem. The DSP core is responsible for servicing these interrupts. This
section gives a brief overview of interrupt setup and handling for the DSP
subsystem. For more details on DSP subsystem interrupts, see the
OMAP5912 Multimedia Processor Interrupts Reference Guide (SPRU757) or
the OMAP5910 Multimedia Processor DSP Subsystem Interrupts Reference
Guide (SPRU923).

11.1 Overview

DSP core interrupts on OMAP devices are cascaded through a two levels of
interrupt handlers. A second-level interrupt controller(s) takes a number of
interrupts and generates a single interrupt to a first-level interrupt controller.
The first-level interrupt controller manages the interrupt(s) from the
second-level interrupt controller(s) and a number of other interrupts. The
first-level interrupt controller interfaces directly to the DSP core. Figure 96 and
Figure 97 show this process. The number of interrupt controllers varies across
OMAP devices, but the concept of cascading interrupts is the same.

DSP Subsystem Interrupts

205DSP SubsystemSPRU890A

OMAP5910 contains two interrupt controllers for the DSP subsystem:

� One DSP level 2 interrupt controller (referred to as DSP interrupt level 2)
that can handle 16 interrupts.

� One DSP level 1 interrupt controller (referred to as DSP interrupt level 1)
that can handle 32 interrupts.

Figure 96. OMAP5910 DSP Subsystem Interrupts

0

15

Level 2
interrupt
controller

FIQ

0

3

6

31

Level 1
interrupt
controller

DSP core

Note: × − No connection.

OMAP5912 contains three interrupt controllers for the DSP subsystem, see
Figure 97 on the next page:

� One DSP level 2.1 interrupt controller (referred to as DSP interrupt level
2.1) that can handle 64 interrupts.

� One DSP level 2.0 interrupt controller (referred to as DSP interrupt level
2.0) that can handle 16 interrupts.

� One DSP level 1 interrupt controller that can handle 32 interrupts (DSP).

DSP Subsystem Interrupts

DSP Subsystem206 SPRU890A

Figure 97. OMAP5912 DSP Subsystem Interrupts

0

15

Level 2
interrupt
controller

FIQ

0

3

6

31

Level 1
interrupt
controller

DSP core

0

63

FIQ

IRQ

Level 2.1

controller
interrupt

17

Note: × − No connection.

DSP Subsystem Interrupts

207DSP SubsystemSPRU890A

11.2 First Level Interrupts

The C55x DSP core supports 32 level 1 interrupts. After receiving and
acknowledging an interrupt request, the DSP core generates an interrupt
vector address. At the vector address, the core fetches the vector that points
to the corresponding interrupt service routine (ISR). When multiple hardware
interrupts occur simultaneously, the DSP core services them one at a time,
according to their predefined hardware interrupt priorities.

Vector pointers IVPD and IVPH point to up to 32 interrupt vectors in program
space. IVPD points to the 256-byte program page for interrupt vectors 0-15
and 24-31. IVPH points to the 256-byte program page for interrupt vectors
16-23.

The DSP core supports two types of interrupts: maskable interrupts and
nonmaskable interrupts. Maskable interrupts can be blocked (masked) or
enabled (unmasked) through software. Each maskable interrupt has a
corresponding bit in an interrupt enable register (IER0 or IER1) and an
interrupt flag register (IFR0 or IFR1). Maskable interrupts include the
interrupts associated with vectors 2-23, a bus error interrupt, a data log
interrupt, and a real-time operating system interrupt.

Whenever a maskable interrupt is requested by hardware, its corresponding
interrupt flag is set in one of the interrupt flag registers. Once the flag is set,
the interrupt is not serviced unless it is enabled through the interrupt enable
registers. The ISRs for the maskable interrupts can also be executed by
software with the use of the INTR and TRAP assembly instructions.

When the DSP core receives a nonmaskable interrupt request, the DSP core
acknowledges it unconditionally and immediately branches to the
corresponding interrupt service routine (ISR). The nonmaskable interrupts
include RESET and any software interrupts initiated through the use of the
INTR and TRAP instructions.

Note:

NMI is not available on OMAP devices.

For more details on C55x DSP core interrupts, see the TMS320C55x DSP
CPU Reference Guide (SPRU371).

11.2.1 OMAP5910 First Level Interrupt Mapping and Interrupt Registers

Table 91 shows the level 1 interrupts sorted by interrupt vector number for
OMAP5910. Figure 98 and Figure 99 show the bit layout for the IFR0/IER0
and IFR1/IER1 registers, respectively.

DSP Subsystem Interrupts

DSP Subsystem208 SPRU890A

Table 91. OMAP5910 Level 1 Interrupt Mapping

Hardware
Interrupt
Priority

C55x DSP
Core Vector

Name

Vector
Address

(Byte Address) Name Interrupt Source

1 RESETIV (IV0) IVPD:00h RESET DSP reset (hardware or
software) interrupt

2 NMIIV (IV1) IVPD:08h NMI†/SINT1 Hardware nonmaskable
interrupt (or software

interrupt #1)

3 IV2 IVPD:10h EMUINT DSP emulator/test interrupt

5 IV3 IVPD:18h L2FIQ DSP level 2 interrupt
handler FIQ

6 IV4 IVPD:20h TCABORT Traffic controller abort
interrupt

7 IV5 IVPD:28h MBX1 MPU-to-DSP mailbox 1
interrupt

9 IV6 IVPD:30h SINT6 Software interrupt #6

10 IV7 IVPD:38h GPIO Interrupt for DSP-owned shared
GPIO

11 IV8 IVPD:40h TIMER3 DSP private timer #3 interrupt

13 IV9 IVPD:48h DMAC1 DSP DMA channel #1
interrupt

14 IV10 IVPD:50h MPU MPU interrupt to DSP

15 IV11 IVPD:58h SINT11 Software interrupt #11

17 IV12 IVPD:60h UART3 UART #3 interrupt

18 IV13 IVPD:68h WDT DSP watchdog timer interrupt

21 IV14 IVPD:70h DMAC4 DSP DMA channel #4
interrupt

22 IV15 IVPD:78h DMAC5 DSP DMA channel #5
interrupt

4 IV16 IVPH:80h EMIF Interrupt for DMA EMIF
interface to traffic controller

8 IV17 IVPH:88h LCLBUS Local bus interrupt

† NMI is not physically connected on OMAP devices, it is included here for compatibility with other C55x documentation.

DSP Subsystem Interrupts

209DSP SubsystemSPRU890A

Table 91. OMAP5910 Level 1 Interrupt Mapping (Continued)

Hardware
Interrupt
Priority Interrupt SourceName

Vector
Address

(Byte Address)

C55x DSP
Core Vector

Name

12 IV18 IVPH:90h DMAC0 DSP DMA channel #0
interrupt

16 IV19 IVPH:98h MBX2 MPU-to-DSP mailbox #2
interrupt

19 IV20 IVPH:A0h DMAC2 DSP DMA channel #2
interrupt

20 IV21 IVPH:A8h DMAC3 DSP DMA channel #3
interrupt

23 IV22 IVPH:B0h TIMER2 DSP private timer #2 interrupt

24 IV23 IVPH:B8h TIMER1 DSP private timer #1 interrupt

25 BERRIV (IV24) IVPD:C0h BERR Bus error interrupt

26 DLOGIV (IV25) IVPD:C8h DLOG Data log interrupt

27 RTOSIV (IV26) IVPD:D0h RTOS Real-time operating
system interrupt

28 SIV27 IVPD:D8h SINT27 Software interrupt #27

29 SIV28 IVPD:E0h SINT28 Software interrupt #28

30 SIV29 IVPD:E8h SINT29 Software interrupt #29

31 SIV30 IVPD:F0h SINT30 Software interrupt #30

32 SIV31 IVPD:F8h SINT31 Software interrupt #31

† NMI is not physically connected on OMAP devices, it is included here for compatibility with other C55x documentation.

Figure 98. IFR0 and IER0 Bit Locations (OMAP5910)

15 14 13 12 11 10 9 8

DMAC5 DMAC4 WDT UART3 SINT11 MPU DMAC1 TIMER3

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

GPIO SINT6 MBX1 TCABORT L2FIQ EMUINT Reserved

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Subsystem Interrupts

DSP Subsystem210 SPRU890A

Figure 99. IFR1 and IER1 Bit Locations (OMAP5910)

15 11 10 9 8

Reserved RTOS DLOG BERR

R-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

TIMER1 TIMER2 DMAC3 DMAC2 MBX2 DMAC0 LCLBUS EMIF

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

11.2.2 OMAP5912 First Level Interrupt Mapping and Interrupt Registers

Table 92 shows the level 1 interrupt sorted by interrupt number for
OMAP5912. The bit layout for the IER0/IFR0 and IER1/IFR1 registers is
shown in Figure 100 and Figure 101, respectively.

Table 92. OMAP5912 Level 1 Interrupt Mapping

Hardware
Interrupt
Priority

C55x DSP
Core Vector

Name

Vector
Address

(Byte Address) Name Interrupt Source

1 RESETIV (IV0) IVPD:00h RESET DSP reset (hardware or
software) interrupt

2 NMIIV (IV1) IVPD:08h NMI†/SINT1 Hardware nonmaskable
interrupt (or software

interrupt #1)

3 IV2 IVPD:10h EMUINT DSP emulator/test interrupt

5 IV3 IVPD:18h L20IRQ DSP Level 2.0 interrupt
handler IRQ

6 IV4 IVPD:20h TCABORT Traffic controller abort
interrupt

7 IV5 IVPD:28h MBX1 MPU-to-DSP mailbox 1
interrupt

9 IV6 IVPD:30h L21FIQ DSP level 2.1 interrupt
handler FIQ

10 IV7 IVPD:38h IRQ2_GPIO1 GPIO #1 interrupt

† NMI is not physically connected on OMAP devices, it is included here for compatibility with other C55x documentation.

DSP Subsystem Interrupts

211DSP SubsystemSPRU890A

Table 92. OMAP5912 Level 1 Interrupt Mapping (Continued)

Hardware
Interrupt
Priority Interrupt SourceName

Vector
Address

(Byte Address)

C55x DSP
Core Vector

Name

11 IV8 IVPD:40h TIMER3 DSP private timer #3 interrupt

13 IV9 IVPD:48h DMAC1 DSP DMA channel #1
interrupt

14 IV10 IVPD:50h MPU MPU interrupt to DSP

15 IV11 IVPD:58h SINT11 Software interrupt #11

17 IV12 IVPD:60h UART3 UART #3 interrupt

18 IV13 IVPD:68h WDT DSP watchdog timer interrupt

21 IV14 IVPD:70h DMAC4 DSP DMA channel #4
interrupt

22 IV15 IVPD:78h DMAC5 DSP DMA channel #5
interrupt

4 IV16 IVPH:80h EMIF Interrupt for DMA EMIF
interface to traffic controller

8 IV17 IVPH:88h L21IRQ Level 2.1 interrupt
Handler IRQ

12 IV18 IVPH:90h DMAC0 DSP DMA channel #0
interrupt

16 IV19 IVPH:98h MBX2 MPU-to-DSP mailbox #2
interrupt

19 IV20 IVPH:A0h DMAC2 DSP DMA channel #2
interrupt

20 IV21 IVPH:A8h DMAC3 DSP DMA channel #3
interrupt

23 IV22 IVPH:B0h TIMER2 DSP private timer #2 interrupt

24 IV23 IVPH:B8h TIMER1 DSP private timer #1 interrupt

25 BERRIV (IV24) IVPD:C0h BERR Bus error interrupt

26 DLOGIV (IV25) IVPD:C8h DLOG Data log interrupt

† NMI is not physically connected on OMAP devices, it is included here for compatibility with other C55x documentation.

DSP Subsystem Interrupts

DSP Subsystem212 SPRU890A

Table 92. OMAP5912 Level 1 Interrupt Mapping (Continued)

Hardware
Interrupt
Priority Interrupt SourceName

Vector
Address

(Byte Address)

C55x DSP
Core Vector

Name

27 RTOSIV (IV26) IVPD:D0h RTOS Real-time operating
system interrupt

28 SIV27 IVPD:D8h SINT27 Software interrupt #27

29 SIV28 IVPD:E0h SINT28 Software interrupt #28

30 SIV29 IVPD:E8h SINT29 Software interrupt #29

31 SIV30 IVPD:F0h SINT30 Software interrupt #30

32 SIV31 IVPD:F8h SINT31 Software interrupt #31

† NMI is not physically connected on OMAP devices, it is included here for compatibility with other C55x documentation.

Figure 100. IFR0 and IER0 Bit Locations (OMAP5912)

15 14 13 12 11 10 9 8

DMAC5 DMAC4 WDT UART3 SINT11 MPU DMAC1 TIMER3

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

IRQ2_
GPIO1

L21FIQ MBX1 TCABORT L20IRQ EMUINT Reserved

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Figure 101. IFR1 and IER1 Bit Locations (OMAP5912)

15 11 10 9 8

Reserved RTOS DLOG BERR

R-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

TIMER1 TIMER2 DMAC3 DMAC2 MBX2 DMAC0 L21IRQ EMIF

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Subsystem Interrupts

213DSP SubsystemSPRU890A

11.3 Second Level Interrupts

OMAP devices include a second level of interrupt handlers which take a
number of peripheral interrupts and generate one or two interrupts to the first
level interrupt handler. For each interrupt, you must specify whether the
interrupt is edge or level sensitive.

On OMAP5910, the level 2 interrupt handler generates a single interrupt to
INT3 on the level 1 interrupt handler. The level 2.0 interrupt handler on
OMAP5912 generates a single interrupt to INT3 on the level 1 interrupt
handler, while level 2.1 generates a single interrupt to INT17. Table 93,
Table 94, and Table 95 detail the interrupt mapping for each device.

Table 93. OMAP5910 Level 2 Interrupt Mapping

Level 2
Mapping Name

Required
Sensitivity
Setup Function

IRQ_0 MCBSP3_TX Edge McBSP #3 transmit interrupt

IRQ_1 MCBSP3_RX Edge McBSP #3 receive interrupt

IRQ_2 MCBSP1_TX Edge McBSP #1 transmit interrupt

IRQ_3 MCBSP1_RX Edge McBSP #1 receive interrupt

IRQ_4 UART2 Level UART #2 interrupt

IRQ_5 UART1 Level UART #1 interrupt

IRQ_6 MCSI1_TX Level MCSI #1 transmit interrupt

IRQ_7 MCSI1_RX Level MCSI #1 receive interrupt

IRQ_8 MCSI2_TX Level MCSI #2 transmit interrupt

IRQ_9 MCSI2_RX Level MCSI #2 receive interrupt

IRQ_10 MCSI1_FRAME_ER-
ROR_INT

Level MCSI #1 frame error interrupt

IRQ_11 MCSI2_FRAME_ER-
ROR_INT

Level MCSI #2 frame error interrupt

IRQ_12 − − Reserved, keep masked

IRQ_13 − − Reserved, keep masked

IRQ_14 − − Reserved, keep masked

IRQ_15 − − Reserved, keep masked

DSP Subsystem Interrupts

DSP Subsystem214 SPRU890A

Table 94. OMAP5912 Level 2.0 Interrupt Mapping

Level 2
Mapping Name

Required
Sensitivity
Setup Function

IRQ_0 MCBSP3_TX Level McBSP #3 transmit interrupt

IRQ_1 MCBSP3_RX Level McBSP #3 receive interrupt

IRQ_2 MCBSP1_TX Level McBSP #1 transmit interrupt

IRQ_3 MCBSP1_RX Level McBSP #1 receive interrupt

IRQ_4 UART2 Level UART #2 interrupt

IRQ_5 UART1 Level UART #1 interrupt

IRQ_6 MCSI1_TX Level MCSI #1 transmit interrupt

IRQ_7 MCSI1_RX Level MCSI #1 receive interrupt

IRQ_8 MCSI2_TX Level MCSI #2 transmit interrupt

IRQ_9 MCSI2_RX Level MCSI #2 receive interrupt

IRQ_10 MCSI1_FRAME_ER-
ROR_INT

Level MCSI #1 frame error interrupt

IRQ_11 MCSI2_FRAME_ER-
ROR_INT

Level MCSI #2 frame error interrupt

IRQ_12 IRQ2_GPIO2 Level GPIO #2 interrupt

IRQ_13 IRQ2_GPIO3 Level GPIO #3 interrupt

IRQ_14 IRQ2_GPIO4 Level GPIO #4 interrupt

IRQ_15 I2C Level I2C interrupt

Table 95. OMAP5912 Level 2.1 Interrupt Mapping

Level 2
Mapping Name

Required
Sensitivity
Setup Function

IRQ_0 NAND Level NAND flash interrupt

IRQ_1 GPTIMER1 Level General purpose timer #1 interrupt

IRQ_2 GPTIMER2 Level General purpose timer #2 interrupt

IRQ_3 GPTIMER3 Level General purpose timer #3 interrupt

IRQ_4 GPTIMER4 Level General purpose timer #4 interrupt

DSP Subsystem Interrupts

215DSP SubsystemSPRU890A

Table 95. OMAP5912 Level 2.1 Interrupt Mapping (Continued)

Level 2
Mapping Function

Required
Sensitivity
SetupName

IRQ_5 GPTIMER5 Level General purpose timer #5 interrupt

IRQ_6 GPTIMER6 Level General purpose timer #6 interrupt

IRQ_7 GPTIMER7 Level General purpose timer #7 interrupt

IRQ_8 GPTIMER8 Level General purpose timer #8 interrupt

IRQ_9 − − Reserved, keep masked

IRQ_10 MCBSP2_TX Level McBSP #2 transmit interrupt

IRQ_11 MCBSP2_RX Level McBSP #2 transmit interrupt

IRQ_12 − − Reserved, keep masked

IRQ_13 − − Reserved, keep masked

IRQ_14 MMC_SDIO2 Level MMC/SDIO #2 interrupt

IRQ_15 SPI Level SPI interrupt

IRQ_16
through
IRQ_63

− − Reserved, keep masked

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem216 SPRU890A

12 DSP Subsystem Reset, Clocking, Idle Control, and Boot

12.1 Reset Control

The DSP subsystem can be reset through hardware or software. The following
sections provide a brief overview of the different sources which generate
hardware and software reset signals for the DSP subsystem.

Complete information on OMAP hardware and software reset control can be
found in the OMAP5910 Dual-Core Processor Clock Generation and System
Reset Management Reference Guide (SPRU678) or the OMAP5912
Multimedia Processor Initialization Reference Guide (SPRU752).

12.1.1 Hardware (Cold) Resets

OMAP5912 and OMAP5910 devices have external pins which can be used to
generate hardware resets. On the OMAP5910/5912 devices, these pins
include PWRON_RESET and MPU_RST, The OMAP5912 device also has the
RTC_ON_NOFF pin. Activating any of these pins will reset the DSP
subsystem modules, including the DSP MMU, TIPB, and MPUI.

12.1.2 Software (Warm) Resets

The OMAP clock generation and system reset module manages the software
reset signals of the DSP subsystem. The MPU-Reset-Control-1 register
(ARM_RSTCT1) can generate three types of software resets that affect the
DSP subsystem. These software resets are:

� Global software reset.

The DSP, the MPU, and all internal modules are reset when the SW_RST
bit is set.

� DSP interface modules reset.

The priority registers (TIPB), EMIF configuration registers, and MPUI
control logic (partially) of the DSP subsystem are reset when the
DSP_RST bit is cleared.

� DSP subsystem (excluding interface modules) reset.

The modules within the DSP subsystem (excluding the interface modules)
are reset when the DSP_EN bit is cleared. The DSP_EN bit must be
cleared after a cold reset to take the DSP subsystem out of reset.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

217DSP SubsystemSPRU890A

12.2 Clock Source

The OMAP clock system is organized around three main clock domains: the
MPU, DSP, and traffic controller clock domains. There is a clock generator
associated with each clock domain (see Figure 102). The input clock to the
three clock generators can be taken from two sources: the output of a digital
phase locked loop module called DPLL1, or the input clock source to the
DPLL1 module. The input clock source to DPLL1, called CLKREF, can be
generated through the use of an on-chip oscillator or supplied by an external
device.

Figure 102. OMAP Clock Generation

M
u
x

To MPU clock domainCLKREF DPLL1
CK_GEN1

CK_GEN3

CK_GEN2

To traffic controller clock
domain

To DSP clock domain
M
u
x

M
u
x

DSP clock
generator
(CLKM2)

MPU clock
generator
(CLKM1)

Traffic controller
clock generator

(CLKM3)

The DSP clock domain output clock, CK_GEN2, is further distributed to
different modules within the DSP subsystem (Figure 103). The frequencies of
these individual clock signals can be programmed through the use of various
clock dividers within the DSP clock generator.

Figure 103. DSP Clock Domain

DSP clock
domain

(CLKM2)

M
u
x

CLKREF DPLL1
CK_GEN2 DSP_CK

DSP
DSPMMU_CK

DSP MMU
DSPTIM_CK

DSP private timers
DSPWDT_CK

DSP watchdog timer
DSPINTH_CK

DSP interrupt handler
DSPPER_CK

DSPXOR_CK
DSP external
peripherals

The DSP clock generator on both OMAP5910 and OMAP5912 provides two
clocks which affect most of the modules described in this reference guide: the
DSP subsystem master clock and the DSP MMU clock (see Figure 104).

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem218 SPRU890A

Figure 104. Generation of DSP Subsystem Master Clock and DSP MMU Clock

Frequency divider

ARM_CKCTL[DSPDIV(7:6)]

Software clock enable
ARM_CKCTL[EN_DSPCK(13)]

ARM_CKCTL[DSPMMUDIV(11:10)]

Frequency divider DSPMMU_IDLE_CTRL
[GL_PDE(1)]

DSP
MMU

DSP
DSP_CK

DSPMMU_CK

CK_GEN2

Software clock enable

The DSP subsystem master clock, DSP_CK, feeds all the modules included
in the DSP module (section 1.2 lists these modules). The DSPDIV bits in the
clock control register (ARM_CKCTL) specify the divider value used to
generate DSP_CK from the DSP domain clock. By default, the DSPDIV bits
select the divide-by-one mode. The EN_DSPCK bit in the same register
enables the DSP_CK (by default DSP_CK is enabled).

The DSP MMU clock, DSPMMU_CK, is generated from the DSP domain clock
similarly to DSP_CK. The DSPMMUDIV bits in the ARM_CKCTL register
specify the divider value used to generate the DSPMMU_CK from the DSP
domain clock. By default, the DSPMMUDIV bits select the divide-by-one
mode. DSPMMU_CK can be shut off by setting the GL_PDE bit of the
DSPMMU_IDLE_CTRL register (section 6.5.17).

The OMAP clock generation and system reset module manages operations
such as the reset sequences, the clock generation function, the power-saving
modes, idle controls, and setup for the OMAP5912. The MPU manages the
master clock configuration for the OMAP5912 device.

For more information on OMAP clock architecture and control, see the
following documents: OMAP5912 Multimedia Processor Clocks Reference
Guide (SPRU751), the OMAP5912 Multimedia Processor OMAP3.2
Subsystem Reference Guide (SPRU749), and the OMAP5910 Dual-Core
Processor Clock Generation and System Reset Management Reference
Guide (SPRU678).

12.3 Idle Control
The DSP subsystem can be idled at two levels: at the DSP subsystem level
and at the DSP module level. Idling at the subsystem level is quick and simple;
however, it requires that the DSP subsystem be reset, thereby eliminating any
currently executing application. To preserve the state of the DSP subsystem,
the subsystem must be idled at the DSP module level. The following sections
describe both approaches.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

219DSP SubsystemSPRU890A

12.3.1 Idle Control at the DSP Subsystem Level

As mentioned in section 12.2, the main clock that feeds the DSP subsystem
is the DSP subsystem master clock (DSP_CK). DSP_CK feeds all the
modules included in the DSP module (a list of these modules is included in
section 1.2). The EN_DSPCK bit in the MPU Clock Control Prescaler Selection
Register (ARM_CKCTL) enables the DSP_CK (by default DSP_CK is
enabled).

To idle the DSP subsystem, follow these steps:

1) Place the DSP subsystem in reset by clearing the DSP_EN bit in the
Master Software Reset Register (ARM_RSTCT1).

2) Disable the DSP subsystem clock by clearing the EN_DSPCK bit in the
MPU Clock Control Prescaler Selection Register to (ARM_CKCTL).

For more information on the ARM_RSTCT1 and ARM_CKCTL registers, see
the OMAP5912 Multimedia Processor OMAP3.2 Subsystem Reference
Guide (SPRU749), or the OMAP5910 Dual-Core Processor Clock Generation
and System Reset Management Reference Guide (SPRU678).

12.3.2 Idle Control at the DSP Module Level

The DSP module is divided into the idle domains described in this section. To
minimize power consumption, you can choose which domains are active and
which domains are idle at any given time. The current state of all domains is
collectively called the idle configuration.

12.3.2.1 Idle Domains

The DSP is divided into the idle domains described in Table 96. You can control
which of these idle domains are active and which are idle at any given time,
as described in section 12.3.2.2.

Table 96. Idle Domains in the DSP

Domain Contents of the Domain Configurability

CPU DSP core and buses When the IDLE instruction is executed, the DSP core
remains active or becomes idle, depending on the chosen
idle configuration.

Regardless of this domain’s state before a DSP
subsystem reset, it is active after a DSP subsystem reset.

DMA DSP DMA controller and DMA buses When the IDLE instruction is executed, the DMA controller
remains active or becomes idle, depending on the chosen
idle configuration.

Regardless of this domain’s state before a DSP
subsystem reset, it is active after a DSP subsystem reset.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem220 SPRU890A

Table 96. Idle Domains in the DSP (Continued)

Domain ConfigurabilityContents of the Domain

CACHE Instruction cache When the IDLE instruction is executed, the instruction
cache remains active or becomes idle, depending on the
chosen idle configuration.

Regardless of this domain’s state before a DSP
subsystem reset, it is active after a DSP subsystem reset.

EMIF External memory interface (EMIF) When the IDLE instruction is executed, the EMIF is
disabled or enabled, depending on the chosen idle
configuration.

Regardless of this domain’s state before a DSP
subsystem reset, it is active after a DSP subsystem reset.

12.3.2.2 Idle Configuration Process

The idle configuration indicates which idle domains will be idle and which idle
domains will be active the next time the IDLE instruction is executed. The basic
steps to the idle configuration process are:

1) Define a new idle configuration by writing to the bits in the idle
configuration register (ICR). Make sure that you use a valid idle
configuration (see section 12.3.2.3).

2) Apply the new idle configuration by executing the IDLE instruction. The
effects are shown in Figure 105. The content of ICR is copied to the idle
status register (ISTR). The bits of ISTR are then propagated through the
system to enable or disable each of the chosen domains.

The IDLE instruction cannot be executed in parallel with another instruction.

Note:

If you intend to switch among multiple idle configurations, ensure that your
system has the means to change from one idle configuration to the next. For
important considerations, see section 12.3.2.4.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

221DSP SubsystemSPRU890A

Figure 105. Idle Configuration Process

Idle configuration register (ICR)

Idle status register (ISTR)

Copy initiated by IDLE instruction

domain
DMA

domain
CACHE

domain
EMIF

domain
CPU

12.3.2.3 Valid Idle Configurations

Not all of the values that you can write to the idle configuration register (ICR)
provide valid idle configurations. The valid configurations are limited by
dependencies within the system. For example, the EMIF domain should not
be idled when the DSP core is executing instructions from DSP external
memory.

12.3.2.4 Key Conditions to Change Idle Configurations

Before you use the IDLE instruction, ensure that there is a method for the DSP
to change the idle configuration afterward. Table 97 summarizes the methods
available under two key conditions. For each condition there are two methods
for changing the idle configuration, A and B. The effects of each method on the
idle idle status register (ISTR) and the idle configuration register (ICR) are also
detailed. For more details about these idle registers, see section 12.3.2.8.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem222 SPRU890A

Table 97. Changing Idle Configurations

Condition
Available Methods For
Changing Idle Configuration ISTR After Change ICR After Change

1. CPU domain
is active

A. Write a new configuration to the
idle configuration register (ICR),
and then execute the IDLE
instruction.

A. Modified by the IDLE
instruction; contains a
copy of the new ICR
value.

A. Contains the new
value loaded by the
program.

B. Initiate a DSP hardware reset. B. Cleared (all 0s). B. Cleared (all 0s).

2. CPU domain
is idle

A. Use an unmasked hardware
interrupt.

A. CPUIS bit is 0. No other
bits were modified.

A. Not modified.

B. Initiate a DSP hardware reset. B. Cleared (all 0s). B. Cleared (all 0s).

Condition 1: CPU Domain Active

When the CPU domain is active (the DSP core is running), program flow con-
tinues. In this case, there are two methods of changing idle configurations:

� Write a new idle configuration to the idle configuration register (ICR), and
then execute the IDLE instruction. The IDLE instruction copies the content
of the ICR to the idle status register (ISTR), and the ISTR bit values are
propagated to the idle domains. After the domains change states, the
value in ISTR matches the value in ICR.

� Initiate a DSP subsystem reset. When the DSP subsystem resets, all
domains are made active.

Condition 2: CPU Domain Idle

When the CPU domain is idle, program flow is halted. It is not possible to write
a new value to the idle configuration register (ICR) or to execute the IDLE
instruction. Two methods are available for changing the idle configuration:

� Use an unmasked interrupt. The interrupt clears the CPUIS bit of the idle
status register (ISTR). The change to CPUIS reactivates the CPU domain.
The content of the idle configuration register (ICR) is not modified. To learn
how the DSP core responds to the interrupt, see section 12.3.2.5.

� Initiate a DSP subsystem reset. When the DSP subsystem resets, all
domains are made active.

Once program flow has begun again, you can reactivate or deactivate other
domains by writing a new idle configuration to ICR and then executing the IDLE
instruction.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

223DSP SubsystemSPRU890A

12.3.2.5 Interrupt Handling When the DSP Core Is Reactivated

If the DSP core has been halted by an idle configuration, it can be reactivated
by a DSP subsystem reset or by a maskable interrupt that is enabled in an
interrupt enable register (IER0 or IER1). A maskable interrupt request will also
set the corresponding interrupt flag bit in an interrupt flag register (IFR0 or
IFR1). Table 98 summarizes how the DSP core responds after being
reactivated by maskable and nonmaskable interrupts. INTM is the global
interrupt mask bit in status register ST1_55.

Table 98. DSP Core Response After Reactivation

Interrupt Response After Reactivation

A maskable interrupt If INTM = 0:

The DSP core executes the interrupt service routine, executes the instruction
that follows the IDLE instruction, and continues from there. The interrupt flag bit
associated with the maskable interrupt will be cleared automatically when the
DSP core branches to the interrupt service routine.

If INTM = 1:

The DSP core executes the instruction that follows the IDLE instruction and then
continues from there. The interrupt service routine cannot be executed until
interrupts have been globally enabled through INTM. The interrupt flag bit
associated with the maskable interrupt will be set.

DSP subsystem reset The DSP subsystem is reset. During a DSP subsystem reset, all idle domains
are made active.

After the DSP core is brought out of the idle state, the flag bit that was set in
the interrupt flag register (IFR0 or IFR1) has to be cleared before the DSP core
can be placed back in the idle state.

12.3.2.6 Effect of a DSP Reset on the Idle Domains

During a DSP subsystem reset, all idle domains are made active.

12.3.2.7 DSP Module Idle Configuration Examples

To put one or more domains in idle mode, set the corresponding bits in the ICR
register and then execute the DSP IDLE instruction. The idle status register
reflects the state of the DSP when the IDLE instruction is executed.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem224 SPRU890A

Placing the DSP DMA in Idle

To set the DSP DMA domain to idle, follow these steps:

1) Set the DMA domain bit in the idle control register (ICR) by writing 0x0002
to ICR.

2) Use the DSP core to execute the IDLE instruction. The contents of ICR are
copied to the idle status register (ISTR). This places the DMA domain into
its idle state.

To wake up the DMA domain, follow these steps:

1) Clear the DMA domain bit in ICR by writing 0x0000 to ICR.

2) Use the DSP core to execute the IDLE instruction.

Note:

When the DMA domain is idle, there is one case when it can be temporarily
reactivated without a change in the idle configuration. If one of the
multichannel buffered serial ports (McBSPs) needs the DMA controller for
a data transfer, the DMA controller will leave its idle state to perform the data
transfer and then enter its idle state again.

Placing the Entire DSP Module Domain in Idle

To idle all the domains in the DSP module, follow these steps:

1) Set all the idle domain bits in the idle control register (ICR) by writing
0x0027 to ICR.

2) Use the DSP core to execute the IDLE instruction. The contents of ICR are
copied to the idle status register (ISTR). This places all the domains into
their idle states.

To wake up all the domains from this idle configuration, follow these steps:

1) Interrupt the DSP core using a maskable interrupt. The CPU and CPUIS
bits of ICR and ISTR, respectively, are automatically cleared. This takes
the CPU domain out of the idle state.

2) Clear all the idle domain bits in ICR by writing 0x0000 to ICR.

3) Use the DSP core to execute the IDLE instruction. This takes the rest of
the domains out of idle.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

225DSP SubsystemSPRU890A

Note:

The EMIF domain is not taken out of its idle state when the CPU domain is
woken up by a maskable interrupt. This means that if both the EMIF and CPU
domains are idle, the DSP core must not branch to the interrupt service
routine (ISR) immediately after waking up if the ISR is located in DSP
external memory. The DSP core can be kept from branching to the ISR by
keeping the INTM bit until the EMIF has been manually awakened (see
section 12.3.2.5).

12.3.2.8 Idle Registers

Two registers provide the means to individually configure and monitor each of
the idle domains: the idle configuration register (ICR) and the idle status
register (ISTR). These registers are accessible to the DSP core only.

Table 99. Registers for DSP Module Idle Control

Name Description
DSP I/O
Address†

ICR Idle control register. Use this register to specify which domain
should be idled when the IDLE instruction is executed.

0x0001

ISTR Idle status register. Use this register to check the status of
the idle domains.

0x0002

† DSP I/O addresses apply to both OMAP5910 and OMAP5912.

ICR lets you configure how each idle domain will respond upon IDLE
instruction execution. When you execute the IDLE instruction, the content of
ICR is copied to ISTR. The ISTR values are then propagated to the idle
domains.

Figure 106. Idle Control Register (ICR)

15 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved EMIFI Reserved† CACHEI DMAI CPUI

R-0 RW-0 RW-0 RW-0 RW-0 RW-0

† These bits must always be 0.

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem226 SPRU890A

Table 100. Idle Control Register (ICR) Field Descriptions

Bits Field Value Description

15−6 Reserved − These bits are read-only and return 0s when read.

5 EMIFI EMIF-domain idle configuration bit. EMIFI determines whether the
external memory interface (EMIF) will be idle after the next execution
of the IDLE instruction:

0 EMIF will be active.

1 EMIF will be idle.

4-3 Reserved − Must always be kept as 0.

2 CACHEI CACHE-domain idle configuration bit. CACHEI determines whether
the cache will be idle after the next execution of the IDLE instruction:

0 Cache will be active.

1 Cache will be idle.

1 DMAI DMA-domain idle configuration bit. DMAI determines whether the
DMA controller will be idle after the next execution of the IDLE
instruction:

0 DMA controller will be active.

1 DMA controller will be idle.

0 CPUI CPU-domain idle configuration bit. CPUI determines whether the DSP
core will be idle after the next execution of the IDLE instruction:

0 DSP core will be active.

1 DSP core will be idle.

Figure 107. Idle Status Register (ISTR)

15 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved EMIFIS Reserved CACHEIS DMAIS CPUIS

R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

227DSP SubsystemSPRU890A

Table 101. Idle Status Register (ISTR) Field Descriptions

Bits Field Value Description

15−6 Reserved − These bits are not available for your use. They are read-only bits and
return 0s when read.

5 EMIFIS EMIF-domain idle status bit. EMIFIS is a copy of EMIFI made during
the execution of the IDLE instruction. EMIFIS reflects the current idle
status of the external memory interface (EMIF):

0 EMIF is active.

1 EMIF is idle.

4-3 Reserved − These bits are not available for your use. They are read-only bits and
return 0s when read.

2 CACHEIS CACHE-domain idle status bit. CACHEIS is a copy of CACHEI made
during the execution of the IDLE instruction. CACHEIS reflects the
current idle status of the cache:

0 Cache is active.

1 Cache is idle.

1 DMAIS DMA-domain idle status bit. DMAIS is a copy of DMAI made during the
execution of the IDLE instruction. DMAIS reflects the current idle
status of the DMA controller:

0 DMA controller is active.

1 DMA controller is idle.

0 CPUIS CPU-domain idle status bit. CPUIS is a copy of CPUI made during the
execution of the IDLE instruction. CPUIS reflects the current idle
status of the DSP core:

0 DSP core is active.

1 DSP core is idle.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem228 SPRU890A

12.4 DSP Bootloader

12.4.1 Introduction

This section provides a description of the features of the on-chip DSP
bootloader provided with the OMAP5910 and OMAP5912 devices.

12.4.1.1 Bootloader Features

OMAP devices contain program code residing in the DSP subsystem PDROM,
called a bootloader. The bootloader is executed by the DSP core when it is
taken out of reset. Depending on the boot mode selected, the DSP core will
branch to an internal or DSP external memory address or go into idle. The
following is a list of the boot modes supported by the bootloader and a
summary of their functional operation:

� DSP idle mode. The DSP subsystem is brought out of reset with all of the
modules within the DSP module placed in their idle mode.

� Direct execution from DSP external memory. The on-chip PDROM is
disabled and the interrupt vector table is fetched directly from DSP
external memory.

� Branch directly to a starting address. The bootloader directs code
execution to an entry point address which is specified by the selected boot
mode. The entry point may be located in either internal or DSP external
memory. Note that the memory at the destination address must be
initialized with valid code before the bootloader is executed. With an
internal memory entry point, the MPU core or system DMA can initialize
the memory through the MPUI port.

The bootloader also offers the following features:

� Register controlled boot mode selection. The MPU core can select the
boot mode by writing to a bootloader configuration register (described in
section 12.4.2.2).

� Multiple entry points. Each boot mode uses a different entry point address.

12.4.1.2 DSP Subsystem On-Chip PDROM

The DSP subsystem PDROM contains the bootloader program. The PDROM
may be enabled or disabled based on the settings of the BOOT_MODE bits
in the DSP_BOOT_CONFIG register (section 12.4.2.2). When the PDROM is
disabled, the PDROM memory space is mapped to memory that is external to
the DSP subsystem. Table 102 lists the contents of the DSP PDROM.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

229DSP SubsystemSPRU890A

Table 102. DSP PDROM Contents

Starting Byte
Address Contents

0xFF_8000 DSP Bootloader

0xFF_8200 Reserved

0xFF_FF00 Interrupt Vector Table

12.4.2 Bootloader Operation

The following sections describe the structure and operation of the bootloader.

12.4.2.1 Bootloader Initialization

When the bootloader begins execution, it performs some initialization of DSP
resources prior to loading code. Table 103 describes the DSP resources that
are configured by the bootloader.

Table 103. Bootloader Initialization

Resource Initialization Value

Stack registers The data stack register (SP) is initialized with address
0000A0h, and the system stack register (SSP) is
initialized with address 0000C0h.

Stack configuration The stack configuration is set to the dual 16-bit stack
mode with fast return.

Interrupts The INTM bit of Status Register 1 (ST1_55) is set to the
default value of 1, to disable interrupts.

Sign extension The SXMD bit of Status Register 1 (ST1_55) is cleared, to
disable the sign extension mode.

Compatibility mode The C54CM bit of Status Register 1 (ST1_55) is cleared,
to disable the C54x compatibility mode.

To avoid corruption of default stack locations, the sections loaded into internal
memory should not be between word addresses 0000h and 0100h (byte
address 0000h-0200h).

After the initialization is performed, the bootloader branches to the starting
point address specified through the selected boot mode. At that point, the boot
load process is complete. Whenever the DSP subsystem is reset, the DSP
core starts the execution of the bootloader again, and the entire boot process
is repeated.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem230 SPRU890A

12.4.2.2 Boot Mode Selection

The bootloader mode (or boot mode) used by the bootloader is specified by
the MPU core using the DSP Boot Configuration Register
(DSP_BOOT_CONFIG). This register is read-only for the DSP and is mapped
to address 0x000F in the DSP I/O space (within the DSP TIPB address space).
The MPU can read and write to this register at address 0xFFFE C918 (within
the MPUI address space). The MPU controls the boot process by
programming the BOOT_MODE bits while the DSP subsystem is held in its
reset state. Figure 108 and Table 104 show the details of the DSP boot
configuration register.

Figure 108. DSP Boot Configuration Register (DSP_BOOT_CONFIG)

DSP Side

16 4 3 0

Reserved BOOT_MODE

R-0 R-0

MPU Side

31 4 3 0

Reserved BOOT_MODE

R-0 RW-0

Note: R = Read; W = Write; −n = Value after reset; −x = Value after reset is not defined.

Table 104. DSP Boot Configuration Register (DSP_BOOT_CONFIG) Field Descriptions

Bits Field Value Description

31−4 Reserved These bits are not used.

3−0 BOOT_MODE DSP subsystem bootloader mode bits. These bits specify the boot
mode used by the DSP bootloader.

12.4.3 Boot Modes

There are five boot modes for the DSP bootloader. The MPU core can select
any of these boot modes by writing to the DSP_BOOT_CONFIG register.

When the DSP subsystem is released from reset (boot), the DSP core always
fetches the interrupt vector table starting at byte address 0xFF FF00. The
physical location of this address depends on the boot mode selected through
the BOOT_MOD bits. If BOOT_MOD bits are equal to 0000b, the on-chip
PDROM is disabled and the boot address is located off-chip. If BOOT_MOD
is not equal to 0000b, the on-chip PDROM is enabled and the boot address
is located on the on-chip PDROM.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

231DSP SubsystemSPRU890A

Note:

The DSP MMU will determine the actual physical location of the PDROM
memory space when the on-chip PDROM is disabled.

Table 105 lists the supported boot modes.

Table 105. Registers for DSP Module Idle Control

BOOT_MODE[3:0] Boot Process Description

0000 Direct boot The on-chip PDROM is disabled and the PDROM
memory space is mapped to DSP external
memory. The DSP core fetches the interrupt
vector table from 0xFF FF00 (located in DSP
external memory).

0001 External memory boot The bootloader simply branches to byte address
0x08 0000 in DSP external memory. Note that the
MPU core may need to set up the DSP MMU such
that the DSP core executes from valid DSP
external memory.

0010 DSP idle boot The bootloader places the DSP into idle mode.

0011 Reserved Do not use this option.

0100 Reserved Do not use this option.

0101 Internal memory boot The bootloader branches to internal byte address
0x01 0000.

Other Internal memory boot The bootloader branches to internal byte address
0x02 4000.

The following sections describe each boot mode in detail.

12.4.3.1 Direct Boot Mode

When BOOT_MODE[3:0] = 0000b, the direct boot mode option is selected. In
this mode, the bootloader program does not execute because the on-chip
PDROM is not mapped into the internal memory map. The PDROM memory
map addresses are treated as DSP external memory addresses, and thus are
handled by the DSP EMIF and DSP MMU. When this boot option is selected,
the DSP core branches to the interrupt vector table in DSP external memory
space. For more information on the OMAP memory map, see section 3.4.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

DSP Subsystem232 SPRU890A

12.4.3.2 External Memory Boot Mode

When BOOT_MODE[3:0] = 0001b, the External Memory Boot mode is
selected. In this mode, the bootloader does execute. After initializing the
resources described in section 12.4.2.1, the bootloader simply branches to
byte address 0x08 0000 in DSP external memory.

Note:

The MPU core may need to set up the DSP MMU such that the DSP core
executes from valid DSP external memory.

12.4.3.3 DSP Idle Boot Mode

When BOOT_MODE[3:0] = 0010b at reset, the DSP Idle Boot mode is
selected. In this mode, the bootloader will place the DSP subsystem into its idle
state using the following sequence:

� Disable the DSP watchdog timer.

� Set the DSP RAM and peripherals to shared-access mode (SAM) with the
HOM_R and HOM_P bits of ST3_55.

� Set all the DSP domains to idle through the Idle Control Register (ICR).

� Set the DSP RAM and peripherals to host-only mode (HOM) with the
HOM_R and HOM_P bits of ST3_55.

� Execute the IDLE instruction.

A hardware or software reset can wake up the DSP subsystem from its idle
state.

12.4.3.4 Internal Memory Boot Mode

In this mode, code and data sections must be initialized before the bootloader
is executed. Internal memory can be directly initialized by the MPU core or
system DMA via the MPUI port while the DSP core is in reset. When the DSP
subsystem is released from reset, the bootloader will branch to the byte
address specified by the selected boot mode.

The general procedure for an internal memory boot is:

� The code and data sections are loaded into DSP subsystem internal
memory by the MPU core or system DMA via the MPUI port.

� The MPU core takes the DSP subsystem out of reset with an internal
memory boot mode selected by the BOOT_MODE[3:0] bits.

� The bootloader executes and transfers execution to the appropriate byte
address, and the loaded application begins running.

DSP Subsystem Reset, Clocking, Idle Control, and Boot

233DSP SubsystemSPRU890A

If the application has been previously loaded and another external reset is
necessary (warm boot), the MPU core can reset the DSP subsystem without
reloading the application code, and the application execution will begin.

12.4.4 Bootloader Sequence

The next two sections describe the entire bootloader sequence for all of the
boot mode options.

12.4.4.1 Direct Boot Mode

In the Direct Boot Mode (BOOT_MOD[3:0] = 0000b) the on-chip PDROM is
disabled and all PDROM memory map addresses are located in DSP external
memory. When the MPU core releases the DSP subsystem from reset, the
DSP core fetches the interrupt vector table starting at byte address 0xFF
FF00. The physical location of the interrupt vector table in OMAP system
memory is dependent on the use of the DSP MMU.

12.4.4.2 Other Valid Boot Modes

When BOOT_MOD contains a value other than 0000b, the on-chip PDROM
is enabled and all PDROM memory map addresses are located in internal
memory. The DSP core fetches the interrupt vector table starting at byte
address 0xFF FF00 after the DSP subsystem is released from reset. The
interrupt vector table then directs program execution to the DSP bootloader
starting at byte address 0xFF 8000. At this point, the bootloader starts to
execute.

The bootloader checks to see if the MPUI RAM is in shared-access mode
(SAM) by checking the HOM_R bit of ST3_55. If not, the bootloader keeps
checking indefinitely; it does not request an access mode change for the MPUI
RAM. As soon as the MPUI RAM is in SAM, it does the following initialization:

� Sets up the stack pointers. The data stack register (SP) is initialized to
address 00 00A0h, and the system stack register (SSP) is initialized to
address 00 00C0h.

The stack configuration is set to the dual 16-bit stack mode with fast return.

� Disables interrupts globally. The INTM bit of ST1_55 is set.

� Disables sign extension. The SXMD bit of ST1_55 is cleared.

� Disables the C54x compatibility mode. The C54CM bit of ST1_55 is
cleared.

After this is done, the bootloader checks the BOOT_MOD[3:0] bits of the
DSP_BOOT_CONFIG register and takes action as described in section
12.4.3.

DSP Subsystem234 SPRU890A

Revision History

Table 106 lists the changes made since the previous version of this document.

Table 106. Document Revision History

Page Additions/Modifications/Deletions

28 Updated the byte address for the external memory space to 0x02 8000 in section 3.2.

29 Deleted reserved row, and changed the byte address for the external memory space to 0x02
8000−0xFF 7FFF, and the word address to 0x01 4000−0x7F BFFF.

30 Updated the byte address for the external memory space to 0x02 8000 in section 4.1.

83 Updated the byte address for the external memory space to 0x02 8000 in section 6.2.5.

	Title Page - SPRU890A
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	DSP Subsystem
	1 Digital Signal Processor Subsystem Overview
	1.1 Architecture Overview
	1.2 Features
	1.3 Differences Between the OMAP5910 and OMAP5912 DSP Subsystems
	1.4 Functional Block Diagrams

	2 C55x DSP Core Overview
	2.1 DSP Core Features
	2.2 Introduction to the DSP Core
	2.3 Introduction to the Hardware Accelerators

	3 DSP Subsystem Memory
	3.1 Internal Memory Space
	3.2 DSP External Memory Space
	3.3 I/O Memory Space
	3.4 Memory Maps

	4 Instruction Cache
	4.1 Introduction
	4.1.1 Features
	4.1.2 Functional Block Diagram
	4.1.3 Supported Cache Configurations

	4.2 Instruction Cache Architecture
	4.2.1 Introduction to the I-Cache
	4.2.2 Instruction Cache Blocks
	4.2.2.1 2-Way Cache
	4.2.2.2 RAM Set Blocks

	4.2.3 Instruction Cache Operation
	4.2.3.1 How the I-Cache Uses the DSP core Fetch Address
	4.2.3.2 Instruction Presence Check and Corresponding I-Cache Response
	4.2.3.3 Line Load Process

	4.2.4 DSP Core Bits for Controlling the I-Cache
	4.2.4.1 CAEN to Enable and Disable the I-Cache
	4.2.4.2 CACLR Bit to Flush the I-Cache
	4.2.4.3 CAFRZ Bit to Freeze the Contents of the I-Cache

	4.2.5 Initialization
	4.2.6 Reset Considerations
	4.2.7 Clock Control
	4.2.8 Power Management
	4.2.9 Emulation Considerations
	4.2.10 Timing Considerations
	4.2.10.1 Hit Time
	4.2.10.2 Miss Penalty

	4.3 Configuring the I-Cache With the 2-Way Cache and No RAM Set Blocks
	4.3.1 Architectural/Operational Description
	4.3.2 Software Configuration
	4.3.3 System Traffic Considerations

	4.4 Configuring the I-Cache With the 2-Way Cache and One RAM Set
	4.4.1 Architectural/Operational Description
	4.4.2 Software Configuration
	4.4.3 System Traffic Considerations

	4.5 Configuring the I-Cache With the 2-Way Cache and Two RAM Sets
	4.5.1 Architectural/Operational Description
	4.5.2 Software Configuration
	4.5.3 System Traffic Considerations

	4.6 Instruction Cache Registers
	4.6.1 Overview
	4.6.2 I-Cache Global Control Register (GCR)
	4.6.3 I-Cache Line Flush Registers (FLR0, FLR1)
	4.6.4 I-Cache N-Way Control Register (NWCR)
	4.6.5 I-Cache RAM Set Control Registers (RCR1 and RCR2)
	4.6.6 I-Cache RAM Set Tag Registers (RTR1 and RTR2)
	4.6.7 I-Cache Status Register (ISR)

	5 DSP External Memory Interface
	5.1 Overview
	5.2 Peripheral Architecture
	5.2.1 Clock Control
	5.2.2 Memory Map
	5.2.3 DSP External Memory Accesses
	5.2.4 EMIF Requests
	5.2.5 Write Posting: Buffering Write to DSP External Memory
	5.2.6 Reset Considerations
	5.2.6.1 Effect of Hardware Reset
	5.2.6.2 Effect of Software Reset

	5.2.7 Power Management

	5.3 EMIF Registers
	5.3.1 Overview
	5.3.2 EMIF Global Control Register (GCR)
	5.3.3 EMIF Global Reset Register (GRR)

	6 DSP Memory Management Unit
	6.1 Overview
	6.1.1 Purpose of the MMU
	6.1.2 Features
	6.1.3 Functional Block Diagram
	6.1.4 Supported Usage of the DSP MMU

	6.2 MMU Architecture
	6.2.1 Summary of Address Translation Process
	6.2.2 Translation Look-Aside Buffer (TLB)
	6.2.2.1 TLB Entry Format
	6.2.2.2 TLB Address Translation Process
	6.2.2.3 Writing Entries to the TLB
	6.2.2.4 Protecting TLB Entries
	6.2.2.5 Reading TLB Entries
	6.2.2.6 Deleting TLB Entries

	6.2.3 Table Walking Logic
	6.2.4 Memory Address Translation
	6.2.5 First-Level Translation Table
	6.2.5.1 First-Level Descriptor
	6.2.5.2 Translating Sections

	6.2.6 Second-Level Translation Tables
	6.2.6.1 Second-Level Descriptors
	6.2.6.2 Translating Large Pages
	6.2.6.3 Translating Small Pages
	6.2.6.4 Translating Tiny Pages
	6.2.6.5 Coarse Page Tables
	6.2.6.6 Fine Page Tables

	6.2.7 MMU Error Handling
	6.2.8 Reset Considerations
	6.2.8.1 Software Reset Considerations
	6.2.8.2 Hardware Reset Considerations

	6.2.9 Clock Control
	6.2.10 Initialization
	6.2.11 Interrupt Support
	6.2.11.1 Interrupt Events and Requests
	6.2.11.2 Interrupt Multiplexing

	6.2.12 Power Management

	6.3 Using the MPU to Manage the TLB
	6.3.1 Architectural/Operational Description
	6.3.2 Software Configuration
	6.3.3 System Traffic Considerations

	6.4 Using Table Walking Logic to Manage the TLB
	6.4.1 Architectural/Operational Description
	6.4.2 Software Configuration
	6.4.3 System Traffic Considerations

	6.5 DSP MMU Registers
	6.5.1 Overview
	6.5.2 MMU Pre-Fetch Register (PREFETCH_REG)
	6.5.3 MMU Pre-Fetch Status Register (WALKING_ST_REG)
	6.5.4 MMU Control Register (CNTL_REG)
	6.5.5 MMU Fault Address Registers (FAULT_AD_H_REG, FAULT_AD_L_REG)
	6.5.6 MMU Fault Status Register (FAULT_ST_REG)
	6.5.7 MMU Interrupt Acknowledge Register (IT_ACK_REG)
	6.5.8 MMU Translation Table Registers (TTB_H_REG, TTB_L_REG)
	6.5.9 MMU Lock/Protect Entry Register (LOCK_REG)
	6.5.10 MMU Read/Write TLB Entry Register (LD_TLB_REG)
	6.5.11 MMU CAM Entry Registers (CAM_H_REG, CAM_L_REG)
	6.5.12 MMU RAM Entry Registers (RAM_H_REG, RAM_L_REG)
	6.5.13 MMU TLB Global Flush Register (GFLUSH_REG)
	6.5.14 MMU TLB Entry Flush Register (FLUSH_ENTRY_REG)
	6.5.15 MMU Read CAM Entry Registers (READ_CAM_H_REG, READ_ CAM_ L_ REG)
	6.5.16 MMU Read RAM Entry Registers (READ_RAM_H_REG, READ_ RAM_ L_ REG)
	6.5.17 MMU Idle Control Register (DSPMMU_IDLE_CTRL)

	7 DSP DMA
	7.1 Overview
	7.1.1 Purpose of the DSP DMA
	7.1.2 Features
	7.1.3 Block Diagram of the DMA Controller

	7.2 DSP DMA Controller Architecture
	7.2.1 Clock Control
	7.2.2 Memory Map
	7.2.3 Channels and Port Accesses
	7.2.4 Channel Auto-Initialization Capability
	7.2.4.1 Auto-initialization With Unchanging Context
	7.2.4.2 Auto-Initialization With Changing Context

	7.2.5 MPUI Access Configurations
	7.2.6 Service Chain
	7.2.6.1 Service Chain Example

	7.2.7 Units of Data: Byte, Element, Frame, and Block
	7.2.8 Start Address in a Channel
	7.2.8.1 Start Address in DSP Subsystem Data Memory
	7.2.8.2 Start Address in I/O Space

	7.2.9 Updating Addresses in a Channel
	7.2.10 Data Packing Capability
	7.2.11 Data Burst Capability
	7.2.12 Synchronizing Channel Activity
	7.2.12.1 DMA Channel Read Synchronization vs. Write Synchronization
	7.2.12.2 Checking the Synchronization Status
	7.2.12.3 Dropped Synchronization Events
	7.2.12.4 Synchronization Event Sources

	7.2.13 DSP GDMA Handler (OMAP5912 Only)
	7.2.13.1 Operation
	7.2.13.2 Configuration
	7.2.13.3 Registers

	7.2.14 Reset Considerations
	7.2.15 Interrupt Support
	7.2.15.1 Channel Interrupt
	7.2.15.2 Interrupt Multiplexing
	7.2.15.3 Timeout Error Conditions

	7.2.16 Power Management
	7.2.17 Emulation Considerations
	7.2.18 Latency in DMA Transfers

	7.3 DSP DMA Controller Registers
	7.3.1 Overview
	7.3.2 DMA Global Control Register (DMAGCR)
	7.3.3 DMA Global Software Compatibility Register (DMAGSCR)
	7.3.4 DMA Global Timeout Control Register (DMAGTCR)
	7.3.5 DMA Channel Control Register (DMACCR)
	7.3.6 DMA Interrupt Control Register (DMACICR) and Status Register (DMACSR)
	7.3.7 DMA Source and Destination Parameters Register (DMACSDP)
	7.3.8 DMA Source Start Address Registers (DMACSSAU and DMACSSAL)
	7.3.9 DMA Destination Start Address Registers (DMACDSAU and DMACDSAL)
	7.3.10 DMA Element Number Register (DMACEN) and Frame Number Register (DMACFN)
	7.3.11 DMA Element Index Registers (DMACSEI, DMACDEI) and Frame Index Registers (DMACSFI, DMACDFI)
	7.3.12 DMA Source Address Counter (DMACSAC) and Destination Address Counter (DMACDAC)

	8 TI Peripheral Bus Bridges
	8.1 Introduction
	8.2 DSP Private Peripherals
	8.3 DSP Public Peripherals
	8.4 DSP/MPU Shared Peripherals
	8.5 Peripheral Access Rate
	8.6 Peripheral Access Timeout
	8.7 TIPB Register
	8.7.1 Overview
	8.7.2 TIPB Control Mode Register (CMR)

	9 MPU Interface Port
	9.1 Introduction
	9.2 MPUI and MPUI Port Overview
	9.2.1 MPUI Port Modes
	9.2.2 HOM/SAM Change Outside of Reset

	10 DSP Subsystem Endianess
	10.1 Endianess Within OMAP
	10.2 Endianess Conversion
	10.3 Endianess Conversion Modules
	10.3.1 Endianess Conversion by the DSP MMU
	10.3.1.1 DSP MMU Endianess Control Register (DSP_ENDIAN_CONV)

	10.3.2 Endianess Conversion by the MPUI
	10.3.2.1 MPUI Control Register (CTRL_REG)

	11 DSP Subsystem Interrupts
	11.1 Overview
	11.2 First Level Interrupts
	11.2.1 OMAP5910 First Level Interrupt Mapping and Interrupt Registers
	11.2.2 OMAP5912 First Level Interrupt Mapping and Interrupt Registers

	11.3 Second Level Interrupts

	12 DSP Subsystem Reset, Clocking, Idle Control, and Boot
	12.1 Reset Control
	12.1.1 Hardware (Cold) Resets
	12.1.2 Software (Warm) Resets

	12.2 Clock Source
	12.3 Idle Control
	12.3.1 Idle Control at the DSP Subsystem Level
	12.3.2 Idle Control at the DSP Module Level
	12.3.2.1 Idle Domains
	12.3.2.2 Idle Configuration Process
	12.3.2.3 Valid Idle Configurations
	12.3.2.4 Key Conditions to Change Idle Configurations
	12.3.2.5 Interrupt Handling When the DSP Core Is Reactivated
	12.3.2.6 Effect of a DSP Reset on the Idle Domains
	12.3.2.7 DSP Module Idle Configuration Examples
	12.3.2.8 Idle Registers

	12.4 DSP Bootloader
	12.4.1 Introduction
	12.4.1.1 Bootloader Features
	12.4.1.2 DSP Subsystem On-Chip PDROM

	12.4.2 Bootloader Operation
	12.4.2.1 Bootloader Initialization
	12.4.2.2 Boot Mode Selection

	12.4.3 Boot Modes
	12.4.3.1 Direct Boot Mode
	12.4.3.2 External Memory Boot Mode
	12.4.3.3 DSP Idle Boot Mode
	12.4.3.4 Internal Memory Boot Mode

	12.4.4 Bootloader Sequence
	12.4.4.1 Direct Boot Mode
	12.4.4.2 Other Valid Boot Modes

	Revision History

