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1 Introduction

With the advent of USB, end users can perform firmware upgrades in the field by simply attaching the
device via USB and executing an application on the host PC. Such an approach has numerous
advantages:

• Problems discovered after product release can be fixed.
• Reduced need for high-touch support, because problems can often be solved by instructing the user to

upgrade firmware.
• End users have a more positive experience with the product.
• Product returns can be reduced.

The MSP430™ USB solution has been designed to make this process simple and straightforward. The
device contains a USB-based on-chip bootstrap loader, and TI provides a Windows source project
(available for download at www.ti.com/lit/zip/slaa452) for downloading firmware that can be quickly
customized. This source can be built with Visual C++ 2008 Express, available from Microsoft at no cost.

This guide is intended for developers creating a basic USB firmware upgrade system. Those wishing to
customize the update process or wanting a deeper look at the underlying bootstrap loader can consult
Creating a Custom Flash-Based BSL (SLAA450) and MSP430 Programming Via the Bootstrap Loader
(SLAU319).

Figure 1.

MSP430 is a trademark of Texas Instruments.
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2 MSP430 USB Field Firmware Update Process: Overview

MSP430 firmware upgrade over USB is implemented using the on-chip bootstrap loader (BSL) program.
The BSL is located in a dedicated section of flash, outside of main program flash. TI has provided a BSL
on almost every MSP430 device derivative, pre-programmed in the factory; but unlike other devices, the
BSL on USB-equipped MSP430 devices uses USB as the hardware interface. And whereas previous
BSLs are invoked with a special waveform on the I/O pins, the BSL on USB-equipped devices is invoked
through one of the means shown in Table 1.

Table 1. Methods By Which the USB BSL Can Be Invoked

Method When Used

Blank RESET vector Initial device production. (After initial programming, the vector isIf the RESET entry in the vector table is blank (0xFFFF) after a no longer be blank.)BOR reset (see below), the BSL is invoked.

Software
If the user application transfers control of execution to the BSL Firmware upgrades in the field, initiated by the end user.
(jump to 0x1000), the BSL is invoked.

Hardware
If the PUR pin is held high by external circuitry while a BOR Mostly used as a failsafe, in the rare event that the other two
reset occurs on the MSP430, the BSL is invoked. Often this methods cannot be used to recover from an interrupted update
involves the end user pressing a button while re-inserting the session. It can also be used as a primary means of invocation.
battery (depending on the application).

The software method is recommended as the primary means of entry when performing field upgrades,
because it usually provides the best experience for the end user. The other two methods can serve
backup roles for failsafe operation.

Practical ways to implement these in a system are discussed in Section 4. A high-level overview is shown
in Figure 2.
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Figure 2. System-Level Description of MSP430 USB Firmware Updates
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The Windows source project accompanying this document performs all the host functions shown in the
flowchart in Figure 2 and can be customized as needed. All other actions that the engineer must perform
are described in this document.

3 Before Implementation: System Considerations

This section addresses topics the developer should understand before beginning development.

3.1 What Host Drivers or Applications are Required?

No special kernel-mode drivers are required on the host. This is because the MSP430 reports itself as a
Human Interface Device (HID), which has built-in Windows support. HID is a great fit for firmware updates,
for these reasons:

• It has perhaps the widest native support among host operating systems. In contrast, other update
systems might require a kernel driver installation, which adds a risk of the user experiencing problems
if something goes wrong.

• It loads silently onto the host, which means that no user intervention is required for "installation" of the
device after it is attached.

• HID throughput (64 KB/sec) fits well with MSP430 range of memory sizes, both in existing devices and
future ones. Downloading firmware finishes quickly.

HID is easier for the end user, and this can translate to less support and less development cost for the
OEM.

A host user-mode application is required to drive the download process. This is what the accompanying
source project creates.

3.2 Generation of a Brownout Reset (BOR)

As Section 2 indicated, two of the three invocation methods involve a BOR event. A BOR is also
necessary for the BSL to hand control back to the new user application. Although the name BOR includes
the word "brownout", an actual power brownout event is only one means by which a BOR can be
triggered. BOR is simply a name for the deepest reset an MSP430F5xx device can undergo.

These events can generate a BOR:

• Initial powerup of the device
• An edge on the RST pin (perhaps with a dedicated button)
• Setting the PMMSWBOR bit with software
• Removing the device from USB while the BSL is in control of the MSP430
• A brownout event on DVCC
• Other events [see the SYS Module chapter of the MSP430x5xx/MSP430x6xx Family User's Guide

(SLAU208)]

BOR events are a critical part of the BSL flow if the invocation method is the hardware or blank RESET
vector method. Some user-level events might generate a BOR "automatically"; for example, when the user
removes the device from USB while the BSL is in control, or if the device is purely bus-powered and the
user attaches it to the host, causing a power-up event. In other cases, the user might need to be given
special instructions to cause it; for example, with a special reset button, or by removing the battery prior to
attaching it to USB (causing a power-up event when attached). The system designer must ensure the end
user does what is necessary to cause the BOR at the proper time.

3.3 VID/PIDs in the USB BSL

Any USB device contains a pair of 16-bit values called a vendor ID (VID) and product ID (PID). The VID is
associated with the OEM, and the PID is associated with a product sold by that vendor. A unique
combination of a VID and PID allows a USB host to identify one USB product type from another.
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The BSL is considered a separate USB device from any that might exist in the main user application.
Therefore, it has a VID/PID. If a USB function is also in the user application, that function has its own
VID/PID. Having different VID/PIDs is what allows the host to differentiate whether the user application is
in control of the device or the device is making itself available for firmware update.

The VID/PID implemented by the default USB BSL is 0x2047/0x0200. 0x2047 is a TI-owned VID, and
0x0200 is a PID unique to the BSL for the 'F552x/'F550x/'F663x device families.

If it is necessary to change the BSL VID/PID to a different unique value, the change must be made in
three locations:

• The host application, built by the Visual Studio project
• The on-chip flash BSL
• The RAM BSL that is downloaded from the host application

The values for the host application are located in the source file Firmware.resx (see Section 6.2.1). The
other two items require recompiling the BSL source, which is provided with the application report Creating
a Custom Flash-Based BSL (SLAA450). After modifying the VID/PID in BSL_Device_File.h, the BSL must
be compiled in two different ways: as a flash BSL and as a RAM BSL. The flash BSL image must be
downloaded into every target MSP430 device. The RAM BSL image must be pasted into Firmware.resx.
When all three components contain the new VID/PID, the system functions in the same way as if the
defaults are used.

3.4 BSL Password

When the host attempts to interface with the device’s BSL, the BSL requires a password. This is the same
password mechanism used in non-USB MSP430 BSL versions. The password consists of the device’s
memory contents at addresses 0xFFE0 to 0xFFFF that exist at the time of BSL access. This range is a
subset of the vector table. For more information on the password and security measures of the BSL, see
MSP430 Programming Via the Bootstrap Loader (SLAU319). After the correct password is entered, the
firmware can be upgraded. If the password is incorrect, the BSL automatically performs a mass erase of
the device’s entire main flash area.

Some applications store data in flash during normal operation that needs to be preserved after the update.
Developers of these applications should always report the correct password to avoid the mass erase. It is
recommended to ensure the password never changes during the product lifetime by fixing the locations of
the ISRs (whose addresses comprise the BSL password) to consistent locations in memory. If this is not
done, then the password will likely change after each revision; allowing this to happen makes it necessary
to upgrade the versions in succession (v1, v2, v3, etc.) to ensure that the right password is used each
time, if data contents are to be preserved. It is usually difficult to ensure that the user will do this.

Fixing the ISR locations solves this problem. It can be done during development of the MSP430
application using a variety of methods. One is to create a dedicated linker segment for each ISR with a
fixed address and assign the ISR functions to those segments.

However, some applications do not need to preserve data after the update, which means that a mass
erase causes no harm. These might be better served by reporting a blank (that is, invalid) password. The
resulting mass erase means that the host always knows the correct password on the second try: all
0xFFFF. This method is easier than reporting the correct password, because it avoids the planning
process described previously.

If the correct password is used, the Visual Studio application automatically uses segment erases that
cover only the flash segments needed to store the new application, leaving the rest intact. If the incorrect
password is used, it is assumed that a mass erase already took place, and no additional erases are
performed.

3.5 Distributing Firmware Updates to the Field

The updates can be distributed via the OEM’s website, a CD-ROM, or other methods. To create new host
applications for each revision, it is only necessary to replace the firmware image (as described in
Section 6.2) in the source project and rebuild it.

It should be noted that the MSP430 firmware within the host application is not encrypted. If encryption is
desired, a custom on-chip BSL can be written that decrypts the image after transmission from the host.
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3.6 Interruption of the Upgrade Process

When upgrading firmware in an MCU, there is always a chance that the process could be interrupted,
potentially corrupting the code. Updates conducted over USB are more susceptible to this, because the
end user is able to remove the USB cable at any point in the process.

The MSP430 firmware update system has two layers of security to assist in recovering from such an
event. One is to maximize the time in which the reset vector is blank. The "blank reset vector" method
ensures that a device reset under this condition invokes the BSL, allowing recovery simply by
re-attempting the upgrade. The host application accompanying this document ensures that the vector
table is the first segment erased and the last segment written. The only remaining window of vulnerability
is during the erase, which takes approximately 25 ms (see the device data sheet for specifics).

The probability that the user will remove the USB cable during this vulnerability window might be
calculated as the time for the erase (approximately 25 ms) divided by the overall update session (for
example, 25 seconds). With these assumptions, there would be one unrecoverable session in a thousand
interrupted sessions. The vast majority of users will not remove the cable, making the odds more remote.
In the same scenario, if 5% of users remove the cable during the upgrade, then about one in 20,000
upgrades will experience a corruption that is unrecoverable by the reset vector method.

In these failed cases, recovery of the device would require the hardware method (or JTAG). The hardware
method will always succeed at reprogramming the device in the field, with the tradeoff being the cost of
implementing a button. If the odds of irrecoverable failure with the reset vector method are too high, a BSL
button should be implemented (see Section 4.5).

3.7 USB PLL Reference Clock

The MSP430 USB module requires a clock to serve as a reference for the USB PLL. The clock can either
be generated by the XT2 oscillator by applying a crystal, or a clock source from elsewhere on the board
can be applied to XT2 in bypass mode. In the former case, the minimum frequency is 4 MHz; in the latter,
it is 1.5 MHz (see the device data sheet for parametric details). The PLL is programmable and can accept
a wide variety of frequencies (see the MSP430x5xx/MSP430x6xx Family User's Guide (SLAU208) for
architectural details).

The on-chip BSL needs to know the reference frequency to configure the PLL. By default, it is able to
detect the presence of four frequencies on XT2: 4 MHz, 8 MHz, 12 MHz, or 24 MHz. If it finds one of
these, it programs the PLL accordingly. If any other frequency is be used, the BSL must be modified and
reprogrammed in every device (see Section 6.1).

3.8 Download Speeds

The download time for even the largest firmware images is short. Example programming times are shown
in Table 2.

Table 2. Programming Times

Image Size Mass Erase Segment Erases

32 KB 8 seconds 8 seconds

82 KB 15 seconds 18 seconds

180 KB 22 seconds 28 seconds

Notice that speed is somewhat influenced by whether the MSP430 flash is erased by segments or in
mass. A mass erase takes the same amount of time as each individual segment erase does, so
performing multiple segment erases adds time to the process. However, the difference is quite small. The
accompanying Visual Studio project performs segment erases if the BSL password succeeds. If the
password fails, it does not attempt segment erases, because it knows that a mass erase has already
occurred (see Section 3.4). As a result, using the right or wrong password affects programming times.

Because the MSP430 firmware updates are performed with the HID device class, firmware upgrades have
guaranteed bandwidth on the bus. This makes them unaffected by heavy bulk traffic.
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4 Field Firmware Upgrade: System Models

Five ways of implementing firmware upgrade in the field are described. Each represents a different way
the end user can experience the update process. They also vary to some degree in the amount of
development effort required.

Table 3 shows models for normal update sessions, and Table 4 shows failsafe models (for recovery from
an interrupted session). Under most circumstances, one "normal" model should be chosen, the reset
vector failsafe model should be planned for, and the upgrade button failsafe model should be considered
as described in Section 4.5.

Table 3. Primary Usage Model Options

DescribedApplication Characteristics How the User Would Invoke the BSL Where

The user application does not contain a USB function (in BSL is invoked any time the user attaches the device to Section 4.1other words, USB is only used for firmware update) a USB host

User accesses the device's user interface to enter aThe user application contains its own USB function (in special "update mode"; once in this mode, the BSL isother words, USB is used for two purposes – in the user Section 4.2invoked any time the user attaches the device to a USBapplication and firmware update) host

The user application contains its own USB function, and With the device already attached to the host for the
the above method is not possible, or it is desired to normal USB function, the user accesses a host Section 4.3
invoke the BSL from host control application to update firmware

Table 4. Failsafe Usage Models (For Recovering from an Interrupted Session)

DescribedApplication Characteristics How the User Would Invoke the BSL Where

The interruption occurred while the reset vector was User attaches the device to any USB host and then Section 4.4blank (true of most interrupted sessions) generates a BOR.

User performs an action that pulls the PUR pin high whileThe interruption occurred while the reset vector was not generating a BOR (probably using one or two dedicated Section 4.5blank (rare case) switches)
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4.1 If the User Application Does Not Contain a USB Function

This is the simplest model. A USB interrupt is generated when the device is attached to a USB host. If
there is no other USB function, it is reasonable for the application to interpret this as the user attempting to
update firmware. Code can be placed in the USB ISR (if USBVECINT points to a VBUS-on event) to
invoke the BSL using the software method:

void main(void)
{

volatile unsigned char fInvokeBSL = 0;

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer -- not used in this example

// Activate the sensing of 5V VBUS on the USB cable
USBKEYPID = 0x9628; // Unlock the USB registers
USBPWRCTL |= VBONIE; // Enable the VBUS-on interrupt
USBKEYPID = 0x9600; // Lock the USB registers

while(1)
{
__bis_SR_register(LPM3_bits + GIE); // Go into LPM3; keep ints enabled.

__ disable_interrupt(); // Ensure no application interrupts fire during BSL
if(fInvokeBSL)

((void (*)())0x1000)(); // This sends execution to the BSL. When execution
// returns to the user app, it will be via the reset

} // vector, meaning execution will re-start.
}

#pragma vector=USB_UBM_VECTOR // USB Interrupt Service Routine
__interrupt void iUsbInterruptHandler(void)
{

switch (__even_in_range(USBVECINT & 0x3f, USBVECINT_OUTPUT_ENDPOINT7))
{
case USBVECINT_PWR_VBUSOn:

fInvokeBSL = 1; // Set flag
__bic_SR_register_on_exit(LPM3_bits); // Exit LPM3 when exiting the ISR.
break;

default:
break;

}
}

Note that the BSL is not invoked directly from within the ISR. It is best to return from the ISR, and then
invoke the BSL.

Whenever the device is removed from USB while the BSL is in control, the BSL jumps to the reset vector.
This puts the user application back into control.

If the user attaches to the USB host errantly, the BSL is invoked, but unless a host application tries to
interface with it, the device should not experience any negative effects. Once removed from the host, a
BOR reset occurs, and code executes from the beginning. While the device is attached to USB with the
default BSL in control, buttons are not monitored, and no display elements are driven, so the device might
appear to be "dead" from the user's perspective during this time.
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4.2 If the User Application Does Contain a USB Function

This model is exactly the same as described in Section 4.1, except that the user must put the device into
a special mode before a USB attachment triggers a BSL invocation. For example, the user might use a
menu system on an LCD display or might be required to press and hold two buttons for five seconds.
Once in this mode, any USB attachment causes the application to invoke the BSL using the software
method.

The implementation is similar to the method described in Section 4.1, with the addition of code to evaluate
the mode. If one of TI's MSP430 USB API stacks are being used, it is recommended to place this code in
the handleVbusOnEvent() handler, rather than directly in the USB ISR:

BYTE USB_handleVbusOnEvent()
{

if(inFWUpdateMode)
{
fInvokeBSL = 1; // Set flag triggering main() to invoke BSL

}
else
{
if(USB_enable() == kUSB_succeed) //Connect to USB, for user application function
{

USB_reset();
USB_connect();

}
}
return TRUE;

}

fInvokeBSL can then be evaluated in the main loop to determine whether or not to jump to 0x1000 in the
manner shown in Section 4.1.

4.3 If Host Control is Desired

This model can be used only if there is a USB function in the user application in addition to the USB
function that is used for firmware update. It is presumed that a host application program already exists for
communication with the user application to carry out this normal USB function. The firmware upgrade
process then becomes a feature within this application, rather than being a standalone application.

In this model, the device is already attached to the USB host and, therefore, enumerated under the control
of the user application. The following procedure takes place:

1. The user selects a control in the host application program to update the firmware.
2. The host application sends an application-specific command to the device telling it to invoke the BSL.
3. The MSP430 user application recognizes the command. It disconnects from USB, disables general

interrupts, then uses the software method to invoke the BSL (jumps to 0x1000).
4. Under BSL control, the device re-enumerates on the USB bus.
5. The host application recognizes that the BSL device has enumerated. It then uses BSL commands to

update the firmware in the same manner described previously.
6. The host application issues a BSL command that instructs the device to issue a BOR. This time the

device enumerates under control of the new user application.

From the end user's perspective, this entire process is triggered simply by pressing a button or selecting a
menu item in the host application program.

Implementation of this model is more application-specific than the previous methods. It requires that a
command be placed within the USB traffic of the user application by which the host application can tell the
device to invoke the BSL. This requires changes to both the host and MSP430 applications: the host
application must essentially integrate the accompanying Source Project, and the MSP430 application must
recognize the command to invoke the BSL.
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4.4 Recovering From an Interrupted Update Session When the Reset Vector is Blank

In the majority of interrupted update sessions, the interruptions occurs while the reset vector is blank. This
ensures easy recovery (see Section 3.6).

If a BOR occurs while the reset vector is blank and if the device is already attached to an active USB host
(5-V VBUS is present), then the BSL is invoked. VBUS must be present when the BSL is invoked,
otherwise the BSL enters an invalid state and another BOR is required.

To ensure the BOR happens (see Section 3.2), it might be necessary to provide the end user with special
instructions that cause a BOR. For example:

• Remove power from the device, then restore it after the device has been attached to USB (a power-up
event generates a BOR).

• Push a button that causes an edge on the MSP430 RST pin (for example, a "paperclip switch" on the
back of the device).

The user interface (buttons/display) should not be replied upon for this, because the application firmware
is presumed corrupted at this point and unable to process the interface.

If the device receives power from the USB, it might be necessary only to remove the battery and attach to
the host. Upon attachment, the device powers up and VBUS is present; the two conditions would be met
and, therefore, the BSL would be invoked.

If the device receives power only from a battery and not from USB, the device could be attached to USB
and then the battery re-inserted.

If the device has a rechargeable battery, a reset switch is probably required. This is because most such
systems do not have removable batteries.

Although unlikely, the interrupted session might result in the reset vector being corrupted (not blank).
Under this condition, a reset results in unpredictable execution. In this situation, only the method in
Section 4.5 or JTAG can recover the device.

4.5 Recovering From an Interrupted Update Session Using a "Firmware Update Button"

This model always works, no matter the contents of user flash. It can be used as either a backup to one of
the other methods or as a primary method of performing updates.

As described in Section 3.6, the probability of a failure that needs this model for recovery is quite low. If
the engineer is willing to accept the risk, he or she could choose to omit this method. If absolute recovery
is needed, this model can be implemented.

In this model, a button that forces a pullup on the PUR pin is implemented. The user holds this button and
then causes a BOR on the MSP430. In this way, it invokes the BSL using the hardware method. This
button must be dedicated to this function; it cannot be part of the device's normal user interface. An
example might be a "paperclip switch" underneath the battery cover.

While the button is held down, a BOR must be generated, possibly using one of the methods described in
Section 4.4.

An example procedure is described below. It assumes an application in which a "firmware upgrade button"
is implemented using a paperclip switch in the battery compartment and in which the device is able to
operate from the USB host in the absence of a battery:

1. User removes the battery. This also exposes the switch.
2. User keeps the button held down while attaching to USB. Note this might be difficult to do on a small

handheld device using two hands.
3. The device enumerates under BSL control; the user can now release the button.
4. The host updates the firmware in the same manner described previously in this document.

Disadvantages of this model are the cost of the switch and, in some applications, the possibly awkward
process for the end user to hold down the button while causing a reset.

An example circuit that can be used to implement this method is shown in Figure 3 (the TS430PN80USB
FET target board uses this circuit).
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Figure 3. Example Circuit for Hardware Invocation Circuit

Prior to software driving PUR high to signal USB attachment, the 1-MΩ pulldown resistor keeps PUR low
when the switch is not being pressed. After software drives PUR high, the pulldown is weak enough not to
affect the operation of D+.
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5 MSP430 Firmware Update Source Project

The source project accompanying this document can be built to provide a firmware update host
application. It is designed for quick adaptation to most applications, with minimal effort. The project can be
downloaded from http://www.ti.com/lit/zip/slaa452.

This section describes the source project. Section 6 includes specific steps on how to customize it.

5.1 System Requirements

The setup installer file accompanying this document contains both source and object code.

The source project is designed for use with Visual Studio C++ 2008, Full or Express Editions, using the
.NET framework. The Express Edition can be obtained from Microsoft at no cost.

When running the application, the .NET framework v3.5 or later must be available on the user's system.

5.2 Using the Program

When opening the firmware update program, the welcome view is shown (see Figure 4).

Figure 4. Welcome View
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The user is asked to accept an end user license agreement (EULA) (see Figure 5).

Figure 5. EULA View

Accepting the license leads to the download view (see Figure 6).

Figure 6. Download View

When the GUI detects the presence of an MSP430-based device under the control of the BSL (that is, a
device for which the BSL has been invoked, as defined by its VID/PID) the "Upgrade" button is activated.
When the button is clicked, the USB BSL is initiated and the firmware selected with the radio buttons is
downloaded. Several default programs are provided, and there is also an option to select an external file.
The file selection must be of format msp430-txt, which can be generated by standard MSP430 IDEs (in
CCS, this format is called TI-TXT).
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The download view's instructions say to hold down button "S3". This refers to a button on the
TS430PN80USB FET target board, which is implemented in the manner discussed in Section 4.5.
Because the FET board has no local power source and thus easily generates a BOR upon attachment to
USB (a power-on event), and because the BSL button is easily accessible on the FET board, the BSL
button approach provides an easy way for the developer to experience the process.

5.3 Source

5.3.1 Project Structure

Two projects are provided, bound within a single Visual Studio 2008 "solution" file.
BSL_USB_GUI: the Graphical User Interface (GUI) project viewed by the user. It makes calls to the file
BSL430.DLL to communicate with the MSP430 device's BSL.
BSL430_DLL: the project that generates BSL430.DLL at compile time.

The solution file to be opened is BSL_USB_GUI_wBSL430DLL.sln. It contains all necessary preset
settings linking the two projects together.

If the user does not want to recompile the BSL430_DLL project, a solution file (BSL_USB_GUI.sln) is
provided to recompile the GUI with a prebundled BSL430.DLL file.

Figure 7 shows the expected project view when opening the solution for the first time.
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Figure 7. Default Project View Structure
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5.3.2 Selecting Compilation With Full or Express Editions

After opening the solution file, the user must select either Full or Express edition. The only feature not
available when using Express is the mechanism for tracking versions of the built application. Selecting the
wrong version for Visual Studio Express Edition install generates an error.

Figure 8. Selecting Compilation With Visual Studio Full or Express Edition

5.3.3 Code Organization

Each view has *.cpp/h files containing code associated with it. Most of the code related to firmware
download is in DownloadView.cpp/h. The functions in these files interface with BSL430.DLL to download
the firmware.

The download process is threaded separately so that the GUI is always responsive.

The default firmware options (shown as the radio buttons) all have corresponding firmware images
contained within the GUI. These are all of format msp430-txt. Also, each option has its own set of
functions to download that image, linked to the radio buttons.

The code in this file registers the USB device according to its VID and PID, so that Windows notifies the
view if the device is added/removed from the system. It is in this way that the "Upgrade" button is
activated/deactivated.

5.3.4 Icons

The icons for this project are stored in app.rc, under the project's "Resource Files" folder.

5.3.5 Version/Company Information

This project also maintains version, company, and product information in app.rc, under
VS_VERSION_INFO. This file stores the data that is used by Windows to store a file's properties from
version number to manufacturer information.

Version information is also located in AssemblyInfo.cpp. This file contains the managed version of
company's information and version number, which are used by the application to display the version
number on the GUI.

5.4 Threading

Downloading, verifying, and scanning for new devices can take up to a few seconds, having the potential
to make the GUI unresponsive. To prevent this, two threads are maintained. The .NET framework's
BackgroundWorker class offers an easy means of doing this. The two threads are:

• backgroundWorker1
This is the main thread, which downloads BSL firmware into the MSP430. Only one image can be
downloaded at a time. It is within the function backgroundWorker1_DoWork()that the radio buttons are
evaluated, and a call to the corresponding download function is made.

• backgroundWorkerCheckDevice
Scans for USB devices connected to the system, based on a specific VID/PID. This thread can be
used only if backgroundWorker1 is not busy.
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Because these threads access the same DLL resource, only one can run at a time. Each has
start-process, progress-update, and end-thread functions that allow control of each step in the process.
The start process thread calls the BSL download functions according to the selected firmware image. The
progress update is called inside the thread during the download process to report changes to the progress
bar and status box. The end thread re-enables or disables the "Upgrade" button.

To pass variables between threads, it should be properly handled so that no memory access violation
occurs.
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6 Putting It in Practice: Implementing USB Device Firmware Updates

Here is a summary of steps required to create an MSP430 USB field firmware update system:

1. Choose a usage model (see Section 4).
2. In the MSP430 user application, place the necessary code to invoke the BSL, according to the chosen

usage model.
3. If implementing a "firmware upgrade button", add the required circuitry to the board (see Section 4.5).
4. If necessary, customize the clock frequency used in the MSP430 BSL source code, and download it to

each MSP430 device (see Section 6.1).
5. Customize the provided host application source project (see Section 6.2).

Steps 1 to 3 have already been discussed. Steps 4 and 5 are discussed in Section 6.1 and Section 6.1,
respectively.

6.1 Customize the XT2 Clock Frequency in the MSP430 BSL Code

If the clock that is applied to the MSP430 device’s XT2 oscillator is any frequency other than one of those
that the BSL is able to auto-detect (4 MHz, 8 MHz, 12 MHz, or 24 MHz), then it is necessary to customize
the value in the BSL and download this new BSL image to each MSP430 device. Without this, USB
cannot function properly, and the BSL does not enumerate on the host. This is because XT2 provides the
reference clock to the USB PLL.

The process of customizing this is described below. Note that if one of the four auto-detect frequencies is
used, this step can be eliminated.

Note that the default BSL does not support XT2 bypass mode, in which the crystal is replaced by an
external clock fed into XT2. To use the bypass mode, the clock configuration code in the BSL source must
be customized—see the application report Creating a Custom Flash-Based BSL (SLAA450).

To modify the XT2 frequency, the BSL source code must be modified and downloaded to each device.
The BSL's source has been arranged to make this simple and straightforward for those who are making
only this small modification.

The BSL source is available as part of the application note Creating a Custom Flash-Based BSL
(SLAA450). This source comes in the form of IAR projects; developers not already using IAR can
download IAR KickStart from TI's website at no charge. The BSL fits within KickStart's size limitation.

The BSL source has several constants that must be modified to reflect the new values. The constants are
located near the top of the file BSL_Device_File.h.

Table 5. Customizing XT2 Frequency in the BSL Source

Constants Description

SPEED_1
SPEED_2 Values related to the BSL's frequency auto-scan feature. The number is equal to the frequency in Hertz. It
SPEED_3 is recommended to change all four to the target value.
SPEED_4

SPEED_1_PLL Values related to the BSL's frequency auto-scan feature. These values correspond one-for-one withSPEED_2_PLL SPEED_x above. The value assigned to these constants should be one from the MSP430 header file ofSPEED_3_PLL format USBPLL_SETCLK_xx_y. It is recommended to change all four to the target value.SPEED_4_PLL

Once the modifications are made, the program can be built and downloaded into a device using IAR and
an emulation tool like the FET430UIF FET tool. Once performed, development can proceed as normal
with a non-BSL project on this device, and the BSL contents remain updated.

A different approach is needed for programming devices in production. A single msp430-txt image file is
needed that contains both the BSL object code and the main application object code. Production
programmers can then use this file to update each device. This msp430-txt file must be created manually
by concatenating the application to the end of the customized BSL image. The following example
demonstrates this process.
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First, edit the XT2 frequency in the BSL's IAR source project as described earlier, and output an
msp430-txt file for the BSL. It appears similar to the sample below when viewed with a text editor. Note
that the starting address is 0x1000, the location of the BSL in MSP430F5xx memory.

msp430-txt file for the BSL

@1000
2C 3C 06 3C FF 3F FF 3F FF 3F FF 3F FF 3F FF 3F
3D 90 AD DE 04 20 3E 90 EF BE 01 20 03 3C 0C 43
.
.
.
0F 4C 0F 5D 03 3C CC 43 00 00 1C 53 0C 9F FB 23
10 01 80 00 76 44 80 00 7A 44 FF 3F
@FFFE
00 44
q

Now output the msp430-txt file of the main application. This code is positioned higher in memory.

msp430-txt file for the user application

@4400
31 40 00 44 3C 40 00 24 3D 40 01 00 B0 13 60 44
.
.
0F 4C 0F 5D 03 3C CC 43 00 00 1C 53 0C 9F FB 23
10 01 80 00 76 44 80 00 7A 44 FF 3F
@FFE6
18 44
@FFFE
00 44
q
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The two should then be combined with a text editor. Open the BSL output and delete anything in the
range of the interrupt vectors (0xFF80 to 0xFFFF), as well as the "q" character (which denotes the end of
the file). Then, append the application's output. When combined, they should look like:

msp430-txt file for the two combined

@1000
2C 3C 06 3C FF 3F FF 3F FF 3F FF 3F FF 3F FF 3F
3D 90 AD DE 04 20 3E 90 EF BE 01 20 03 3C 0C 43
.
.
.
3B 00 00 00 1F 42 44 1C CF 4C 01 00 E2 43 00 1C
34 21 78 56 80 00 3A 17 21 83 B1 40 4C 04 00 00
02 3C B1 53 00 00 81 93 00 00 FB 23 21 53 18 02
B2 40 00 51 CE 03 92 B3 CE 03 FD 2B 10 01 1D 15
10 01
@17F0
FF FF 2A 10 A5 3C 5A C3 FF FF 00 10
@17FC
FF FF FF FF
@4400
31 40 00 44 3C 40 00 24 3D 40 01 00 B0 13 60 44
.
.
.
0F 4C 0F 5D 03 3C CC 43 00 00 1C 53 0C 9F FB 23
10 01 80 00 76 44 80 00 7A 44 FF 3F
@FFE6
18 44
@FFFE
00 44
q

The combined file can then be downloaded into the MSP430 device using a production programmer. Note
that a "combined" msp430-txt file (application plus BSL) cannot be downloaded with the Visual Studio
project. This device is now prepared to function with a USB host firmware upgrade application configured
to recognize this VID/PID. Preparing this application is discussed in Section 6.2.
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6.2 Modifying the Source Project

This section assumes basic skills with Microsoft Visual Studio.

The basic steps are shown here, and the sections that follow provide detail to these steps.

1. Replace the "blink LED" MSP430 firmware image with the new target image.
2. Customize the BSL password (see Section 3.4).
3. Customize the EULA agreement.
4. Customize the GUI's look and feel. Customize the display strings, graphics, etc.
5. Build the application.

6.2.1 Steps 1-2: Customize the Firmware and BSL Password

These are accomplished in a single location: Firmware.resx, located within the GUI project.
Double-clicking on this resource file shows a table of strings. The contents are shown in Table 6.

Table 6. Firmware.resx Contents

Field Description

5529_LED_Blink.Text MSP430 object code for an "LED blink" application in msp430-txt format.

MSP430 object code for an "echo" application that enumerates as a CDC device in msp430-txt format.CDC119Echo.Text Allows communication with the host via HyperTerminal.

Forced_PUC.Text MSP430 object code that forces a powerup clear (PUC) reset. This should not be changed.

Forced_BOR.Text MSP430 object code that forces a brownout reset (POR). This should not be changed.

HID119Echo.Text MSP430 object code for an "echo" application that enumerates as a HID device in msp430-txt format.

password.Text The BSL password in msp430-txt format (see Section 3.4).

MSP430 object code for the RAM BSL. TI may release new versions of the Source Project that containRAM_BSL.Text newer versions of the RAM BSL. This should not be changed by the developer.

RAM_BSL_VERSION Versioning for the RAM_BSL field. See above.

USB_VID The target's vendor ID (VID). The application associates only with a USB device that has this VID.

USB_PID The target's product ID (PID). The application associates only with a USB device that has this PID.

Assuming that only a single firmware image is to be downloaded, the following is recommended:

1. Paste the contents of the new target application's msp430-txt file into the value field for
"5529_LED_Blink.Text".

2. Eliminate the controls from the GUI that allow selection of firmware; for example, the radio buttons.
3. Eliminate every part of the code that references the eliminated controls. As part of this, the function

backgroundWorker1_DoWork(), which is called by the "Upgrade" button, should only call
DownloadBlinkLED(), not the other download functions.

This approach uses the "blink LED" program as a container for the new target firmware image and
eliminates the program's ability to use any image other than this one.

As discussed in Section 3.4, the password can either be left as the blank password or updated to the
correct password. The correct password can be obtained from the msp430-txt file of the firmware image
already in the device, addresses 0xFFE0 to 0xFFFF. Note that the "@0xFFE0" address header must
remain present in the "password.Text" field, followed by all 32 bytes through 0xFFFF.

6.2.2 Step 4: The EULA

An OEM should use its own end user license agreement text, because the default one has TI-specific
phrasing. The text can be found in the file EulaAgreement.resx.

6.2.3 Step 5: Customizing the GUI's Look and Feel

It is up to the OEM's discretion how to package the GUI.
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6.3 Building and Distributing the Application

The .NET framework v3.5 or later must exist on any PC running the application. Without it, the application
cannot execute. Although most Windows users today already have this installed, some may not. One
approach is to create an installer for the firmware upgrade application that ensures the .NET framework is
installed. For example, the full version of Visual Studio 2008 is capable of creating an installer that detects
whether the necessary .NET framework is present and, if not, downloads it from Microsoft (this feature is
not present in Visual Studio Express).

7 MSP430 USB Tool Suite

TI MSP430 provides a complete suite of tools to make USB easy on MSP430 devices. Other members of
the suite include:

• MSP430 USB CDC API
An API for implementing the Communications Device Class, allowing the host application to interface
with the device using a COM port.

• MSP430 and Windows USB HID API
An MSP430 API and Windows API for implementing the Human Interface Device class. It has special
features that allow HID to be a great choice for general-purpose use.

• MSP430 USB Descriptor Tool
Automatically generates USB descriptors for the MSP430 USB API stacks. Its descriptors work the first
time, saving the developer's time and reducing the chance for errors.

• MSP430 USB MSC API
An API for implementing the Mass Storage class

For more information on these tools, see the application note Starting a USB Design with MSP430 MCUs
(SLAA457), and check with TI for updates.

8 References

1. MSP430x5xx/MSP430x6xx Family User's Guide (SLAU208)

2. Creating a Custom Flash-Based BSL (SLAA450)

3. MSP430 Programming Via the Bootstrap Loader (SLAU319)

4. http://www.ti.com/430usb
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