基于 USB2.0 接口的 DSP 仿真器技术

- 清华同方电子与信息技术研究室
- 汪安民
- 技 学 河 南 科 大

张松灿

摘要

介绍一种基于 USB2. 0 接口的 TI 公司 DSP 仿真器的研制方法。该系统以 USB 控制器 CY7C68013 为核 心,通过 ACT8990 实现 IEEE1149. 1 协议,实现 PC 机对 DSP 片内数据的读写,从而完成仿真功能。该系 统制造简单,成本低。根据本文的方法,DSP 开发者可以自行研制仿真器,而不必另外购买。

USB2.0 仿真器 DSP JTEG 芯片 ACT8990 关键词

引言

目前,TI 公司 DSP 芯片的应用越来越广泛,DSP 的 仿真器是每一个 DSP 开发者必备的工具之一。早期的 DSP 并口仿真器由于传输速度慢,很难适应开发者的需 求,而最近 TI 公司推出的 PCI560 仿真器,由于价格高,而 且使用 PCI 接口,使得连接十分不方便。为此,本文介绍 一种基于 USB2.0 接口的 DSP 仿真器,其理论上数据传 输速度可以达到 448 Mb/s,而且 USB 接口可以带电插 拨,使用方便。

本文研制的 DSP 仿真器以美国 Cypress 公司的 USB2.0 控制器 CY7C68013 为核心,配置实现 IEEE1149.1 的 JTEG 片内扫描协议芯片,实现对 DSP 片内数据的读 写和传输等功能。整个系统具有小型化、价格低以及制造 简单的特点,该系统可以实现对 TI 公司所有系列 DSP 的 仿真,包括 C54x、C55x、C6x、C24x、C28x、Omap 等。DSP 开发者可以自行按照本文的方法研制仿真器,或者将系统 集成到用户的 DSP 开发板上,从而避免购买高价的 DSP 仿真器。

系统硬件结构

整个系统以 USB2.0 控制器 CY7C68013 和 JTEG 扫 描芯片 ACT8990 为核心,还包括 E² PROM、电压转换芯 片、总线驱动以及电压比较器。

1.1 USB2.0 控制器 CY7C68013

CY7C68013 是美国 Cypress 公司推出的 USB2. 0 芯 片,是一个全面集成的解决方案。CY7C68013 主要结构如 下:1 个增强的 8051 微处理器、1 个智能串行接口引擎

(SIE)、1 个 USB 收发器、16 KB 片上 RAM(其中包括 4 KB FIFO)存储器和1个通用可编程接口 GPIF(General Programmable Interface)。这种独创性结构可使数据传输 率达到 448 Mb/s,即 USB2.0 允许的最大带宽。智能 SIE 可以硬件处理 USB1.1 和 USB2.0 协议,从而减少了开发 时间,并确保了 USB 的兼容性。GPIF 和主/从端点 FIFO (8位或 16位数据总线)为 ATA、UTOPIA、EPP、PCM-CIA 和 DSP 等提供了简单甚至无缝连接接口,使得和外 设的连接十分方便可靠。

CY7C68013 独特的架构具有如下特点。

- ◆ 包括 1 个智能串行接口引擎(SIE)。它执行所有基 本的 USB 功能,将嵌入的 MCU 解放出来以用于实现其 他功能,保证持续高速有效的数据传输。
- ◆ 具有 4 KB 的大容量 FIFO 用于数据缓冲,当作为 从设备时,可采用 Synchronous / Asynchronous FIFO 接口 与主设备(如 ASIC, DSP 等)连接; 当作为主设备时, 可通 过通用可编程接口(GPIF)形成任意的控制波形来实现与 其他从设备连接,能够轻易地兼容绝大多数总线标准。
- ◆ 固件软配置,可将需要在 CY7C68013 上运行的周 件存放在主机上,当 USB 设备连上主机后,下载到设备 上。这样就实现了在不改动硬件的情况下,很方便地修改 固件。
- ◆ 能够充分实现 USB2.0(2000 版)协议,并向下兼容 USB1.1 协议。

CY7C68013 内部结构如图 1 所示,其和外部设备的 接口包括 I²C 总线、GPIF 接口和 FIFO 接口三种方式。 数据通过这些接口传输到内部的数据和地址总线,由 8051 微控制器处理或者直接送到 USB 的 SIE 单元,然后 传输到 USB 收发器。此外,图 1 中还包括片内的 PLL 时 钟电路,将外部时钟信号连接到 USB 收发器和 8051 处 理器。

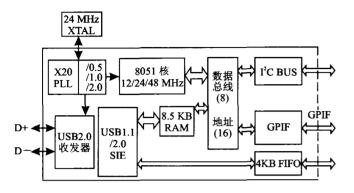


图 1 CY7C68013 的内部结构

1.2 JTEG 扫描芯片 ACT8990

ACT8990 是美国 TI 公司推出的测试 DSP 芯片,它通 过 JTEG 接口扫描 DSP 片内的数据区和程序区,扫描结 果通过其内部的主机模块传输到其他设备上。ACT8990 实际上是实现 IEEE1149.1 的 TBC(Test Bus Controller) 协议,从而实现对 DSP 片内空间的访问。ACT8990 的内 部结构如图 2 所示。ACT8990 主要由队列管理模块、主 机模块、串行模块、事件管理器、计数器、命令管理以及读 写总线组成。

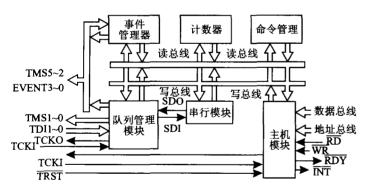
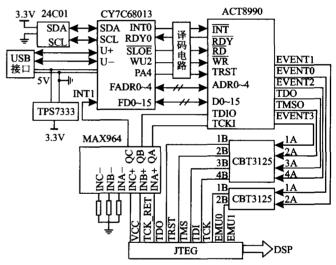


图 2 ACT8990 的内部结构

队列管理模块和串行模块实现 IEEE1149.1 的扫描 协议。队列管理模块通过SDO从串行模块读取 IEEE1149.1的扫描命令,并通过 TMS5~0 引脚通知所 访问的多片 DSP,每个 TMS 对应一个 DSP。队列管理模 块将串行模块中的多个任务分配到 EVENT3~0 引脚, 这样可以流水完成3个任务,从而加快访问速度。DSP 上的数据通过 TDI0~1 引脚传输到队列管理模块,队列 管理模块首先确定该任务的状态,然后根据任务状态确 定数据属于哪个任务,最后通过 SDI 将数据传送到串行


模块。

事件管理器实现外部事件的管理,DSP可以通过外部 事件来中断 IEEE1149.1 的协议。事件管理器一般用于 DSP 控制协议的过程。在 DSP 仿真过程中,一般不使用 事件管理器。计数器用于计算各个任务所访问的数据地 址,如果 DSP 通过事件管理器控制协议,计数器也可以用 于事件管理器的计数。命令模块包括主命令寄存器和副 命令寄存器,此外命令模块也可以控制所有的状态寄存 器。

主机模块实现 ACT8990 和外部设备的数据通信,本 文使用 CY7C68013 作为外部设备,两者之间通过数据和 地址总线以及必要的读、写、中断和准备好等控制信号进 行数据通信,此时 ACT8990 为从设备。

1.3 系统硬件结构

整个仿真器系统的硬件连接如图 3 所示。仿真系统 主要由 CY7C68013、24C01、ACT8990、MAX964 以及 2 片 CBT3125 组成。

仿真系统的硬件结构 图 3

图 3 下方的 JTEG 接口直接连接到 DSP 的 JTEG 接 口,USB接口直接连接到计算机的 USB接口。整个系统 的电源由计算机的 USB 接口提供,使用电压转换芯片 TPS7333 将 5 V 电压转换成 3.3 V 提供给各个芯片。使 用 2 片 CBT3125 总线驱动芯片,有两个作用:一是驱动总 线,以适应驱动能力不同的各个系列 DSP 芯片;另外一个 作用是隔离 DSP 和 ACT8990,从而保护 ACT8990 避免受 到 DSP 传输的高电压伤害。MAX964 是电压比较器,实 时检测 JTEG 接口的 VCC 信号,该信号直接连接到 DSP 的 VCC 上。一旦 DSP 上电, VCC 为高电平, MAX964 检 测出该信号,并发出中断到 CY7C68013;反之,如果工作 过程中,DSP 突然掉电,MAX964 将马上发出掉电中断到

CY7C68013,整个系统将停止工作,并将掉电信息传输到 计算机。

2 系统软件结构

系统软件从上层到底层包括以下几个部分:DSP的仿真软件 CCS 和 USB接口的连接;USB接口和仿真器上CY68013 的连接;CY7C68013 和 ACT8990 的连接;ACT8990 和 DSP的连接。在以上 4 个部分中,CCS 和USB接口的实现由 TI 公司提供,使用 TI 公司提供的通用 USB 仿真器驱动程序就可以。USB接口和CY7C68013 的连接使用 24C01 实现,实际上就是对CY7C68013 进行配置,使得计算机可以识别到仿真器的USB设备,从而实现 CY7C68013 下载驱动程序到其内部处理器。一旦软件下载成功,CY7C68013 就会发出命令,驱动 ACT8990 工作,ACT8990 根据 IEEE1149.1 协议实现对 DSP的访问。

2.1 USB2.0 驱动程序

需要编写三个程序来实现 USB 设备的使用。一个是负责 USB 接口调用程序;另一个是安装 USB 的信息文件,用于对 USB 设备的一些说明;第三个是设备驱动程序,用于对数据的传输。下面对这三个程序分别做一些简单的说明。

USB接口调用程序由 Cypress 提供,其提供的 CY7C68013 开发工具包中提供了开发板的源程序,而其 开发板的设计就是基于 GPD 的。这使得开发者在示例程序的指引下,能快速地编写出用于通信的应用软件。 GPD 的设计思想是服务于一般用户的,其接口函数具有通用性。通过 GPD 提供的接口函数原型,可以实现各种 USB 操作,包括实现负责 USB 设备的请求(即打开 USB 设备);负责 USB 的 GPIF接口控制;通过改变 IOCTL(I/O Control Code)实现各种操作。该程序可以直接使用 TI 公司提供的源程序或者使用任何一家仿真器供应商提供的源程序。

安装信息文件的任务就是将驱动程序文件绑定到特定的 VID/PID,主要说明哪一个文件负责 USB 接口调用程序,哪一个文件是 CY7C68013 需要下载的文件。用户还可以根据需要将自己对 USB 设备的描述(包括说明、版本号、日期、生产商等信息)加到安装信息文件中。安装文件的编写十分简单,使用记事本直接修改通用的信息文件即可,主要就是将该仿真器生产公司的信息输入到安装文件。这样,在 Windows 设备管理器的硬件描述中,将出现生产公司的信息。

计算机识别到 USB 仿真器,并安装好信息文件后,就可以将驱动程序下载到 CY7C68013 中,此程序实现

CY7C68013 对其内部 FIFO 和 USB 接口的监控和数据通信。该程序还要实现数据和 DSP 仿真软件 CCS 的连接。由于涉及到 CCS 的接口,而 TI 公司未公开 CCS 的源代码,用户无法编写该程序,但该程序未涉及 USB 设备的 PID 和 VID,也就是该程序在所有的仿真器板子上通用,用户使用任何一家仿真器供应商的程序代码都可以。

2.2 USB2.0 配置 E²PROM 程序

为了配合 TI 公司提供的仿真器驱动程序, CY7C68013 的配置文件相当重要, 只有 USB 配置正确后, 驱动程序才可以下载到 CY7C68013 中运行。CY7C68013 的配置是通过其外接 E² PROM 完成的。上电时, 内部逻辑会检查连接到 I² C 总线上的 E² PROM 中的第一个字节(0xC0 或 0xC2), 如果是 0xC0, 就会使用 E² PROM中的 VID/PID/DID 来替代内部存储值; 如果是 0xC2, 内部逻辑就会把 E² PROM 中的内容装入到内部 RAM 中; 如果没有检查到 E² PROM, 使用内部存储的描述符来枚举。

3 总 结

本文详细介绍了基于 USB2.0 接口的 DSP 仿真器的研制方法。采用该方法,只需要设计出 DSP 仿真器的硬件系统,USB 驱动程序的设计采用 TI 公司提供的源程序,使得仿真器的研制十分简单易行。该仿真器通过实际产品测试,性能可靠,仿真速度和各个公司的 USB2.0 仿真器一样,并且兼容各个公司的仿真器驱动。广大的 DSP 开发者可以使用本文提供的方法直接将 DSP 的仿真功能集成到 DSP 开发板上,从而无须额外购买 DSP 仿真器。

参考文献

- 1 汪安民,王殊. TMS320C54xx DSP 的 USB 接口实现. 电子技术应用. 2003(1):72~74
- 2 Cypress Semiconductor Corp. EZ USB FX2 Manual Technical Reference V2, 1,2003
- 3 Texas Instruments Inc. Test Bus Controller SN74ACT8990 Application Report, 2000

(收稿日期:2005-05-26)