
C O N F I D E N T I A L 3-MAR-06

SMP8634 Security

SLIDE 2 C O N F I D E N T I A L 3-MAR-06

Security - Overview
Dedicated security processor (XPU) for securely executing DRM/CA software
including the following:

WM DRM (Janus and Cardea, provided by Sigma)
DTCP / IP for home networks (provided by Sigma)
CSS, CPPM, CPRM, AACS, BD+ (provided by Sigma)
NDS VGS, SecureMedia, Widevine, Irdeto for IPTV
ITRI for FVD players
ARIB, ATSC, DVB-CI, DVB-CSA, OpenCable conditional access

Boot ROM: Upon hardware reset, the XPU begins executing from the
BootROM.
Embedded serial flash: Securely stores the XPU’s operating system (xos) and
the highly confidential secrets of each DRM/CA

SLIDE 3 C O N F I D E N T I A L 3-MAR-06

XPU - Overview
xboot : Upon hardware reset, the XPU begins executing from the Boot ROM.
Embedded serial flash: Securely stores the XPU’s operating system (xos) and
the highly confidential secrets of each DRM/CA
Data and Instruction Scratch Pads: Internal SRAM used exclusively by the
XPU
DRAM data can be encrypted
Parallel flash data can be encrypted and digitally signed
Secure data path: Creates a secure data path inside the chip to protect the
decrypted data from being improperly accessed.

SLIDE 4 C O N F I D E N T I A L 3-MAR-06

XPU Block Diagram

SLIDE 5 C O N F I D E N T I A L 3-MAR-06

Security
• Secure CPU: Overview
• Secure bootloader
• Secure OS: xos

SLIDE 6 C O N F I D E N T I A L 3-MAR-06

Secure CPU - Overview
• SMP8630 comes with two MIPS 4KE processor

called cpu and xpu.
• The first processor will be used to run a

standalone OS (CE, Linux with no special
limitation)

• The xpu is used as a security processor, it is
located in a privileged hardware block that has the
ability to boot first and (un)lock all other
SMP8630 hardware blocks by running properly
authenticated code

• The xpu includes an instruction scratchpad of
32kB and a data scratchpad of 24kB

SLIDE 7 C O N F I D E N T I A L 3-MAR-06

Secure SDK components
• Key hierarchy: Elaborate key hierarchy that let customers

sign and encrypt their xtasks and OS kernels
• Secure Data Path: Create a secure data path inside the chip

to protect the decrypted compressed data from being
tampered.

• Xrpcs: Remote procedure calls between xpu and cpu and
between tasks

• CipherAPI: xtasks can access to accelerated and romed
cipher algorithms

• FIFOs models: xtasks are seamlessly integrated in the
Hardware Library model.

• Embedded Serial Flash: xtasks can store private keys in the
embedded serial flash without spying on each others

• Random Number Generator

SLIDE 8 C O N F I D E N T I A L 3-MAR-06

Boot process: General framework

SLIDE 9 C O N F I D E N T I A L 3-MAR-06

Boot process:
Bootstrap

process diagram

SLIDE 10 C O N F I D E N T I A L 3-MAR-06

Secure Boot Loader
• SMP8630 contains two RSA 2048 public keys and

two AES 128 bit keys (serial and parallel flash).
• xboot is located on masked rom inside the

SMP8630
• xboot initializes the xpu
• xboot tries to boot first from serial then from

parallel flash.
• xboot decrypts the content of the flash and then

verify its signature (RSA-PKCS#1).
• The content of the flash is xos (secure OS).

SLIDE 11 C O N F I D E N T I A L 3-MAR-06

Secure Boot Loader
• When xos starts, it tries to find zboot on the

parallel flash by reading its signature.
• zboot is signed and can be encrypted and

will run on the main CPU.
• zboot initializes the main cpu and loads the

main bootloader (for CE, or YAMON for
Linux).

• Main bootloader loads OS

SLIDE 12 C O N F I D E N T I A L 3-MAR-06

XOS
• xos runs in kernel mode inside the instruction

scratchpad of the xpu
• Multitasking OS with up to four xtask running in

user mode
• Able to process secure remote procedure calls
• The timer may interrupt an xtask to schedule

another
• xtasks interface with xos through system calls
• xos has the ability to upgrade itself in serial flash

from a properly authenticated image in memory

SLIDE 13 C O N F I D E N T I A L 3-MAR-06

xtasks
• 2 memory models:
• Small: all the code and data is loaded on the

scratchpad (max: 12kB of code and 16kB of
data)

• Small: code and data is deciphered and
reciphered in place

• Small: context switch has an overhead of
10% because of encryption/decryption

• Large: code and data are located on DRAM

SLIDE 14 C O N F I D E N T I A L 3-MAR-06

Xos ciphers
• Cryptography functions include:
• Hardware 3DES/DES block
• Hardware AES block
• Hardware RC4 block
• Software and rom-hosted RSA

implementation
• Software and rom-hosted SHA-1

implementation

SLIDE 15 C O N F I D E N T I A L 3-MAR-06

Certificates
• All the code running on the SMP8634 is signed

and optionally encrypted.
• Sigma Designs is a certificate authority for the

SMP8634 Public Key Infrastructure
• Sigma Designs issues public key certificates to

customers and partners which states that Sigma
Designs attests that the public key contained in the
certificate can be trusted by the SMP8634.

• Sigma Designs also allows binding of public keys
to the chips itself.

SLIDE 16 C O N F I D E N T I A L 3-MAR-06

Certificate Generation

Sigma Designs

Certificate

request
release

Private
Key

Public Key

• Customer generates
Public/Private Key pair

• Customer sends certificate
request to Sigma Designs
with Public Key

• Sigma Designs signs the
Public Key using the Root
private key and generates a
certificate

• The certificate is released to
the customer

• The customer uses the
private key to sign code

SLIDE 17 C O N F I D E N T I A L 3-MAR-06

Certificate and SDKs
• SDKs will include facsimile certificates and

private keys for development chips
• For production chips, customers will have

to generate unique certificates (for zboot2
and linux image)

SLIDE 18 C O N F I D E N T I A L 3-MAR-06

Key Hierarchy
• Sigma RSA Root Private Key : [SigmaRSAPrivateKey]
• Sigma RSA Root Public Key : [SigmaRSAPublicKey]
• Sigma AES 128 Root Key : [SigmaAESSymmetricKey]

• XOS RSA Private Keys: [XOSRSAPrivateKey(n)]
• XOS RSA Public Keys: [XOSRSAPublicKey(n)]
• XOS AES Symetric Keys: [XOSAESSymmetricKey(n,Certificate)]

• SRDS : Sigma RSA digital signature (PKCS#1) using
[SigmaRSAPrivateKey]

• CRDS : Customer RSA digital signature (PKCS#1) using
[CustomerRSAPrivateKey]

SLIDE 19 C O N F I D E N T I A L 3-MAR-06

Key Hierarchy
• [SigmaRSAPrivateKey] is stored in a FIPS Level 2 card and cannot be

accessed by anyone. This is a 2048bit RSA key.
• [SigmaRSAPublicKey] is hardwired inside the chip.

• [SigmaAESSymmetricKey] is also hardwired inside the chip. This is a
128 bit key.

• [XOSRSAPrivateKey(n)]: When flashing XOS, we also burn a SEK
block that includes 7 RSA Private Keys [XOSRSAPrivateKey(n)]
2048 bits.
The public key parts are [XOSRSAPublicKey(n)].
[XOSRSAPrivateKey(n)] are stored on the serial flash encrypted using
[SigmaAESSymmetricKey]. Only XOS can directly access these keys.

• [XOSRSAPublicKey(n)]: These keys are not stored on the chip.

SLIDE 20 C O N F I D E N T I A L 3-MAR-06

Key Hierarchy
• [XOSAESSymmetricKey(n,Certificate)]: 7 AES keys that

depend on the CertificateID of the xtask that want to use
them.

SK = 128 lsb of SHA-1([XOSRSAPrivateKey(n-7)])
MSG = 128 lsb of SHA-1(Certificate)
[XOSAESSymmetricKey(n,Certificate)] = AES ecb of
MSG using key SK

• These keys are not directly stored on the chip but can be
recomputed by xos internally easily from the above
formula.
The [XOSAESSymmetricKey(n,Certificate)] is delivered
to the customer when a certificate is generated.

SLIDE 21 C O N F I D E N T I A L 3-MAR-06

XLOAD
Protected binaries signing:
1 - Customer generates a RSA 2048 key pair:

[CustomerRSAPrivateKey] and [CustomerRSAPublicKey]

2 - Customer sends [CustomerRSAPublicKey] to Sigma for Signing.

3 - Sigma attributes a new KeyID to the customer and signs
Certificate=(KeyID|KeyType|XOSKEYId|[CustomerRSAPublicKey])
using [SigmaRSAPrivateKey], resulting in SRDS(Certificate).

This certificate is sent back to the customer with
[XOSRSAPublicKey(XOSKEYId)] and
[XOSAESSymmetricKey(n,Certificate)]

SLIDE 22 C O N F I D E N T I A L 3-MAR-06

XLOAD
4 - Customer writes an xtask and compiles it into task.bin

5 - Customer signs the task using [CustomerRSAPrivateKey]:
CRDS(task.bin).

6 - Customer generates a random AES session key
[SessionAESSymmetricKey] and IV [SessionCustomerIV]and
encrypts task.bin : [SessionAESSymmetricKey](task.bin)) (padding is
0)

7 - Customer encrypts [SessionAESSymmetricKey] using
[XOSRSAPublicKey(XOSKEYId)]:
[XOSRSAPublicKey(XOSKEYId)]([SessionAESSymmetricKey]).

SLIDE 23 C O N F I D E N T I A L 3-MAR-06

XLOAD
8 - Customer creates a protected binary :
| Certificate | SRDS(Certificate) | CRDS(task.bin)

|[XOSRSAPublicKey(XOSKEYId)]([SessionAESSymmet
ricKey]) |

[SessionCustomerIV] |
[CustomerAESSymmetricKey](task.bin) |

In short:

task.xload = | Certificate | CertificateSignature |
TaskSignature |
Encrypted Session Key | IV |
Encrypted Task |

SLIDE 24 C O N F I D E N T I A L 3-MAR-06

XLOAD
Clear xload format
As a special case, we use XOSKEYId=0xff to code

the fact that the Task is not encrypted, but simply
digitally signed:

task.xload = | Certificate | CertificateSignature |
TaskSignature | Clear Task |

SLIDE 25 C O N F I D E N T I A L 3-MAR-06

XLOAD
Certificate:
Included in the certificate:
CertificateID : 16 bits (but < 2048) starts at 0. Each certificate has

a unique keyID. Sigma maintains a list of all the
certificates that have been generated.

CertificateType: 8 bits. Indicates the certificate type

0: cpu Bootloader (zboot), cpu zone, used by ALL customers
1: cpu code, cpu zone, used to sign cpu kernels and applications
2: xtask1, xpu zone, used to develop and release SDK DRM implementations
3: video microcode, protected risc zone, used by Sigma Designs only
4: audio microcode, protected risc zone, used by Sigma Designs only
5: transport demux microcode, protected risc zone, used by Sigma only
6: irq handler running on xpu, xpu zone, used by Sigma Designs only
7: xtask2, xpu zone, used for Sigma Designs DRM implementations.
8: xtask3, xpu zone
9: xtask4, xpu zone

0xff: xos update

SLIDE 26 C O N F I D E N T I A L 3-MAR-06

XLOAD
Certificate (continued)

• XOSKEYId: 8 bits, indicates how the session key is encrypted.

0..6: use a RSA encryption using [XOSRSAPublicKey(n)]
7..13: use an AES encryption using
[XOSAESSymmetricKey(n,CertificateID)] (*)
0xff: no encryption

SLIDE 27 C O N F I D E N T I A L 3-MAR-06

PKCS#1 Signed by
Sigma Designs

CertificateId CertificateType XOSKEYId [CustomerRSAPublicKey] SRDS(Certificate)
Certificate Signature

CRDS(bin)
Binary Signature

Encrypted
Session Key IV Encrypted Binary

Binary

[SigmaRSAPrivateKey]

key

[SessionKey]
AES 128 Bit

AES CBC
Encrypt

Key

IV

[CustomerRSAPrivateKey]

PKCS#1 Signed
by customer

key

[XOSAESSymmetricKey(D,Cert)]

[XOSAESSymmetricKey(C,Cert)]

[XOSAESSymmetricKey(B,Cert)]

[XOSAESSymmetricKey(A,Cert)]

[XOSAESSymmetricKey(9,Cert)]

[XOSAESSymmetricKey(8,Cert)]

[XOSAESSymmetricKey(7,Cert)]

[XOSRSAPublicKey(6)]

[XOSRSAPublicKey(5)]

[XOSRSAPublicKey(4)]

[XOSRSAPublicKey(3)]

[XOSRSAPublicKey(2)]

[XOSRSAPublicKey(1)]

[XOSRSAPublicKey(0)]

key

Encrypt
RSA or AES CBC

Padding

Owned by Sigma

Owned by Customer

XLOAD

SLIDE 28 C O N F I D E N T I A L 3-MAR-06

CPU
executes:

CT0: zboot
CT1: CPU Code

Transport Demux
executes:

CT 5: demux ucode

Video Risc
executes:

CT 3: video ucode

Audio DSP
executes:

CT 4: audio ucode

Masked room
stores:
xboot

Serial Flash
stores:

xos

XPU
executes:

xboot
xos

CT 2: xtask1
CT 7: xtask2
CT 8: xtask3
CT 9: xtask4

CT 6: Irqhandler

Parallel Flash:
stores

zboot, CPU code, xtasks, riscs ucode, irqhandler.

SMP863xL

CT: CertificateType

Certificate Types

SLIDE 29 C O N F I D E N T I A L 3-MAR-06

SLIDE 30 C O N F I D E N T I A L 3-MAR-06

Certificate Hierarchy

SLIDE 31 C O N F I D E N T I A L 3-MAR-06

Certificate Binding
xos can store for each certificateType a default certificate

hash.
This forces certain binaries to be signed with a unique key.
When used in production, this prevents the software in the

box to be replaced.
We plan to include the following functionalities:
- Bind a certificate type with a certificate.
- Unbind a certificate.
- Transfer the ownership of the binding to another certificate.
The unbinding or change of ownership can be global or chips

specific (based on the serial number).

SLIDE 32 C O N F I D E N T I A L 3-MAR-06

Binding for RevA

Cert Type Cert
Num ber

XOS
KEYId Notes

0: zboot Customer should request one and bind SMP8634 to it

1: CPU Customer should request one and bind SMP8634 to it

2: xtask1 DRM Partner or Sigma Designs

3: video ucode 00000 AES0 Production driver video ucode

4: audio ucode 00001 AES0 Production driver audio ucode

5: demux ucode 00002 AES0 Production driver demux ucode

6: irqhandler 00003 AES0 Production driver irqhandler

7: xtask2 00004 AES0 Sigma Designs Production DRM

8: xtask3 DRM Partner or Sigma Designs

9: xtask4 DRM Partner or Sigma Designs

ff: xos update 00004 AES0 Production xos update

SLIDE 33 C O N F I D E N T I A L 3-MAR-06

Key Hierarchy
XOS protected binary loading:
• CPU sends rpc with protected binary and address to load.
• XOS extracts the certificate and verify its signature.
• XOS consults the default certificates hash list at position

certificateType to check if there is a hash. If there is a hash,
– XOS hashes the certificate and verifies it is equal to the stored hash. If

not, XOS refuses to continue.
• XOS verifies that the loading address is compatible with the certificate

type.
• XOS decrypts the session key
• XOS decrypts the binary and loads it at the load address
• XOS verifies the signature of the binary.
• If the signature fails, wipes the decrypted binary.

SLIDE 34 C O N F I D E N T I A L 3-MAR-06

Flash
Flash map in 4kB sectors (total 64kB)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|xos…………………………… |xenv ….|cst0|cst1|cst2|cst3|cst4|sek|

- xos stands for the encrypted xos image
- xos env is the kernel own environment. It is 4KB, and

duplicated for accidental power-loss-during-update
recovery.

- cs0..cs4: five pages for different partners
- sek currently holds the seven [XOSRSAPrivateKey(n)]

SLIDE 35 C O N F I D E N T I A L 3-MAR-06

Flash
Flash access:
• We reserve 12kB of flash for XOS + 20kB of reserved area

for extension + 4kB of flash mapping information + 4kB of
xos private keys(sek). This leaves 28kB free. We partition
per page: we have 7 4kB pages on the flash that can be
used by xtasks.

XOS has the following services:
1 - xos_uapi_xenv_format: Format a page and change the

ownership to the originating task.
2 - xos_uapi_xenv_chown: Change page ownership.
3 - xos_uapi_xenv_set/get: Save and Get records in the page.

Records can be ReadWrite, ReadOnly and OTP

	XPU Block Diagram
	Security
	Secure CPU - Overview
	Secure SDK components
	Boot process: General framework
	Boot process: Bootstrap process diagram
	Secure Boot Loader
	Secure Boot Loader
	XOS
	xtasks
	Xos ciphers
	Certificates
	Certificate Generation
	Certificate and SDKs
	Key Hierarchy
	Key Hierarchy
	Key Hierarchy
	XLOAD
	XLOAD
	XLOAD
	XLOAD
	XLOAD
	XLOAD
	Certificate Hierarchy
	Certificate Binding
	Binding for RevA
	Key Hierarchy
	Flash
	Flash

