
GFX Engine Reference

version 322

Oriol Prieto
Sigma Designs, Inc.

April 11, 2006

CONTENTS 2

Contents

1 Introduction to the GFX Engine 4

1.1 Capabilities . 4

1.2 Channels and Surfaces . 4

1.3 Tasks . 5

1.4 Using the GFX Multiscaler . 5

2 GFXEngine Properties 6

2.1 DRAMSize . 6

2.2 Open . 6

2.3 Close . 7

2.4 CommandQueueEmpty . 7

2.5 WaitForPicture . 7

2.6 DisplayPicture . 7

2.7 FlushCommandQueue . 7

2.8 Surface . 8

2.9 ColorFormat . 8

2.10 Palette XBPP . 8

2.11 AlphaFormat . 9

2.12 AlphaPalette . 9

2.13 EnableAlphaFading . 9

2.14 KeyColor . 9

2.15 FillRectangle . 10

2.16 BlendRectangles . 10

2.17 SingleColorBlendRectangles . 11

2.18 MoveRectangle . 11

2.19 ReplaceRectangle . 12

2.20 BlendAndScaleRectangles . 12

2.21 MoveAndScaleRectangles . 13

2.22 ReplaceAndScaleRectangles . 14

CONTENTS 3

2.23 LinearGradientSurface . 14

2.24 RadialGradientSurface . 15

2.25 BlendGradient . 16

2.26 FillGradient . 16

2.27 ReplaceGradient . 17

2.28 GlyphMask . 18

2.29 GlyphScaleMatrix . 18

2.30 FieldType . 19

2.31 LPFThresholds . 19

2.32 BCS . 20

2.33 NonlinearScale . 20

A Multiple Buffering 21

A.1 Introduction to Multiple Buffering . 21

A.2 Multiple Buffering using the GFXEngine . 21

A.3 Multiple Picture Surfaces . 22

B Common Operations 23

B.1 Fading Transitions . 23

C Glyph Format 25

C.1 What is a glyph? . 25

C.2 The Glyph Binary Format . 25

1 INTRODUCTION TO THE GFX ENGINE 4

This standalone section is also part of SMP8630 software specification as 5.4.

1 Introduction to the GFX Engine

1.1 Capabilities

The GFX engine is a hardware graphics accelerator that your applications can use to:

� Copy or alpha-blend a region of an image into another image. The region can be scaled and its color
mode and format can be changed.

� Fill a rectangular region of an image with a given color. The fill can be solid or an alpha-blending.

� Draw 1bpp glyphs, including truetype character glyphs.

� Create or replace the alpha plane of an image.

On SMP8630 chips, the following capabilities are also available:

� Fill a region of an image with a radial or linear gradient. The fill can be solid or an alpha-blending.

� Draw glyphs, including truetype character glyphs, on any color mode supported by the GFXEngine.

1.2 Channels and Surfaces

The GFX engine has three input channels, called X, Y, Z, and one output channel called NX. Channels are
the ports that the engine uses to read and write data to DRAM. Surfaces, on the other hand, can be seen as
DRAM regions that contain an image.

Different commands may use different numbers of channels. Also, the set of channels that a given command
uses may depend on its arguments. The Property Quick Reference below details which channels are used
by every command. Before executing a command that uses a certain number of channels, you should have
assigned a surface to each one of them, using the Surface property.
Some commands need a channel to be specified, via a RMuint32. You can then use one of the pre-defined
constants:

� GFX_SURFACE_ID_X
� GFX_SURFACE_ID_Y
� GFX_SURFACE_ID_Z

1 INTRODUCTION TO THE GFX ENGINE 5

� GFX_SURFACE_ID_NX
All the input channels can read from surfaces in indexed modes. Thus, a palette can be set to any of them.
The output channel, on the other hand, should always be associated to a true color surface.

1.3 Tasks

While there is only one physical GFX Engine in your hardware, the software layer lets a number of ap-
plications use it concurrently. The EMhwlib will take care of switching contexts, if necessary, so that the
applications can set up the engine freely without interfering with each other. This is achieved by means of
what is called GFX Engine Tasks, and each application that wishes to use the GFX Engine should first create
a Task. This is done via the Open property.

1.4 Using the GFX Multiscaler

Some of the commands use, besides the GFX Engine, the GFX Multiscaler. You will find information on wheter
a command uses the GFX Multiscaler or not on the Property Quick Reference. Before using any of those those
commands, your application should make sure that:

1. The scaler is on Slave mode on the mixers.

2. The scaler is not being used as a deinterlacing companion (deinterlacing type II).

3. The scaler is not being used a subpicture scaler.

2 GFXENGINE PROPERTIES 6

2 GFXEngine Properties

2.1 DRAMSize

This Exchange property allows an application to know how much memory should be allocated for the GFX
Engine buffers.

In Parameters: [struct GFXEngine_DRAMSize_in_type]
[RMuint32] CommandFIFOCount. All GFX Engine commands are sent to a command queue until they

can be executed. This parameter allows you to set the length of that queue (trying to set a com-
mand when the queue is full will return the RM_PENDING value). A typical value for this parameter
is 10.

Out Parameters: [struct GFXEngine_DRAMSize_out_type]
[RMuint32] CachedSize After the call, contains the size in bytes of the cached memory that needs to

be allocated.

[RMuint32] UncachedSize After the call, contains the amount un uncached memory that needs to be
allocated.

Hint: In order to allocate cached and uncached DRAM memory, you could write:

RUAMalloc(pRUA, 0, RUA_DRAM_CACHED, CachedSize);RUAMalloc(pRUA, 0, RUA_DRAM_UNCACHED, UnCachedSize);

2.2 Open

Opens a GFX Engine Task. There is a maximum number of tasks, and each valid task index has a an associatedModuleIndex on the GFXEngine category. In order to know if a task index is free, and your application can
acquire it, just try an open on its module; if the call succeeds it means that the task index has been reserved
and initialized for your application. Use the Enumerator’s CategoryIDToNumberOfInstances property to
obtain the max valid task index.
Note: Before opening a GFX Engine Task, you should have allocated the cached and uncached buffers. See
the DRAMSize property.

Parameters: [struct GFXEngine_Open_type]
[RMuint32] CommandFIFOCount The maximum number of commands that can be queued, for this

task. Set to the same value you used on the DRAMSize property.

[RMuint32] Priority Sets the priority of the new task. When commands from multiple tasks wait in
the command queue, the task with the higher priority value will go first.

[RMuint32] CachedAddress Address of the cached buffer allocated for the task.

[RMuint32] UnCachedAddress Address of the uncached buffer allocated for the task.

[RMuint32] CachedSize Size, in bytes, of the cached buffer allocated for the task (see the DRAMSize
property).

[RMuint32] UncachedSize Size, in bytes, of the uncached buffer allocated for the task (see theDRAMSize property).

2 GFXENGINE PROPERTIES 7

2.3 Close

Frees a GFX Engine Task. Use this once your application is done using the GFX Engine.
Note: This function does not deallocate the cached or uncached buffers, that is left to the application.

Parameters: [RMuint32]
Set this field to 0.

2.4 CommandQueueEmpty

Lets the application monitor the state of the command queue.
In some cases the GFX commands need to be synchronized with other non accelerated operations. This
typically implies waiting for all the queued commands to be finished before the non accelerated operations
are performed.
The CommandQueueEmpty, unlike most other GFX commands, is a Get property.

Parameters: [RMbool] After the call, this is set to TRUE if the command queue is empty, or to FALSE if the
task is not finished yet.

2.5 WaitForPicture

Writing on a region that is currently being displayed might cause tearing. The WaitForPicture command
allows the GFXEngine to interact with the display in order to avoid this situation.
When this command is executed the GFXEngine will check wheter the specified picture is being displayed or
not. If yes, processing of the command queue is suspended. The application can go on sending commands,
that will just wait on the queue. As soon as the picture is no longer on display, processing of the pending
commands goes on.

Parameters: [RMuint32] Adress to the blocking struct EMhwlibPicture we want to wait on.

2.6 DisplayPicture

Inserts the specified picture into a surface’s picture fifo. If the surface is connected to an active scaler, this
command actually allows to display the picture (please refer to the display chapter for more information on
this). If the surface has an associated STC timer, a pts value must be provided. This pts will be used to
schedule the displaying of the picture.

Parameters: [struct GFXEngine_DisplayPicture_type]
[enum gfx_engine_surface_id] Picture Address to the struct EMhwlibPicture to insert on the

surface.[RMuint32] Surface Address to the struct EMhwlibSurface to insert the picture into.[RMbool] Pts Pts to be used by the display (only needed/used if the surface has an associated STC
timer).

2.7 FlushCommandQueue

Processing of the command queue is interrupted and all remaining commands are eliminated. Waiting con-
ditions (following a WaitForPicture command) are also cleared.

2 GFXENGINE PROPERTIES 8

Note: This command is enqueued in just after the command being currently executed. Thus, it is not guaran-
teed that the queue will be empty right after FlushCommandQueue. It is guaranteed, however, that:

� Once it is sent, no commands previously enqueued will start its execution.

� All commands enqueued after FlushCommandQueue will be processed normally.

2.8 Surface

Specifies the position and shape in DRAM of a surface (image), and sets it as input/output of a given channel.
For every surface, you should also specify its format using the ColorFormat command.

Parameters: [struct GFXEngine_Open_type]
[enum gfx_engine_surface_id] SurfaceID Specifies which channel the surface should be associ-

ated to.[RMuint32] TotalWidth Width of the image. Note that this is the total length of the image’s lines.[RMbool] Tiled Reserved field. Set this to FALSE.[RMuint32] StartAddress Address of the first pixel of the surface (on non-interleaved YUV surfaces,
address of the first pixels of the luma plane).[RMuint32] ChromaStartAddress For non-interleaved YUV surfaces, address of the first pixel of the
chroma plane. Unused (can be left unset) if the surface’s colormode is not EMhwlibColorMode_VideoNonInterleaved.

2.9 ColorFormat

Specifies the color format and color mode of the surface associated to a given channel. For indexed color
modes, you should set up the palette via the Palette_XBPP command.

Parameters: [struct GFXEngine_ColorFormat_type]
[enum gfx_engine_surface_id] SurfaceID Specifies which channel the command should be ap-

plied to.[enum EMhwlibColorMode] MainMode Specifies the color mode of the surface.
Note: On chips before 8630, color modes EMhwlibColorMode_VideoInterleaved and EMhwlibColorMode_VideoNonInterleaved
are only supported for channel Z.[enum EMhwlibColorFormat] SubMode Specifies the color format of the surface.[enum EMhwlibSamplingMode] SamplingMode Specifies the sampling mode of the surface.

[enum EMhwlibColorSpace] ColorSpace Specifies the sampling mode of the surface.

2.10 Palette XBPP

This section covers the commands Palette_1BPP, Palette_2BPP, Palette_4BPP, Palette_8BPP. If one of
the input channels is reading from an indexed surface, this command sets the palette to use.

Parameters: [struct GFXEngine_Palette_XBPP_type]
[enum gfx_engine_surface_id] SurfaceID Specifies which channel the command should be ap-

plied to. Note that the NX channel is not a valid value (it only supports true color output).[RMpalette_XBPP] Palette The palette to set.

2 GFXENGINE PROPERTIES 9

2.11 AlphaFormat

If the X channel is going to provide the alpha information on a MoveRectangle, ReplaceRectangle, MoveAndScaleRectangle
or ReplaceAndScaleRectangle, this command specifies the format on which alpha information is stored on
DRAM.

Parameters: [struct GFXEngine_AlphaFormat_type]
[enum gfx_alpha_format] AlphaFormat Specifies the format in which alpha information is stored

on DRAM. The alpha information required by the GFX Engine is 8 bits per pixel. For modesGFX_ALPHA_FORMAT_LUT_1BPA and GFX_ALPHA_FORMAT_LUT_2BPA the input pixels are used to in-
dex a lookup table that can be setup via the AlphaPalette commmand. For mode GFX_ALPHA_FORMAT_TRUE_4BPA,
the 4bpp pixels are expanded to 8bpp using the expression:

Alphaout = 17 �Alphain
2.12 AlphaPalette

Sets the lookup table that is used to decode indexed alpha values on a given channel.

Parameters: [struct GFXEngine_AlphaPalette_type][enum gfx_engine_surface_id] SurfaceID Species on which channel the palette should be
set.[RMuint8] Alpha0 8bit alpha value for palette entry 0.[RMuint8] Alpha1 8bit alpha value for palette entry 1.[RMuint8] Alpha2 8bit alpha value for palette entry 2.[RMuint8] Alpha3 8bit alpha value for palette entry 3.

2.13 EnableAlphaFading

Enables or disables alpha fading on channel Z.
When 32bpp or 16bpp true color data is read through channel Z, the alpha values of the pixels can be
modified by the GFXEngine. The applied transformation is:

Alphaout = Alphain �Alpha1 + (1�Alphain) �Alpha0
Where Alphaout is the resulting alpha value, Alphain the normalized original alpha value. Alpha0,Alpha1 are obtained from the Z channel’s alpha palette entries 0 and 1, respectively (see commandAlphaPalette).

Parameters:[RMbool] Enable TRUE enables alpha-fading (the alpha value of all pixels read through the Z
channel are modified). FALSE disables alpha-fading.

2.14 KeyColor

If one of the input surfaces is set to mode EMhwlibColorMode_TrueColorWithKey, this command set
its keycolor range.

Parameters: [struct GFXEngine_KeyColor_type][enum gfx_engine_surface_id] SurfaceID Specifies which channel the command should be
applied to.[RMuint32] Color First color on the keycolor range.[RMuint8] Range Sets the width of the keycolor range.

The keycolor range is defined as:

keycolor range = [CBi(C); CBi(C) + 2range[
Where C is the first color on the keycolor range, and CBi represents each one of the three color com-
ponents. If an input pixel falls into this range, the accelerator will treat it as a zero-value (transparent
black) pixel.

2 GFXENGINE PROPERTIES 10

2.15 FillRectangle

Fills a rectangle with a solid color on surface NX.
Note: The fill on this command is solid, i.e. all the pixels on the destination surface will be overwritten
(see the Output description, below). If you want an alpha-blended fill, use SingleColorBlendRectangles
instead.

Parameters: [struct GFXEngine_FillRectangle_type]
[RMuint32] X Horizontal offset of the top-left border of the rectangle, relative to the origin of

surface NX.[RMuint32] Y Vertical offset of the top-left border of the rectangle, relative to the origin of sur-
face NX.[RMuint32] Width Width of the filled rectangle.[RMuint32] Height Height of the filled rectangle.[RMuint32] Color Fill color, in 32bpp ARGB format.

Output: All the components of a pixel on the output rectangle, PixNX are copied from the specified
color, C.

Alpha(PixNX) = Alpha(C)CBi(PixNX) = CBi(C)
Where CBi represents each one of the three color components.

2.16 BlendRectangles

Does an alpha-blending of two rectangles read from Y and X, and writes the resulting rectangle on the
NX surface. Surface Y provides the alpha information for the blend (see the Output description below).
All rectangles should have the same size (use the BlendAndScaleRectangles if you need scaling).

Parameters: [struct GFXEngine_BlendRectangles_type]
[RMuint32] Src1X Horizontal offset of the top-left border of the rectangle, relative to the origin

of surface Y.[RMuint32] Src1Y Vertical offset of the top-left border of the rectangle, relative to the origin of
surface Y.[RMuint32] Src2X Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface X.[RMuint32] Src2Y Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface NX.[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface NX.[RMuint32] Width Width of the blended rectangle.[RMuint32] Height Height of the blended rectangle.[RMbool] SaturateAlpha If set to TRUE, the alpha value of the resulting rectangle is set to 0xFF
for all pixels.

Output: The value of a pixel on the output rectangle, PixNX is calculated from the two input pixels,PixX and PixY using the following formulas:

Alpha(PixNX) = 255 If SaturateAlpha = TRUEAlpha(PixNX) = Alpha(PixY)255 + Alpha(PixX)255 � Alpha(PixY)255 � Alpha(PixX)255 If SaturateAlpha = FALSE
CBi(PixNX) = 1255 � (CBi(PixY) �Alpha(PixY) + CBi(PixX) � (255�Alpha(PixY)))

Where CBi represents each one of the three color components.

2 GFXENGINE PROPERTIES 11

2.17 SingleColorBlendRectangles

Does an alpha blending of a specified color with a rectangle read from surface X, and writes the resulting
rectangle on the NX surface. The specified color provides the alpha information for the blend (see
below, on the Output section for this command).
Note: Executing this will modify the registers of the GFX MultiScaler (you don’t need to associate a
surface with the Z channel, though).

Parameters: [struct GFXEngine_SingleColorBlendRectangles_type][RMuint32] Color Color to use on the blend, in 32bpp ARGB format.[RMuint32] SrcX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface X.[RMuint32] SrcY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface NX.[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface NX.[RMuint32] Width Width of the blended rectangle.[RMuint32] Height Height of the blended rectangle.[RMbool] SaturateAlpha If set to TRUE, the alpha value of the resulting rectangle is set to 0xFF
for all pixels.

Output: The value of a pixel on the output rectangle, PixNX is calculated from the specified color, C
and the input pixel PixY using the same formulas than for the BlendRectangles.

2.18 MoveRectangle

Move a rectangle read from surface Y, to surface NX. Optionally, merge with alpha information of a rect-
angle read through the X channel. All rectangles should have the same size (use the MoveAndScaleRectangles
property if you need scaling).

Parameters: [struct GFXEngine_MoveReplaceRectangle_type][RMuint32] SrcX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface Y.[RMuint32] SrcY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface Y.[RMuint32] AlphaX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface X.[RMuint32] AlphaY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface NX.[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface NX.[RMuint32] Width Width of the moved rectangle.[RMuint32] Height Height of the moved rectangle.[enum gfx_merge_mode] MergeGFX_MERGE_MODE_DISABLE The alpha information from the source (surface Y) is unmodified.GFX_MERGE_MODE_X The Y surface provides only the color information, and the alpha infor-

mation is obtained from surface X.GFX_MERGE_MODE_MODULATE The alpha information from channels X and Y is combined. Note:
This mode is available only on SMP863X chips.

Output: The value of a pixel on the output rectangle, PixNX is calculated from the two input pixels,AlphaX and PixY using the following formulas:

Alpha(PixNX) = Alpha(PixY) for GFX_MERGE_MODE_DISABLEAlpha(PixNX) = AlphaX for GFX_MERGE_MODE_XAlpha(PixNX) = AlphaX�Alpha(PixY)256 for GFX_MERGE_MODE_MODULATE

2 GFXENGINE PROPERTIES 12

CBi(PixNX) = CBi(PixY)
Where CBi represents each one of the three color components.

2.19 ReplaceRectangle

Move a rectangle read from surface Y, to surface NX, but only for pixels whose alpha value is greater than
0. Optionally, merge with alpha information of a rectangle read through the X channel. All rectangles
should have the same size (use the ReplaceAndScaleRectangles property if you need scaling).

Parameters: [struct GFXEngine_MoveReplaceRectangle_type]
[RMuint32] SrcX Horizontal offset of the top-left border of the rectangle, relative to the origin

of surface Y.[RMuint32] SrcY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface Y.[RMuint32] AlphaX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface X.[RMuint32] AlphaY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface NX.[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface NX.[RMuint32] Width Width of the replaced rectangle.[RMuint32] Height Height of the replaced rectangle.[enum gfx_merge_mode] MergeGFX_MERGE_MODE_DISABLE The alpha information from the source (surface Y) is unmodified.GFX_MERGE_MODE_X The X surface provides only the color information, and the alpha infor-

mation is obtained from surface X.GFX_MERGE_MODE_MODULATE The alpha information from channels X and Y is combined. Note:
This mode is available only on SMP8630 chips.

Output: The value of a pixel on the output rectangle, PixNX is calculated from the two input pixels,AlphaX and PixY using the following formulas:

alpha value = Alpha(PixY) for GFX_MERGE_MODE_DISABLEalpha value = AlphaX for GFX_MERGE_MODE_Xalpha value = AlphaX�Alpha(PixY)256 for GFX_MERGE_MODE_MODULATE
For every pixel, if alpha value > 0

Alpha(PixNX) = alpha valueCBi(PixNX) = CBi(PixY)
Where CBi represents each one of the three color components.
Otherwise (if alpha value = 0) the pixel on the NX surface is unmodified.

2.20 BlendAndScaleRectangles

Does an alpha-blending of two rectangles read from Z and X, and writes the resulting rectangle on the
NX surface. Surface Z provides the alpha information for the blend (see below, on the Output section
for this command). The rectangle read through Z does not need to have the same size than the output
rectangle.
Note: Executing this will modify the registers of the GFX MultiScaler.

Parameters: [struct GFXEngine_BlendAndScaleRectangles_type]

2 GFXENGINE PROPERTIES 13

[RMuint32] Src1X Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface Z.[RMuint32] Src1Y Vertical offset of the top-left border of the rectangle, relative to the origin of
surface Z.[RMuint32] Src2X Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface X.[RMuint32] Src2Y Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface NX.[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface NX.[RMuint32] SrcWidth Width of the rectangle read through Z.[RMuint32] SrcHeight Height of the rectangle read through Z.[RMuint32] DstWidth Width of the output rectangle (on surface NX). Also the width of the
second input rectangle (read through surface X).[RMuint32] DstHeight Height of the output rectangle (on surface NX). Also the height of the
second input rectangle (read through surface X).[RMbool] SaturateAlpha If set to TRUE, the alpha value of the resulting rectangle is set to 0xFF
for all pixels.

Output: If the sizes of the source rectangle and the destination rectangle differ, the data read through
Z is scaled to match the output size. Once that is done, every pixel on the output rectangle has
one pixel from Z and one pixel from X associated, and the resulting output values are computed
exactly as in the BlendRectangles command.

2.21 MoveAndScaleRectangles

Move a rectangle read from surface Z, to surface NX. Optionally, merge with alpha information of a
rectangle read through the X channel. The rectangle read through Z does not need to have the same
size than the output rectangle.
Note: Executing this will modify the registers of the GFX MultiScaler.

Parameters: [struct GFXEngine_MoveReplaceScaleRectangle_type]
[RMuint32] SrcX Horizontal offset of the top-left border of the rectangle, relative to the origin

of surface Z.[RMuint32] SrcY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface Z.[RMuint32] AlphaX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface X.[RMuint32] AlphaY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface NX.[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface NX.[RMuint32] SrcWidth Width of the rectangle read through Z.[RMuint32] SrcHeight Height of the rectangle read through Z.[RMuint32] DstWidth Width of the output rectangle (on surface NX). Also the width of the alpha
input rectangle (read through surface X.[RMuint32] DstHeight Height of the output rectangle (on surface NX). Also the height of the
alpha input rectangle (read through surface X.[enum gfx_merge_mode] MergeGFX_MERGE_MODE_DISABLE The alpha information from the source (surface Z) is unmodified.GFX_MERGE_MODE_X The X surface provides only the color information, and the alpha infor-

mation is obtained from surface X.

2 GFXENGINE PROPERTIES 14

GFX_MERGE_MODE_MODULATE The alpha information from channels X and Z is combined. Note:
This mode is available only on SMP8630 chips.

Output: If the sizes of the source rectangle and the destination rectangle differ, the data read through
Z is scaled to match the output size. Once that is done, every pixel on the output rectangle has
one pixel from Z and one pixel from X associated, and the resulting output values are computed
exactly as in the MoveRectangle command.

2.22 ReplaceAndScaleRectangles

Move a rectangle read from surface Z, to surface NX, butonly for pixels whose alpha value is greater than
0. Optionally, merge with alpha information of a rectangle read through the X channel. The rectangle
read through Z does not need to have the same size than the output rectangle.
Note: Executing this will modify the registers of the GFX MultiScaler.

Parameters: [struct GFXEngine_MoveReplaceScaleRectangle_type]
[RMuint32] SrcX Horizontal offset of the top-left border of the rectangle, relative to the origin

of surface Z.[RMuint32] SrcY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface Z.[RMuint32] AlphaX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface X.[RMuint32] AlphaY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface NX.[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface NX.[RMuint32] SrcWidth Width of the rectangle read through Z.[RMuint32] SrcHeight Height of the rectangle read through Z.[RMuint32] DstWidth Width of the output rectangle (on surface NX). Also the width of the alpha
input rectangle (read through surface X.[RMuint32] DstHeight Height of the output rectangle (on surface NX). Also the height of the
alpha input rectangle (read through surface X.[enum gfx_merge_mode] MergeGFX_MERGE_MODE_DISABLE The alpha information from the source (surface Z) is unmodified.GFX_MERGE_MODE_X The X surface provides only the color information, and the alpha infor-

mation is obtained from surface X.GFX_MERGE_MODE_MODULATE The alpha information from channels X and Z is combined. Note:
This mode is available only on SMP8630 chips.

Output: If the sizes of the source rectangle and the destination rectangle differ, the data read through
Z is scaled to match the output size. Once that is done, every pixel on the output rectangle has
one pixel from Z and one pixel from X associated, and the resulting output values are computed
exactly as in the MoveRectangle command.

2.23 LinearGradientSurface

Setup a linear gradient. The gradient is between two 32bpp ARGB colors, and thus it is applied to the
alpha component too.
Note: This command is available only on SMP8630 chips.

Parameters: [struct GFXEngine_LinearGradientSurface_type]
[RMuint32] Width Horizontal period of the gradient. Set to 0 for a vertical gradient.[RMuint32] Height Vertical period of the gradient. Set to 0 for a horizontal gradient.[RMuint32] Color0 Upper-left color. In 32bpp ARGB format.

2 GFXENGINE PROPERTIES 15

Figure 1: Linear Gradient Parameters. The dotted line represents the gradient direction.

[RMuint32] Color1 Bottom-right color. In 32bpp ARGB format.[RMuint32] Weave Four-bit field specifying on which components the engine should apply a
weave effect.� 0 means no weave.� Add 1 for weave on the blue component.� Add 2 for weave on the green component.� Add 4 for weave on the red component.� Add 8 for weave on the alpha component.

2.24 RadialGradientSurface

Setup a radial gradients. The gradient is between two 32bpp ARGB colors, and thus it is applied to the
alpha component too. As shown on figure 2, two circles are defined, with one color assigned to each.
The gradient applies only to the region between the two circles. The behaviors on the area inside the
smaller circle and the area outside the bigger circle can be set up independently.
Note: This command is available only on SMP8630 chips.

Figure 2: Radial Gradient Parameters. The dotted line represents the gradient direction.

Parameters: [struct GFXEngine_RadialGradientSurface_type]
[RMuint32] IntRadius Radius of the inner circle, in pixels. Can be 0.[RMuint32] ExtRadius Redius of the external circle, in pixels. Must be bigger than IntRadius.[RMuint32] CenterX Horizontal offset of the center of the circles, relative to the top of the

drawing window. In pixels. Must be positive.[RMuint32] CenterY Vertical offset of the center of the circles, relative to the left border of the
drawing window. In pixels. Must be positive.[RMuint32] Color0 External color. In 32bpp ARGB format.[RMuint32] Color1 Internal color. In 32bpp ARGB format.

2 GFXENGINE PROPERTIES 16

[RMbool] TransparentInt If set to TRUE, the are on the interior of the smaller circle is filled
with transparent black (0x0). If set to FALSE, that area is filled with Color1.[RMbool] TransparentExt If set to TRUE, the are on the exterior of the bigger circle is filled with
transparent black (0x0). If set to FALSE, that area is filled with Color0.[RMuint32] Weave Four-bit field specifying on which components the engine should apply a
weave effect.� 0 means no weave.� Add 1 for weave on the blue component.� Add 2 for weave on the green component.� Add 4 for weave on the red component.� Add 8 for weave on the alpha component.

2.25 BlendGradient

Does an alpha-blending of an internally-generated gradient and a rectangle read through X, and writes
the resulting rectangle on the NX surface. The gradient provides the alpha information for the blend
(see the Output description below). The parameters set by the last call to LinearGradientSurface orRadialGradientSurface will be used for gradient generation.
Note: This command is available only on SMP863X chips.

Parameters: [struct GFXEngine_BlendGradient_type]
[RMuint32] Src2X Horizontal offset of the top-left border of the rectangle, relative to the origin

of surface X.[RMuint32] Src2Y Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin
of surface NX.[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface NX.[RMuint32] Width Width of the blended rectangle.[RMuint32] Height Height of the blended rectangle.[RMbool] SaturateAlpha If set to TRUE, the alpha value of the resulting rectangle is set to 0xFF
for all pixels.

Output: The value of a pixel on the output rectangle, PixNX is calculated from the two input pixels,PixX and PixG using the formulas described on the BlendRectangles command.

2.26 FillGradient

Fill a region of surface NX with an internally-generated gradient. Optionally, merge with alpha information
of a rectangle read through the X channel. The parameters set by the last call to LinearGradientSurface orRadialGradientSurface will be used for gradient generation.
Note: This command is available only on SMP8630 chips.

Parameters: [struct GFXEngine_FillReplaceGradient_type]
[RMuint32] AlphaX Horizontal offset of the top-left border of the rectangle, relative to the origin of

surface X.

[RMuint32] AlphaY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.

[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin of
surface NX.

[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of surface
NX.

2 GFXENGINE PROPERTIES 17

[RMuint32] Width Width of the filled rectangle.

[RMuint32] Height Height of the filled rectangle.

[RMbool] Merge If set to TRUE, the X surface is used to provide the alpha information. Otherwise the
alpha information present on the gradient is used. See the AlphaFormat property for information
on how to set up the X channel for this command.

Output: The value of a pixel on the output rectangle, PixNX is calculated from the two input pixels,AlphaX and the gradient (PixG) using the following formulas:

Alpha(PixNX) = AlphaX If Merge == TRUEAlpha(PixNX) = Alpha(PixG) If Merge == FALSE
CBi(PixNX) = CBi(PixG)

Where CBi represents each one of the three color components.

2.27 ReplaceGradient

Fill a region of surface NX with an internally-generated gradient, but only for pixels whose alpha value is
greater than 0. Optionally, merge with alpha information of a rectangle read through the X channel. The
parameters set by the last call to LinearGradientSurface or RadialGradientSurface will be used for gra-
dient generation.
Note: This command is available only on SMP8630 chips.

Parameters: [struct GFXEngine_FillReplaceGradient_type]
[RMuint32] AlphaX Horizontal offset of the top-left border of the rectangle, relative to the origin of

surface X.

[RMuint32] AlphaY Vertical offset of the top-left border of the rectangle, relative to the origin of
surface X.

[RMuint32] DstX Horizontal offset of the top-left border of the rectangle, relative to the origin of
surface NX.

[RMuint32] DstY Vertical offset of the top-left border of the rectangle, relative to the origin of surface
NX.

[RMuint32] Width Width of the filled rectangle.

[RMuint32] Height Height of the filled rectangle.

[RMbool] Merge If set to TRUE, the X surface is used to provide the alpha information. Otherwise the
alpha information present on the gradient is used. See the AlphaFormat property for information
on how to set up the X channel for this command.

Output: The value of a pixel on the output rectangle, PixNX is calculated from the two input pixels,AlphaX and the gradient (PixG) using the following formulas:

Alpha(PixNX) = AlphaX If Merge == TRUEAlpha(PixNX) = Alpha(PixG) If Merge == FALSE
For every pixel, if alpha value > 0

Alpha(PixNX) = alpha valueCBi(PixNX) = CBi(PixG)
Where CBi represents each one of the three color components.
Otherwise (if alpha value = 0) the pixel on the NX surface is unmodified.

2 GFXENGINE PROPERTIES 18

2.28 GlyphMask

Draw a glyph, without using the NX channel, at 1bpp.
The generated bitmap is written at the DRAM directly by the glyph engine (no need to assign a surface to
channel NX), at the address specified by OutAddr. The glyph data is also directly read from DRAM, so no
input channels need to be programmed either. The output format is always 1BPP, and the size is that of the
scaled glyph’s bounding box, with the width and height values incremented, if necessary, up to the first 64
pixels multiple (see below). It is up to the application to allocate memory space for the output, and make
sure that it is big enough for the bitmap.
The maximum width of the generated bitmap is 4096 pixels.

Parameters: [struct GFXEngine_GlyphMask_type]
[RMuint32] GlyphAddr Start address the binary glyph (see Appendix C for details on its format). It

is up to the application to allocate memory on DRAM and load the glyph before executing this
command.

[RMuint32] Size Size of the glyph, in bytes. Glyphs should not exceed 1024 bytes.

[RMuint32] OutAddr Start address of the destination surface.

[RMuint32] ScaleFactor Ratio between the glyph metrics and the desired output size, with a 12048
resolution:

scale factor = �
glyph grid units

output size in pixels

� � 211
The value is specified in 8.11 fixed point format, with unsigned integer part.

[RMint16] XMax Maximum absolute horizontal coordinate of the glyph (in glyph grid units).

[RMint16] XMin Minimum absolute horizontal coordinate of th glyph (in glyph grid units).

[RMint16] YMax Maximum absolute vertical coordinate of th glyph (in glyph grid units).

[RMint16] YMin Minimum absolute vertical coordinate of th glyph (in glyph grid units).

Output: The output is a 1BPP bitmap whose size in pixels can be calculated in the following manner:

/* width of the scaled bounding box*/width = ((XMin-XMax)*ScaleFactor)>>11;/* height of the scaled bounding box*/height = ((YMin-YMax)*ScaleFactor)>>11;/* make width and height 64-pixel multiples */width += (width & 0x3F) ? (0x40 - (width & 0x3F)) : 0);height += (height & 0x3F) ? (0x40 - (height & 0x3F)) : 0);

2.29 GlyphScaleMatrix

Sets the parameters of an affine transformation. The transformation will be applied only to the next theGlpyh command that follow. This is typically used when drawing compound glyphs from truetype fonts.
Note: After a reset, the parameters are set to their default values (see below) so that no affine transformation
is applied to the glyphs.

Parameters: [struct GFXEngine_GlyphScaleMatrix_type]
[RMuint16] XScale Specified in 2.14 fixed point format, with signed integer part. Default value (no trans-

formation) is 1 (0x4000h in 2.14 format).

[RMuint16] YScaleSpecified in 2.14 fixed point format, with signed integer part. Default value (no trans-
formation) is 1 (0x4000h in 2.14 format).

[RMuint16] XYScaleSpecified in 2.14 fixed point format, with signed integer part. Default value (no trans-
formation) is 0 (0x0h in 2.14 format).

2 GFXENGINE PROPERTIES 19

[RMuint16] YXScaleSpecified in 2.14 fixed point format, with signed integer part. Default value (no trans-
formation) is 0 (0x0h in 2.14 format).

[RMint16] YOffset Specified as an integer, in glyph metric units. Default value (no transformation) is 0
(0x0h in 2.14 format).

[RMint16] XOffset Specified as an integer, in glyph metric units. Default value (no transformation) is 0
(0x0h in 2.14 format).

Transformation: The glyph points coordinates are transformed in the following way:

x0 = XScale � x+ XYScale � y + XOffsety0 = YScale � y + YXScale � x+ YOffset
Where x, y, are the original glyph point coordinates, and x0, y0 its transformed values.

2.30 FieldType

Sets the type of field of the surface connected to a channel. This is useful in cases where the GFXEngine
is reading or writting from/to interlaced surfaces. If the field types of the input and output are correctly
specified, the necessary filtering is done by the engine.

Parameters: [struct GFXEngine_FieldType_type]
[enum gfx_surface_id] SurfaceID Specifies to which channel the command should be applied.

[enum EMhwlibFieldType] FieldType Specifies the type of field that will be read/written through
the channel. This value is only used for phase computation. Possible values are:

EMhwlibFieldType_FrameEMhwlibFieldType_TopEMhwlibFieldType_Bottom
[RMint32] LineSkipFactor Sets the line skip factor to be used when reading/writting from this sur-

face. Setting this to N, forces that channel to skip (N-1) lines of the picture for every read/written
line. For example, to read one field of an interlaced picture, this should be set to 2 (thus the
other field will be skipped). Field selection is done by setting an appropriate vertical offset. Back
to our example, to read the top field (even lines) of an interlaced picture, the vertical offset (Y)
should be even, and to select a bottom field, it should be odd. If the value is negative, the image
is read/written vertically reversed (bottomline first).

2.31 LPFThresholds

When an image is horizontally downscaled, chances are that some pixels need to be skipped. In those cases,
applying an horizontal low-pass filter to the output often enhances the quality of the image. Typically, the
stronger the pixel skip factor, the stronger should be the low-pass filtering. Since the amount of skipped
pixels is not known by the application, this command sets the parameters that let the GFXEngine determine
the intensity of the filtering in function of that factor.

Parameters: [struct GFXEngine_LPFThresholds_type]
[enum gfx_surface_id] SurfaceID Specifies to which channel the command should be applied.

[RMuint32] Threshold0 If x downscale is below this threshold, and over Threshold1 and Threshold2
light filtering is applied. Default value is 384.

[RMuint32] Threshold1 If x downscale is below this threshold, and over Threshold2 medium filter-
ing is applied. Default value is 256.

2 GFXENGINE PROPERTIES 20

[RMuint32] Threshold2 If x downscale is below this threshold, strong filtering is applied. Default
value is 128.

For all thresholds, the possible values range from 0 to 512. The x downscale magnitude is defined as:

x downscale = 512 � used pixelsused pixels+ skipped pixels
For example, the case where no pixels need to be skipped corresponds to x downscale = 512, and the
case where 3 pixels need to be skipped every 4 (very strong horizontal downscaling) corresponds tox downscale = 128.

2.32 BCS

The Y and Z channels, when scaling, can apply contrast, brightness and saturation transformations to the
read image. This command allows to setup the paramaters. Note that by definition, this transformation
makes only sense when applied to images in YUV colorspace. If applied to RGB surfaces, the brightness and
contrast will affect the red plane, SaturationCb the green plane, and SaturationCr the blue plane. It is thus
recommended to reset the paramaters to its neutral values before scaling RGB images.

Parameters: [struct GFXEngine_BCS_type]
[enum gfx_surface_id] SurfaceID Specifies to which channel the command should be applied.

[RMint32] Brightness Possible values range from -128 to 127. The default (neutral) value is 0.

[RMuint32] Contrast Possible values range from 0 to 255. The default (neutral) value is 128.

[RMuint32] SaturationCb Possible values range from 0 to 255. The default (neutral) value is 128.

[RMuint32] SaturationCr Possible values range from 0 to 255. The default (neutral) value is 128.

2.33 NonlinearScale

Parameters: [struct GFXEngine_NonlinearScale_type]
[enum gfx_surface_id] SurfaceID
[RMuint32] Level
[RMuint32] Width
[RMuint32] PARQuotient

A MULTIPLE BUFFERING 21

A Multiple Buffering

A.1 Introduction to Multiple Buffering

The images on every monitor or TV are refreshed at a high frequency (up to 75Hz). This means that the
displayed picture’s pixels are read from DRAM as many times. Modifying this data while it is being displayed
can be the cause of some undesirable artifacts, such as flickering or tearing. In most cases these effects are
unacceptable, so applications should avoid to write on picture buffers that are being read by the display. Of
course, most applications that make use of the GFXEngine need to write graphics into pictures and need to
display those changes in real time. These applications need a way to guarantee that their graphic commands
won’t modify a picture buffer while it is being displayed.

In this section we introduce a method for doing so, called multiple buffering. It consists in creating multiple
(typically two) picture buffers, instead of a single one. The changes are applied to the buffer that is not
being displayed. Only when the changes are finished and the new picture needs to be displayed, the roles of
the two buffers are swapped. This action is called flipping. Because flipping takes place during the vertical
blanking interval, this method provides a way to display the changes without causing a tearing effect.

A.2 Multiple Buffering using the GFXEngine

As explained in the previous section, flipping the buffers can only be done during the blanking interval
(i.e. once every time the output screen is refreshed). The GFXEngine API provides commands that force a
synchronization between its graphic operations and the display events. This allows non-real-time applica-
tions to implement multiple buffering in a simple way. The commands that implement these features areDisplayPicture and WaitForPicture. The first one allows to schedule a given picture for its future display.
The second one, allows to block the processing of all commands until a given picture is no longer being dis-
played. As we can see, both commands need to take some kind of picture buffer identifier as an argument.
You can refer to the GFXEngine Properties section for information on the syntax.

Figure 3: GFXEngine synchronization with the Display Handler

On the figure 3, A and B are two picture buffers. The top line represents the timing of the commands as
they enter the GFXEngine command fifo. The second layer represents the timing of the commands as they
are processed by the GFXEngine. Observe the DisplayPicture command is processed by the GFXEngine soon
after it is enqueued, but it does not take effect (on the DisplayBlock) until the next vertical handling arrives.
Also, note that once the WaitForPicture is processed, the GFXEngine stops until picture ’B’ is no longer being
displayed.

A MULTIPLE BUFFERING 22

A typical application that uses the GFXEngine with multiple-buffering could be reduced to the following
block of pseudo-code:

init_gfx_engine();
/* allocate the picture buffers and setup the needed surface structures */setup_double_buffering();
while(!end){/* Obtain a new picture identifier */picture_id = get_next_picture_id();/* Make sure that a picture is not on display before writing on it */WaitForPicture picture_id;/* Setup the output of the GFXEngine to point to the new picture */Surface picture_id on NX;/* Perform various graphic operations on the new picture */draw_graphics();/* Schedule the finished picture for display */DisplayPicture picture_id;}

A.3 Multiple Picture Surfaces

In order to implement multiple buffering, it is necessary that the picture buffers are part of a MultiplePic-
tureSurface. This is a special type of surface provided by the EMhwlib. It contains a picture fifo, and op-
tionally, an associated STC. Pictures that are enqueued on that fifo are scheduled for display. If a surface
has an associated STC, a pts value must be assigned to every picture in the fifo. In that case, each picture is
displayed when the STC reaches the pts value. Otherwise, the pictures in the fifo are displayed as soon as the
next vertical blanking arrives. The DisplayBlock documentation contains detailed information how to create
and setup MultiplePictureSurface’s.

B COMMON OPERATIONS 23

B Common Operations

B.1 Fading Transitions

For some applications it might be convenient to implement a smooth transition from one image into another,
consisting in the first image vanishing while the other appears. In this section we describe two ways to
achieve this ’fading’ effect. One of them uses the GFXEngine, while the second only needs two scalers.

GFXEngine Fading

The fading effect can be easily achieved via the GFXEngine. To exemplify this we will imagine here and
application fading from image A to image B. We need one (any) scaler to display the result, plus the GFXMul-
tiScaler which will be used by the GFXEngine. To achieve an artifact-free result, double buffering is required.
We will call the two display buffers X and Y.
There are many ways to implement this, but the one we present here has the advantage of not requiring both
A and B to be present into DRAM at the same time. The idea is to initially display picture A (i.e. copy it into
X and Y buffers) and then blend a nearly-transparent version picture B many times until only picture B is
visible. This can be expressed in pseudo-code like this:

/* make image A available to the GFXEngine */load_image(A);Surface A on channel_Z/* copy the first picture into the buffers */flip_buffers(X, Y);MoveAndScaleRectangles (A -> Y)flip_buffers(Y, X);MoveAndScaleRectangles (A -> X)/* image A is no longer needed */free_image(A);/* make image B available to the GFXEngine */load_image(B);Surface B on channel_Z/* setup alpha fading on Z */AlphaPalette (set Alpha0, alpha1 to alpha_inc on Z)EnableAlphaFading (enable on Z)while(A_is_visible){pic1 = (pic1==X) ? Y:X;pic2 = (pic1==X) ? X:Y;flip_buffers(pic1, pic2); /*display pic1, writing on pic2 *//* put a some more B into the result */Surface pic1 on channel_XBlendAndScaleRectangles (B on pic1 -> pic2)}/* overwrite with B to make sure A is completely gone */flip_buffers(X, Y);MoveAndScaleRectangles (B -> Y)flip_buffers(Y, X);MoveAndScaleRectangles (B -> X)/* image B is no longer needed */free_image(B);
In the example, flip_buffers(pic1, pic2) handles double buffering as described in the “Multiple Buffer-
ing” section. Basically, pic1 is displayed, the output channel is directed to pic2, and the WaitForPicture
command is issued on pic2.
Now let’s take a look at the line containing

B COMMON OPERATIONS 24

BlendAndScaleRectangles (B on pic1 -> pic2) This means that B should be blended on top of pic1, and
the result written on pic2. Note that this requires that the X and Z channels are set to pic1 and B, respectively.
In the example, the NX channel is set to pic2 via the flip_buffers() function.
This command actually makes the destination buffer look a little bit more like picture B. Remember that the
alpha used for a blend command is extracted from the top layer. In other words, the amount of image B that
is blended on top of the existing buffer depends on image B’s alpha plane. We need to control the alpha value
of B’s pixels to control the speed and smoothness of the fading.
A simple way to do that is to enable alpha fading on the channel that is to be used to read the image (Z in
our example). Then Alpha0 and Alpha1 are set to some small value, via the AlphaPalette command. The
resulting image, as seen by the GFXEngine, has all its pixels set to this constant value alpha_inc. This is
what is done in the two lines preceding the loop. Of course, the smaller alpha_inc, the slower and smoother
the fading will be. Note that if B’s alpha plane is not constant, some fancy results can be obtained by setting
different values for Alpha0 and Alpha1. The duration of the loop depends on alpha_inc and on the desired
visual effect. It can be determined empirically. It’s a good idea to end up copying B into X and Y to remove
all the (small) remaining of A.

Scaler Fading

The simplest solution, which does not involve the use of the GFXEngine, consists on using two scalers to
display the two images (or video streams, for that matter). The fading can be achieved by displaying both
images at the same time and modifying their alpha plane to achieve the desired result.
For example, to fade from image A to image B, your application could display the first through the VCRMul-
tiScaler, and the second one through the GFXMultiScaler. Both images are displayed at the same time, but
the scalers are setup so that image B has an alpha value of 0x0, and image A has an alpha value of 0xff. Then
B’s alpha is progressively incremented and at the same time, A’s alpha is decremented, until A is no longer
visible.
We mentioned setting up a scaler to modify the image’s alpha, but, how can this be done?
If the image doesn’t have any alpha information, the scaler sets the desired alpha value as specified by itsAlpha0 property. So for the VCRMultiScaler (image A), you should gradually change the value its Alpha0
from 0xff to 0x0, and for the GFXMultiScaler, from 0x0 to 0xff.
If the image contains an alpha plane, modifying it can be achieved via the scaler’s EnableFading property.
In this case, a simple way is to enable the alpha fading and then proceed to change both Alpha0 and Alpha1
values like in the previous case.
If your application should fade off an image into a solid background, you only need to decrease the im-
age’s alpha value, and make sure that the mixer is in forced background mode. Please refer the mixer’sForceBackGround and BackgroundColor properties.

Note: All the scaler and mixer properties mentioned here are described in the display block documentation.

C GLYPH FORMAT 25

C Glyph Format

This section documents the binary format used by the GFX engine to describe glyphs.

C.1 What is a glyph?

A glyph is a vectorial representation of a binary bitmap, and its main advantage over a bitmap is that it is
easily scalable. It consists on one or more closed paths, called contours. A contour is defined by means of a
list of points. It is made of line segments (connecting two consecutive points), or Bézier arcs (whose shape is
also defined by three or more consecutive points).
The inside of contours that are defined counter-clockwise is filled by the glyph engine, while contours defined
clockwise determine white holes inside a filled area.
The points that define a contour are located on a grid of indivisible units. Possible values for the coordinates
range from -16384 to 16383. The grid is oriented like the traditional mathematical two-dimensional plane,
i.e., the X axis from the left to the right, and the Y axis from bottom to top.

C.2 The Glyph Binary Format

The data chunk pointed by the GlyphAddr field in the glyph-related commands, contains the glyph descrip-
tion in a binary format that is very similar to that used on the truetype font files.
Describing a glyph consists mainly in listing all the points that form the contours, and their properties.
As in the truetype format, the coordinates are specified incrementally (only the first point’s position is speci-
fied with absolute glyph grid coordinates). The RMGlyphPoints can be seen as a vector that should be filled
with the glyph data in the following way:

Value Size in bytes
number of contours 2
zero padding 2
index of last point of first contour 2
...
index of last point of nth contour 2
...
index of last point of last contour 2
zero padding until a 4-byte multiple 2 or none
flags for first point 1
x-coordinate for first point 1 or 2
y-coordinate for first point 1 or 2
...
flags for nth point 1 or none
x-coordinate for nth point 1, 2 or none
y-coordinate for nth point 1, 2 or none
...
flags for last point 1 or none
x-coordinate for last point 1, 2 or none
y-coordinate for last point 1, 2 or none

For fields where there is a choice, the correct size is determined in function of the present or preceeding
flags value (see the table below).
Note: For values that span over two bytes, the MSB should be written first.

C GLYPH FORMAT 26

Flag Name Mask DescriptionON_CURVE 0x01 If set, the point is on the curve; otherwise it is off the curve
(defines a Bézier arc)X_SHORT 0x02 If set, the corresponding x-coordinate is 1-byte long. Other-
wise, 2-bytes long.Y_SHORT 0x04 If set, the corresponding x-coordinate is 1-byte long. Other-
wise, 2-bytes long.REPEAT 0x08 If set, the next byte specifies the number of additional times
this set of flags is to be repeated.SAME_X 0x10 This flag has two meanings, depending on how the
X SHORT flag is set. If X SHORT is set, this bit describes
the sign of the x-coordinate value, (1 means positive, 0
means negative). If X SHORT is not set and this bit is et,
then the current x-coordinate is the same as the previous x-
coordinate. If the X SHORT is not set and this bit is not set,
the current x-coordinate is a singed 16-bit value.SAME_Y 0x20 This flag has two meanings, depending on how the
Y SHORT flag is set. If Y SHORT is set, this bit describes
the sign of the y-coordinate value, (1 means positive, 0
means negative). If Y SHORT is not set and this bit is et,
then the current y-coordinate is the same as the previous y-
coordinate. If the Y SHORT is not set and this bit is not set,
the current y-coordinate is a singed 16-bit value.CUBIC 0x40 Set for cubic curves, unset for quadratic curves. Note that
this bit is only valid if ON CURVE is unset.

	Introduction to the GFX Engine
	Capabilities
	Channels and Surfaces
	Tasks
	Using the GFX Multiscaler

	GFXEngine Properties
	DRAMSize
	Open
	Close
	CommandQueueEmpty
	WaitForPicture
	DisplayPicture
	FlushCommandQueue
	Surface
	ColorFormat
	Palette_XBPP
	AlphaFormat
	AlphaPalette
	EnableAlphaFading
	KeyColor
	FillRectangle
	BlendRectangles
	SingleColorBlendRectangles
	MoveRectangle
	ReplaceRectangle
	BlendAndScaleRectangles
	MoveAndScaleRectangles
	ReplaceAndScaleRectangles
	LinearGradientSurface
	RadialGradientSurface
	BlendGradient
	FillGradient
	ReplaceGradient
	GlyphMask
	GlyphScaleMatrix
	FieldType
	LPFThresholds
	BCS
	NonlinearScale

	Multiple Buffering
	Introduction to Multiple Buffering
	Multiple Buffering using the GFXEngine
	Multiple Picture Surfaces

	Common Operations
	Fading Transitions

	Glyph Format
	What is a glyph?
	The Glyph Binary Format

