

High Efficiency Low Voltage Step-up DC/DC Converter

GENERATION DESCRIPTION

The PT1301 is a compact, high efficiency, and low voltage step-up DC/DC converter with an Adaptive Current Mode PWM control loop. It comprises of an error amplifier, a ramp generator, a PWM comparator, a switch pass element and the driver. It provides stable and high efficient operation over a wide range of load currents without external compensation. The below 1V start-up input voltage makes PT1301 suitable for single battery cell applications. The built-in power transistor is able to provide up to 300mA output current while working under Li-Battery Supply. Besides, it provides extra pin to drive external power devices (NMOS or NPN) in case higher output current is needed. The output voltage is set with two external resistors. The 500KHz high switching rate reduces the size of external components. Besides, the 14µA low quiescent current together with high efficiency maintains long battery lifetime.

OREER INFORMATION

FEATURES

- Low Quiescent (Switch-off) Supply Current: 14µA
- Low Start-up Input Voltage: typical 0.8V
- High Supply Capability: Deliver 3.3V 100mA with 1Alkaline Cell; 5V 300mA with 1 Li-Cell
- Zero Shutdown Mode Supply Current
- High efficiency: 90%
- Fixed switching frequency: 500KHz
- Options for internal or external power switches
- Package type: SOT-26, SOT-89-5

APPLICATIONS

- MP3, PDA, Electronic
- Dictionary, DSC, LCD, RF-Tag,
- Portable Devices, Wireless Devices, etc.

TYPICAL APPLICATION CIRCUITS

(1) Typical Application

1.5Vto 3.3V, 100mA Output Current, typically for MP3 Application.

PT1301 Typical Application

Note: Cc for better Stability

(2) Extending Output Current

High Efficiency Low Voltage Step-up DC/DC Converter

1.5V to 3.3V, 250mA Output Current

Extending Output Current

Note: Cc for better Stability

(3) High Output Voltage, Large Output Current

5V to 12V, 300mA Output Current

Note: Cc for better Stability

PIN ASSIGNMENT

PIN DESCRIPTION

PIN No		SVMDOI	DESCRIPTION	
SOT-26	SOT-89-5	SIMBOL	DESCRIPTION	
1	1	CE	Enable pin. PT1301 Shut-down when CE is low	
2		EXT	Output pin for driving external power transistor	
3	5	GND	Ground	
4	4	LX	Output for internal power switch	
5	2	VDD	Power Supply	
6	3	FB	Feed back input	

ABSOLUTE MAXIMUM RATINGS (Note 1)

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Supply Voltage	-0.3~7.0V	V
V _{LX}	LX pin Switch Voltage	-0.3~7.0V	V
V _{IO}	Voltage on other I/O pins	-0.3V to (VDD+0.3V)	
I _{OUT}	LX pin Output Current	2.5	А
I _{EXT}	EXT pin Drive Current	200	mA
PTR1	Package Thermal Resistance SOT-26, Θ_{JC}	145	W/℃
PTR2	Package Thermal Resistance SOT-89-5, Θ_{JC}	45	W/℃
T _{OPT}	Operating Temperature Range	-40~125	°C
T _{STG}	Storage Temperature Range	-65~150	°C
T _{SOLDER}	Lead Temperature (Soldering)	260°C, 10s	

Note1: Absolute Maximum Ratings are threshold limit values that must not be exceeded even for an instant under any condition. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.

ELECTRICAL CHARACTERISTICS (Note 2,3,4)

SYMBOL	ITEM	TEST CONDITION	MIN	ТҮР	MAX	UNIT
V _{ST}	Startup Voltage	IL = 1mA		0.80	1.05	V
V _{DD}	Operating VDD Range	VDD pin Voltage	2		6	V
I _{OFF}	Shutdown Current I (V _{IN})	CE Pin = $0V$, VIN = $4.5V$		0.01	1	μΑ
I _{SWITCH OFF}	FF Switch-Off Current I(V_{DD}) VIN = 6V			14	25	μΑ
I _{SWITCH}	Continuous Switching Current	VIN = CE = 3.3V, VFB = GND	0.22	0.24	0.7	mA
I _{NO LOAD}	No Load Current I(V _{IN})	VIN = 1.5V, VOUT = 3.3V		56		μΑ
V _{REF}	Feedback Reference Voltage	Close loop, $VDD = 3.3V$	1.225	1.25	1.275	V
Fs	Switching Frequency	VDD = 3.3V	425	500	575	KHz
D _{MAX}	Maximum Duty	VDD = 3.3V	85	94		%
	On Resistance, LX to VDD	VDD = 3.3V		0.3	1.1	Ω
I _{LIMIT}	Limit Current	VDD = 3.3V	1	1.5	2	А
	On Resistance, EXT to VDD	VDD = 3.3V		4.4	8.5	Ω
	On Resistance, EXT to GND	VDD = 3.3V		2.45	8.5	Ω
$ riangle V_{LINE}$	Line Regulation	$VIN = 3.5 \sim 6V, IL = 1mA$		1.25	5	mV/V
$\triangle V_{LOAD}$	Load Regulation	$VIN = 2.5V, IL = 1 \sim 100mA$		0.14		mV/mA
	CE trigger Level	VDD = 3.3V	0.4	0.8	1.2	V
TS	Vout Temperature Coefficient			50		ppm/°C
∆TSD	Thermal Shutdown Hysteresis			10		°C

(V_{IN} =1.5V, VDD=3.3V, load current=0, TA =25 °C, unless otherwise specified.)

Note 2: Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the recommended operating Range. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: Typicals are measured at 25°C and represent the parametric norm.

Note 4: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

High Efficiency Low Voltage Step-up DC/DC Converter

SIMPLIFIED BLOCK DIAGRAM

TYPICAL OPERATING CHARACTERISTICS

- (1) Efficiency
- (1.1) Vout=3.3V

(2) Line Regulation

(2.1) Vout=3.3V

(1.2) Vout=5.0V

High Efficiency Low Voltage Step-up DC/DC Converter

(3.2) Vout=5.0V

0.1

1

TYPICAL OPERATING CHARACTERISTICS

(3) Load Regulation

(3.1) Vout=3.3V

APPLICATION INFORMATION

1) Output Voltage Setting

Referring to Typical Application Circuit 1, the output voltage of switching regulator (Vout) is set with following equation:

Vout=(1+R1/R2)*Vfb

 Feedback Loop Design Referring to Typical Application Circuit 1 again, the selection of R1 and R2 is a trade-off between quiescent current consumption and interference immunity besides abiding by the above equation.

- Higher R reduces quiescent current (I=1.25V/R2)
- Lower R gives better interference immunity, and is less sensitive to interference, layout parasitic, FB node leakage, and improper probing to FB pin.

Hence for applications without standby or suspend modes lower R1 and R2 values are preferred, while for applications concerning the current consumption in standby or suspend modes, higher values of R1 and R2 are needed. Such high

Load Regulation @ Vout=5. 0V 4.99 4.99 4.97 4.96 4.95 4.94 4.934.93

10

Iout (mA)

impedance feedback loop is sensitive to any interference, which requires careful PCB layout and avoid any interference, especially to FB pin. To improve the system stability, a proper value capacitor between FB pin and Vout is suggested. An empirical suggestion is around 100pF for M Ω feedback resistors and 10nF \sim 0.1uF for lower R values.

100

1000

3) PCB Layout Guide

PCB Layout shall follow these guidelines for better system stability:

- A full GND plane without any gap break.
- VDD to GND bypass Cap The 1µF MLCC noise bypass Cap between pin 5 and pin 3 shall have short and wide connections.
- Vin to GND bypass Cap Add a Cap close to the inductor when Vin is not an idea voltage source.
- Minimize the FB node copper area and keep it far away from noise sources.
- Minimize the parasitic capacitance connected to LX and EXT nodes to reduce the switch loss.

TEST CIRCUITS

PACKAGE INFORMATION

SVMDOI	DIMENSION (in mm)		DIMENSION (in Inch)		
SIMBOL	MIN	MAX	MIN	MAX	
А	0.787	1.450	0.031	0.057	
A1		0.152		0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.559	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
e	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

PACKAGE INFORMATION

(2) SOT-89-5

SVMDOI	DIMENSION (in mm)		DIMENSION(in Inch)		
SINDUL	MIN	MAX	MIN	MAX	
А	1.400	1.600	0.055	0.063	
b	0.460	0.520	0.014	0.020	
В	2.400	2.600	0.094	0.102	
b1	0.406	0.533	0.016	0.021	
С		4.250		0.167	
C1	0.800		0.031		
D	4.400	4.600	0.173	0.181	
D1		1.700		0.067	
e	1.400	1.600	0.055	0.063	
Н	0.380	0.430	0.014	0.017	