
INTERNATIONAL FORECOURT STANDARD FORUM

STANDARD FORECOURT PROTOCOL

PART II

COMMUNICATION SPECIFICATION

OVER TCP/IP

1.02 - JUNE 2004

 Page 2

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

This document was written by the IFSF - Working Group:

Name Company

Barry McGugan Marconi Commerce Systems

Steve Cramp Marconi Commerce Systems

Peter Maeers MPS

Jaroslav Dvorak Beta Control Ltd.

The latest revision of this document can be
downloaded form the Internet

address: www.ifsf.org

Any queries regarding this document should be
addressed to: secretary@ifsf.org

Page: 3

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

Document Contents

1 RECORD OF CHANGES ... 6

2 GLOSSARY.. 7

3 INTRODUCTION ... 9

4 GUIDELINES FOR IMPLEMENTATION... 9

4.1 BLOCK CUTTING.. 9
4.2 SECURITY .. 9

4.2.1 Access .. 9
4.2.2 Firewall ... 9
4.2.3 Authentication ... 9

4.3 IP IMPLEMENTATION... 10

5 IFSF OVER TCP/IP - SERVICES AND OPTIONS.. 11

6 IFSF OVER TCP/IP - ARCHITECTURE.. 12

6.1 THE IFSF APPLICATION... 12
6.2 IP STACK .. 12
6.3 DHCP SERVER... 12
6.4 IFSF TO IP CONVERTER .. 12

6.4.1 IFSF interface ... 12
6.4.2 Heartbeat proxy .. 13
6.4.3 Connection controller.. 14

7 SEQUENCES FOR IFSF OVER TCP/IP COMMUNICATION.................................. 15

7.1 INITIAL START-UP PREPARATION – BEFORE ANY IFSF COMMUNICATIONS....................... 15
7.2 COMMUNICATION INITIATION ... 15
7.3 COMMUNICATION OPERATION... 16

7.3.1 Heartbeats... 16
7.3.2 Explicit messages .. 16

8 IP SERVICE OPTIONS WITH THE MINIMUM SERVICES. 17

8.1 IP .. 17
8.2 ARP .. 17
8.3 ICMP.. 17
8.4 TCP .. 17
8.5 UDP.. 17
8.6 DHCP... 18
8.7 TFTP... 18

 Page 4

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

9 NETWORKING AND NAME RESOLUTION... 18

10 SEQUENCE DIAGRAMS... 19

10.1 FIGURE 1 STARTUP AND INITIALIZATION SEQUENCE .. 19
10.2 FIGURE 2 SENDING A TCP MESSAGE ... 20
10.3 FIGURE 3 TWO IFSF APPLICATIONS ON ONE HOST COMMUNICATING WITH REMOTE

IFSF DEVICES.. 21
10.4 DETAILED EXAMPLES ... 22

10.4.1 Configuration used in the following example .. 23
10.4.2 Establishing Heartbeats... 24
10.4.3 Simple message transfer... 25
This section shows controller 1 sending a command to dispenser 1..................................... 25
10.4.4 Two controllers sending commands to one device... 26

11 APPENDIX 1 MINIMUM NUMBER OF TCP-IP SOCKETS REQUIRED FOR
IFSF DEVICE TYPES .. 27

12 APPENDIX 2 IFSF OVER TCP/IP IMPLEMENTATION USING SOCKET API .28

12.1 TERMS AND ABBREVIATIONS .. 28
12.2 INTRODUCTION... 29
12.3 IFSF LOWER LAYER.. 31

12.3.1 IFSF Message Router module .. 31
12.3.2 IFSF TCP/IP Gate module .. 32
12.3.3 Socket API.. 33

12.3.3.1 Socket address structure ... 33
12.3.3.2 Function socket .. 33
12.3.3.3 Function bind .. 34
12.3.3.4 Function listen .. 34
12.3.3.5 Function accept .. 35
12.3.3.6 Function connect.. 35
12.3.3.7 Function send ... 36
12.3.3.8 Function recv .. 36
12.3.3.9 Function sendto.. 37
12.3.3.10 Function recvfrom .. 37

12.3.4 TCP/IP Connection Architectures ... 39
12.3.4.1 Single TCP connection between two hosts .. 39
12.3.4.2 Multiple TCP connections between two hosts .. 40

12.3.5 TCP/IP overhead of IFSF messages.. 40
12.3.5.1 TCP/IP overhead of IFSF heartbeat ... 41

12.3.6 TCP/IP Gate module.. 42
12.3.6.1 Outgoing IFSF heartbeat message... 42
12.3.6.2 Incomming IFSF heartbeat message .. 43
12.3.6.3 Outgoing IFSF message .. 43
12.3.6.4 Incomming IFSF message.. 43
12.3.6.5 Connection request.. 44

12.4 EXAMPLE OF THE STARTUP .. 45

Page: 5

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

[1] IFSF STANDARD FORECOURT PROTOCOL PART II – COMMUNICATION
SPECIFICATION

[2] IFSF STANDARD FORECOURT PROTOCOL PART III.I – DISPENSER
APPLICATION

[3] Comer, Douglas E.: Internetworking with TCP/IP – Principles, Protocols, and
Architectures, Volume 1, Fourth Edition, 2000, 1995 Prentice Hall

[4] Unix Manual Pages
[5] MicroSoft Developer Network (MSDN) Helps

 Page 6

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

1 Record of Changes

Date Version
number

Modifications

March 2001 1.00 First draft release

August 2001 1.00 Formal release

February
2002

1.01 Appendix 2 – changes in connection with the removal of block
cutting over TCP/IP

June 2004 1.02 Glossary – Added definition for the ‘Well known’ IFSF
Hearetbeat Port.

Page: 7

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

2 Glossary

ARP - Address Resolution Protocol. An Internet protocol that enables the resolution of a logical
address (IP) to a physical address (MAC) on a LAN.

BOOTP - Bootstrap Protocol. An Internet protocol that enables remote static configuration of
hosts on an IP network.

Client - A process that issues a connection request to a service either on the same computer or a
remote computer.

DHCP - Dynamic Host Configuration Protocol. An Internet protocol that enables dynamic
configuration of hosts on an IP network.

DNS - Domain Name System. A hierarchical system for identifying hosts on a LAN, whether
public or private. It provides for mapping of an IP address to a friendly host name, resolving of host
names to IP addresses so that communications can be established with the remote host, and a
distributed mechanism for storing and maintaining list of names and IP addresses.

ICMP - Internet Control Message Protocol. An internet layer protocol that is used to build and
maintain routing tables, error reporting, control messages, and adjusting flow rates.

Internet - The name given to the interconnection of many isolated networks into a virtual single
network.

IP - Internet Protocol. The main protocol used in internetworking to route a message from one
computer to another. The Internet Protocol is located in the internet layer of the IP stack and does
not guarantee reliable delivery of messages.

IP address - A logical address of a physical device. Version 4 of TCP/IP, called IPV4, uses four
hexadecimal bytes written in dotted decimal notation, to specify the address.

IP Stack - A reference to the layering of TCP/IP. TCP/IP consist of the network layer at the
bottom of the stack, then the internet layer, then the transport layer, and finally the application layer.

MAC Address - The physical address of a device on an internet. It is also referred to as an
Ethernet address, hardware address, or PHY address.

Port - A logical address of a service/protocol that is available on a particular computer.

TCP - Transmission Control Protocol. One of the two main protocols used in the transport layer of
the IP stack. TCP is a connection oriented protocol that guarantees delivery of data.

 Page 8

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

TCP/IP - The generic name given to the suite of services and applications that are used for
communicating over a local LAN or the Internet. TCP is the better known transport protocol and
IP is the better known internet layer protocol.

TFTP - Trivial File Transfer Protocol. An application level protocol that is used to transfer files
using UDP. It is typically used to download an image to a diskless remote host during the bootstrap
process.

UDP - User Datagram Protocol. One of the two main protocols used in the transport layer of the
IP stack. UDP is a connectionless oriented protocol that does not guarantee delivery of data.

Service - A process that accepts connections from other processes, typically called client processes,
either on the same computer or a remote computer.

Socket - An access mechanism or descriptor that provides an endpoint for communication.

Socket Address - The combination of the IP address, protocol (TCP or UDP) and port number on
a computer that defines the complete and unique address of a socket on a computer.

‘Well known’ IFSF heartbeat port - The UDP port to be used by all IFSF compliant devices having
been assigned by the Internet Assigned Numbers Authority (IANA) as '3486'.

WINS - Windows Internet Name Service. A Microsoft Windows service that dynamically registers
NetBIOS names on a Windows network and provides of resolution of names to IP addresses.

Page: 9

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

3 Introduction
This document describes the transport of IFSF application messages using the TCP/IP protocol
suite. Detail on the IFSF messages is described in the IFSF STANDARD FORECOURT
PROTOCOL PART II COMMUNICATION SPECIFICATION.

4 Guidelines for Implementation

4.1 Block Cutting
With TCP/IP there is no need for the IFSF application to perform block cutting. Although TCP/IP
can transport any size message, it is recommended that single message sizes for the dispenser and
other embedded applications be restricted to a maximum of 228 bytes. This reduces the buffering
requirements for such applications

4.2 Security
As with any networking environment, security measures should be implemented in line with the
results of risk assessment for a given installation. Details are dependant on the network installation
and hence our outside the scope of this document. However the following items should be
considered.

4.2.1 Access
Network access should be managed, clearly identifying sources, and any associated risks with these
sources. Suitable access controls, such as passwords, dial-back etc, need to be in place to ensure
network security.

4.2.2 Firewall
Any network accessible from unsecured sources (i.e. Internet) should provide adequate access
protection using for example firewalls.

4.2.3 Authentication
Where sensitive network messages are routed over unsecured connections, an authentication
mechanism should be used. This ensures that the end points of the connection can guarantee the
source of the message is genuine.

 Page 10

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

4.3 IP Implementation
� It is recommended that an IP stack be selected that does not buffer small messages. If this were

to occur, it could delay message sending.

� It is not recommended the application change the IP quality of service flags etc such as Service
Type. These may not be managed in the same way by different network routers/IP stacks. The
quality of service offered by TCP/IP will easily be equal to that supported by LON.

� All IP implementations must meet applicable RFC’s

� As IP is a streaming protocol, it may not be immediately obvious where one IFSF message ends
and another begins. It will be the responsibility of the implementation to detect the beginning and
end of IFSF messages and correctly delivery them to the IFSF application. It is not permissable
to add any extra information to the IFSF message to help deliniate one message from another.
Neither is it permissable to frame the IFSF message with additional information for the purpose
of delineating the beginning and end of a message. The recommended way to determine an IFSF
message boundary is to use the IFSF message length field. The IFSF message length field is in
the same position in all IFSF messages (block cutting not supported). This requires that the
implementation keep synchronized with the messages coming to it and at any time it detects that
there is confusion about the beginning and/or end of a message it should go into a recovery
mode where it forces the sending host to retransmit a message in its entirety. This recovery
mode may consist of not forwarding any questionable messages to the local application, thereby
creating a timeout condition at the sending host. The sending host should detect the timeout and
resend any messages that it has not received a response for.

Page: 11

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

5 IFSF over TCP/IP - services and options
The TCP/IP protocol suite offers many services and each of those services has options to enable
their efficient use within the environment they are used. To support IFSF over TCP/IP only a few of
these services are required and many of the options they offer are not needed. For several of the
services within the suite the options are no longer required since they were developed when
networking hardware and computers were less powerful and took longer to process the frames.
A minimum IP stack to implement IFSF over TCP/IP includes the following:

• IP

• ARP

• ICMP

• TCP

• UDP

• DHCP (client or server depending on device)

These services are the basic ones required allowing one machine to communicate with another. It
should be pointed out that a device could implement BOOTP client instead of DHCP client, but it
would be taking a chance that the DHCP server on site supports BOOTP clients, which is not
required. It is advisable that all equipment tied to the LAN at a site allows for manual programming
of network information in the case that there is not a compatible address server on site.
As an additional note it may be necessary for an equipment installer to have access to the controller
on-site to set up download information for the device being installed.

Additional services that may be considered are:

• TFTP

• Domain Name System (DNS)

These additional services add the ability to do application downloads at boot time and the
ability to resolve names to addresses. Name resolution has some advantages to on-site
communications, but adds more to off-site communications.

 Page 12

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

6 IFSF over TCP/IP - Architecture
An example of architecture for an IFSF device with a TCP/IP interface is shown below.

There are four main components

6.1 The IFSF application
The IFSF application is as described in the respective IFSF specifications. It is important to note
that the application will remain the same whether the communication transport is LON or TCP/IP.

6.2 IP Stack
The IP stack is the interface to the network. It implements the various IP protocols and provides
services to manage connections, resolving IP addresses, etc. Protocol stacks are available as off-
the-shelf commodities, which can readily be
purchased. The detailed operation of this component
is outside the scope of this document, it is described
extensively elsewhere.

6.3 DHCP server
The DHCP Server is used to distribute IP addresses
to all the IP devices on a network. It may be part of
an IFSF device, or it may be a separate device. There
must only be one DHCP server on the network.

6.4 IFSF to IP Converter
The IFSF to IP converter module (hereafter referred
to as the IIPC) has the responsibility to look like an
IFSF interface to the local IFSF application, accepting
all IFSF messages and placing them in IP datagrams
to send to a remote device over the local LAN. The module has three main objectives - to send
and receive heartbeats via the heartbeat proxy, keep a list of all active connections on the LAN, and
package up all data and control messages into TCP streams for the LAN.

The IIPC module consists of 3 functional blocks

6.4.1 IFSF interface
This module is responsible for the interface between the IFSF application and other IP
communication services. It will maintain a table of all LNA’s and their corresponding IP/port
addresses (a combination of IP address, protocol and port number corresponds to the
socket address). This module will route all heartbeat messages to the heartbeat proxy and

IFSF Application

IFSF Interface LNA to IP
Map

Port IP
LNA

Connectio
n

Controller

Heartbeat
Proxy
(UDP)

IP Stack DHCP
Server

IFSF to IP Converter

Page: 13

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

all other messages to the connection controller. This module will receive heartbeats from
other devices, add the LNA, socket address to the table (if not already in the table), and
then send the IFSF heartbeat to all applications the interface is hosting.

6.4.2 Heartbeat proxy
This module is responsible for packaging local application heartbeat messages and
broadcasting them using UDP datagrams. It is from here the UDP datagram is broadcast to
the ‘well known’ IFSF heartbeat port. Incoming heartbeat messages come through this
module, and are sent through the IFSF interface. The proxy will also send the heartbeats it
receives from a local device to other locally hosted devices.

An IFSF heartbeat contains the LNA and a device status bit. To be effective on the IP
network this message needs to have augmented to it the IP address of the host of the local
IFSF application and the port number on the local host that a remote device uses to connect
to the local IFSF application. When a remote device receives this message it will strip off
the IP and port number information, record the LNA of the sending device, and pass the
IFSF heartbeat message on to the IFSF application in the standard IFSF protocol format.
The remote device will take the data from the received message and make an entry in a table
that maps the IP and port address to the LNA of a device that has announced itself to the
network, which we will call the LNA to IP mapping table.

Each time a heartbeat message is received by the IIPC it will reset a timer for that remote
device. The purpose of the timer is to notify the IIPC when a heartbeat has not been
received for a period of time. When the IIPC gets that notice it assumes the remote device
has gone off-line and removes it from the LNA to IP mapping table, sends a connection
closed message to the remote device, and closes any local connections associated with the
device other than the main service connection. The next time a heartbeat or TCP connection
request comes in from the remote device then a new entry will be made in the LNA to IP
mapping table and the timer is started again.

 Page 14

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

6.4.3 Connection controller
This module is responsible for managing the TCP connections. Any IFSF message other
than a heartbeat message is handled by this interface.

All data and control messages will be wrapped in TCP and sent to the appropriate address.
The appropriate address is determined by taking the LNA information from the IFSF
message and finding the corresponding socket address from the LNA to IP mapping table.
The receiving station will accept the message and strip off the TCP wrapper, passing the
IFSF message on to the device application.

Sending an IFSF message.
If an application hosted by this interface sends an IFSF message, the connection controller
will check if there is a TCP connection to the required IFSF device. If not, a request to set
up a connection will be sent to the socket address hosting the IFSF application. This
application will acknowledge the request and return the port number to be used for this
communication session. From now on until the connection is broken, all communications
(except heartbeats) between these applications will be handled using this socket address.

Receiving an IFSF message.
When a TCP connection request is received, the connection controller will select the next
unique port number (i.e. one that is not in use by any current connections hosted by this
controller), and return this port number as the one to use for this connection. This port
number will be held in a table to identify to the connection controller which IFSF application
is hosted by this port.

Page: 15

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

7 Sequences for IFSF over TCP/IP communication.

7.1 Initial start-up preparation – before any IFSF communications

1. DHCP server has to be set up with its own IP address and the range of IP addresses to
be leased to clients

2. All other devices need to have their node numbers set-up as in the LNA address.

7.2 Communication initiation
1. Independently, each TCP/IP stack will request IP address from the DHCP server using

UDP. Optionally other information such as file name for software downloads may be
supplied at this time. It is possible that some devices, or a whole site, may want to use
static addresses. If this is the case then each device must have the ability to program in
the networking information at the device and accommodations made with the DHCP
server as required. It is strongly recommended that static IP addressing not be used.

2. The heartbeat proxy will set up the ‘well known’ port at the IP stack so that it can
receive incoming heartbeat messages.

3. Each application will send a heartbeat to the IFSF Interface. On receiving the
heartbeat the IFSF Interface will:

 i. Register the application (associate this IFSF application communication channel
with the IFSF LNA).

 ii. Use the IP stack to get a socket address via the TCP interface.
 iii. Enter into its LNA/IP table the IFSF LNA address and the socket address. Each

hosted IFSF application will be allocated a unique port address. Once this step is
completed for all hosted IFSF applications, a table will exist identifying IFSF
LNA’s to socket addresses.

 iv. A heartbeat message will be broadcast via UDP to the ‘well known’ heartbeat
port, containing the socket address assigned for this application. This will be
repeated for each IFSF application hosted by this IFSF Interface.

Now all the configuration housekeeping tasks have been completed to allow all hosted IFSF
applications to send/receive both heartbeats and explicit messages.

 Page 16

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

7.3 Communication operation

7.3.1 Heartbeats

The IFSF interface will route heartbeat messages from each application that it is hosting to the
heartbeat proxy. These messages will then be broadcast using UDP datagrams
All incoming heartbeats will be examined and entries, where needed, will be made to the LNA/IP
table. The heartbeats will then be passed up to all IFSF applications hosted by this interface.

7.3.2 Explicit messages

On receiving an explicit IFSF message from an application, the connection controller will check if a
connection to the required device has been set up, and if so, send the message to the associated
socket address. If no, it will get the socket address from the LNA/IP table, set up a connection, and
send the message. Incoming messages will be examined, and based on the socket address, routed
to the appropriate application.

Page: 17

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

8 IP Service options with the minimum services.
This section discusses parameters associated with each IP service, along with guidance as to its
usage.

8.1 IP

IP (Internet Protocol) has several options (Type of service and IP options) that have to do with
directing routes and delivery of data. However these options only pertain to frames that must pass
through routers for delivery to the destination. If a frame is staying within the local network then
these options add little to no value to the delivery of the message.

8.2 ARP
The Address Resolution Protocol is a mechanism to distribute IP addresses. It is not used for IFSF
message transfers, so there are no options for IFSF to set-up.

8.3 ICMP
The Internet Control Message Protocol is an error reporting mechanism to help diagnose network
problems. It is not used for IFSF message transfers, so there are no options for IFSF to set-up.

8.4 TCP

The size of the window should be set to max out at the size of the receive buffer of the local host.
The receive buffer of the local host should be able to handle multiple messages to make better use of
the medium. It will be important that the supplier of the equipment pick an IP stack that has a good
window control heuristic. A good heuristic will have mechanisms built in to keep data flowing
without overflowing the buffer, causing retransmissions. It will also avoid sending segments on the
link that are so short they cause an inefficient use of bandwidth. See RFC 1106 for other
precautions on window management.

8.5 UDP

The User Datagram Protocol has no message options to set up

 Page 18

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

8.6 DHCP

DHCP has no message options to be concerned with, however it has optional information that can
be delivered to a client when it is requesting an IP address. Of these the following should be
standard:
• The new IP address

• The default router/gateway address

• Subnet mask

There are some optional pieces of information to share if applicable to the site:
• DNS server address

• Boot file name

• TFTP server name

8.7 TFTP

There are no options with TFTP. The TFTP server should have sufficient time outs to allow a
device to be slow in delivering the acknowledgement to a message. If the time out at the server is
too short it is possible to corrupt the image being loaded in the memory of the device.

9 Networking and Name Resolution
Between IFSF devices the method of resolving where to send a message have been detailed. For a
device to connect to a non-IFSF computer for on-site or off-site communications requires the
implementation of some type of name resolution mechanism. This is usually accomplished through a
“host” file or DNS or both. In a strictly NT environment WINS is used, but WINS is limited to NT
machines only. In an environment where different types of OS’s are in use then DNS and the host
file are the only choices for interoperability.
To use a host file host name to IP address mapping must be manually placed in the host file. Any
change in the network environment must be reflected in each host file on each machine in the
network. For small networks this is an easy task, the larger the network the more difficult it gets.
DNS is the answer for the medium to large networks. The negative is the set-up work involved to
set-up a DNS server. Once in place there is a single point that has to be administered not every
machine on the network.

Page: 19

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

 IFSF
Application

IFSF to IP
Converter IP IP

IFSF to IP
Converter

IFSF
Application

Broadcast First
IFSF heartbeat

Add IP address,
port number
and broadcast
to well known
heartbeat proxy
port.

At power up open
heartbeat proxy
port for listen.

Transport
message

Strip IP address
and port of
source. Capture
LNA and make
entry in table.
Pass on heartbeat.

Receive heartbeat
message on well -
known port

Record a heartbeat received
from device and reset
connection timer for that
device.

If no heartbeat received
before timer expires then
remove device from the
table and issue a connection
closed to the device.

Negotiate IFSF
TCP port and
UDP heartbeat
publishing port.
Make an entry in
the IP to LNA
table.

At power up invoke DHCP
client to get IP address

At power up open
heartbeat proxy
port for listen.

10 Sequence Diagrams

The following sequence diagrams give an overview of the functions of the IIPC.

10.1 Figure 1 Startup and Initialization Sequence

 Page 20

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

10.2 Figure 2 Sending a TCP Message

IFSF
Application

IFSF to IP
Converter IP IP

IFSF to IP
Converter

IFSF
Application

Send control/data
message

Lookup LNA in
table and get IP
and port
address. Wrap
message in
TCP and send.

Transport
message

Strip TCP
wrapper and send
message on.

Receive message
on published port
number.

Page: 21

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

10.3 Figure 3 Two IFSF Applications on One Host Communicating with Remote IFSF
Devices

Device A
IFSF

Application

IFSF to IP
Converter IP IP

IFSF to IP
Converter

Device C
IFSF

Application

Send control/data
message to Device
C

Lookup Device
D LANA in
table and get IP
and port
address. Wrap
message in
TCP and send.

Transport
message

Strip TCP
wrapper and send
message on.

Receive message
on published port
number.

Device B
IFSF

Application

Send control/data
message to Device
D

Transport
message

Lookup Device
C LANA in
table and get IP
and port
address. Wrap
message in
TCP and send.

Receive message
on published port
number. Strip TCP

wrapper and send
message on.

Device D
IFSF

Application

 Page 22

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

10.4 Detailed Examples

This section illustrates some typical examples of how IFSF over TCP/IP communication works.
Here is detailed how the IP, Port and IFSF LNA could be implemented.

This example is for one type of architecture, it is not meant to imply this is the only architecture.

The following examples show the message handling inside the dispenser/cardreader.

The IP, port and LNA values used are for example only.

The sequences show the establishment of connection through to a number of different
communication scenarios.

Page: 23

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

10.4.1 Configuration used in the following example
This example uses a forecourt dispenser with integral card reader, controlled by one of two
controlling devices. The dispenser has two independent IFSF applications, one controlling the
dispenser, the other controlling the card reader.

The IFSF Protocol Converter (IIPC) is shown bound by the innermost dotted line. This is the
collection of applications responsible for interfacing the IFSF application, with the protocol stack

Controller 1

IFSF Interface LNA to IP
Map

Port IP
LNA

Connection
Controller

(TCP)

Heartbeat
Proxy
(UDP)

IP Stack DHCP Server

Controller 2

IFSF Interface LNA to IP
Map

Port IP
LNA

Connection
Controller

(TCP)

Heartbeat
Proxy
(UDP)

IP Stack

Dispenser Card Reader

IFSF Interface

LNA to IP
Map

Port IP
LNA

Connection
Controller

(TCP)

Heartbeat
Proxy
(UDP)

IP Stack

 Page 24

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

10.4.2 Establishing Heartbeats

This example shows the establishment of heartbeats from power up.

IFSF Application IIPC Network
Dispenser Application Heartbeat → Ignored

Card Read Application Heartbeat → Ignored

Broadcast DHCP Request → DHCP Request

Receives reply from DHCP Server
Allocated IP address for Dispenser/Card reader is
192.1.1.1

← DHCP reply

Heartbeat Proxy opens up UDP port for sending
heartbeats and listening for remote heartbeats.
Connection Controller opens up TCP port for
listening for connection requests for each local IFSF
device. Entries are made in the local LNA to IP
mapping table for each local application.

Dispenser Application Heartbeat → Heartbeat Proxy sends broadcast UDP message
• Source IP = 192.1.1.1
• Destination IP = 255.255.255.255
• Source Port = TCP listen socket
• Destination Port = IFSF H/B port
• Data = Dispenser LNA (01 01)

→ UDP Broadcast

Cardreader Application Heartbeat → Heartbeat Proxy sends broadcast UDP message
• Source IP = 192.1.1.1
• Destination IP 255.255.255.255
• Source Port - TCP listen socket
• Destination Port = IFSF H/B port
• Data = Cardreader LNA (05 01)

→ UDP Broadcast

Receives Controller 1 Heartbeat ← Heartbeat Proxy receives UDP broadcast on IFSF H/B
port
• Extracts Source IP and Port for Controller 1

(192.1.1.21)
• Extracts LNA for Controller 1 (02 21)
• Enters LNA/IP data for Controller 1 into LNA

to IP Map

← UDP heartbeat from
Controller 1

Receives Controller 2 Heartbeat ← Heartbeat Proxy receives UDP bradcast on IFSF H/B
port
• Extracts Source IP and Port for Controller 2

(192.1.1.22)
• Extracts LNA for Controller 2 (02 22)
• Enters LNA/IP data for Controller 2 into LNA

to IP Map

← UDP heartbeat from
Controller 2

Page: 25

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

10.4.3 Simple message transfer

This section shows controller 1 sending a command to dispenser 1
IFSF Application IIPC Network

IFSF dispenser application sends an
IFSF read message to Controller 1

→ IIPC determines that there is no TCP connection
established between Controller 1 and dispenser
application
• It first assigns a port that will identify the

dispenser application for this connection request
(1111)

• Connection controller sends TCP message
requesting a connection

• Source IP = 192.1.1.1
• Destination IP = 192.1.1.21
• Source Port = 1111
• Destination Port = from LNA to IP table

→ TCP

• Message received acknowledging connection, and
identifiyng controller port for this connection
to be

• 2222
• IIPC adds this port address into the correct LNA

to IP map entry

← TCP

IIPC sends TCP message containing IFSF message
• Source IP = 192.1.1.1
• Destination IP = 192.1.1.21
• Source Port = 1111
• Destination Port = 2222
• IFSF application message

→ TCP

IFSF application receives reply to
first read message

Response to IFSF read message
• Source IP = 192.1.1.21
• Destination IP = 192.1.1.1
• Source Port = 2222
• Destination port = 1111
• IFSF Application message

← TCP

IFSF dispenser application sends a
second IFSF read message to
Controller 1

→ IIPC determines that there is a TCP establised
connection between Controller 1 and dispenser
application
IIPC sends TCP message containing IFSF message
• Source IP = 192.1.1.1
• Destination IP = 192.1.1.21
• Source Port = 1111
• Destination Port = 2222
• IFSF application message

→ TCP

Dispenser IFSF application
receives reply to second read
message

← Response to IFSF read message
• Source IP = 192.1.1.21
• Destination IP = 192.1.1.1
• Source Port = 2222
• Destination port = 1111
• IFSF Application message

← TCP

 Page 26

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

10.4.4 Two controllers sending commands to one device

This example shows controller 1 and controller 2 both sending commands to dispenser 1
IFSF Application IIPC Network

Dispenser IFSF application
receives command from controller
1

Receives TCP message from controller 1
• Source IP = 192.1.1.21
• Destination IP = 192.1.1.1
• Source Port = 2222
• Destination port = 1111
• IFSF Application message
From the IP/Port address, the IIPC recognises a
current connection is already established, and uses this
to send the IFSF message to the dispenser application

← TCP

Receives TCP request from controller 2 for a
connection and port
• Source IP = 192.1.1.22
• Destination IP = 192.1.1.1
• Source Port 3333
• Destination Port 2223
IIPC finds an unused port, and accepts the connection
using this port. Adds this port in the LNA to IP map

← TCP

Replies accepting connection
• Source IP = 192.1.1.1
• Destination IP 192.1.1.22
• Source Port = 2223
• Destination Port = 3333

→ TCP

Dispenser IFSF application
receives command from controller
2

← Receives TCP message from controller 2
• Source IP = 192.1.1.22
• Destination IP 192.1.1.1
• Source Port 3333
• Destination Port 2223
From the IP/Port address, the IIPC recognises a
current connection is already established, and uses this
to send the IFSF message to the dispenser application

← TCP

Page: 27

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

11 Appendix 1
Minimum Number of TCP-IP Sockets Required for IFSF Device
Types

Device Type Minimum
Number of

TCP/IP
Connectio
ns/Socket

s

Comment

Dispenser 12+1 Based on:
 8 POS/SC devices connecting
 2 Tank Level Gauges
 2 Copt/BOS or other devices
==
12 Total number of devices that might want to
connect.

+1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

Control Device
(SC/POS/BOS)

X+1 X=Number of connections dictated by number of
IFSF TCP/IP devices to be controlled.
+1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

Price Pole 8+1 +1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

Tank Level Gauge 8+1 +1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

BNA 8+1 +1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

COPT 8+1 +1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

Pin Pad 8+1 +1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

Printer 8+1 +1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

Card Reader 8+1 +1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

Car Wash 8+1 +1= Additional ‘well known’ port allowing other
devices to connect to Control Device.

 Page 28

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

Other IFSF Devices 8+1 Unless additional Requirements are defined 8+1 is
the standard minimum requirement for other devices.

12 Appendix 2
IFSF over TCP/IP Implementation Using Socket API

12.1 Terms and abbreviations
IP Internet Protocol
IP
ADDRESS

Internet address (four bytes, usually written in dot notation, e.g. 192.168.2.12)

TCP Transfer Control Protocol
UDP User Datagram Protocol
TCP/IP The family of protocols including IP, TCP and UDP
LNA IFSF Logical Node Address. The LNA consists of the Subnet and Node
LANO LNA of the Originator
LNAR LNA of the Recipient
IPC InterProcess Communication. The IPC is used to transfer data between different

processes (possibly running on different computers – i.e. network transparently).
For example a PIPE in Unix or a Window Message in MS Windows.

Page: 29

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

12.2 Introduction

This Appendix describes a possible implementation of the IFSF TCP/IP Communication Standard
using Socket API in Unix (Linux OS) and/or MS Windows 9x/ME/2000 environment.

The Socket API was originally designed for the Unix platform and was adopted by the MS
Windows 9x/ME/2000 platform. It means that from the application point of view the definition of the
Socket API functions is the same for both the platforms. Consequently, the applications
implemented using Socket API on different hosts, and running under different operating systems –
Unix and Windows – are able to communicate. It allows describing the Socket API independently
of the running platform.

The IFSF implementation described below consists of two main layers (see Figure 1).
1. The IFSF lower layer performs the (LON, TCP/IP) independent services for the higher layer.

The services performed by lower layer are reception and transmission of the IFSF heartbeat
messages and the IFSF messages.

2. The IFSF higher layer can implement either an IFSF forecourt device (according to the
appropriate IFSF device standard) or an IFSF controller device. The IFSF higher-level
modules have to be implemented according to the IFSF Communication Specification [1], and
in case of the forecourt device according to the appropriate forecourt device standard (e.g.
IFSF Dispenser application [2]).

The interface between the two layers mentioned above enables transmission and reception of the
IFSF messages and the IFSF heartbeat messages. It is defined by [1].

 Page 30

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

The higher layers have been defined by an IFSF Communication Specification [1], and IFSF Forecourt
Device Standards ([2],…). The IFSF lower layer is described here, and – especially – the implementation of
the IFSF TCP/IP Gate module. The brief description of each module of the IFSF lower layer is also
presented here to make the integration of the IFSF TCP/IP Gate module to the entire system clear.

Figure 1: The complete structure of the IFSF application

Note:
The lower layer was implemented to enable not only the combination of LON and TCP/IP IFSF
device, but also the non-IFSF devices connected to the LON bus. I.e. the lower layer module offers
the communication services to IFSF forecourt device applications (LON and/or TCP/IP), IFSF
controller device(s) applications, and the general LonWorks® control applications. As the interface
to the services is the InterProcess Communication, the application modules of different vendors
can co-operate.

IFSF Message Router
It routs the IFSF heartbeats and the
IFSF messages to respective gate.

IFSF LON Gate
It performs the block cutting

of the IFSF messages.
It transfers the IFSF

heartbeats and the blocks of
IFSF messages via LON.

IFSF TCP/IP Gate
It transfers the IFSF

heartbeats and the IFSF
messages via TCP/IP.

IFSF Controller
It offers some services for remote

devices applications.

IFSF Device(s)
It implements the application of any
IFSF device (for example Dispenser).
It can be either a real HW controller

or a simulator of IFSF device.
IFSF Remote Device(s)

It manages any type of the remote
IFSF device (for example Dispenser)

accessed through the IFSF
Controiller.

IFSF Controller user
interface

It enables user to control the IFSF
station.

It means an intermodule communications in case
of the monolithic application design.
It means an interprocess communications in case
of the multi-process application design.

IFSF high (communication & application) layer
(For the communications it uses the services of the IFSF link layer. It is specified by the

corresponding IFSF standards.)

IFSF low layer
(It ofers the media independent services to higher layers. These services are the

transmition and the reception of both the IFSF data and the IFSFheartbeat messages.)

IF
SF

 c
on

tr
ol

le
r

de
vi

ce

IF
SF

 d
ev

ic
e

(fo
r

ex
am

pl
e

di
sp

en
se

r)

IFSF messages and
heartbeats

Non-IFSF (any other forecourt devices using
LonWorks®)

LON Server
It offers LonWorks® services

(including an explicit
messaging used by IFSF) to

any application.

Page: 31

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

12.3 IFSF lower layer

The modularity of the implementation (see Figure 1) allows the higher layers independence from the
actual communication media (LON, TCP/IP). It even supports the communication media
combinations.

The main part of the lower layer is the IFSF Message Router module. This module offers one and
only one interface, which is defined by the IFSF Communication Specification [1] and which allows
the transmition and the reception of both the IFSF messages and the IFSF heartbeats. This interface
is shared by the IFSF higher layer and by one or more Gate Modules.

Note:
The IFSF messages going via the interface of the IFSF Message Router module are prefixed by
one byte of the Max_Block_Length information, which is needed by the IFSF LON Gate module
to perform the block cutting.

Now there are three Gate modules defined by means of the IFSF standards:
1. The IFSF LON Gate module and
2. The IFSF TCP/IP Gate module.
3. From the point of view of the IFSF Message Router module the IFSF higher layer is also

a “Gate” module.

12.3.1 IFSF Message Router module

The IFSF Message router module (see Figure 2) uses the following rules when routing messages.
1. The IFSF heartbeat incoming to the IFSF Message Router module is routed to all connected

“Gate” modules excluding the originating one. The List of Gates (see Figure 2) is used to do
that. The IFSF heartbeat received is also used to maintain the Address Table.

2. The IFSF message incoming to the IFSF Message Router module is routed to the “Gate”
module defined in the Address Table by its LNAR. If there is no “Gate” module defined to
correspond with LNAR of the message, the message is dropped.

 Page 32

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

Note: An IFSF device which does not send IFSF heartbeats can not be accessed by IFSF
messages as the IFSF Message Router module does not know how to route them.

Figure 2: The structure of the IFSF Message Router module

12.3.2 IFSF TCP/IP Gate module

The IFSF TCP/IP Gate module transfers the IFSF messages and the IFSF heartbeats using the
TCP/IP protocol family. Actually the IFSF messages are transferred using the TCP protocol and the
IFSF heartbeats are transferred using the UDP protocol.

The TCP/UDP protocols are accessed through the Socket Application Programming Interface
(Socket API).

The implementation allows creating two slightly different architectures of the TCP connections of the
IFSF devices – see below.

IFSF Message Router

IPC Channel of the Gate

Logical Node Address (LNA)
IPC Channel of the Gate

The IFSF heartbeat is routed to
all Gates excluding the

originating one

An incomming IFSF heartbeat
(it - among others - contains an

IPC Channel of the
originating Gate and an
Originating Logical Node

Address - LNAO)

The IFSF heartbeat is used
for maintaining the
Address Table

The List of Gates is
used for routing the IFSF

heartbeats to Gates

An incomming IFSF message
(it - among others - contains a

Recipient Logical Node
Address - LNAR)

The Address Table is
used for routing the IFSF
messages to some Gate.

The LNAR of the IFSF
message is translated to an
IPC Channel of the
Gate. Note that the IFSF
message can be dropped if

there is no record
corresponding to the LNAR
in the Address Table.

The IFSF message is routed to
the appropriate Gate.

The data flow
(messaging)

The processing
dependencies

List of Gates

Address Table

Page: 33

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

The well-known port has to be defined for the UDP socket through which the IFSF heartbeat
messages are transferred. In the paragraphs below the name used for the well-known port is
HB_PORT.
12.3.3 Socket API

The Socket API was designed to unify the TCP/IP protocol family interface in Unix environment.
This API has become a standard and has been accepted by the MS Windows 9x/ME/2000.

The socket API is a set of constants, structures and functions. The most common definitions are
mentioned below in this paragraph. The description is not comprehensive, for historical and technical
details see, please [3]. For the programming reference see, please [4] or [5]. Finally, the description
below uses the native programming language of the Socket API, which is “C”.

12.3.3.1 Socket address structure

The socket API sockaddr structure varies depending on the protocol selected. The default
definition is following:

struct sockaddr {
 u_short sa_family; // a related family of protocols
 char sa_data[14]; // an address
};

The structure below is used with the TCP/IP protocols family. Note that all values should be stored
in the network byte order.

struct in_addr {
 u_long s_addr; // an IP address value
};

struct sockaddr_in {
 short sin_family; // AF_INET value
 u_short sin_port; // a port number
 struct in_addr sin_addr; // an IP address
 char sin_zero[8]; // an unused area should contain 0
};

12.3.3.2 Function socket

The socket API socket function creates a socket.

int socket(
 int af,
 int type,

 Page 34

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

 int protocol
);

Parameters:
• af – an address family specification, it should be AF_INETto work with an IP protocols,
• type – a socket type specification, it should be either SOCK_STREAM to create a TCP

socket or SOCK_DGRAM to create an UDP socket,
• protocol – a protocol to be used with the specified address family, it should be 0 to

select the default protocol.
Returned values:

If no error occurs, function socket returns a descriptor referencing the new socket.
Otherwise, a value of INVALID_SOCKET is returned.

12.3.3.3 Function bind

The socket API bind function associates a local address with a socket.

int bind(
 int s,
 const struct sockaddr *name,
 int namelen
);

Parameters:
• s – a descriptor identifying an unbound socket,
• name – an address to assign to the socket from the sockaddr structure,
• namelen – a length of the value in the name parameter.

Returned values:
If no error occurs, bind returns zero. Otherwise, a value of INVALID_SOCKET is
returned.

Note:
Providing that the AF_INET address family is used, the port number (see 12.3.3.1. Socket
address structure) value 0 instructs the bind function to select a first free port automatically.

12.3.3.4 Function listen

The socket API listen function enables a socket to the state where it is listening for an incoming
connection request(s).

int listen(
 int s,
 int backlog
);

Page: 35

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

Parameters:
• s – a descriptor identifying a bound, unconnected socket,
• backlog – maximum length of the queue of pending connections.

Returned values:
If no error occurs, listen returns zero. Otherwise, a value of INVALID_SOCKET is
returned.

12.3.3.5 Function accept

The socket API accept function can accept the incoming connection request on a socket.

int accept(
 int s,
 struct sockaddr *addr,
 int *addrlen
);

Parameters:
• s – a descriptor identifying a socket that has been placed in a listening state with the

listen function; the connection is actually made for the socket that is returned by
accept,

• addr – an optional pointer to a buffer that receives the address of the connecting entity, as
known to the communications layer; the exact format of the addr parameter is determined
by the address family that was established when the socket was created,

• addrlen – an optional pointer to an integer that contains the length of addr.
Returned values:

If no error occurs, accept returns a descriptor for the new socket. This returned value is
a handle for the socket on which the actual connection is made. Otherwise, a value of
INVALID_SOCKET is returned.

12.3.3.6 Function connect

The socket API connect function establishes a connection to a specified socket.

int connect(
 int s,
 const struct sockaddr *name,
 int namelen
);

Parameters:
• s – a descriptor identifying an unconnected socket,

 Page 36

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

• name – a name of the socket to which the connection should be established,
• addrlen – a length of name.

Returned values:
If no error occurs, connect returns zero. Otherwise, a value of INVALID_SOCKET is
returned.

12.3.3.7 Function send

The socket API send function sends data through a connected socket.

int send(
 int s,
 const char *buf,
 int len,
 int flags
);

Parameters:
• s – a descriptor identifying a connected socket,
• buf – a buffer of the outgoing data,
• len – a length of data in buf,
• flags – a flag specifying the way in which the call is made.

Returned values:
If no error occurs, send returns the total number of bytes sent, which can be less than the
number indicated by len for nonblocking sockets. Otherwise, a value of
INVALID_SOCKET is returned.

12.3.3.8 Function recv

The socket API recv function receives data from a connected socket.

int recv(
 int s,
 char *buf,
 int len,
 int flags
);

Parameters:
• s – a descriptor identifying a connected socket,
• buf – a buffer for the incomming data,
• len – a length of buf,
• flags – a flag specifying the way in which the call is made.

Page: 37

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

Returned values:
If no error occurs, recv returns the number of bytes received. If the connection has been
gracefully closed, the returned value is zero. Otherwise, a value of INVALID_SOCKET is
returned.

12.3.3.9 Function sendto

The socket API sendto function sends data on a specific destination.

int sendto(
 int s,
 const char *buf,
 int len,
 int flags,
 const struct sockaddr *to,
 int tolen
);

Parameters:
• s – a descriptor identifying a (possibly connected) socket,
• buf – a buffer of the outgoing data,
• len – a length of data in buf,
• flags – a flag specifying the way in which the call is made,
• to – pointer to the address of the target socket,
• tolen – size of the address in to.

Returned values:
If no error occurs, sendto returns the total number of bytes sent, which can be less than
the number indicated by len. Otherwise, a value of INVALID_SOCKET is returned.

12.3.3.10 Function recvfrom

The socket API recvfrom function receives datagram and stores the source address.

int recvfrom(
 int s,
 char *buf,
 int len,
 int flags
 struct sockaddr *from,
 int *fromlen
);

Parameters:
• s – a descriptor identifying a bound socket,

 Page 38

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

• buf – a buffer for the incomming data,
• len – a length of buf,
• flags – a flag specifying the way in which the call is made,
• from – optional pointer to a buffer that will hold the source address upon return,
• fromlen – optional pointer to the size of the from buffer.

Returned values:
If no error occurs, recvfrom returns the number of bytes received. Otherwise, a value of
INVALID_SOCKET is returned.

Page: 39

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

12.3.4 TCP/IP Connection Architectures

The implementation enables using the two different architectures for the TCP protocol (used for the
transfer of the IFSF messages), which is connection oriented – see Figure 3.

Figure 3: The two possible architectures of the TCP connections created among IFSF
devices

The basic part of the TCP/IP Gate module is an ADDRESS TABLE. The address table is used to
translate the LNAR of the outgoing IFSF message to the TCP connection. The structure of the
address table varies depending on the architecture.

12.3.4.1 Single TCP connection between two hosts

In this architecture the only one TCP connection exists between two hosts (regardless the number of
the IFSF devices located on each host). Consequently, the address table has to be more complex in

TCP module

IFSF device 1
(e.g. dispenser 1)

IFSF device 2
(e.g. CRIND)

IFSF device n
(...)

TCP socket 1 TCP socket 2

The server device

The client device

TCP socket

CD 1
The client device

TCP socket

CD 2

...

IFSF device 1
(e.g. dispenser 1)

TCP socket
1

IFSF device 2
(e.g. CRIND)

TCP socket
1

IFSF device n
(...)

TCP socket
1

The server device

The client device

TCP
socket 1

CD 1

TCP
socket 2

TCP
socket n

The client device

TCP
socket 1

CD 2

TCP
socket 2

TCP
socket n

TCP socket
2

TCP socket
2

TCP socket
2

...

Single TCP connection between two hosts Multiple TCP connections between two hosts

TCP CONNECTIONS
IP ADDRESS

PORT

TCP SOCKET FD

TCP CONNECTION
IFSF ADDRESS

IFSF DEVICES

Address table structure (more complex)

Block diagram Block diagram

TCP CONNECTIONS

IP ADDRESS
PORT

TCP SOCKET FD

IFSF ADDRESS

Address table structure (simple)

IPC

 Page 40

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

this case. In fact, the Address Table structure is a simple relational database consisting of the two
tables:

• The IFSF DEVICES table and
• The IFSF TCP CONNECTIONS table.

The TCP CONNECTIONS table fields (see the left side of the Figure 3):
1. IP ADDRESS – contains an IP address of the peer host.
2. PORT – contains the port number of the application running on the peer host.
3. TCP SOCKET FD – contains the file descriptor (handle) of the local TCP socket

connected to the peer host.

The IFSF DEVICES table fields (see the left side of the Figure 3):
1. TCP CONNECTION – it is the reference to the TCP connection, which is to be used to

transfer the IFSF messages for particular IFSF recipient device.
2. IFSF ADDRESS – contains the IFSF address (subnet, node) of the particular IFSF

recipient device.

12.3.4.2 Multiple TCP connections between two hosts

The structure of the address table in this architecture is quite simple, as there exists a dedicated TCP
connection between each pair of the IFSF devices, which need to transfer the IFSF messages to
each other.

The TCP CONNECTION table fields (see the right side of the Figure 3):
1. IP ADDRESS – contains an IP address of the peer host.
2. PORT – contains the port of particular recipient IFSF device application running on the peer

host.
3. TCP SOCKET FD – contains the file descriptor (handle) of the local TCP socket

connected to the recipient IFSF device application running on the peer host.
4. IFSF ADDRESS – contains the IFSF address (subnet, node) of the particular IFSF

recipient device.

12.3.5 TCP/IP overhead of IFSF messages

To assure the IFSF functionality using the TCP/IP protocols the standard IFSF heartbeat message
has to be extended by aditional data (see Figure 4). All the data are transferred in the network byte
order.

Page: 41

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

Figure 4: The TCP/IP overhead of the IFSF heartbeat

12.3.5.1 TCP/IP overhead of IFSF heartbeat

The IFSF heartbeat over TCP/IP is a fixed length message of the 10 bytes, which consists of two
parts (see Figure 4).

The first part is the TCP/IP overhead:
1. HOST_IP – it is the IP address of the host where the originator IFSF application is

running.PORT – it contains the port number of the SOCKET_SERVER TCP Socket,
where the IFSF device TCP/IP module is listening for the connection requests – see
listen function above.

The second part is inherited from the valid IFSF Communication Specification [1]:
1. LNAO – it is the originator IFSF Subnet, Node.
2. IFSF_MC – it is the IFSF message code.STATUS – it is the IFSF device status.

IFSF Heartbeat

HOST_IP 4 bytes

PORT 2 bytes

LNAO 2 bytes

IFSF_MC 1 byte

STATUS 1 byte

 Page 42

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

12.3.6 TCP/IP Gate module
The structure of the IFSF TCP/IP Gate module (see Figure 5) is built upon the first TCP/IP
architecture (see the paragraph 12.3.4.1) as it consumes less system resources.

Figure 5: The detailed structure of the IFSF TCP/IP Gate module

The IFSF TCP/IP Gate module processes the following events:
1. The outgoing IFSF heartbeat message (to be sent to the TCP/IP).
2. The incomming IFSF heartbeat message (received from the TCP/IP).
3. The outgoing IFSF message (to be sent to the TCP/IP).
4. The incomming IFSF message (received from the TCP/IP).
5. The connection requests (received from the TCP/IP).

The following chapters describe how each of the events is processed.

12.3.6.1 Outgoing IFSF heartbeat message

The IFSF heartbeat to be
sent via the TCP/IP is

simply transfered using the
UDP Socket.

The IFSF message received
from TCP/IP is simply
forwarded to the IFSF
Message Router

module.

TCP/IP Protocols accesed via the Socket API

IFSF TCP/IP Gate module

An IFSF heartbeat
to be sent via the

TCP/IP

The IFSF heartbeat
incomming from the

TCP/IP is used to maintain
the ADDRESS TABLE (add
a new/refresh the existing
TCP CONNECTION/IFSF
DEVICE - excluding the
TCP SOCKET FDvalue
which is not known upon
the reception of the IFSF
heartbeat from the UDP

Socket).

An IFSF heartbeat
received from the

TCP/IP

Incomming connection
requests are used to

maintain the ADDRESS
TABLE (add a new TCP

connection including
the TCP SOCKET FD

value).

IP ADDRESS

PORT
TCP SOCKET FD

TCP CONNECTION
IFSF ADDRESS (LNAO)

ADDRESS TABLE

IFSF DEVICES

TCP CONNECTIONS

SOCKET_HB.
An UDP socket using the
well known HB_PORT
number. It is created at
the module initialization

SOCKET_SERVER.
Value of SERVER_PORT is
assigned automatically. It is

created at the module
initialization

Connected TCP Sockets.
They are created either by accepting the

connection requests by the SOCKET_SERVER
or by connecting to the IP/Portaddress upon

sending the IFSF message.

An IFSF message
received from the

TCP/IP

An IFSF message to
be sent via the

TCP/IP

The IFSF message is sent
using respective

Connected TCP
Socket. The socket is
located in the ADDRESS
TABLE (in case of no TCP
Connection found the

IFSF messageis dropped).
If the TCP SOCKET FD
value is -1 (unconnected)
then new connection is

created.

The data flow
(messaging)

The processing
dependencies

IFSF messages and
heartbeats to/fromthe
IFSF MessageRouter

IFSF messages and
heartbeats to/fromthe
IFSF MessageRouter

Page: 43

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

The outgoing IFSF heartbeat message is, firstly, extended by the TCP/IP overhead (see paragraph
TCP/IP overhead of IFSF heartbeat) to create the datagram. The datagram is then simply broadcast
using the SOCKET_HB UDP socket (which is bound to well known HB_PORT).

12.3.6.2 Incomming IFSF heartbeat message

Every datagram received by the SOCKET_HB UDP socket consists of two parts:
• The TCP/IP overhead (see 12.3.5.1 TCP/IP overhead of IFSF heartbeat) and
• the IFSF heartbeat message.

The following information can be extracted from each datagram:
• The IP ADDRESS of the datagram originator,
• the PORT of the TCP server (listening for connection requests) socket of the datagram

originator and
• the LNAO.

All of these parts of information are used to update the ADDRESS TABLE (i.e. the tables
TCP CONNECTIONS, IFSF DEVICES).
The IFSF heartbeat message is then forwarded to the IFSF Message Router module.

12.3.6.3 Outgoing IFSF message

The outgoing IFSF message is processed in the following steps:
1. The LNAR of the IFSF message is used to locate the record in the IFSF DEVICES

table. If there is no such record then the IFSF message is dropped (and possibly reported
as undelivered).

2. The TCP CONNECTION field of the IFSF DEVICES table record is used to locate
the record in the TCP_CONNECTIONS table.

3. The TCP SOCKET FD field of the TCP CONNECTIONS table record is explored. If
the field does not contain the valid descriptor of the connected TCP socket (i.e. the
connection is not active yet) then a new connection is created (using the IP ADDRESS
and the PORT fields of the TCP CONNECTIONS table record) and stored in the field. In
case the creation of the connection fails the IFSF message is dropped (and possibly
reported as undelivered).

12.3.6.4 Incomming IFSF message

The IFSF message received from the connected TCP socket is simply forwarded to the IFSF
Message Router module.

The following information can be extracted from each IFSF message incomming from TCP/IP:
• The TCP SOCKET FD and
• the LNAO.

 Page 44

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

Both of those parts of information are used to update the ADDRESS TABLE (TCP
CONNECTIONS, IFSF DEVICES) as necessary.

12.3.6.5 Connection request

Each incomming connection request (received by the SOCKET_SERVER) is accepted and used to
update the TCP CONNECTIONS table.

Page: 45

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

12.4 Example of the Startup
The following table shows the startup example of the IFSF via TCP/IP devices.

Controller device (CD) Dispenser
Verbal description Socket API TCP/IP Verbal description Socket API TCP/IP
The IFSF CD starts up. 7.1
- In case of using DHCP
for IP address assignment
the startup of the DHCP
client is performed and it
waits for the IP address
dynamic assignment. In
case of using the constant
IP address the DHCP client
will not be started and IP
address is known.

7.2, 1.

- IFSF TCP/IP Gate Module
(GM below) creates the
TCP CONNECTIONS/IFSF
DEVICES address
structures. The structures
are empty now.
- GM creates the
SOCKET_HB UDP socket
on the well-known
HB_PORT for the
reception/transmission of
the HBs.

socket()
bind()

7.2, 2.

- GM creates the
SOCKET_SERVER TCP
socket on whatever port
number and starts listening
to connection requests.

socket()
bind()
listen()

- GM reads the values of
the own IP address from
local host and of the
SERVER_PORT from the
SOCKET_SERVER.

7.2, 3., i.
and iii.

- CD starts the
transmission of the HBs.
GM sends HBs via
SOCKET_HB to the
broadcast address
<network
broadcast>:HB_PORT.
Each HB contains the IP
address and SERVER_PORT
port number.

sendto() 7.2, 3., iv.

The IFSF dispenser is off
now.

 Page 46

June 2004 IFSF - STANDARD FORECOURT PROTOCOL IFSF_FP2_1.012
COMMUNICATION SPECIFICATION

CD tries to start the
communication with the
Dispenser repeatedly.
- CD knows LNA
addresses of the IFSF
devices, which are to be
controlled – implicit range
of LNA (subnet, node)
addresses or a Station
Map. It includes the
Dispenser address.
- GM looks to the TCP
CONNECTIONS/IFSF
DEVICES structures to find
out IP, PORT address of
the Dispenser.
- The structures are empty
till now so it is not
possible to connect to
dispenser.

The IFSF dispenser is still
off.

The IFSF Dispenser starts
up.

7.1

- In case of using DHCP
for IP address assigment
the startup of the DHCP
client is performed and it
waits for the IP address
dynamic assignment. In
case of using the constant
IP address the DHCP client
will not be started and IP
address is known.

7.2, 1.

- IFSF TCP/IP Gate
Module (GM below)
creates the TCP
CONNECTIONS/IFSF
DEVICES address
structures. The structures
are empty now.
- GM creates the
SOCKET_HB UDP socket
on the well-known
HB_PORT for the
reception/transmission of
the HBs.

socket()
bind()

7.2, 2.

- GM creates the
SOCKET_SERVER TCP
socket on whatever port
number and starts
listening to connection
requests.

socket()
bind()
listen()

Page: 47

IFSF_FP2_1.01 IFSF - STANDARD FORECOURT PROTOCOL June 2004
COMMUNICATION SPECIFICATION

- GM reads the values of
the own IP address from
local host and of the
SERVER_PORT from the
SOCKET_SERVER.

7.2, 3., i.
and iii.

- Dispenser starts the
transmission of the HBs.
GM sends HBs via
SOCKET_HB to the
broadcast address
<network
broadcast>:HB_PORT.
Each HB contains the IP
address and
SERVER_PORT port
number.

sendto() 7.2., 3., iv.

GM of the CD receives the
HB.

recvfrom() 7.2, 3., iv. GM of the Dispenser
receives the HB.

recvfrom() 7.2, 3., iv.

- GM extracts the IP
address, port and LNAO
from the HB.

- GM extracts the IP
address, port and LNAO
from the HB.

- GM updates its TCP
CONNECTIONS/IFSF
DEVICES structures.

7.2, 3., iii. - GM updates its TCP
CONNECTIONS/IFSF
DEVICES structures.

7.2, 3., iii.

CD tries to start the
communication with the
Dispenser repeatedly.
- GM looks to its TCP
CONNECTIONS/IFSF
DEVICES structures to find
out IP, PORT address of
the Dispenser.
- Structures are not empty
now so the GM knows the
IP, PORT address of the
Dispenser.
- GM creates new TCP
socket (on whatever port)
and connects it to the IP,
PORT of the Dispenser.

socket()
bind()
connect()

7.2, 3., ii. GM received (via the
SOCKET_SERVER) and
accepted the connection
request sent from CD.

accept()

- The new socket has been
created. It represents the
endpoint of the
connection with CD.

7.2, 3., ii.- The connection between
the Dispenser and the CD
is established now. All the
next data communication
(the IFSF messages) will be
performed according to the
existing application
standards ([1], [2], …).

send()
recv()

7.3.2

- The connection between
the Dispenser and the CD
is established now.

send()
recv()

7.3.2

