MII—P S

TECHNOLOGIES

MIPS32 4KE™ Processor Core Family Software
User’'s Manual

Document Number: MD00103
Revision 2.02
January 5, 2004

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Copyright © 2000-2003 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies™). Any
copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing
by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word fc
is subject to use and distribution restrictions that are independent of and supplemental to any and all confidel
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE
DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSIC
OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function
or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this infori
or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherw
including but not limited to the implied warranties of merchantability or fithess for a particular purpose, are exc
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third ¢
furnishing of this document does not give recipient any license to any intellectual property rights, including any
rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, direct
indirectly, in violation of the law of any country or international law, regulation, treaty, Executive Order, statute
amendments or supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or relee
information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer sc
commercial computer software documentation or other commercial items. If the user of this information, or any
documentation of any kind, including related technical data or manuals, is an agency, department, or other ent
United States government ("Government"), the use, duplication, reproduction, release, modification, disclosu
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federa
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 2.
for military agencies. The use of this information by the Government is further restricted in accordance with th
of the license agreement(s) and/or applicable contract terms and conditions covering this information from M
Technologies or an authorized third party.

MIPS, MIPS16, QuickMIPS, R3000 and R5000 are among the registered trademarks of MIPS Technologies, Ir
United States and other countries, and MIPS16e, MIPS32, MIPS64, MIPS-3D, MIPS-Based, MIPS |, MIPS I
I, MIPS IV, MIPS V, MIPS RISC Certified Power logo, MIPSsim, MIPS Technologies logo, R4000, 4K, 4Kc, ¢
4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kf, 24Kc, 25Kf, ASMACR
ATLAS, At the Core of the User Experience., BusBridge, CorExtend, CoreFPGA, CorelV, EC, FastMIPS, JAL
MALTA, MDMX, MGB, PDtrace, The Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it and YAMON |
among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.10, Built with tags: 2B EMERALD MIPS32 PROC

MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 Introduction to the MIPS32™ 4AKE™ Processor Core Family ... eeeeas 1
1.1 The 4KEC™, 4KEM™, @Nnd AKEP™ COIESuuutitiiiiiiiieaeiaa ittt et e e e e e e s s sttt ee e e e e e e e e s s s s s s 1
1.2 FRAIUIES ..ottt e e et e et e e e e e e s bbb e b e e et e e s maEeeeae s e e e e e re e e e e e 2
1.3 4KE™ Core BIOCK DIAQIamlcccoiiiiiiiiiiiiiieieeetei s s s s s e e e e e e e e e e e e e e e e e et et eeeeesetesatess s mnmmmmmmmmmmmeseessssesssnsnnes 4

1.3.1 Required LOGIC BIOCKSeiiiiiiiiiiiee ettt e e e e ettt s et et e e e e e e as 5
1.3.2 OptioNal LOGIC BIOCKSeeiiieieeiiiiiit ettt ettt e e e e e e e e s meeeeeeeaaman s e e snnbeeeeees 8
Chapter 2 Pipeling Of the AKET™ COFEccoiiiiiiiei ittt ettt e e e et e e e ek e e e s e ameeeeaebeeeeeeannbeeeeeannrne 13
P I o T= [T Lo TS = T [PPSR 13
2.1.1 | Stage: INSIUCHION FEICN ...o.eiiiiie ittt e e e s s e e s nnneeeas 15
P I S v To [=T ol U o] o TR 15
2.1.3 M Stage: MEMOIY FEICN ..ottt et e e st e e e s senre e e e e e anbreeae e 15
N NS - To [1o | IO PP P PP PUPRPPR 15
2. 1.5 W Stage: WHEEDACKeeiiiiiiiiie ettt ettt e e e e e e e e amne e e e e aanreeeas 16
2.2 INSErUCHION CACNE IMISS ...ttt ettt e e skt e e s a b et e mnmmeaemmmnee et e e s asbaeeeesaannneeas 16
2.3 Dat@ CACRE MISS ...ttt e ket e ekt ee e e et e e e s b e amneeeeenn s b e e e e e e e anb e e e e e e ane 16
2.4 MUIIPIY/DIVIAE OPEIALIONS ...cuitieieeiiiiiie ettt ettt et e e skttt e s s bbb et e e s s br e e e e snnne e e s aasbbeeeesannnneeens 17
2.5 MDU Pipeline (AKEC™ and 4KEM™ COIES) ...ciiiiitiiiieiiiiiieeeiitieeee ettt e e sttt e e e s sibe e e e e s sbbe e e« e s 17
2.5.1 32x16 Multiply (AKEC™ & AKEM™ COIES) ...ttiiiiuiriiieiiiiiiieeaiiietee sttt e s st e e s sibre e e e s snnbee e esnneees 20
2.5.2 32x32 Multiply (AKEC ™ & AKEM™ COMES) ...eiiiiuuriiieiiiiiitaeaiiieteesaitre e e s st e e s aibre e e s s snnbeeeesannees 20
2.5.3 Divide (AKEC™ & AKEM™ COIES) ..iiiutiitieiitiieeeeiaititee e s st te e s atbs e e e e s ssbee e e e s abbe e e e e s anbee e e e s s ¢ 21
2.6 MDU PipeliNg (AKEP™ COI) ..eiiiiiitiiieei ittt e ettt e ettt e e ekttt e e e st bt e e s ettt e e e e aabb e e e e s e s emmeeeeeeamsbeeeeeennnes 22
2.6.1 MUIIPIY (AKEDP™ COME) .eeeiiiiittiieeee ittt e ettt e ettt e e e ettt e e e sttt e e s st b e e e e e s ek be e e e e e aabbeeaessnrneeeeaanbrneeenas 23

2.6.2 Multiply Accumulate (4KEp™ Core)
2.6.3 Divide (4KEp™ Core)

2.7 BranCh DEIAYeeeeiiiiiiie ettt s
2.8 DAt BYPASSING .ueeeeieeiitietee ittt e ettt e ettt h e s et e e b et e oo b e et e e e b b e et e e Rn e e e e e ne e e e e e nnre e e e s annreee s
P S T I I - To [=1 - YO PPPRURPR
2.8.2 Move from HI/LO and CPO DEIAYcoiiiiiiiiiiiiiiiiiiiiee ettt e e e e e et ssemmmmmmmmmmnn e 26
2.9 COProCESSON 2 INSIIUCTIONS ...iiitiieieiittet e e ettt e e ettt e e ettt e e e e st e e e e skt e e e e e e st et e e+ —— 1t e 222 nt e 26
2.10 Interlock Handling
P2 RS 11 I O o] T 11T o - TP O TP OPPPPPON
A I [13 0 o 1o g T [(=T o Tod & PP UPUPPR 29
P o = .2 T (o PSPPSR PPPRURPR 30
2.13. 1 TYPES Of HAZAIAS .ooeiiiiiiiiit ettt e et e e e e e e s s e st b et s e mmmms e e e e e e e e es 30
2.13.2 INSIFUCHION LISTING ..uteieiieiitie ettt ettt e e ettt e o4 e ae et e+ £ 524441t e s 32
2.13.3 ENMINALING HAZAITSeeiiiiiiiiiieiiiie ettt ettt e e sttt —— 1411t 33
Chapter 3 Memory Management Of the 4KE™ COrecooiioiiiiiiiiiiiiee e e e e e s e e e e s mmnnne e e e s 34
I [o To (3T i o T o N PO PO 34
1TV, T To [T o1 @] o 1T - 4o] o SRR 35
I VAT (0 F= VY, 1T g o VRS T= o o 0 =T a1 £ 36
K U L= g /[To 1= PO PPPROPPPPR 38
e B (=T 1 1 1= 1Y/ o T L= PRSP 39
G B 1= o 18 o 1/ oY [P 41
3.3 Translation Lookaside Buffer (AKEC™ COre ONIY) ...uuuuiiiiiiieeiiie e e e s s ee e e smmmmmmenennnme o 43
1 204 BN o T o | A I 10 PSPPI
3.3.2 Instruction TLB
TR IR B - = I I = S PO PO PP PPPPPPPPTPRN
3.4 Virtual-to-Physical Address Translation (AKEC™ COr€)uiiiieeeiiiiiiiiiiiierieee e e e s seisteeee e e e e e cmmmmmmmmmnnes 46
3.4.1 Hits, Misses, and MUItiple MAtChescccuuiiiiiiiiiie e e e e e e e e seeee s nnnes 48

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

I |V (=T 0 0[] YA S] o 1= To] PP P ORI PTPPPPPPPRPTPRTN 49

3.4.3 TLB INSIIUCLIONS eeiiiiiiitiiie ettt ettt e sttt e e sk et e e s e s b e et e e sas s mmmmnnemeamm e ee e e s annneeee s 50

3.5 Fixed Mapping MMU (AKEM™ & AKEP™ COIBS) ..eetttieiiiiiiiiiiiiiieetteea e e e e e s aitatteeeeeaaa e e e e s aaannsbe s e s o 51

3.6 SYSEM CONLIOI COPIOCESSOLeiiiiiiiieeiiei ittt e et e e e e e e e et ettt e et e e e e e e e s s s abbbbe et e e eeeeeaaeaasaaannnresbeeeeeeaeaeaaann 53

Chapter 4 Exceptions and Interrupts in the 4KE™ COrEcoiiiiiiiiiiiiiiee ittt e mmmmeee e s 54

o I Sy Cot=T o] (T g I @] o 11T] o I OO PTP TP PPPN 54

4.2 Exception Priority .

G B g1 =T U] o] £ OO PP PPPPPP
R I 1 =T ¢ 1] o100, T o [O PO OO OUPRPPP
4.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

4.4 GPR ShadOw REQISIEIS ...cceiiiiiiiiiiiiiiee ettt et e e et e e e e neeane

4.5 EXCeption VECIOr LOCALIONSeiiiiiiiiiieeiitiiiee ettt e ettt e et e et e e st e e e e aee e

4.6 General EXCepLion PrOCESSING ...cciiiiiiiiieiiiiiiie ittt ettt e e e eean

4.7 Debug EXCEPLION PrOCESSING vieiiiiiitiiiee ittt e ettt e ettt e e ettt e e e e et b e e e e st be e e e e e abre e e e e aanreeeeesaanbeeeeeannes

4.8 Exceptions
4.8.1 RESEE EXCEOPLION .ttt e et e e e e s e e s bbbttt et et e e e e smmmmmemeaeeeete bt e eeeaeaeee e s
4.8.2 SOft RESEE EXCEPLION .ottt ettt e e e e e e s e e s bbb e e e ee s mmmmmm e neebe e
4.8.3 Debug Single Step EXCEPLION u ittt e et oo e
4.8.4 Debug INLErrupt EXCEPLIONoiiiiiiiiiee ittt e et mmeeeeemmn e e e e e e nnreas
4.8.5 Non-Maskable Interrupt (NMI) EXCEPLION ...ocoiuiiiiieiiiiiie ettt a e s ennnee e
4.8.6 Machine Check EXCeption (AKEC™ COME)uuiiiiiiieieiiiaiiiiiie et et e e e e e s ettt e e e e e e e e s s e s s eememnnnmnn 74
4.8.7 INTEITUPE EXCEPLION ..eeiieiiiiiie ettt ettt et e e e e e e s et b et e et e e ee e e e e s s ammeeneeeeeeesseeeeeaaeeesssanns 74
4.8.8 Debug INStruction Break EXCEPLIONccuueiiiiiiiiiieeiiiiiee ettt e st e e et e e e s snneeeessannneeesanes 74
4.8.9 Watch Exception — Instruction Fetch or Data ACCESScoccuiiieiiiiiieeeiiee et emeeeas 75....
4.8.10 Address Error Exception — Instruction Fetch/Data ACCESSccoicuueieeiiiiiiieeiiiiiiee e e e 5.
4.8.11 TLB Refill Exception — Instruction Fetch or Data Access (4KEC™ core only)ccccovvcveeeeiiiiieeenennnnn, 76
4.8.12 TLB Invalid Exception — Instruction Fetch or Data Access (AKEC™ core only)ccccooviieeeiiiiineenns 77
4.8.13 Bus Error Exception — Instruction Fetch or Data ACCESSoccvvvieeiiiiiiieeeiiiiiee e niieee e eeenes 77......
4.8.14 Debug Software Breakpoint EXCEPLIONcoocuiiiiiiiiiiieiiiiee e s (O
4.8.15 Execution Exception — System Callcooiiiiiiiiiiie e e mmeee e 78
4.8.16 Execution Exception — Breakpointeeeiiiiiiiioiiiiiicee e e e e e e e 78
4.8.17 Execution Exception — Reserved INStrUCHIONcooviiiiiiiiiiiiiiee e semeeeeeeee D
4.8.18 Execution Exception — Coprocessor Unusable ... eeeeeeee d e
4.8.19 Execution Exception — Coprocessor 2 EXCEPLIONc..uviieiiiiiiiei i e 79...
4.8.20 Execution Exception — Implementation-Specific 1 eXCeptionccccccveiiiiiiiieiiiinieeiiiieeeemn 79.........

4.8.21 Execution Exception — Implementation Specific 2 exception
4.8.22 Execution Exception — Integer OVEIMIOWoooiiiiiiiiiiic e i
4.8.23 EXECULION EXCEPLION —— TTAP .iiiiiiiiiiee ittt ettt ettt e et e e et e e s e eemmneeas
4.8.24 Debug Data Break EXCEPLIONocoiiiiiiiiiiiie ettt e e e e e e e mmmeemeeeemnn e e
4.8.25 TLB Modified Exception — Data Access (4KEc™ core only)
4.9 Exception Handling and Servicing Flowcharts

Chapter 5 CPO Registers Of the 4KE™ COIEccccciiiieiiieiee e e e s ee st e e e e e e e s s asab e e e e e e s smmmmmmmmmeeneemr e e e e e e s e sanns
5.1 CPO REQISIEr SUMIMAIY ...iiieiiiieiieeieeeeeesss sttt teeeeeeeeeesssssaasastasaeeeeeeaeeesssaansssseeeees ammmmmmmmeemeeneeeeeeeesessnnnsnes
5.2 CPO RegiSter DESCHPLIONS eiiiiiiiiiiiiee e e e s e e e e e e e e s s r e e e e e e e e e s e e snene e e s o
5.2.1IndexRegister (CPO Register 0, Select 0)
5.2.2RandomRegister (CP0 Register 1, SEIEC 0)ueviiiiieeiiiiiiiiiieeie e e e e e e e 9........
5.2.3EntryLoOandEntryLol Registers (CPO Registers 2 and 3, SeleCt 0)ccccvvvviieieeeiiiiiiiiieeee e e e 95
5.2.4ContextRegister (CPO Register 4, SeleCt 0)cccuuiiiiiiiiiee e r e e e e e e nnnnes 97.......
5.2.5PageMaskRegister (CPO Register 5, SEIECt 0) ..vuviiiiiieiiiiiiiiiiee e a8...........
5.2.6PageGrainRegister (CPO RegiSter 5, SEIECE 1) ...ccoiiiiiiiiiiieiieec e e e e s e e e e e e e e s sennnnnees 100
5.2.7Wired Register (CPO Register 6, SElEeCt 0)ccoceiiiiiiiiiiie e e e e e e e 101....
5.2.8HWRENaRegister (CPO Register 7, SEIECt 0)ccccuuiiiiiiiiiee e r e e e e e 02......... 1
5.2.9BadVAddrRegister (CPO Register 8, SEIECt Q)uuiiiiiiieeiiiiiie e T 10
5.2.10CountRegister (CP0O Register 9, SEleCt 0)cccoiiiiiiiiiiiiieiiee e e e e e e e 104......
ii MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2.11EntryHi Register (CP0O Register 10, SEIECt 0)uuuuuiiiiiiiiiiii i 05......... 1

5.2.12CompareRegister (CPO Register 11, SEIECTE 0)eeiiiiiiiiiiiiiiieie et e e e 106
5.2.13StatusRegister (CPO Register 12, SeleCt 0)uuuiiiiiiiiiiii e 107.......
5.2.14IntCtl Register (CPO Register 12, SElECE 1) ..uuuuuuiiiiiii i 112.......
5.2.15SRSCtRegister (CPO Register 12, SEIECL 2)ccoeiiiiiiieieieeeeeeeee e 114.........
5.2.16SRSMafRegister (CPO Register 12, SEIECE 3) ...couuiiiiiiiiiiiieee e AT 11
5.2.17CauseRegister (CP0 Register 13, SElECt 0) ...uuuuuiiiiiiiiiii i 118.......
5.2.18 Exception Program Counter (CPO Register 14, SeleCt 0)c..ueeeieiiiiiiiiiiiiiiiieeee e s 122......
5.2.19 Processor ldentification (CPO Register 15, SeleCt 0)cccoeeeeiieieiiiiiiieeeeeee e 123
5.2.20EBaseRegister (CPO Register 15, SEIECE 1) ...ovviiiiiiiiiiiiiiiiiiiiei e e e 124........
5.2.21ConfigRegister (CPO Register 16, SeleCt 0)oovvviiiiiiiiiiiiiiiiiiie e eeee e e 125........
5.2.22ConfiglRegister (CPO Register 16, SEIECE 1)uuuuiiiiiiiiiiii i 27......... 1
5.2.23Config2Register (CP0O Register 16, SEIECE 2)uuuuuiiiiiiiiiie e 29......... 1
5.2.24Config3Register (CPO Register 16, SEIECE 3) ...uuuuuiiiiiiiiiii e 30......... 1
5.2.25 Load Linked Address (CPO Register 17, SeleCt 0)coovviiiiiiiiiiiiiiiiicse s s e e e e e oo 132.
5.2.26WatchLoRegister (CPO Register 18, SEIECE 0-7) .ccoiiiiiiii i e e e e e e e e e e e e 133
5.2.27WatchHiRegister (CPO Register 19, SeIeCt 0-7) ..ccccoiiiiiii i a e e e e e e e e 134
5.2.28DebugRegister (CP0 Register 23, SEIECL 0)ovvvvviriiiiiiiiiiiiiiie i e e e e e e e e e e e e e 136........
5.2.29Trace ControlRegister (CPO Register 23, SEIECE 1) ..cccoiiiiiiii e a e 139
5.2.30Trace ControlZRegister (CPO Register 23, SEIECE 2) ...ovvvvvviiiiiiiiiiiie i 142
5.2.31User Trace DatadRegister (CPO Register 23, SEIECT 3) ...ovvvviiiiiiiiiiiiiiiis e 144
5.2.32TraceBPCRegister (CP0 RegiSter 23, SEIECE 4) ..vuuuuuiiiii i e e e e 145
5.2.33 Debug Exception Program Counter Register (CPO Register 24, SeleCt 0)ccccccveieeeriiiiiiiiiiiieeeeeeeene, 146
5.2.34ErrCtl Register (CPO Register 26, SeleCt 0)oovvvvviiiiiiiiiiiiii i 147........
5.2.35TagLoRegister (CPO Register 28, SEleCt 0)oovvvviiiiiiiiiiiiiiiii e 148........
5.2.36DatalLo Register (CPO Register 28, SEIECE 1) ...uuuuuiiiiiiiiii i 49......... 1
5.2.37ErrorEPC (CPO Register 30, SEIECL 0)ooiiiiiiiiiiieeeeeeeee s e e e e e e e e e e e e e e e e e e eeaaaaaee 150.........
5.2.38DeSaveRegister (CPO Register 31, SElECt 0) ..uvuuuriiiiiii i Bl...... 1

Chapter 6 Hardware and Software Initialization of the 4KE™ COrecccceeviiiiiieiiiiiiie e s s LD
6.1 Hardware-Initialized Processor State
6.1.1 COPrOCESSOr O STALEeeiiiiiiiiiiiee e ittt e et e e e e e s s e e e e e e e e eesmnmneeeeees s seenrenee s
6.1.2 TLB Initialization (4KEc™ core only)
6.1.3 BUS State MaACKINESoooii e e e e e e e e et e e 154
6.1.4 Static Configuration INPULSuuiiiiiiiii e re e e e e e e e e e s b e s emmmmmmmmmms e e e 154
B.1.5 FEICN AGAIESS ...ttt ettt e e e s b bt e e e e skt e et e e s s st neeeemmenemet e e e s anbreeeeeann 154
6.2 Software Initialized ProCeSSOr STALEcoiiiiiiiiiiiiiiieii e e e ememmmmmm e 154
B.2.1 REGISIET FHlE ...ttt e e et e e 4t ¢ cm— 1221
6.2.2 TLB (4KEc™ Core Only)
LR N - Tod 1T OO PP PPPRRPPRR
6.2.4 COPrOCESSON O STALEeeiiiiiiiiiieieee ettt e e e e e e s e e e e e e e e sesmmmne e e e e es s saenreree s

Chapter 7 Caches of the 4KE™ Core
A R 0= Tod o =T @0 o 18T = 1 o] o =SSP
A A O Yot TN o (] (o Tod o] PP TP PR

7.2.1 CaChe OrganiZationNcccoiiccuiiieiiieee e e e e e se s s r e e ee e e e e s s s st reeereaeeeeesesansse s enmmmmmmm——————nnsteeneees
7.2.2 Cacheability AfIHDULESeiiiiieiiiiie e e e e e e s e e e e e e e ssnnnnnrerreeeeeeees
7.2.3 REPIACEMENT POLICY .oeiiiiieiii ittt e e e e e e et e e e e e e e e s e e s e s e e e e e snenensereeeaeeeeas
2 VA1 [= 1 A 1= T3 1 o SRR
RS T 151 (0o (T o O Vo T PP PRRR
A BT - O T oL PRSPPSO
7.5 CACHE INSIIUCTION .utiiieiiiiiiee ettt ettt ettt e e e sttt e e e s st e e e s s bt e e e e e snbbeee s mneean
7.6 Software Cache TESHNG ...uveeeiiiiee i e e e e e e e e e e e
7.6.1 I-Cache/D-cache Tag Arrays
7.6.2 1-CaChe DAt@ AITAY ...cccoiiiicieiieeie e e e et r e e e e e e e s s s e e e e e e e e e e e s e e nnneeseeees mom
7.6.3 1-CACh@ WS AITAY ...uvutiiiiiiiieeeiieie ittt e et e e e e e e s s st ae e et e e eeeesssssanaaeteeeeeeeeeee e e smm————— 111 e oo

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 iii
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.6.4 D-CaChe Data AITAYcoooiiiiiiiieiiieitti e a st e s et e e e e e e e e e e e teee ettt eeeeaaaaeaetetataaa s s eeeenenenaeennssssnsnnnnns 165

7.6.5 D-CACNE WS AITAY ...ciiiiii i it et et et et e eetetete s et mmmmmmmmmmmmmm e e e e e e eeeaes 165
7.7 MemOrY CONEIENCE ISSUEScciiiiiiiieiiiiiiitiiit e esas s et e e e e e e e aeaeaaeeee et et e eeaasetetseassssns s s smmmmmmmmmmmmemmsessssssssrnnes 166
Chapter 8 Power Management 0f the 4KE™ COrEuuuiiiiiiiieiiiiiiiiieiee ettt e e e e mmmmmemeeeennnn e 168
8.1 Register-Controlled POWEr ManNAgGEMENTuviiiiiiiiiieiiiiiite ettt e st e st e e s st ssmneeeesesmneeessnees 168

8.2 Instruction-Controlled Power Managementccooiiiiiiieiiiiiiieeeiiiieeesstieeeesssnneeeeessne e oo o<« LO9
Chapter 9 EJTAG Debug Support in the 4KE™ COrEcocccuiiiiiireiee e e e sesieeee et e e e e e s s s sssrnraeeeeaesessnensnnnnneees 171
LS IR 1= o TH o [@0 g (o] I == 0] (=T SRR 172
9.2 Hardware Bre@KPOINTSciieieeeiiiiiiiiiiiiiieeeeeeeeesesssetaeteeeeeeeeaeeesssasssesaeeeereaeeeeessaannnannneeeeeessssansnnsnnnnnes 174
9.2.1 Features of Instruction Breakpointcoivieiiiiiiiiiieiieee e e e e e e e e e s e e r s 174

9.2.2 Features of Data BreakpOoinNtccccuuiiiiiiiieeei i e e e e e e s s s s e e e e e e e e e s s meememmmmmmm—n s 174

9.2.3 Instruction Breakpoint REQISIErS OVEIVIEWceviiveeeiiiiiiiiiieeieeeee e e s e ssssnriereeeree e e e e s s s snnneneeeeeeees 174

9.2.4 Data Breakpoint Registers Overview
9.2.5 Conditions for Matching Breakpoints
9.2.6 Debug Exceptions from Breakpoints
9.2.7 Breakpoint used as TrggerPOINTooiiiiiiiiiiiieiee e e e e e s e s e e e e s smmmmmmmmmeeeen e
9.2.8 Instruction Breakpoint Registers
9.2.9 Data Breakpoint REQISIEIScccoiiiiiciiiiieieie e e e e e e e s s e e e e e e e e s s s st eee e e e e e e e e s s
9.3 TSt ACCESS PO (TAP) oiieiiiiiii ettt e e e e e et e e e e e e s aa sttt eeeeeeeeeeessaaansaeaneeeeeesseaannnnrnnnnees

9.3.1 EJTAG Internal and External INterfacesccccovvueiiiiiiiiiiii e s« L9 3
9.3.2 Test Access Port Operation

9.3.3 Test Access Port (TAP) INSITUCHIONSvviiieeeiiiiiciiiieeie e e e e e e s s st e e e e e e e e e e s s s nee s emmmmmmmmmmmmms e 197
S I I G I e =T 1S3 (=T £ PR

9.4.1 Instruction Register

9.4.2 Data REQISIEIS OVEIVIEWuuviiiiiiiiieeeisiiisiitieeeeeeee e e s e s ss st teaeeeeeeaaeeassaassssseeeee e s mmmmmmmmmmmmnes e e e e e e e 200

9.4.3 Processor Access AAAress REQISIENccivieeeiiiiiiiiiiiieeeeee e e e s st er e e e e e e e e s s o 2 00

9.4.4 Fastdata Register (TAP Instruction FASTDATA) 0 48
O.5 TAP PrOCESSON ACCESSES ..ceiiiiiiiiiititeee et tte e e e e et st e et e e aee et s s taba e b e e e ettt e e e e e a1 ss s s —— 11111 b1 209
9.6 Fetch/Load and Store from/to the EJTAG Probe through dmseqcccvvviiviieeeiiiiiiieeee e 200.....
O.7 EJTAG TIACE ..eiiiiiieiiieie e e e e ettt e e e e oo oottt et e e e a4 e oo bbbt e e et e e e e a2 e 4 a st s ¢ —— £+ 11411 r e e e
9.7.1 Processor Modes
9.7.2 Software versus Hardware CONLIOlcueiiiiiiiiiiiiiiiii e me e e sameeeee s 211
9.7.3 Trace iNFOMMELION ...coiiiiiii ettt ettt e s bbbt e e smmneeeaemmmnes bbb e e e s snreeeas 211
9.7.4 Load/Store address and data trace informationcccooouiiiiiiiiiiiie e 212
9.7.5 Programmable processor trace mode OPLIONScviiiieeiiiiiiiiiiieeie e e e e e e s s s e e e e e e e eeeeeennnns 213
9.7.6 Programmable trace information OPtioNScccceiiiiiiiiiie e e 213
9.7.7 Enable trace to probe/on-Chip MEMOIYcoiiiiiiiiiiiciee e e e e e rre e e e e e e eeenans 213
LS A S T O = T I o o =T SRR 214
9.7.9 Cycle by CycCle iNfOrMALIONcoieiiiiiice e e e e e e e e e e e snnne e erees 214
9.7.10 Trace MESSAJE FOIMIALcoviiiieiieeiieiiiiiiit s as e e e e e e e e e e e e e aaeeeeeteeeeeeeeeeeeeeeesssss smmmmmmmmmmmmmmms s e e 214
LS A N R B = Tt o T o B o g = | U SPROP 214
9.8 PDtrace™ Registers (SOftware CONLIol)ccocciiiiiiiiieee e s e e oo e 214
9.9 Trace Control Block (TCB) Registers (hardware Control)oooocciiiiiiieieee e eemeneeeees 215
9.9. 1 TCBCONTROLAREQISIEr oieii i ittt et e e e e e s e e et e e ee e et s s s eeeeeaeeeeesaaassnstranneeraeeeeessssnnnsnnn 215.....
9.9.2TCBCONTROLBREGISIEN ..eoiii ittt e e e e e e ee e e e e e e e s e s s e e e e aeeeeessaaasnstrareereaeaeeessssnnnsnnn 218.....
SIS I 0 = AN 1Y =T 1] = PR 222
9.9.4TCBCONFIGREQGIStEr (REJ D) .oeviiieeeiiiiiiitiieiie e e e e e e e s e s st r e e e e e e e e s s s s st e e e e e eaeaesessnnnsseneeeeemnn 223.....
9.9.5TCBTWREGISIEr (REU 4) weveiieeeeiiii ittt et e e et s e s e st e et e e e e e et s s s et eeeeeeeaeeesaaasssssssseeessmmmmmmmnnnns 224
9.9.6 TCBRDPREQGISIEI (REU 5) ..vvtvrieiiiiiieeeii i ittt et e e e e s s s st e e e e e ae e e s e s ssnbanreerereaeeeeessnanss memmmmmnnn 225
9.9.7TCBWRPREQISIEr (REY B) ..vvvvrieeiiiiieeeiiiiiiiitiiieeieeeeee e s s s sssntaeeeeereaeeeesasssnsesteeereeaaeessssnsnsss menmmamnnn 225
9.9.8TCBSTPREGISIEr (REO 7) +oiiiieeettiiiiiieeee e et e s sttt ee e e e e e e s e s ass et eereeeeeeesasaastaeaeeeeaeaeeesss s s eeennmnnnnn 225
9.9.9TCBTRIGXREQISLEr (REQ 16-23) ...oiiiceeeiiiieeiieee e e e e e ert e e e e e e e e e e s s st r e e e e aeeesssannnnrrrrnreeeeeeeeees 226....
9.9.10 REQISIEr RESEE STALEciiii e e e e e e e s s e e e e e e e e e s e s nee s mmmmm————— e 228
LS IO 1 R I - Vo = = o 1T 229

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.10.1 Trace Trigger from EJTAG Hardware Instruction/Data BreakpointSccccvviieiiiiiiiiiiniiiiiiiceeeeeen
9.10.2 Turning On PDtrace™ Trace
9.10.3 Turning Off PDtrace™ Trace
LS T 0 IR A = I = (o= = = o) 11 o PPNt
9.10.5 Tracing a reset exception
LS 00 I O = T I T T =T g o T oSO
9.11.1 Trigger UNItS OVEIVIEWccciiiiiiiiieieieieieiitiiieess s s s e s e s e e e e e aeaaaeaaaeseeeeeeeassnnnnnes
9.11.2 Trigger SOUICE UNIL ...oiiiiiiieieiiei s e e e e e e e e e e e e e e e e ae e
9.11.3 Trigger CONIrOl UNILSuvvieiiiiiiiiiisie e e e e e ee e e e e e e e e e e e e enens
9.11.4 Trigger ACHON UNIL ..o s e e e e e e e e e e e e e e e e et et e e et eae s s eennenennnnneseeeeaaeaeeeees
9.11.5 SIMUIANEOUS tHGQEIS .. ceiiiiiiieiieeeeee et e e s e s e e e e e e e e e e e eetetete et aeaeaeststetetes s smmmmmmmmmmmmmms e e e e e e e e e s
9.12 EJTAG Trace cycle-by-CYCle DENAVIOTuuiiiiiei i e e e e e e e e e e e e e e 234
9.12.1 Fifo logic in PDtrace and TCB MOAUIEScccooiiiiiiiiieeeeeee s e e e e e e e e e e eeeeeens 234
9.12.2 Handling of Fifo overflow in the PDtrace moduleouuiimiiiiiiiiiii e e 234
9.12.3 Handling of Fifo overflow in the TCBouiiiiiicciies e e 235
9.12.4 Adding cycle accurate information to the trace ..o —_2AO3 0
9.13 TCB ON-Chip TraCe MEIMOIY eiiiiiiiiiiieie ettt e e e e e ettt e e e e e e e e e s e aab b e s s e e e s s—— b e
9.13.1 On-Chip Trace Memory size
9.13.2 TraCe-FrOM MOOEooiiiiiiiiiiite ettt e oottt et e e e e e e s e s et bbbeere et eaaaaeeesesaannae
LS BN R B = Tt o T Y[To [P P PO PPPPP

Chapter 10 INSIIUCHION ST OVEIVIEWeiiiiiiiiiiiee ettt e ettt ettt e e bt e e e et b et e e s s s be e e s e annreeeseasbeeeesannbneeeeannes 237
10.1 CPU INSIIUCLION FOIMMALS ...eiiiiiiiiiiiiiiiie ettt ettt ettt e e s s bbb e e e st e e e e s eann e e e e sannbeeeeesnnneeee s 237
10.2 Load and StOre INSIIUCHIONS ciiiiiiiiiieiiiiiit ettt ettt e ettt e st e e s st et e+ 42 o—— 111 et 20 n 238

10.2.1 Scheduling a Load Delay SIOtcoooiiiiiiiiiiiiiie e e e s e 238
10.2.2 DEefiNING ACCESS TYPES .oeiieiiiiiiie ittt aet ettt ettt e et e e ettt e e et bt e e s e ab b e e e e s anneeeeeeanneeesaanrneas 238
10.3 Computational INSLIUCTIONS ... e e e et e et e e e e e e s e s e et bbb am e mmmmmmeesbeeeeeaaeeeeeean 239
10.3.1 Cycle Timing for Multiply and Divide INSrUCLIONScccoiiiiiiiiiiiiiiie e o 240
10.4 Jump and BranCh INSIIUCHIONSc.oiiuiiiiiiiiiiei et eemmmmeeeesmn e e e
10.4.1 Overview of JUMP INSIFUCLIONS ...t e e e e e e e s eeees e mmmmmm e
10.4.2 Overview of BranCh INSIIUCHONScooiiiiiiiiiiiiiiec e c——
10.5 CONtrOl INSIIUCTIONSeeiiiieiieieet ettt e e e e e smneeas
10.6 COPrOCESSON INSIFUCLIONSeiiiiieiitiitee ettt ettt e e e ettt e e e e et e e e e ekt e e e e+ s s ¢ s— 2222 n e
10.7 Enhancements to the MIPS Architecture
10.7.1 CLO - CouNt LEAAING ONES ...oiiiieiiiiiiiiiieie e e ettt et e e e e e e s s e sttt e e e aee e e e e s nses s e e
10.7.2 CLZ - COUNE LEAAING ZEIOS ...cciueiiiieiiiiiite ettt ettt et e et e e et e e 2eeemneeas
10.7.3 MADD - Multiply @and Add WOooiiiiiiiiiie ettt s
10.7.4 MADDU - Multiply and Add Unsigned WOrdccoociiiiiiiiiiieeiiiiece e 241.
10.7.5 MSUB - Multiply and SUBLract WOrdeeieiiiiiiiieiiiiie et seeeemmmneeas 241
10.7.6 MSUBU - Multiply and Subtract Unsigned WOrdoccceeiiiiiiiiiiiiiiiie e e 242...
10.7.7 MUL - MUIIPIY WOET ..ottt etttk e e ettt e e s st e e esemneeesnreeeeeans 242
10.7.8 SSNOP- Superscalar INNIDIt NOP coiiiiiiiiiiiie e eeeneeeeeenns 242

Chapter 11 4KE™ Processor Core INStIUCLIONSccc.uviiiiiiiieiee s ciiieiieiee e s e e e e e e s ssssteeeeees e s o 1010000 24D
11.1 Understanding the INStruction DESCHPLIONSuviiiiiieieiiiiiiiiiiieeire e e e s s sssinreeee e e e e e e e s s 110002 24D
11.2 4AKE™ Opcode Map

11.3 MIPS32™ [nstruction Set for the 4KE™ COIE ccoiiiiiiieiiiiiie et 248
Chapter 12 MIPS16 Application-Specific Extension to the MIPS32 INStruction Setcccccooviiiiiiiieieeiniccees 284...

12.1 Instruction Bit Encoding

2 1 =3 B o 1o 1= 1 T OO
APPENTIX A REVISION HISTOMY ...ttt e et e e e e e e s e ae ettt et e e e e s smmmmmmmemeems e e e e e e e e e e e e nnsnbbeeeeeas 291
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 v

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

vi

List

of Figures

Figure 1-1: 4AKE™ Processor Core BlOCK DIagramcoooiiiiiiiiiiieeeeeeee s s 1111111222 D
Figure 1-2: Address Translation During a Cache Access R
Figure 2-1: AKE™ C0re PIPEIINE STAGES......cciiiiiiiiieiie ittt e+ S ettt e e e e e e e e s 14
Figure 2-2: AKEM™ COre PiPeliNG STAQES.uuuiiiiiiiiieiiii ittt e e e e e e e eeeasmmmmmmm bbb eeeeeae s 14
Figure 2-3: AKEP™ Core PIpeliNg STAQgES......coii ittt ettt et e e e s mmmeeeeeeeaaa e e e e s e e ennnbereees 14
Figure 2-4: Instruction Cache MISS TIMINGuuuuiuuiiiiiiiie e s e e e e e e e e et e et e e mmmmmmmmm———— e e e eaaeaeeeeeees 16
Figure 2-5: Load/Store Cache MISS TIMINGuuruuiuieiiiiiiieie e e e e e e e e e e ettt e e e s e e e e s e e e aaeaaaaaaeees 17
Figure 2-6: MDU Pipeline Behavior During Multiply Operations (4KEC™ & 4KEM™ ProCeSSOrS)ceevveeeeeriniiannns 19
Figure 2-7: MDU Pipeline Flow During a 32x16 Multiply Operationcceeiiiiiiiiiiiiiiiiiiieeee e ssiceeeeeeeeeeans

Figure 2-8: MDU Pipeline Flow During a 32x32 Multiply Operationeceeiiiiaiiiiiiiiiiiiiieeeee e ssrceeeeeeeeeeans

Figure 2-9: MDU Pipeline Flow During a 8-bit Divide (DIV) OPerationooccuuuiiiieeiieaeeeiiiiiiieee e o

Figure 2-10: MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Figure 2-11: MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

Figure 2-12: MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

Figure 2-13: 4KEp™ MDU Pipeline Flow During a Multiply Operationcccoeeriiiiiiiiiieeeee e

Figure 2-14: 4KEpC MDU Pipeline Flow During a Multiply Accumulate Operationocccuvvieiieiiieinniiii 23......
Figure 2-15: 4KEp™ MDU Pipeline Flow During a Divide (DIV) Operation............ccoouiuuiiiiiieeieeeeeeiiiiiienees

Figure 2-16: 1U Pipeline Branch DeIAYuuuiiiiiiiiiiii et et e bbb

Figure 2-17: 1U Pipeling Data DYPASSccooiiiiiiiiiiei ittt emmmmmmmnaeeeees et e e e e e e e e e e e aane

Figure 2-18: 1U Pipeline M 0 E DYPASSottt et e e e e e mmmmemeemennn e e e e bab e eee e

Figure 2-19: 1U Pipeline A to E Data bypassccuuveiiiiiiiii e

Figure 2-20: 1U Pipeline Slip after @ MEHIcoooiiii e

Figure 2-21: Coprocessor 2 Interface TranSACIONS.ui ittt emmmme e e e eeeeeas e e e e e e e nnnes

Figure 2-22: INStruction Cache MiSS Suuuiiiiiiiiiie ittt mmmeeeeem—an e bab e ee e

Figure 3-1: Address Translation During a Cache Access in the 4KEc™ core

Figure 3-2: Address Translation During a Cache Access in the 4AKEm™ and 4KEP™ COreS.......uuveiiieeeriniiiiiiiiiieeenaeaenn
Figure 3-3: 4KE™ processor core Virtual MemMOrY Map.eeeei oottt seeeeeeeeeeean e 37
Figure 3-4: User Mode Virtual AQArESS SPACEuuuuiiiiiiiiaiiii ittt et e e e e e e e s mmmmeeeeeeennn e e e e e e e ane 38
Figure 3-5: Kernel Mode Virtual ADAreSS SPACEcocuuuiiiiiiiiiiee ettt eee e mmmmmme b 40
Figure 3-6: Debug Mode Virtual AQArESS SPACEccoeiiiiiiiiiieeie ettt mmommeneeeeee e e e e e e e e as 42
Figure 3-7: JTLB Entry (Tag and Data)ccccoiiiiiiiieieeeeeee s s e e e e e e e e e e et e e e e emememmmmmn e e e e e e e eaaeaeas 44
Figure 3-8: Overview of a Virtual-to-Physical Address Translation in the 4KEC™ CoOre.......ccccceeeveeieieieieeeeeenn. ai.....
Figure 3-9: 32-bit Virtual AAdress TranSIation oo e e e e e e e e s e e e e e e e e e e aeeeees 48
Figure 3-10: TLB Address Translation Flow in the 4KE™ ProcessOor COre...........ccovvivivieivervieiiiiinsessssneeeee e 50
Figure 3-11: FM Memory Map (ERL=0) in the AKEm™ and 4KEP™ ProCeSSOr COIES.......cccuieeiiiiiiiiiiiiiiieeeaeeeeeeeaieens 52
Figure 3-12: FM Memory Map (ERL=1) in the AKEm™ and 4KEP™ ProCeSSOr COIES........ccuueeeiiiiiiiiiiiiiieeeeaeeeeeaainens 53
Figure 4-1: Interrupt Generation for Vectored INterrupt MOAE.........coooiiiiiiiiiiiiiiie e 60
Figure 4-2: Interrupt Generation for External Interrupt Controller Interrupt Mode.............ooooiiiiiiiii et cmmmmmmneenn 03
Figure 4-3: General EXception HANAIEr (HW)cooi ittt mene e e e e e e e e e e e e e e e e 83
Figure 4-4: General Exception Servicing GUIdeliNeS (SW)ccooiiiiiiiiiiiiiiee e s oo O
Figure 4-5: TLB Miss Exception Handler (HW) — 4KEC™ COre........ooiiuiiiiiiiiiiieeee et 85
Figure 4-6: TLB Exception Servicing Guidelines (SW) — 4KEc™ Core .. . 38
Figure 4-7: Reset, Soft Reset and NMI Exception Handling and Serwcmg Gwdellnes 81.....
Figure 5-1IndexXRegISter FOIMALooiiiiiiieieee e e e e e e e e e e e e e et et et et e e eeea e e e s mmmmmmmmmmmmmn e e eeee s 93
Figure 5-2:RandOMREQISIEr FOIMAL..........cccoi i s e s e e e e e e e e e e e ee e et e eeeeeeaeaastebareeaen s menennnnnnnnnnses 94
Figure 5-3:EntryLoQ EntryLOLREQISIEr FOMMALuuviiiiiiiiiie et a e e e e aaaaeas S, 9
Figure 5-4:ContexXtRegISTEr FOMMAL...........coiiiiiiiiiiiice s e e e e e e e e e ettt s s e s e s e e e e e e e smmmmmmmmmmnan e e 97
Figure 5-5:PageMaskReqiSter FOMMALccoooii i st e e e e e e e e e e e e e e et e e e e eeeeaeetees s meeeeemeennnns 98
Figure 5-6:PageGrainRegIStEr FOIMAL.......cccciiii i e e e e e e e e e e e e e et et e e eeeaeaeeese s eeeeeenennnns 100
Figure 5-7: Wired and Random ENtrieS iN the TLBooiiiiiiiiiiiiiiisss s eeeeeaeeaerennne 101

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Figure 5-8Wired RegiSIEr FOIMAL..........cooiiiiiiieeeee e e e e e e e e e e e et et et et e e e e e et e s mmmmmmmmmmmman e e e es 101

Figure 5-9: HWRENA REQISIEr FOIMMI@L........uuiiiiieiei e it s s s s e s e s e e e e e s e s e e s e esbnrnsnne 102
Figure 5-10BadVAdArREQISIEr FOIMAALcvviiiiiiiiiiiitcre s e e e e e e et e s e s e s e e e e e e e smmmmmmmens 103
Figure 5-111COUNTREQISIEr FOMMAL........uuieiiiiie i e s e e e e e e e e e ae e et e eeee e st maeeeeeeeenennsee
Figure 5-12ENntryHi RegIStEr FOIMMALoovviiiiiiiiiiiiiceee e e s e e e e e e e e et e et e e e a s s s e s e s e e e e mmmmmmmmmmnns
Figure 5-13CompareRegister Format
Figure 5-14: Status Register FOIMAaL.............iiiiiiiiiiii e e
Figure 5-15: INtCtl Register FOrMaL.............uvuvviiiiiieiiiiiiiiie e i s e e e e e e eee e ee e ee e e eeeeeaeenanennns
Figure 5-16: SRSCtl Register Format
Figure 5-17: SRSMap RegIStEr FOIMAL..........uuiiiiiiiiii ittt e e e e e e e e e e mmene e e e e eeeeeaeeeeaeaann 117
Figure 5-18: Cause ReQISIEr FOIMMIAL...........c.ouiriiiiiiiiiiiiisieie s e e e e e e e e e e e e e et et et e et eeeeeetetseee b s nnnnnnnnansssanssssssnnsnnnnnnnnns 118
Figure 5-19EPC REQISTEr FOIMAL.........ccoiiiiiiiieeeee e e e e e e e et ettt e e s mmmmmmmmmmmmmn e e s 122
Figure 5-20PRIAREQISIEr FOIMMIALuuiiiiiiiiie e s s e s e s e e e e e e aeaaaaeeeeeeees s maeeeeeeeenennsre 123
Figure 5-21: EBase ReQIStEr FOIMALouuuiiiiiiiiiiiiiiie s e e e e e e e e e e e e e e e ettt e e rareseseeeseaeaeeeeeeeeeenseennens 124
Figure 5-22Config Register FOrmat — SeIECt O..........cooiiiiiiiiieeeecrs ee e reee e emmmnnnn 125
Figure 5-23Config Register Field DEeSCIPLIONSoiiiiiiiiiiiiiei e e e e e e e e s 125
Figure 5-24ConfiglRegister FOrmat — SEIECT L........uuuuiiiiiiiiii i e e e e e e e e s e 127.
Figure 5-25Config2Register FOrmat — SEIECT 2........uuuuuiiiiiii e e e e e e e e s s 129.
Figure 5-26: Config3 ReQISIEr FOMMIALccoiiiiiiiiiie s e e e e e e e e e e e et et e e e e e e eaeaeara s a e e e e aeaaaaeaeas 130
Figure 5-27 1L LAAAr ReQISIEr FOIMAL.......uuuiiiiii et et e s e e e e e e e aeaeaaaeeeeeeeee s amamaneeeeenes 132
Figure 5-28MWatChLOREQISIEr FOIMMAL...........coiiiiiiieieiiieii e e s e s eeee e e e et mmmmmmmmmmmnns 133
Figure 5-29WatChHIREQIStEr FOIMALooiiiiiiiiieei e e e e e e e e e et e e e e e e ee et e et e mmmmmmmmmmmnns 134
Figure 5-30DebUgREQISIEr FOIMMAL.........cciiiiiiiiiiiiiice st e e e e e e et e et ee e s s e s e s e e e e e e e smmmmmmmmmmnan e 136
Figure 5-31Trace ControlREQISIEr FOIMAL.........ccooiiii i e e e e e e e e e e e e e et et e e e e e eeaereererar s ennns 139..
Figure 5-32Trace Control2RegiSter FOMMAL.............uuuiiiiiiiiiie s e e e e e e s e s e s e e e e aeaeaaesmmms 142....
Figure 5-33User Trace DatdRegiSter FOIMALuuuuiiiiiiiiiiiisie e e e e e e aeeeeas 144........
Figure 5-34Trace BPCREQISEr FOIMALcccoiiiiiiiiiieeeee s s s e e e e e e e e e e et e e et e e et e eetete et ara s s annnnnnnns 145
Figure 5-35DEPC ReQISIEr FOMAL.........ccoviiiiiiiiiiiiie et s e e e e e e e e e e et et e e s s e s e s e e e e e e e mmmmmmmmmmnan e 146
Figure 5-36ErrCtl RegIiSter FOMMAL...........oviiiiiiiiiiiiieee s e e e e e e et s e s e s e e e e e e e mmmmmmmmmmnan e 147
Figure 5-37TagLOREQISIEr FOIMMIALcoiviiiiiiiiiiiii s e e et e e e e e e e et et e e e e ettt s s e s e s e e e e e e e smmmmmmmmmmnan e 148
Figure 5-38DataloReEgISIEr FOIMMIALuuueiiii e e s e e e e e e e e e aaaaaeeeee e e e e s amamaeeeeeenes 149
Figure 5-39ErrOrEPC REQISIEr FOIMIAL.........uuiiiiiieiiiiie i e i e e e e e e e e e e e e e e e et aa e e s s e s e s e s e e eeeeeaeaees smmmmmmmnns 150
Figure 5-40DeSaveReQiSIEr FOIMIALuuuueiiii et e et s et e e e e e e e aeaeaaeaeeeeeeee s amamaneeeeenes 151
Figure 7-1: Cache ArTay FOIMALS......ccccii it e e e e e e e e e e et e s e e e e e e e e e e menes s s e s e s eaeaaeaaaaeaeees 160
Figure 9-1: TAP Controller State DIAQIAIMuuuuuiuuiuiiiiieieeeie i e e e e e e e e e eeaete et et eeeeaeaeaaereree e m————————————— e e eeeeeeeeeeees 195
Figure 9-2: Concatenation of the EJTAG Address, Data and Control RegiStersccooevevviieeiieiiiiiiiiiii v 199..
Figure 9-3: TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selectedcccccceeeeiiiiinnnnnnn.
Figure 9-4: Endian Formats fOr tREAD REQISIENcciii i s e e e e e e e e e e et e e et e e e aeaeaeeerrarneaaananas 207
Figure 9-5: EJTAG Trace modules iN the 4KE™ COMEccciiiiiiiii ittt s a0 211
Figure 9-6: TCB Trigger ProCESSING OVEIVIEWuuuuiiiiiiieeeeaaiaiititteteeeeae e e e e e s s aiitbebeeeeeeeee s meeeaeeeeaaaeeeesessaannnes 232
Figure 10-1: INSrUCLION FOMMALS........uuuiiiiiiiiiiii et e e e e e ettt mmmmmmmmm———— s e s s e eesesesennnsnnnnnn 238
Figure 11-1: Usage of Address Fields to Select Index and Wayuuuuuiiiiiiiiinieieiee e eeeeeeeeeeeeeeeeeeeeeenennns 256
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 vii

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 2-1: 4KEc™ and 4KEm™ Core MDU INStruction Lat@NCI€S.......ccooviiiiiiiiiiiiiiiiieeeee e 18
Table 2-2: 4KEc™ and 4KEm™ Core MDU Instruction Repeat RAtesSeeviiiiiiiiiiiiiiiiiiiiieeeee e eeeeea 19..
Table 2-3: AKEP™ Core INSrUCHON LAENCIEScciiiiiiiiiiiiiiie ettt e e e e e e e e st eeeeeaaaeeeas 22
Table 2-4: PIPEliNg INTEIIOCKSuu ittt s e mmmmmee e bbb b et e e e e e e e e e e e aannnes 28
Table 2-5: INSIIUCION INTEITOCKSeiiiiiii ettt e e e e e e e e e s et bbb e e e e e e aaeeeesaannnes 29
Table 2-6: EXECULION HAZAIScooiiiiiiiiiiitii ettt e e ettt e e e e e e e e s rmmmneeeeeeeaamteeeeeeeesaaannnbnbnneeeeas 31
Table 2-7: INSIIUCHION HAZAITSooiiiiiiiiii ettt e e e e e e s e e e e e e e e ee s mm s snbbbbeeeeeeaeaeeesaannnes 32
Table 2-8: Hazard INSrUCION LISHNGuuuuuieieiiiiiie i e e s s s e s e e e e e e e e e e e aaaaaaaaaaaaaaeeeeeeeesesennnnns 32
Table 3-1: USEr MOUE SEOMENTScuuiiiiiiiiiiiiiieieieie s et e e e e e eeeeteee et eeetaeaeaeet et aesaaeeeeaeeseaaaaaaasaaeseeeeeeesemsmernrnnns 39
Table 3-2: Kernel MOOe SEOMENTScccc i e e e e e e e e e e e e e e e e et et e et e e ee s memememem———————a e s eaeeeaeeaaeaeees 40
Table 3-3: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces.................. A2,
Table 3-4: CPU Access to drseg Address Range S’ /)
Table 3-5: CPU Access to dmseg AdAreSS RANQGEooovvviiiiiiiiiiiiiiiiieis e ie e e e e eeeeaeaeae e e e e e s eeeeeeeeeemmmnmnn e es 43
Table 3-6: TLB Tag ENtry FIEIASccoooiiiiiieieeee st e e e e ettt s e e e e e eeaeaeaaeaeeeeeeeesnesnrnnns 44
Table 3-7: TLB Data ENtry FIEIASovveiiiiiiiieiie i e s e e e e e e e e e e e aaaaaaaaaaeaeeeeeeeeeaesnrnnes 45
TabIle 3-8: TLB INSIIUCHIONSueeiieiiieieei ettt e e e e e e bbbt e et e e et e e e e mmmeneemeeaeeeeeesasaanbbbbaeneeeaaaaaeas 50
Table 3-9: Cache CoherenCy AMIHDULESoooiiiiiieie e e eeeeee————————— e e e e e e eaeeas 51
Table 3-10: Cacheability of Segments with Block Address Translationcccccceeiiiiiiiiieeiieeiieere e 51
Table 4-1: Priority Of EXCEPLIONSeiiiiiiieiiiiiiiiie ettt ettt e e e e e e e e s s bbbt e e et e e e aeeeeeaaaaaaessaaasnnbbnbneeeaaaaeeaaaan
Table 4-2: INterrupt MOAES.......ooiiie et

Table 4-3: Relative Interrupt Priority for Vectored Interrupt Mode
Table 4-4: Exception Vector Offsets for Vectored Interrupts
Table 4-5: EXception Vector BASe AGUIESSESuuiiiiiiiieiie ettt et s— e

Table 4-6: EXCePiON VECIOr OffSELSciiiiiiiiiiiiieii ettt smmmmmeeeeeeen e e e e e e e e e e annnbbeeeees
Lo Loy o (ot =T o] (o] B =T ot (o] £ SO PP PP PPPUTPPP
Table 4-8: Value Stored in EPC, ErrorEPC, or DEPC 0on an EXCeption...........cccuiiiiiiiiiiiiiiiiiiiiececcccceeeeeend 68
Table 4-9: Debug EXCeption VECIOr AQUIESSESccooii ittt ettt e e et eee e e e e s mmmnne e e e e annne 70
Table 4-10: Register States an INterrupt EXCEPLION........cooi ittt e e 74
Table 4-11: Register States on @ WatCh EXCEPLIONooiiiiiiiiiiiiiie e smee e e e e e e e aee e e e 75
Table 4-12: CPO Register States on an Address EXCeption ErTOrooouiiiiiiiiiiiieiii e ccemee e eeeeee s 76
Table 4-13: CPO Register States on a TLB REfill EXCEPLONcccoiiiiiiiiiiiiiiiiiieeee s memmeeeeeeeeee e 76
Table 4-14: CPO Register States on a TLB Invalid EXCEPLONc..uuuiiiiiiiiiaaiii it eeeere e e e 77

Table 4-15: Register States on a Coprocessor Unusable EXCeption..........ccccovvviiiiiiiiiiiiiie it ceeeecccceceeee 19
Table 4-16: Register States on a TLB Modified EXCEPLIONceviiiiiiiiiiiiiiiiiiiieeie e o e o010 O L
Table 5-1: CPO Registers

Table 5-2: CPO REQISLEr FIEIA TYPES ...ueeiiiiiiiiiiie ittt e e e ettt ¢ s—— ettt et e e e e e s 92
Table 5-3: Index Register Field DeSCIIPLIONSu i ittt e e e e e e e e e rsnsr e e e e e e e e e s e e annbbnbeeeeeeas 93
Table 5-4:RandomRegister Field DESCIPLIONSco.ueiiiiiiiiiie et rr et e e e e e e e s e e b b e b e 94

Table 5-5:EntryLoQ EntryLol1Register Field DESCIPLIONScuiiiiiiiiiiiiiitite ettt e e ee e e e e e e e e e e 95
Table 5-6: Cache CoherenCy AIDULESuuiiiiiiiiiie e mmmmmmmmmmmmmam e e e e e eeeeeeeeeeaees 96
Table 5-7:ContextRegister Field DeSCHIPUIONSciii ittt e e e e e e e e s mmmmmeneenn 97

Table 5-8:PageMaskRegister Field DESCHIPLONScc..uuiiiiiiieiie et e e e e e e e s a8

Table 5-9: Values for the Mask and MaskiXelds of thePageMaskREQISIErevviiiiiicec e, 98
Table 5-10PageGrainRegister Field DeSCIPIONSc..uiiiiiiiiiiee et e e e e e e e e saab e b e 100..

Table 5-11: Wired Register Field Descriptions
Table 5-12: HWRENa Register Field DESCIPLIONSciiiiiiiiiiiiiitie ettt s e

Table 5-13BadVAddrRegister Field DEeSCIIPLIONceiiiiiiiiiiiiie ettt e e e e e e e e e e e smmmnne 103.
Table 5-14CountRegister Field DeSCIIPLION........oi ittt e e e e e e e e s aab s s eemmmmmmmmmmees 104
Table 5-15EntryHi Register Field DeSCHPIONSuu ittt e e e e e e e e s s ebb e e e e e e s ammmmmmmnns 105
Table 5-16:CompareRegister Field DESCHIPLONoiiiiiiiiiiiiiie et e et e e e e e e e eeb s e 106
viii MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Table 5-17: Status Register Field DEeSCIIPLIONSuiiiiiiie ittt e e e e e e ee e mne b eeeeeeaaaeeas 107

Table 5-18: IntCtl Register Field DESCHIPIIONScuiiiiiiiiiiiiieie et ——— e e e 112
Table 5-19: SRSCtl Register Field Descriptions... " O PPUUP P! Bt L
Table 5-20: Sources for new SRS on an Exceptlon or Interrupt .. 115
Table 5-21: SRSMap Register Field DeSCIPLIONSuuiiiiiiiiiieaiie ittt ee e e eeeeeeeaaeeeeee s snnreeee 117
Table 5-22: Cause Register Field DESCHPHONScooi ittt e e e e e eesmmne e e e e e e e aaes 118
Table 5-23: Cause Register ExcCode Field 121
Table 5-24EPCRegiSter Field DEeSCIPLIONuiiiiiiiiieeee ettt e e e e e e s e s aab bbb e smmmmmmmmmmnne s 122
Table 5-25PRIdRegister Field DeSCIPLIONS.ciii ittt e e e e e e e e e s mmmeeeeeennnnn 123
Table 5-26: EBase Register Field DESCIIPLIONS. it ittt e e e e e e e e e e e e e e e e e e s e anaes 124
Table 5-27: Cache CoherenCy ARIDULESueeeii i emmm e e e e e e e e e e aeeees 126
Table 5-28ConfiglRegister Field Descriptions — SEIECT Luiiiiiiiiiiieeii e 127.......
Table 5-29ConfiglRegister Field Descriptions — SEIECT Luuiiiiiiiiiiie e 129.......
Table 5-30: Config3 Register Field DeSCIPLIONS.oii ittt e e e e e e e e e e s neebeeeees 130
Table 5-311 LAddr Register Field DESCIPLIONSuu ittt e e e e e s e e e e e s s 132
Table 5-32WatchLoRegister Field DeSCHPLIONSuuuiieiiiiiea ettt e e e e e e e e e e eab e e e e e 133
Table 5-33WatchHiRegister Field DeSCIIPLONSuuuiiiiiiiiieiiiiiite et e e e e e e s bbb e s 134
Table 5-34DebugRegister Field DESCIPLIONScc.uuiiiiiiiiieie ettt et e e e e e e e s s e ssanb b e e e e e 136
Table 5-35: TraceControl Register Field Descriptions .139
Table 5-36: TraceControl2 Register Field Descriptions 142
Table 5-37: UserTraceData Register Field DeSCIPLIONS.cuui ittt s e e 144
Table 5-38: TraceBPC Register Field DeSCIIPUONSuuutiiiiiiieaiii ittt ee e eeeeeeeaseeeee s senneeee

Table 5-39DEPC REQISIEr FOMMIALS........cci e e e eee e s e e e e e e e e e e e e e e e e ee e et e eeeeaaae e reera s s s an e eas

Table 5-40ErrCtl Register Field DeSCIPUONScooiiiiiiiiiieeeee ettt e e e e e e e e mmee e e

Table 5-41TagLoRegister Field DEeSCHPUONScooiiiiiiiiiiiieeee ettt e e e e e e e e emeennnns

Table 5-42Datal o Register Field DESCHPLIONooiiiiiiiiiieiie ettt e e e e e e e e e b s e

Table 5-43ErrorEPC Register Field DeSCHPLIONuuiiiiiiiiiie ettt e e e e e e e e s b e e s e

Table 5-44DeSaveRegister Field DeSCHPLIONcooiiiiiiiiiiiiei ettt e e e e e e e e e e e b e s s

Table 7-1: Instruction and Data Cache AHDULESeiiiiiiiiii e e
Table 7-2: Instruction and Data CacChe SIZEScoooiiiiiiiiiiiiiiiie e

Table 7-3: LRU and Dirty Width in Way-Select Array
Table 7-4: Potential Virtual Aliasing Bits

Table 7-5: Way Selection ENCOAING, 4 WAYScccoooi e ettt e e e e e e e e e e e e+ s 1122222222
Table 7-6: Way Selection ENCOAING, 3WAYScoooiiii it e e e e e e e e e e s smmmmm—— 112222
Table 7-7: Way Selection Encoding, 2 Ways

Table 9-1:Debug Control RegiStaFfield DESCIPLIONSuuiiiiiiiiieei ittt e e e e e e e s e bbb eeeeeeeeeeesanneaes
Table 9-2: Overview of Status Register for Instruction Breakpointsccccoeiiiiiiiiiiiiiiiieee e e« 174
Table 9-3: Overview of Registers for Each Instruction Breakpointccuviiiiiiiiieiiiiiiiiiiieeeee e 175
Table 9-4: Overview of Status Register for Data BreakpointS..........ccoiiiiiiiiiiiiiee e e 175
Table 9-5: Overview of Registers for each Data Breakpointccooiioiiiiiiiiiiiiiieee e eeeeee e e e e e e e 175
Table 9-6: Addresses for Instruction Breakpoint REJISIEIScooiiiiiiiiiiiieee e e e 178
Table 9-7:1BSRegister Field DESCIPLIONSuuutiiiiiiie ittt e e e e e e e s s s abbe e e e e e e e s cmmmmmmmmmnee e 180
Table 9-8:1BAN Register Field DESCHPLONS.coiiiiiiieiie ettt e e e e e e meeeennnnnnnnn s 181
Table 9-9:1BMn Register Field DeSCIIPLIONSuuuiiiiiiiiee ittt e e e e e e e e e s eab bt e e e e e s cmmmmmmmmmmmnn o 182
Table 9-101BASIDNRegister Field DeSCHPLIONSuiiiiiiiiiieeee ettt e e e e e e e e s ebb e e e e mmmmmmnes 183
Table 9-111BCn Register Field DeSCHPLIONScc.ueiiiiiiiiiiee ettt e e e e e e e e e s s bbb e e e e 184
Table 9-12: Addresses for Data Breakpoint REQISEISuuuiiiiiiiiaiiiiiiiiie et s mmmmmmn e 185
Table 9-13DBSRegister Field DESCHPLIONSc.ciiiiiiiiiiiiiie ittt e e e e e e e e e e e s mmmeeeeeeennnn 186
Table 9-14DBANRegiSter Field DESCIPLIONSuuiiiiiiiiaeee ittt et e e e e e e st e b e e e e e e s ammmmmmmmmnnas 187
Table 9-15DBMn Register Field DESCIPLIONScciiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e s mmmeeeeennnns 188
Table 9-16 DBASIDNRegiSter Field DESCHPLONSuutiiiiiiieeiii ittt e e e e e e s reb e e s s 189
Table 9-17DBCnRegister Field DESCHPLONScooiiiiiiiiiiiiieiee et e e e e e e e e e e e mmmeeeeennnns 190
Table 9-18DBVnRegister Field DESCIPLIONSuuiiiiiiiieaeii ittt e et e e e e e e s e abb b b e e e e e e s ammmmmmmmmnnas 192
Table 9-19: EJTAG INtEITACE PINSociiiiiiiiiiiieiee ettt e e e e e e e s s e e e e e s asr e e e e s annneeeeaaes 193
Table 9-20: Implemented EJTAG INSIIUCHIONScooiiiiiiiiiiiiiee ettt e et e e e e e e e eessmmnneeeees s e saaeaeee 197
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 iX

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Table 9-21: Device IdentifiCation REGISIENu.u i s 222 a2 e e e e e eeeeeees 201

Table 9-221implementatiorRegiSter DeSCHPLIONSc.oiii ittt e e e e e e e aaeb e 202......
Table 9-23EJTAG ControlRegiSter DESCIPLIONSuuiiiiiiieiieeai ettt e e e e e e e e s e e bbb eereeeaeaeeeas 203.......
Table 9-24: Fastdata Register Field DeSCIPLIONcooiiiiiiiiiiiiie et e e e e e e e e e e eee e 208
Table 9-25: Operation Of the FASTDATA GCCESSuuttiitiiaaaiaiiaiitiite ittt e e e e e e et e et e e e e e e s s eemeenn————— s enes 208
Table 9-26: A List of Coprocessor O Trace REQISIEIScooiiiiiiiiiiiiiiie e e e e e e e e e e e 215
Table 9-27: TCB EJTAG EISIEISciiiiiiiiiiieeeieteieii e s s s s e s et e e e e e aeaeaeeete ettt et aeasseststatarasaaaaaaaaeeeenesesssennnsnnnnnnnnns 215
Table 9-28: Registers seleCted BPBCONTROLBEG ..o ivereiriiiiiiii it 215
Table 9-29TCBCONTROLARegister Field DeSCIPLIONScooiiiiiiiiiiiiie e e e e e e e seieeeeeees 216
Table 9-30TCBCONTROLBRegister Field DeSCIPLIONScooiiiiiiiiiiiiie ittt e e e e e e e e e seebeeee e 218
Table 9-31: Clock Ratio encoding of the CR fIEldcccooiiiiiii i ————— 11 an

Table 9-32TCBDATARegister Field Descriptions
Table 9-33TCBCONFIGRegister Field DESCIPLIONSccoiiiiiiiiiiiiiieiee ettt r e e e e e e e e e eenee 223.......
Table 9-34TCBTWRegister Field DeSCIPLIONS ...ttt e e e e e e e s e s e e e e e 224

Table 9-35TCBRDPRegister Field DESCIPLIONSoiiiiiiiiiiiiiiie ettt et e e e e e e e e e e e e s 225.

Table 9-36 TCBWRPRegister Field DeSCIPLIONS ciiiiiiiiieeiiee ettt et e e e e e e e e e e s seaebe e e e 225..
Table 9-37TCBSTPRegister Field DESCIPLIONSuuiiiiiiiiieeiii ittt e e e e e e e e e e s e aieb e b e e e e e s s 226

Table 9-38TCBTRIGxRegister Field DeSCIPLIONSuuuiiiiiiiieiiiiiiiie ettt et e e e e e e e e e e s e 226...
Table 10-1: Byte AcCeSS WIthin @ WOIA..........oooiiiiieiiiii ittt mmmmmmmmmmmmmn e e e e e e e e aeaeeeees 239
Table 11-1: Encoding Of tHBPCOAERIEIcooiieeeeeeeee et r et e e e e e e e s e e 245
Table 11-2:SpecialOpcode encoding of FUNCHON FIeld ... 246....
Table 11-3:Special20pcode Encoding of FUNCLION Fieldccouuiiiiiiiiii e 246.......
Table 11-4Special30pcode Encoding of FUNCLION Fieldcceuuiiiiiiiii e 246.......
Table 11-5RegImMmENCOAING Of It FIEIAeeiiii it e e e e e e e e e e e e ee——— 247

Table 11-6:COP2ENCOAING Of 1S FI@I.......uuiiieie i e e e e e e e e e e e e et e e e e e e eeeeeeeeaenensnee 247

Table 11-7COP2Encoding of rt Field WHeN rC2uuiiiiiieiie et a e e e e e e e aaaaa s 247
Table 11-8COPOENCOAING Of 1S FI@I.......ueiiieie i ee e eeeeeeeeeesennnee 247

Table 11-9:COPOENcoding of Function Field When 189 ... 248
Table 11-10: INSIIUCTION SELciiiieieii ittt e e e st et e e st mmmmmmmmnnan s et e e e e b re e e e e eenees 248
Table 11-11: Usage Of EffeCtIVE AGQUIESSovuiiiiiiiiiiieie ettt s 222222222 a e e e e 255
Table 11-12: Encoding of Bits[17:16] of CACHE Instruction .. " eee e e 1102 200

Table 11-13: Encoding of Bits [20:18] of the CACHE Instructlon ErrCtI[WST SPR] Cleared 257
Table 11-14: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl][WST] Set. ErrCtl[SPR] Cleared.................. 260
Table 11-15: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set

Table 11-16: Values of thant Field for the PREF INSTIUCHIONc.vviiiiiiiicc e
Table 12-1: Symbols Used in the Instruction Encoding TablesS...........ccoooiieiiiiiiiiiieeeeeev e

Table 12-2: MIPS16 Encoding of the Opcode Field ... s 122
Table 12-3: MIPS16 JAL(X) Encoding of the X Fieldiiiiiiiiiiiiii e

Table 12-4: MIPS16 SHIFT Encoding of the f Fieldouuiiiiiii e e
Table 12-5: MIPS16 RRI-A Encoding of the f Field ..o

Table 12-6: MIPS16 18 Encoding of the funct Field..............oooveiiiiiiiiiii e
Table 12-7: MIPS16 RRR Encoding of the f Fieldcooiiiiiiiii e e e e e e e e mnmem e
Table 12-8: MIPS16 RR Encoding of the FUNCt Fieldcooiiiiiiiiiiiii e

Table 12-9: MIPS16 18 Encoding of the s Field when fuNCt=SVRS ...
Table 12-10: MIPS16 RR Encoding of the ry Field when fal@L)R(C)uuiiiiiiiiii e
Table 12-11: MIPS16 RR Encoding of the ry Field when faGBIVTooovriiiiiiicccecies e
Table 12-12: MIPS16 Load and Store INSITUCHONSuuiiiiiiiiieiaia ittt e e e e e e e e e e e s eeee s sennneee
Table 12-13: MIPS16 Save and ReStOre INStIUCTIONS.ccuiiii ittt e e e e e e eemn e
Table 12-14: MIPS16 ALU Immediate Instructions .. .
Table 12-15: MIPS16 Arithmetic Two or Three Operand Reglster Instructlons ..
Table 12-16: MIPS16 Special INSIIUCHIONS.ccoiiiiiiiiiiiie et e e e mmmmeee e e e s e sabeene e
Table 12-17: MIPS16 Multiply and Divide INSTIUCTIONSuuiiiiiiiiiaieiiiii e s e
Table 12-18: MIPS16 Jump and Branch INSTIUCLIONSeiiiiiiiiiiiiiiiieiic et e mmemne e e e e
Table 12-19: MIPS16 Shift INSIIUCLIONS.ciiiiiiiii ittt e e e e et bbbt e e e e e e e e e as
Table A-L: REVISION HISTOMY ...uuiiiiiiiiiiiii et s e s e s e s e e e e e e e aeee e e e+ m— 1222222 a e e e eeeanees

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1

|

Introduction to the MIPS32™ 4KE™ Processor Core Family

The MIPS32™ 4KE™ core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS RISC processor
core family intended for custom system-on-silicon applications. The core is designed for semiconductor manufacturing
companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peripherals
with a high-performance RISC processor. A 4KE core is fully synthesizable to allow maximum flexibility; it is highly
portable across processes and can easily be integrated into full system-on-silicon designs. This allows developers to
focus their attention on end-user specific characteristics of their product.

The 4KE core is ideally positioned to support new products for emerging segments of the digital consumer, network,
systems, and information management markets, enabling new tailored solutions for embedded applications.

1.1 The 4KEc™, 4KEm™, and 4KEp™ Cores

The 4KE family has three members: the 4KEc™, 4KEm™, and 4KEp™ cores. The three devices differ mainly in the
type of multiply-divide unit (MDU) and the Memory Management Unit (MMU).

» The 4KEc core contains a fully-associative Translation Lookaside Buffer (TLB)-based MMU and pipelined MDU.

» The 4KEm core contains a fixed mapping translation (FMT) mechanism in the MMU, that is smaller and simpler
than the TLB-based implementation used in the 4KEc core. A pipelined MDU (like the 4KEc core) is used.

» The 4KEp core contains the same FMT-based MMU (like the 4KEm core), but a smaller non-pipelined MDU.

The term4KE coreas used in this document, generally refers to all cores in the 4KE family. When referring to
characteristics unique to an individual family member, the specific corediffe, AKEm or 4KEp corg will be
identified.

On a 4KE core, instruction and data caches are optional and fully programmable from 0 - 64 Kbytes in size. In addition,
each cache can be organized as direct-mapped, 2-way, 3-way, or 4-way set associative. On a cache miss, loads are
blocked only until the first critical word becomes available. The pipeline resumes execution while the remaining words
are being written to the cache. Both caches are virtually indexed and physically tagged. Virtual indexing allows the cache
to be indexed in the same clock in which the address is generated rather than waiting for the virtual-to-physical address
translation in the TLB.

The core implements the MIPS32 Release 2 Instruction Set Architecture (ISA), and may optionally support the MIPS16e
Application Specific Extension (ASE) for code compression. The MMU of the 4KEc core contains a 4-entry instruction
TLB (ITLB), a 4-entry data TLB(DTLB), and a 16 dual-entry joint TLB (JTLB) with variable page sizes. The 4KEm
and 4KEp cores contain a simplified fixed mapping translation (FMT) mechanism, for applications that do not require
the full capabilities of a TLB.

The 4KEc and 4KEm Multiply-Divide Unit (MDU) supports a maximum issue rate of one 32x16 multiply
(MUL/MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock,

or one 32x32 MUL, MADD, or MSUB every other clock. The MDU on the 4KEp core uses an area-sensitive iterative
algorithm.

The basic Enhanced JTAG (EJTAG) features provide CPU run control with stop, single stepping and re-start, and with
software breakpoints through the SDBBP instruction. Additional EJTAG features - instruction and data virtual address
hardware breakpoints, connection to an external EJTAG probe through the Test Access Port (TAP), and PC/Data tracing,
may optionally be included.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 1

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

.The rest of this chapter provides an overview of the MIPS32 4KE processor core and consists of the following sections:
» Section 1.2, "Features”
» Section 1.3, "4KE™ Core Block Diagram"

1.2 Features
» 5-stage pipeline
» 32-bit Address and Data Paths
* MIPS32-Compatible Instruction Set
— Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
— Targeted multiply instruction (MUL)
— Zero and one detect instructions (CLZ, CLO)
— Wait instruction (WAIT)
— Conditional move instructions (MOVZ, MOVN)
— Prefetch instruction (PREF)
* MIPS32 Enhanced Architecture (Release 2) Features
— Vectored interrupts and support for an external interrupt controller
— Programmable exception vector base
— Atomic interrupt enable/disable
— GPR shadow sets
— Bit field manipulation instructions
— Improved virtual memory support (smaller page sizes and hooks for more extensive page table manipulation)
» MIPS16e Application Specific Extension
— 16 bit encodings of 32-bit instructions to improve code density
— Special PC-relative instructions for efficient loading of addresses and constants
— Data type conversion instructions (ZEB, SEB, ZEH, SEH)
— Compact jumps (JRC, JALRC)
— Stack frame set-up and tear down “macro” instructions (SAVE and RESTORE)
» Programmable Cache Sizes
— Individually configurable instruction and data caches
— Sizes from 0 up to 64 Kbytes
— Direct-mapped, or 2-, 3-, 4-Way set associative
— Loads that miss in the cache are blocked only until critical word is available
— Supports Write-back with write-allocation and Write-through with or without write-allocation
— 128-bit (16-byte) cache line size, word sectored - suitable for standard 32-bit wide single-port SRAM
— Virtually indexed, physically tagged
— Cache line locking support
— Non-blocking prefetches
2 MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

1.2 Features

» Scratchpad RAM support
— Replace one way of instruction cache and/or data cache
— Maximum 20-bit index (1M address)
— Memory-mapped registers attached to scratchpad port can be used as a coprocessor interface
* R4000 Style Privileged Resource Architecture
— Count/compare registers for real-time timer interrupts
— Instruction and data watch registers for software breakpoints
* Programmable Memory Management Unit (4KEc core only)
— 16 dual-entry MIPS32-style JTLB with variable page sizes
— 4-entry instruction TLB
— 4-entry data TLB
* Programmable Memory Management Unit (4KEm and 4KEp cores only)
— Simple Fixed Mapping Translation (FMT)
— Address spaces mapped using register bits
» Simple Bus Interface Unit (BIU)
— All'l/Os fully registered
— Separate unidirectional 32-bit address and data buses
— Two 16-byte collapsing write buffers

» CorExtend™ User Defined Instruction capability (access to this feature is available in the 4KE Pro™ cores and
requires a separate license)

— Optional support for the CorExtend feature allows users to define and add instructions to the core (as a build-time
option)

— Single or multi-cycle instructions
— Source operations from register, immediate field, or local state
— Destination to a register or local state
 Full featured Coprocessor 2 Interface
— Almost all I/Os registered
— Separate unidirectional 32-bit instruction and data buses
— Support for branch on Coprocessor condition
— Processor to/from Coprocessor register data transfers
— Direct memory to/from Coprocessor register data transfers
* Multiply-Divide Unit (4KEc and 4KEm cores)
— Maximum issue rate of one 32x16 multiply per clock
— Maximum issue rate of one 32x32 multiply every other clock
— Early-in divide control. Minimum 11, maximum 34 clock latency on divide
* Multiply-Divide Unit (4KEp core)

— lterative multiply and divide. 32 or more cycles for each instruction.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 3

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

» Power Control

— No minimum frequency

— Power-down mode (triggered by WAIT instruction)

— Support for software-controlled clock divider

— Support for extensive use of fine-grain clock gating
» EJTAG Debug Support

— CPU control with start, stop and single stepping

— Software breakpoints via the SDBBP instruction

— Optional hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2 instruction and 1 data
breakpoint, or no breakpoints

— Optional Test Access Port (TAP) facilitates high speed download of application code

— Optional EJTAG Trace hardware to enable real-time tracing of executed code

1.3 4KE™ Core Block Diagram

The 4KE core contains both required and optional blocks, as shown in the block diagrgumenl-1 on page.5

Required blocks are the lightly shaded areas of the block diagram and are always present in any core implementation.
Optional blocks may be added to the base core, depending on the needs of a specific implementation. The required blocks
are as follows:

» Execution Unit

* Multiply-Divide Unit (MDU)

» System Control Coprocessor (CPO0)
* Memory Management Unit (MMU)
» Cache Controller

* Bus Interface Unit (BIU)

* Power Management

Optional blocks include:

* Instruction Cache (I-cache)

» Data Cache (D-cache)

* Enhanced JTAG (EJTAG) Controller

* MIPS16e support

» Coprocessor 2 Interface (CP2)

» CorExtend™ User Defined Instructions (UDI)

Figure 1-1shows a block diagram of a 4KE core. The MMU can be implemented using either a translation lookaside

buffer in the case of the 4KEc core, or a fixed mapping (FMT) in the case of the 4KEm and 4KEp cores. Rafgttr
3, “Memory Management of the 4KE™ Core,” on pagdd@4more information.

4 MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

1.3 4KE™ Core Block Diagram

EJTAG Off/On-Chip

Trace I/F

Trace

MDU I-cache TAP Off-Chip

Debug I/F
B
UDI |«»| Execution Unit n 4
Controller £ o
=] [5
CP2 it
O

System)
Coprocessor TLB or FMT D-cache I:/I%vr\ﬁr
On-Chip | Fixed/Required | Optional |
Coprocessor 2

Figure 1-1 4KE™ Processor Core Block Diagram

1.3.1 Required Logic Blocks

The following subsections describe the various required logic blocks of the 4KE processor core.

1.3.1.1 Execution Unit

The core execution unitimplements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) operations
(logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two 32-bit
general-purpose registers(GPRs) used for scalar integer operations and address calculation. Optionally, one or three
additional register file shadow sets (each containing thirty-two registers) can be added to minimize context switching
overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully
bypassed to minimize operation latency in the pipeline.

The execution unit includes:

» 32-bit adder used for calculating the data address

» Address unit for calculating the next instruction address

* Logic for branch determination and branch target address calculation

 Load aligner

» Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructions are
followed closely by consumers of their results

» Zero/One detect unit for implementing the CLZ and CLO instructions
» ALU for performing bitwise logical operations

* Shifter and Store aligner

1.3.1.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations. In the 4KEc and 4KEm processors, the MDU consists
of a 32x16 booth-encoded multiplier, result-accumulation registers (Hl and LO), multiply and divide state machines, and

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 5

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

all multiplexers and control logic required to perform these functions. This pipelined MDU supports execution of a
16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle.
Appropriate interlocks are implemented to stall the issue of back-to-back 32x32 multiply operations. Divide operations
are implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles in worst case to complete.
Early-in to the algorithm detects sign extension of the dividend, if it is actual size is 24, 16 or 8 bit. the divider will skip
7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU instruction while a divide is still active causes a
pipeline stall until the divide operation is completed.

The area-efficient, non-pipelined MDU in the 4KEp core consists of a 32-bit full-adder, result-accumulation registers
(Hl'and LO), a combined multiply/divide state machine, and all multiplexers and control logic required to perform these
functions. It performs any multiply using 32 cycles in an iterative 1 bit per clock algorithm. Divide operations are also
implemented with a simple 1 bit per clock iterative algorithm (no early-in) and require 35 clock cycles to complete. An
attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes a pipeline stall until the
operation is completed.

The 4KE implements an additional multiply instruction, MUL, which specifies that lower 32-bits of the multiply result
be placed in the register file instead of the HI/LO register pair. By avoiding the explicit move from LO (MFLO)
instruction, required when using the LO register, and by supporting multiple destination registers, the throughput of
multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (MSUB/MSUBU), are used to perform the
multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the
product to the current contents of the Hl and LO registers. Similarly, the MSUB instruction multiplies two operands and
then subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are
commonly used in Digital Signal Processor (DSP) algorithms.

1.3.1.3 System Control Coprocessor (CPO0)

In the MIPS architecture, CPO is responsible for the virtual-to-physical address translation, cache protocols, the
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), and
the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and presence of
build-time options are available by accessing the CPO registers. R&eafter 5, “CP0 Registers of the 4KE™ Core,”

on page 88or more information on the CPO registers. RefeCtwapter 9, “EJTAG Debug Support in the 4KE™ Core,”

on page 16%or more information on EJTAG debug registers.

1.3.1.4 Memory Management Unit (MMU)

The 4KE core contains an MMU that interfaces between the execution unit and the cache controller, Bigowa in
1-2 on page .7Although the 4KEc core implements a 32-bit architecture, the Memory Management Unit (MMU) is
modeled after the MMU found in the 64-bit R4000 family, as defined by the MIPS32 architecture.

The 4KEc core implements its MMU based on a Translation Lookaside Buffer (TLB). The TLB consists of three
translation buffers: a 16 dual-entry fully associative Joint TLB (JTLB), a 4-entry fully associative Instruction TLB
(ITLB) and a 4-entry fully associative data TLB (DTLB). The ITLB and DTLB, also referred to as the micro TLBs, are
managed by the hardware and are not software visible. The micro TLBs contain subsets of the JTLB. When translating
addresses, the corresponding micro TLB (I or D) is accessed first. If there is not a matching entry, the JTLB is used to
translate the address and refill the micro TLB. If the entry is not found in the JTLB, then an exception is taken. To
minimize the micro TLB miss penalty, the JTLB is looked up in parallel with the DTLB for data references. This results

in a one cycle stall for a DTLB miss and a two cycle stall for an ITLB miss.

The 4KEm and 4KEp cores implement a FMT-based MMU instead of a TLB-based MMU. The FMT replaces the JTLB,
ITLB and DTLB in the 4KEc core. The FMT performs a simple translation to get the physical address from the virtual
address. Refer tGhapter 3, “Memory Management of the 4KE™ Core,” on pagéB84nore information on the FMT.

6 MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

1.3 4KE™ Core Block Diagram

Figure 1-2 on page $hows how the address translation mechanism interacts with cache access. The JTLB in this figure
is only present on the 4KEc core.

Virtual Address l-cache
Instruction ¢
Address ITLB/FMT? | ! Comparator
Calculator Instruction

IVA Entry Hit/Miss

JTLB?
Entry Patf"
l—b Hit/Miss
Data

Address | DTLB/EMT Comparator
Calculator 4

Virtual Address D-cache

1. JTLB only exists in the 4KEc core
2. ITLB/DTLB implemented in the 4KEc core only. FMT implemented inthe 4KEm and 4KEp cores.

- Virtual Physica|
Instruction | Address Address
Address
Calculator ’ |Sn|§2M
SRAM
FMT interface
Data
Data — > SRAM
Address - » m
Calculator | Virtual Ad)cg e
Address

Figure 1-2 Address Translation During a Cache Access

1.3.1.5 Cache Controllers

The data and instruction cache controllers support caches of various sizes, organizations and set associativities. For
example, the data cache can be 2 Kbytes in size and 2-way set associative, while the instruction cache can be 8 Kbytes
in size and 4-way set associative. There is a separate cache controller for the instruction cache and the data cache.

Each cache controller contains and manages a one-line fill buffer. Besides accumulating data to be written to the cache,
the fill buffer is accessed in parallel with the cache and data can be bypassed back to the core.

Refer toChapter 7, “Caches of the 4KE™ Core,” on page fbbénore information on the instruction and data cache
controllers.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 7

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

1.3.1.6 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementation of a
32-byte collapsing write buffer. The purpose of this buffer is to hold and combine write transactions before issuing them
to the external interface. Since the data caches for all cores follow a write-through cache policy, the write buffer
significantly reduces the number of write transactions on the external interface as well as reducing the amount of stalling
in the core due to issuance of multiple writes in a short period of time.

The write buffer is organized as two 16-byte buffers. Each buffer contains data from a single 16-byte aligned block of
memory. One buffer contains the data currently being transferred on the external interface, while the other buffer
contains accumulating data from the core.

1.3.1.7 Power Management

The core offers a number of power management features, including low-power design, active power management, and
power-down modes of operation. The core is a static design that supports a WAIT instruction designed to signal the rest
of the device that execution and clocking should be halted, hence reducing system power consumption during idle
periods.

The core provides two mechanisms for system-level, low-power support:

» Register-controlled power management

* Instruction-controlled power management

In register-controlled power management mode the core provides three bits in the CP0O Status register for software

control of the power management function and allows interrupts to be serviced even when the core is in power-down
mode. In instruction-controlled power-down mode execution of the WAIT instruction is used to invoke low-power mode.

Refer toChapter 8, “Power Management of the 4KE™ Core,” on pagefdé@ore information on power management.

1.3.2 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagFaguir 1-1 on page.5

1.3.2.1 MIPS16e™ Application Specific Extension

The 4KE core includes optional support for the MIPS16e ASE. This ASE improves code density through the use of
16-bit encodings of MIPS32 instructions plus some MIPS16e-specific instructions. PC relative loads allow quick access
to constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for efficient
subroutine entry/exit. Sign- and zero-extend instructions improve handling of 8bit and 16bit datatypes.

A decompressor converts the MIPS16e 16-bit instructions fetched from the instruction cache or external interface back
into 32-bit instructions for execution by the core.

1.3.2.2 Instruction Cache

The instruction cache is an optional on-chip memory array of up to 64 Kbytes. The cache is virtually indexed and
physically tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access rather
than having to wait for the physical address translation. The tag holds 22 bits of the physical address, a valid bit, and a
lock bit. There is a separate tag array which holds data used in the Least Recently Used (LRU) replacement scheme. The
LRU array ranges from 0-6 bits depending on associativity.

8 MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

1.3 4KE™ Core Block Diagram

All cores support instruction cache locking. Cache locking allows critical code to be locked into the cache on a “per-line”
basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is always available
on all instruction cache entries. Entries can be marked as locked or unlocked (by setting or clearing the lock bit) on a
per-entry basis using the CACHE instruction.

The LRU array must be bit-writable. The tag and data arrays only need to be word-writable.

1.3.2.3 Data Cache

The data cache is an optional on-chip memory array of up to 64 Kbytes. The cache is virtually indexed and physically

tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access. The tag holds 22
bits of the physical address, a valid bit, and a lock bit. A separate array holds the dirty and LRU bits; this array ranges

from 0-10 bits depending on the associativity.

In addition to instruction cache locking, all cores also support a data cache locking mechanism identical to the instruction
cache, with critical data segments to be locked into the cache on a “per-line” basis. The locked contents cannot be
selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or unlocked on a per-entry
basis using the CACHE instruction.

The physical data cache memory must be byte writable to support sub-word store operations. The LRU/dirty bit array
must be bit-writable.

1.3.2.4 EJTAG Controller

All cores provide basic EJTAG support with debug mode, run control, single step and software breakpoint instruction
(SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code.

Optional EJTAG features include hardware breakpoints. A 4KE core may have four instruction breakpoints and two data
breakpoints, two instruction breakpoints and one data breakpoint, or no breakpoints. The hardware instruction
breakpoints can be configured to generate a debug exception when an instruction is executed anywhere in the virtual
address space. Bit mask and Address Space Identifier (ASID) values may apply in the address compare. These
breakpoints are not limited to code in RAM like the software instruction breakpoint (SDBBP). The data breakpoints can
be configured to generate a debug exception on a data transaction. The data transaction may be qualified with both virtual
address, data value, size and load/store transaction type. Bit mask and ASID values may apply in the address compare,
and byte mask may apply in the value compare.

An optional TAP, enabling communication between an EJTAG probe and the CPU through a dedicated port, may also
be applied to the core. This provides the possibility for debugging without debug code in the application, and for
download of application code to the system.

Another optional block is EJTAG Trace which enables real-time tracing capability. The trace information can be stored

to either an on-chip trace memory, or to an off-chip trace probe. The trace of program flow is highly flexible and can
include instruction program counter as well as data addresses and data values. The trace features provides a powerful
software debugging mechanism.

Refer toChapter 9, “EJTAG Debug Support in the 4KE™ Core,” on pagddrG@ore information on the EJTAG
features.

1.3.2.5 Coprocessor 2 Interface (CP2)

The optional coprocessor 2 (CP2) interface provides a full-featured interface for a coprocessor. It provides full support
for all the MIPS32 COP2 instructions, with the exception of the 64-bit Load/Store instructions (LDC2/SDC2).

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 9

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32™ 4KE™ Processor Core Family

10

The CP2 interface can provide access to a graphics accelerator coprocessor or a simple register file. There is no support
for the floating-point coprocessor COP1, which requires 64-bit data transfers.

Refer toChapter 11, “4KE™ Processor Core Instructions,” on pagdd@4@ore information on the Coprocessor 2
supported instructions.

1.3.2.6 CorExtend™ User Defined Instructions (UDI)

This optional module contains (if implemented) support for CorExtend user defined instructions. These instructions
must be defined at build-time for the 4KE core. Access to UDI requires a separate license from MIPS, and the core is
then referred to as the 4KE Pro™ core. When licensed, 16 instructions in the opcode map are available for UDI, and
each instruction can have single or multi-cycle latency. A UDI instruction can operate on any one or two general-purpose
registers orimmediate data contained within the instruction, and can write the result of each instruction back to a general
purpose register or local register. Implementation details for UDI can be found in other documents available from MIPS.

Refer to Section 11-3, "Special2 Opcode Encoding of Function Field" for a specification of the opcode map available
for user defined instructions.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11

12

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.1 Pipeline Stages

Chapter 2

Pipeline of the 4KE™ Core

The 4KE™ processor core implements a 5-stage pipeline similar to the original R3000 pipeline. The pipeline allows the
processor to achieve high frequency while minimizing device complexity, reducing both cost and power consumption.
This chapter contains the following sections:

» Section 2.1, "Pipeline Stages”

* Section 2.2, "Instruction Cache Miss"

+ Section 2.3, "Data Cache Miss"

» Section 2.4, "Multiply/Divide Operations"

» Section 2.5, "MDU Pipeline (4KEc™ and 4KEm™ Cores)"
» Section 2.6, "MDU Pipeline (4KEp™ Core)"
» Section 2.7, "Branch Delay"

» Section 2.8, "Data Bypassing"

» Section 2.10, "Interlock Handling"

» Section 2.11, "Slip Conditions"

» Section 2.12, "Instruction Interlocks"

» Section 2.13, "Hazards"

2.1 Pipeline Stages

The pipeline consists of five stages:
* Instruction (I stage)
» Execution (E stage)

* Memory (M stage)

Align (A stage)
Writeback (W stage)

A 4KE core implements a “Bypass” mechanism that allows the result of an operation to be sent directly to the instruction
that needs it without having to write the result to the register and then read it back.

Figure 2-1 on page 1ghows the operations performed in each pipeline stage of the 4KE processor.

MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02 13

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

14

| . | | I-Cache
| | | E [v] A W 'Ig';'i’
! | |1A->E Bypass, | !

! ! M->E Bypass | l RegR
! ! \ : | I-AC1[1-AC2
I-Cache |RegR| ALUOp | . . | © ALU Op
I-TLB | Dec [D-AC| D-Cache | Align RegW £ D-AC

\ D-TLB ! | I \o© D-Cache

l l-acili-ac2 | [s D-TLB

! | |A->E Bypass : L& Align

\ ol - \ =) LAlign |
! ¢ [} = RegW

| | MUL / MDU Res |RegW !

! | \ . o MUL

l \ . 2 CPA

| | Mult, ! 16x16] cPaA ! MDU Res_| & [t Mace
\ \ Iy o) L

l \ Mult /32x3d cea MDU Res a Divide

\ \ S Sign Adjust

| \ MDU Res

[\

|]

| Iy) N
Divide' /] Sign Adjust | MDU Res
\ ! ! \

: I$ Tag and Data read

: I-TLB Look-up

: Instruction Decode

: Register file read

: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations

: Data Address Calculation

: D$ Tag and Data read

: D-TLB Look-up

: Load data aligner

: Register file write

: MUL instruction

: Carry Propagate Adder

: Multiply and Multiply Accumulate instructions
: Divide instructions

: Last stage of Divide is a sign adjust

: Result can be read from MDU

: One or more cycles.

Figure 2-1 4KE™ Core Pipeline Stages

Figure 2-2shows the operations performed in each pipeline stage of the 4KEm processor core.

E | M | A

] 1
Divide' // Sign Adjust | MDU Res
\

| |

| | | | W -Cach
\ : |A->E Bypass| : X | Dec
\ \ M->IE Bypass ! I \ RedR
[rcache [ReqR| ALuOp | AN : | I'Afl_lu I(')ACZ
\ I Dec |D-Ac| D-Cache [allgn RegW R v
\ | I\ |
: 1-AC1 | | L e DCA?—CT
! : ¥ :A_>E l,BYDaSS' ! = RegW
: | MUL | // MDU Res |RegW : - MUL
\ | : . g CPA
\ \ Mult, | 16x16] CcPA | MDURes | \F [Mult Macc
l | .) ' Lo Divide
! ! Mult 132x3d CPA MDU Res a Sign Adjust
: | ' Iy = | MDURes
! |
! |

/!

: I-Cache Tag and Data read

: Instruction Decode

: Register file read

: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations

: Data Address Calculation

: D-Cache Tag and Data read

: Load data aligner

: Register file write

: MUL instruction

: Carry Propagate Adder

: Multiply and Multiply Accumulate instructions
: Divide instructions

: Last stage of Divide is a sign adjust

: Result can be read from MDU

: One or more cycles.

Figure 2-2 4KEm™ Core Pipeline Stages

Figure 2-3shows the operations performed in each pipeline stage of the 4KEp processor core.

| ! |
! | e | wm | A [w | -Cach
| \ |A->E Bypass| \ | | Dec
| \ M—>I|E Bypass \ ! | RegR
[AN ! | I-AC1|1-AC2
|_1-cache |RegR| ALUQp | ! ALU Op
\ I Dec|D-ac| D-Cache [align RegW \
| | =
| | D-Cache
: I-AC1[1-AC2 | , : m]
'A- | Ea——
: | W A->E Bypass, ' | RegW
| ' fww t // | MDURes [Reqw] | MUL
\ \ | : | \ Multiply,
| \ - — f 1 MDU Res
Multiply, Div —
: S e - |
|
N | 1

: I-Cache Tag and Data read

: Instruction Decode

: Register file read

: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations

: Data Address Calculation

: D-Cache Tag and Data read

: Load data aligner

: Register file write

: MUL instruction

: Multiply, Multiply Acc. And Divide
: Result can be read from MDU

: One or more cycles.

Figure 2-3 4KEp™ Core Pipeline Stages

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.1 Pipeline Stages

2.1.1 | Stage: Instruction Fetch

During the Instruction fetch stage:

An instruction is fetched from the instruction cache.
The I-TLB performs a virtual-to-physical address translation (4KEc core only).

MIPS16e instructions are converted into MIPS32-like instructions.

2.1.2 E Stage: Execution

During the Execution stage:

Operands are fetched from the register file.

Operands from the M and A stage are bypassed to this stage.

The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register instructions.
The ALU calculates the data virtual address for load and store instructions.

The ALU determines whether the branch condition is true and calculates the virtual branch target address for branch
instructions.

Instruction logic selects an instruction address.

All multiply and divide operations begin in this stage.

2.1.3 M Stage: Memory Fetch

During the Memory Fetch stage:

The arithmetic or logic ALU operation completes.

The data cache access and the data virtual-to-physical address translation are performed for load and store
instructions.

Data TLB (4KEc core only) and data cache lookup are performed and a hit/miss determination is made.

A 16x16 or 32x16 MUL operation completes in the array and stalls for one clock in the M stage to complete the
carry-propagate-add in the M stage (4KEc and 4KEm cores).

A 32x32 MUL operation stalls for two clocks in the M stage to complete the second cycle of the array and the
carry-propagate-add in the M stage (4KEc and 4KEm cores).

A multiply operation stalls the MDU pipeline for 31 cycles in the M stage (4KEp core).

Multiply and divide calculations proceed in the MDU. If the calculation completes before the IU moves the
instruction past the M stage, then the MDU holds the result in a temporary register until the IlU moves the instructions
to the A stage (and it is consequently known that it won't be killed).

2.1.4 A Stage: Align

During the Align stage:

A separate aligner aligns loaded data with its word boundary.

A MUL operation makes the result available for writeback. The actual register writeback is performed in the W stage
(all 4KE cores).

From this stage load data or a result from the MDU are available in the E stage for bypassing.

MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02 15

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

2.1.5 W Stage: Writeback

During the Writeback stage:

* For register-to-register or load instructions, the result is written back to the register file.

2.2 Instruction Cache Miss

When the instruction cache is indexed, the instruction address is translated to determine if the required instruction resides

in the cache. An instruction cache miss occurs when the requested instruction address does not reside in the instruction

cache. When a cache miss is detected in the | stage, the core transitions to the E stage. The pipeline stalls in the E stage
until the miss is resolved. The bus interface unit must select the address from multiple sources. If the address bus is busy,

the request will remain in this arbitration stage (B-ASétigure 2-4 on page }@&ntil the bus is available. The core

drives the selected address onto the bus. The number of clocks before data is returned is then determined by the array
containing the data.

Once the data is returned to the core, the critical word is written to the instruction register forimmediate use. The bypass
mechanism allows the core to use the data as soon as it arrives, as opposed to having the entire cache line written to the
instruction cache, then reading out the required word.

Figure 2-4 on page 1$hows a timing diagram of an instruction cache miss.

.	.
[E i E E	E
.	.
' ' .	: .
I-Cache ! o . RegRd ALUOp	
I-TLB	I-TLB B-ASel \\
\ \ LANN 0 . AL	I-AZ

* Contains all of the cycles that address and data are utilizing the bus.

Figure 2-4 Instruction Cache Miss Timing

2.3 Data Cache Miss

16

When the data cache is indexed, the data address is translated to determine if the required data resides in the cache. A
data cache miss occurs when the requested data address does not reside in the data cache.

When a data cache miss is detected in the M stage (D-TLB), the core transitions to the A stage. The pipeline stalls in the

A stage until the miss is resolved (requested data is returned). The bus interface unit arbitrates between multiple requests
and selects the correct address to be driven onto the bus (B-ASiglire 2-5 on page 37The core drives the selected

address onto the bus. The number of clocks before data is returned is then determined by the array containing the data.

Once the data is returned to the core, the critical word of data passes through the aligner before being forwarded to the
execution unit. The bypass mechanism allows the core to use the data as soon as it arrives, as opposed to having the entire
cache line written to the data cache, then reading out the required word.

Figure 2-5 on page 1shows a timing diagram of a data cache miss.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.4 Multiply/Divide Operations

\
1 1 '
* Contains all of the time that address and data are utilizing the bus.

| | | | | | | | | | | | I
| | | [\ [\
E | M A | A F A : A ! W |
i i
	\		!
	X ! \ !		
RegR	ALU1 D-Cache	:	:
: omel .	. :		
N \ \ A\			
:	[B-Asel\\ Bus* \\	DCBypass	Align
\ A ¥ \ v			
	\		

Figure 2-5 Load/Store Cache Miss Timing

2.4 Multiply/Divide Operations

The 4KE core implement the standard MIPS [I™ multiply and divide instructions. Additionally, several new instructions
were standardized in the MIPS32 architecture for enhanced performance.

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general purpose register file
instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register, and
by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU) multiply-subtract (MSUB), and
multiply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract operations.
The MADD/MADDU instruction multiplies two numbers and then adds the product to the current contents of the Hl
and LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and then subtracts the product from
the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are commonly used in DSP algorithms.

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations write to the
general purpose registers (GPR). Because MDU operations write to different registers than integer operations, following
integer instructions can execute before the MDU operation has completed. The MFLO and MFHI instructions are used
to move data from the HI/LO register pair to the GPR file. If a MFLO or MFHI instruction is issued before the MDU
operation completes, it will stall to wait for the data.

2.5 MDU Pipeline (4KEc™ and 4KEm™ Cores)

The 4KEc and 4KEm processor cores contain an autonomous multiply/divide unit (MDU) with a separate pipeline for
multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall
when the U pipeline stalls. This allows multi-cycle MDU operations, such as a divide, to be partially masked by system
stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier array, a carry propagate adder, result/accumulation registers (HlI
and LO), multiply and divide state machines, and all necessary multiplexers and control logic. The first number shown
(‘32" of 32x16) represents thes operand. The second number (‘16’ of 32x16) represents thgerand. The core only

checks the lattgfrt) operand value to determine how many times the operation must pass through the multiplier array.
The 16x16 and 32x16 operations pass through the multiplier array once. A 32x32 operation passes through the multiplier
array twice.

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can
be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32x32

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 17

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

18

multiply operations. Multiply operand size is automatically determined by logic built into the MDU. Divide operations
are implemented with a simple 1 bit per clock iterative algorithm with an early in detection of sign extension on the
dividend(rs). Any attempt to issue a subsequent MDU instruction while a divide is still active causes an U pipeline stall
until the divide operation is completed.

Table 2-1lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the first
instruction to produce the result needed by the second instruction.

Table 2-1 4KEc™ and 4KEm™ Core MDU Instruction Latencies

) Instruction Sequence
Size of Operand Latency
1st Instruction!1] 1st Instruction 2nd Instruction Clocks
MULT/MULTU, MADD/MADDU,
16 bit MADD/MADDU or MSUB/MSUBU or 1
MSUB/MSUBU MFHI/MFLO
MULT/MULTU, MADD/MADDU,
32 bit MADD/MADDU, or MSUB/MSUBU or 2
MSUB/MSUBU MFHI/MFLO
16 bit MUL Integer operatidfl 28]
32 bit MUL Integer operatidfl 213
8 bit DIvU MFHI/MFLO 9
16 bit DivU MFHI/MFLO 17
24 bit DIVU MFHI/MFLO 25
32 bit DIVU MFHI/MFLO 33
8 bit DIV MFHI/MFLO 104
16 bit DIV MFHI/MFLO 18[4]
24 bit DIV MFHI/MFLO 264
32 bit DIV MFHI/MFLO 344
any MFHI/MFLO Integer operatid?iI 2
any MTHI/MTLO MQ@B@Q@B&J‘” 1
Note: [1] For multiply operations, this is theoperand. For divide operations, this is theperand.
Note: [2] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
Note: [3] This does not include the 1 or 2 U pipeline stalls (16 bit or 32 bit) that the MUL operation causes irresgective
of the following instruction.These stalls do not add to the latency of 2.
Note: [4] If both operands are positive, then the Sign Adjust stage is bypassed. Latency is then the same as fof DIVU.

In Table 2-1a latency of one means that the first and second instructions can be issued back to back in the code without
the MDU causing any stalls in the 1U pipeline. A latency of two means that if issued back to back, the 1U pipeline will
be stalled for one cycle. MUL operations are special because it needs to stall the 1U pipeline in order to maintain its
register file write slot. Consequently the MUL 16x16 or 32x16 operation will always force a one cycle stall of the 1U
pipeline, and the MUL 32x32 will force a two cycle stall. If the integer instruction immediately following the MUL
operation uses its result, an additional stall is forced on the U pipeline.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.5 MDU Pipeline (4KEc™ and 4KEm™ Cores)

Table 2-2lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply
accumulate/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repeat rate’ refers
to the case where the first MDU instruction (in the table below) if back-to-back with the second instruction.

Table 2-2 4KEc™ and 4KEm™ Core MDU Instruction Repeat Rates

i Instruction Sequence
Operand Size of Repeat
1st Instruction 1st Instruction 2nd Instruction Rate
. MULT/MULTU, MADD/MADDU,
16 bit MADD/MADDU, MSUB/MSUBU !
MSUB/MSUBU
_ MULT/MULTU, MADD/MADDU,
32 bit MADD/MADDU, MSUB/MSUBU 2
MSUB/MSUBU

Figure 2-6below shows the pipeline flow for the following sequence:
1. 32x16 multiply (Mulg)

2. Add

3. 32x32 multiply (Mulg)

4. Subtract (Sub)

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 multiply operation
requires two clocks in the Mpy pipe-stage. The MDU pipeline is shown as the shaded ard@igafe 2-6and always

starts a computation in the final phase of the E stage. As shown in the figureythg Mpe-stage of the MDU pipeline

occurs in parallel with the M stage of the 1U pipeline, th@#\, stage occurs in parallel with the A stage, and thgd{y

stage occurs in parallel with the W stage. In general this need not be the case. Following the 1st cycle of the M stages,
the two pipelines need not be synchronized. This does not present a problem because results in the MDU pipeline are
written to the HI and LO registers, while the integer pipeline results are written to the register file.

| cycle 1 | cycle 2 | cycle 3 | cycle 4 | cycle 5 | cycle 6 | cycle 7 | cycle 8 |
I I I I I I I I I I I I I I I I
' ' | I ' ' \ i !
Mult | | ! E Mwou | Ampu | Wwmpu | : : |
1
Add : [I E [M [A [w | :
I N il))
Mult; : : | I E I Mwmbu Mwmbu Awou | Wmpu |
Sub | | : [I [E M A [w |
| N ' \ \ 1
| 1 |

Figure 2-6 MDU Pipeline Behavior During Multiply Operations (4KEc™ & 4KEm™ Processors)

The following is a cycle-by-cycle analysiskifjure 2-6
1. The first 32x16 multiply operation (Myjtis fetched from the instruction cache and enters the | stage.

2. An Add operation enters the | stage. The Muperation enters the E stage. The integer and MDU pipelines share
the | and E pipeline stages. At the end of the E stage in cycle 2, the MDU pipeline starts processing the multiply
operation (Mulf).

3. Incycle 3 a32x32 multiply operation (Myjtenters the | stage and is fetched from the instruction cache. Since the
Add operation has not yet reached the M stage by cycle 3, there is no activity in the M stage of the integer pipeline
at this time.

MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02 19

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

4. Incycle 4 the Subtract instruction enters | stage. The second multiply operatiop)(®hittrs the E stage. And the
Add operation enters M stage of the integer pipe. Since the;Multtiply is a 32x16 operation, only one clock is
required for the Npy Stage, hence the Mylbperation passes to thg,Ay stage of the MDU pipeline.

5. Incycle 5 the Subtract instruction enters E stage. The, Muiltiply enters the Mpy stage. The Add operation
enters the A stage of the integer pipeline. The Mapieration completes and is written back in to the HI/LO
register pair in the | stage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one clock, the 32x32
Mult, remains in the)py stage in cycle 6. The Sub instruction enters M stage in the integer pipeline. The Add
operation completes and is written to the register file in the W stage of the integer pipeline.

7. The Muly, multiply operation progresses to thg#y, stage, and the Sub instruction progress to the A stage.

8. The Mul, operation completes and is written to the HI/LO registers pair fhg¥tage, while the Sub
instruction write to the register file in the W stage.

2.5.1 32x16 Multiply (4KEc™ & 4KEm™ Cores)

The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage rth@ndrt operands arrive and the booth-recoding function occurs at this
time. The multiply calculation requires one clock and occurs in g Vstage. In the §p Stage, the
carry-propagate-add (CPA) function occurs and the operation is completed. The resultis ready to be read from the HI/LO
registers in the \py Stage.

Figure 2-7shows a diagram of a 32x16 multiply operation.

Clock 1 2 3 4
€ E >l¢ Mypy D€ Aypy P|E Wypy P

] | I B

[Booth [Amay | CPA | ResRray |

Figure 2-7 MDU Pipeline Flow During a 32x16 Multiply Operation

2.5.2 32x32 Multiply (4KEc ™ & 4KEm™ Coes)

The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage,rthendrt operands arrive and the booth recoding function occurs at this
time. The multiply calculation requires two clocks and occurs in thgM stage. In the fyp Stage, the CPA function
occurs and the operation is completed.

Figure 2-8shows a diagram of a 32x32 multiply operation.

Clock 1 2 3 4 5
€ E Pl My P|E Mypy P|E€ Apy PlE€ Wy H
] | | | [

| Booth | Array Array | CPA | Res Rdy |

Booth

Figure 2-8 MDU Pipeline Flow During a 32x32 Multiply Operation

20 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.5 MDU Pipeline (4KEc™ and 4KEm™ Cores)

2.5.3 Divide (4KEc™ & 4KEm™ Cores)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands, hence the first cycle of thg lVMstage is used to negate th®perand (RS Adjust) if needed. Note

that this cycle is spent even if the adjustment is not necessary. During the next maximum 32 cycles (3-34) an iterative
add/subtract loop is executed. In cycle 3 an early-in detection is performed in parallel with the add/subtract. The adjusted
rs operand is detected to be zero extended on the upper most 8, 16 or 24 bits. If this is the case the following 7, 15 or 23

cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is spent even if
the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. The sign adjust

stage is skipped if both operands are positive. In this case the Rem Adjust is moved g, thiade.

Figure 2-9 on page 2Figure 2-10 on page 2Figure 2-11 on page Z2dndFigure 2-12 on page 2how the latency for

8, 16, 24 and 32 bit divide operations, respectively. The repeat rate is either 11, 19, 27 or 35 cycles (one leigmif the

adjuststage is skipped) as a second divide can be iR&Adjusstage when the first divide is in tReg WRstage.

Clock 1 2 3 4-10 11 12 13
|4— E Stage >4~ Mypy StageP>| € Mypy Stage>| € Mypy Stage{ € Mypy Stage{ € Aypy Stage- <€ Wypy Stage-}l
| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | MDU Res Rdy |
Early In

Figure 2-9 MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

Clock 1 2 3 4-18 19 20

|4- E Stage |4 Mypy Stage-P> |4 Mypy StageP>| € Mypy Stage{ € Mypy StageP>| € Aypy StageP|

21

<4 Wypy Stage-}l

| RS Adjust Add/Subtract Add/Subtract | Rem Adjust |

Sign Adjust | MDU Res Rdy |

Early In

Figure 2-10 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Clock 1 2 3 4-26 27 28

|4- E Stage >[4 Mypy StageP>| € Mypy StageP| € Mypy StageP| € Mypy StageP| € Aypy StageP|

29

<4 Wypy Stage->|

| RS Adjust Add/Subtract Add/Subtract | Rem Adjust |

Sign Adjust | MDU Res Rdy |

Early In

Figure 2-11 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

21

Chapter 2 Pipeline of the 4KE™ Core

Clock 1

2

|4— E Stage)€ Mypy Stage P

3

<4 Mypy StageP

434

<4 Mypy StageP

35

<4 Mypy StageP

36

37

<4 Avpy StageP»| € Wypy Stage—}l

| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | MDU Res Rdy |

Early In

Figure 2-12 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

2.6 MDU Pipeline (4KEp™ Core)

22

The multiply/divide unit (MDU) is a separate autonomous block for multiply and divide operations. The MDU is not
pipelined, but rather performs the computations iteratively in parallel with the integer unit (IU) pipeline. It does not stall
when the IU pipeline stalls. This allows the long-running MDU operations to be partially masked by system stalls and/or
other integer unit instructions.

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide state
machine and all multiplexers and control logic. A simple 1-bit per clock recursive algorithm is used for both multiply
and divide operations. Using booth’s algorithm all multiply operations complete in 32 clocks. Two extra clocks are
needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not work with negative
numbers. Adjustment before and after are thus required depending on the sign of the operands. All divide operations
complete in 33 to 35 clocks.

Table 2-3lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the
second instruction to use the results of the first.

Table 2-3 4KEp™ Core Instruction Latencies

Operand Signs of Instruction Sequence
1st Instruction Latency
(Rs,Rt) 1st Instruction 2nd Instruction Clocks
MADD/MADDU,
any, any MULT/MULTU MSUB/MSUBU, or 32
MFHI/MFLO
MADD/MADDU,
any, any MADDMADDL. MSUB/MSUBU, or 34
MFHI/MFLO
any, any MUL Integer operatiéﬂ 32
any, any DIVU MFHI/MFLO 33
pos, pos DIV MFHI/MFLO 33
any, neg DIV MFHI/MFLO 34
neg, pos DIV MFHI/MFLO 35
any, any MFHI/MFLO Integer operati& 2
MADD/MADDU,
any, any MTHI/MTLO MSUB/MSUBU 1
Note: [1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

2.6 MDU Pipeline (4KEp™ Core)

2.6.1 Multiply (4KEp™ Core)

Multiply operations are executed using a simple iterative multiply algorithm. Using Booth’s approach, this algorithm
works for both positive and negative operands. The operation uses 32 cyclggnpdthge to complete a multiplication.
The register writeback to HI and LO are done in the A stage. For MUL operations, the register file writeback is done in

the Wy py Stage.

Figure 2-13shows the latency for a multiply operation. The repeat rate is 33 cycles as a second multiply can be in the
first Mypy Stage when the first multiply is iy stage.

Clock 1 2-33 34 35
|4‘ E-Stage —>|€-Mypy-Stage |- Aypy-Stage P fWMDU-Stage—}l

] | I R

| Add/sub-shift | HI/LO Write |RegWR|

Figure 2-13 4KEp™ MDU Pipeline Flow During a Multiply Operation

2.6.2 Multiply Accumulate (4AKEp™ Core)

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stages are needed
to perform the addition/subtraction. The operations uses 34 cycleg i Mtage to complete the multiply-accumulate.
The register writeback to HI and LO are done in the A stage.

Figure 2-14shows the latency for a multiply-accumulate operation. The repeat rate is 35 cycles as a second
multiply-accumulate can be in the E stage when the first multiply is in the |gsg [¢tage.

Clock 1 2-33 34 35 36 37
|4‘ E Stage P[4 Mypy StageP>| € Mypy StageP{ € Mypy Stage-P| € Avpy Stage-}l{— Wypy Stage P

|Add/SubtractShift| Accumulate/LO| Accumulate/H|| HI/LO Write |

Figure 2-14 4KEpC MDU Pipeline Flow During a Multiply Accumulate Operation

2.6.3 Divide(4KEp™ Core)

Divide operations also implement a simple non-restoring algorithm. This algorithm works only for positive operands,
hence the first cycle of the\h, stage is used to negate the rs operand (RS Adjust) if needed. Note that this cycle is
executed even if negation is not needed. The next 32 cycle (3-34) executes an interactive add/subtract-shift function.

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the remainder. Note
that one or both of these cycles are skipped if they are not needed. The rule is, if both operands were positive or if this
is an unsigned division; both of the sign adjust cycles are skipped. téihy@erand was negative, one of the sign adjust
cycles is skipped. If only thes operand was negative, hone of the sign adjust cycles are skipped. Register writeback to

Hl and LO are done in the A stage.

Figure 2-15shows the pipeline flow for a divide operation. The repeat rate is either 34, 35 or 36 cycles (depending on
how many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide is in the last
M MDU Stage.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 23

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

Clock 1 2 3-34 35 36 37 38

I4— ESt|age »>|¢ MMDU > |4 MMDU »>|<¢ MMDU > <+ MMDU »>|¢ AM|DU »><¢ Wl\/||DU »

| RS Adjust | Add/Subtract| Sign Adjust 1 | Sign Adjust 2 | HI/LO Write |

Figure 2-15 4KEp™ MDU Pipeline Flow During a Divide (DIV) Operation

2.7 Branch Delay

The pipeline has a branch delay of one cycle. The one-cycle branch delay is a result of the branch decision logic
operating during the E pipeline stage. This allows the branch target address to be used in the | stage of the instruction
following 2 cycles after the branch instruction. By executing the 1st instruction following the branch instruction
sequentially before switching to the branch target, the intervening branch delay slot is utilized. This avoids bubbles being
injected into the pipeline on branch instructions. Both the address calculation and the branch condition check are
performed in the E stage.

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay slot. After
the branch decision is made, the processor continues with the fetch of either the branch path (for a taken branch) or the
fall-through path (for the non-taken branch).

The branch delay means that the instruction immediately following a branch is always executed, regardless of the branch
direction. If no useful instruction can be placed after the branch, then the compiler or assembler must insert a NOP
instruction in the delay slot.

Figure 2-16illustrates the branch delay.

One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle
Jump or Branch —p | E M A W
Delay Slot Instructon ————» | / E M A W
Jump Target Instruction (:‘ E M A
One Clock
Branch
Delay

Figure 2-16 IU Pipeline Branch Delay

2.8 Data Bypassing

24

Most MIPS32 instructions use one or two register values as source operands. These operands are fetched from the
register file in the first part of E stage. The ALU straddles the E to M boundary, and can present the result early in M
stage. The result is not written to the register file before the W stage however. If no precautions were made, it would take
3 cycles before the result was available for the following instructions. To avoid this, data bypassing is implemented.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.8 Data Bypassing

Between the register file and the ALU a data bypass multiplexer is placed on both operaridsi(s&e17 on page

25). This enables the 4KE core to forward data from a preceding instruction whose target is a source register of a
following instruction. An M to E bypass and an A to E bypass feed the bypass multiplexers. A W to E bypass is not
needed, as the register file is capable of making an internal bypass of Rd write data directly to the Rs and Rt read ports.

| stage E stage X M stage X A stage . W stage
Ato E bypass

M to E bypass !

' Rs Addr
Instruction Rs Read

Rt Addr

Reg File

Rd Write
' Rt Read

Wt ' v I T

Bypass Load data, HI/LO Data
multiplexers or CPO data

Figure 2-17 1U Pipeline Data bypass

Figure 2-18 on page 2fhows the data bypass for an Adndstruction followed by a Supand another Adglinstruction.

The Sub instruction uses the output from the Addstruction as one of the operands, and thus the M to E bypass is
used. The following Adgluses the result from both the first Addstruction and the Syghinstruction. Since the Add
data is now in A stage, the A to E bypass is used, and the M to E bypass is used to bypagsidie Sube Adgl

instruction.
One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle
ADD; —p | E M A w
R3=R2+R1 21/1 to E bypass \ A to E bypass
suB, — » | E / M A w
R4=R3-R7
M to E bypass g
ADD3 > I E M A
R5=R3+R4

Figure 2-18 IU Pipeline M to E bypass

2.8.1 Load Delay

Load delay refers to the fact, that data fetched by a load instruction is not available in the integer pipeline until after the
load aligner in A stage. All instructions need the source operands available in the E stage. An instruction immediately
following a load instruction will, if it has the same source register as was the target of the load, cause an instruction
interlock pipeline slip in the E stage (s€ection 2.12, "Instruction Interlocks" on page 29 an instruction following

the load by 1 or 2 cycles uses the data from the load, the A to E bypadsi¢see 2-17 serves to reduce or avoid stall
cycles. An instruction flow of this is shownHigure 2-19

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 25

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle
Load Instruction —p | E M A w
\ Data bypass from A|to E
. | E / M A W
Consumer of Load Data Instruction-—————p E M A
One Clock
Load Delay

Figure 2-19 IU Pipeline A to E Data bypass

2.8.2 Move from HI/LO and CPO

Delay

As indicated inFigure 2-17 not only load data, but also data moved from the HI or LO registers (MFHI/MFLO) and
data moved from CPO (MFCO) enters the IU-Pipeline in the A stage. That is, data is not available in the integer pipeline
until early in the A stage. The A to E bypass is available for this data. But as for Loads, an instruction following
immediately after one of these move instructions must be paused for one cycle if the target of the move is among the
sources of that following instruction. This then causes an interlock slip in the E sta§ed8er 2.12, "Instruction
Interlocks" on page J9An interlock slip after a MFHI is illustrated Figure 2-20

MFHI (to R3) —p |

ADD (R4=R3+R5) —»

One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle
E M A w
ZData bypass from Ato E
| E (slip) E M A W

Figure 2-20 1U Pipeline Slip after a MFHI

2.9 Coprocessor 2 instructions

If a coprocessor 2 is attached to the 4KE core, a number of transactions has to take place on the CP2 Interface, for each
coprocessor 2 instruction. First of all if the CU[2] bit in the CBfatusregister is not set, then no coprocessor 2 related
instruction will start a transaction on the CP2 Interface. Rather a Coprocessor Unusable exception will signaled. If the
CUI[2] bit is set, and a coprocessor 2 instruction is fetched, the following transactions will occur on the CP2 Interface:

1.
cycle.

The Instruction is presented on the instructions bus in E-stage. The coprocessor 2 can do a decode in the same

The Instruction is validated from the core in M-stage. From this point the core will accept control and data signals

back from coprocessor 2. All control and data signals from the coprocessor 2 is captured on input latches to the

core.

26

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.10 Interlock Handling

2.10

3. Ifall the expected control and data signals was presented to the core in the previous M-stage, the core will proceed
executing the A-stage. If some return information is missing, the A-stage will not advance and cause a slip on all I,
E and M-stage, se®ection 2.11, "Slip Conditions" on page 28
If this instruction involved sending data from the core to the coprocessor 2, then this data is send in A-stage.

4. The instruction completion is signaled to the coprocessor 2 in the W-stage. Potential data from the coprocessor is
written in the register file.

Figure 2-21 on page 23how the timing relationship between the 4KE core and the coprocessor 2 for all coprocessor 2
instruction.

One Cycle | One Cycle | One Cycle | One Cycle | One Cycle

COP2inst. —p | E M A W
Core internal Fetch Decode and | Get ToData gaptulrz
operations instrucion | setup valid [from memory| ontro

FromData

NS . . 4

i(r:1(f)(;e to CP2 Instruciony |Validate inst» ToData | Complete
_CPZ to Core s Ready) Control &
info. « %FromData
CP2 internal Get ready for|Decode & get] See Capture Complete
operations new inst. FromData R/alid ToData instruction

Figure 2-21 Coprocessor 2 Interface Transactions

As can be seen all control and data from the coprocessor must occur in the M-stage. If this is not the case, the A-stage
will start slipping in the following cycle, and thus stall the I, E, M and A pipeline stages; but if all expected control and
data is available in the M-stage, a Coprocessor 2 instructions can execute with no stalls on the pipeline.

There is only one exception to this, and that is the Branch on Coprocessor conditions (BC2) instruction. All branch
instructions, including the regular BEQ, BNE... etc. must be resolved in E-stage. The 4KE core does not have branch
prediction logic, and thus the target address must be available before the end of E-stage. The BC2 instruction has to
follow the same protocol as all other coprocessor 2 instructions on the CP2 Interface. All core interface operations
belonging to the E, M and A stages will have to occur in the E-stage for BC2 instructions. This means that a BC2
instructions always slips for a minimum of 2 cycles in E-stage. Any delay in return of branch information from the
Coprocessor 2 will add to the number of slip cycles. All other Coprocessor 2 instructions can operate without slips,
provided that all control and data information from the Coprocessor 2 is transferred in the M-stage.

Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interruptions
handled entirely in hardware, such as cache misses, are referreidterksks At each cycle, interlock conditions are
checked for all active instructions.

Table 2-4lists the types of pipeline interlocks for the 4KE processor cores.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 27

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

Table 2-4 Pipeline Interlocks

from coprocessor

Coprocessor 2 control and/or data deITy

Interlock Type Sources Slip Stage
ITLB Miss Instruction TLB | Stage
ICache Miss Instruction cache E Stage

Producer-consumer hazards E/M Stage
Instruction Hardware Dependencies (MDU/TLB)
E Stage
BC2 waiting for COP2 Condition Checl
DTLB Miss Data TLB M Stage
Load that misses in data cache
Multi-cycle cache Op
Sync
Data Cache Miss Store when write thru buffer full A Stage
EJTAG breakpoint on store
VA match needing data value comparispn
Store hitting in fill buffer
Coprocessor 2 completion slip A Stage

In general, MIPS processors support two types of hardware interlocks:

+ Stalls, which are resolved by halting the pipeline

* Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the 4KE processor core, all interlocks are handled as slips.

2.11 Slip Conditions

On every clock internal logic determines whether each pipe stage is allowed to advance. These slip conditions propagate
backwards down the pipe. For example, if the M stage does not advance, neither does the E or | stage.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advances normally
during slips. This resolves the conflict when the slip was caused by a missing result. NOPs are inserted into the bubble

in the pipelineFigure 2-22 on page Zhows an instruction cache miss.

28 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.12 Instruction Interlocks

Clock 1 2 3 4 5 6

@ @ G
Stage ¢ ¢ ¢
Ve L fos [os [15] 16 |
E Lt [ts fe Ja 1] s
M] o] of]
Allw [l] of of

(D cache miss detected
(2) critical word received
(3 Execute E-stage

Figure 2-22 Instruction Cache Miss Slip

Figure 2-22 on page 2hows a diagram of a two-cycle slip. In the first clock cycle, the pipeline is full and the cache
miss is detected. Instruction 10 is in the A stage, instruction 11 is in the M stage, instruction 12 is in the E stage, and
instruction 13 is in the | stage. The cache miss occurs in clock 2 when the 14 instruction fetch is attempted. 14 advances
to the E-stage and waits for the instruction to be fetched from main memory. In this example it takes two clocks (3 and
4) to fetch the 14 instruction from memory. Once the cache miss is resolved in clock 4 and the instruction is bypassed to
the E stage, the pipeline is restarted, causing the 14 instruction to finally execute it's E-stage operations.

2.12 Instruction Interlocks
Most instructions can be issued at a rate of one per clock cycle. In order to adhere to the sequential programming model,
the issue of an instruction must sometimes be delayed. This to ensure that the result of a prior instruction is available.
Table 2-5details the instruction interactions that prevent an instruction from advancing in the processor pipeline.

Table 2-5 Instruction Interlocks

Instruction Interlocks
Issue Delay (in
First Instruction Second Instruction Clock Cycles) Slip Stage
LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage
Consumer of destination
MFCO register 1 E stage
MULTX/MADDX/MSUBXx 16bx32b 0
(4KEc and 4KEm cores) MFLO/MFHI
32bx32b 1 M stage
MUL 16bx32b 2 E stage
(4KEc and 4KEm cores) Consumer of target data
32bx32b 3 E stage
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 29

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

Table 2-5 Instruction Interlocks

Instruction Interlocks

Issue Delay (in

First Instruction Second Instruction Clock Cycles) Slip Stage
MUL 16bx32b 1 E stage
(4KEc and 4KEm cores) Non-Consumer of target dat
32bx32b 2 E stage
MFHI/MFLO Consumer of target data 1 E stage
MULTX/MADDX/MSUBX 16bx32b ol E stage
32bx32b MTHI/MTLO/DIV fl E stage
MUL/MULTx/MADDXx/ Until DIV
DIV MSUBX/MTHI/MTLO/ completes E stage
MFHI/MFLO/DIV P
MULT/MUL/MADD/MSUB/MTHI/MTLO/
MFHI/MFLO/DIV
(4KEp core) O/DIV completes 9
MUL
- Until MUL
(4KEp core) Any Instruction completes E stage
MFCO/MFC2/CFC2 Consumer of target data 1 E stagé
TLBWRITLBWI Load/Store/PREF/CACHE/ 2 E stage
TLBR COPO op 1 E stage

2.13 Hazards

In general, the 4KE core ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previous instruction. There are some deviations to this model. These

deviations are referred to hazards

Prior to Release 2 of the MIPS32™ Architecture, hazards (primarily CP0O hazards) were relegated to

implementation-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an
insufficient and error-prone practice that must be addressed with a firm compact between hardware and software. As
such, new instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate
hazards. To the extent that it was possible to do so, the new instructions have been added in such a way that they are

backward-compatible with existing MIPS processors.

2.13.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such an

operation remained a hazard, and is addressed by the capabilities of Release 2.

30 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.13 Hazards

In privileged software, there are two different types of hazasdscution hazardandinstruction hazardsBoth are
defined below.

2.13.1.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruction.
Table 2-6lists execution hazards.

Table 2-6 Execution Hazards

Producer - Consumer Hazard On Spacing
(Instructions)
TLBP, TLBR TLB entry 0
TLBWR, TLBWI -
Load/store using new TLB entry TLB entry 0
WatchHi
MTCO - Load/store affected by new state WatchLo 0
LL - MFCO LLAddr 1
MTCO . gtoprocessor instruction execution depends on the new value ¢f Statugy, 1
atug
EPC
MTCO - ERET DEPC 1
ErrorEPC
MTCO - ERET Status 0
MTCO, ElI, DI - Interrupted Instruction Statys 1
MTCO - Interrupted Instruction Cauge 3
EntryHi,
EntryLoO,
TLBR - MFCO EntryLoL, 0
PageMask
TLBP - MFCO Index 0
TLBR
MTCO - TLBWI EntryHi 1
TLBWR
TLBP .
MTCO - Load/store affected by new state EntryHiasip 1
TLBWI EntryLoO
MTCO - TLBWR EntryLol 0
TLBWI
MTCO - TLBWR Index 1
RDPGPR
MTCO - WRPGPR SRSCtpgg 1
Compare
. .) update that 1
MTCO - Instruction not seeing a Timer Interrupt clears Timer 4
Interrupt
MTCO Instruction affected by change Any other 2
- y 9 CPO register
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 31

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline of the 4KE™ Core

1. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic bet8éeRhnherintoutput and the external
logic which feedsSI_Timerlntback into one of th&I_Intinputs, or a function of the method for handliS$; TimerIntin an external interrupt controller.

2.13.1.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction.Table 2-7lists instruction hazards.

Table 2-7 Instruction Hazards

Producer - Consumer Hazard Spacing
On (Instructions)
TLBWR, TLBWI - Instruction fetch using new TLB entry TLB entry 3
MTCO Instruction fetch seeing the new value (including a change to ERL Status
- followed by an instruction fetch from the useg segment)

MTCO - Instruction fetch seeing the new value Entrysib 3

: : WatchHi
MTCO - Instruction fetch seeing the new value WatchLo 2
Instructionstream Instruction fetch seeing the new instruction stream Cache 3
write via CACHE - 9 entries
Instruction stream ; : ; : Cache System-depend
Write via store - Instruction fetch seeing the new instruction stream entries entt

1. This value depends on how long it takes for the store value to propagate through the system.

2.13.2 Instruction Listing

Table 2-8lists the instructions designed to eliminate hazards. See the documeniiR&82™ Architecture for
Programmers Volume II: The MIPS32™ |nstruction @4D00086) for a more detailed description of these instructions.

Table 2-8 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write

2.13.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for
compatibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with
both Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 olithifield of the JALR and JR instructions. These
encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date the
MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or JR.HB
instructions can be included in existing software for backward and forward compatibility. See the JALR.HB and JR.HB
instructions for additional information.

32 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

2.13 Hazards

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on
processors that don’'t implement Release 2 can emulate the function using the CACHE instruction.

2.13.3 Eliminating Hazards

The Spacing column shown fable 2-6andTable 2-7indicates the number of unrelated instructions (such as NOPs or
SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and consumer of the
hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entries in the table
that are listed as 0 are traditional MIPS hazards which are not hazards on the 4KE core.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazards is to place one
of the instructions listed imable 2-8between the producer and consumer of the hazard. Execution hazards can be
removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the JALR.HB
or JR.HB instructions, in conjunction with the SYNCI instruction.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 33

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3

Memory Management of the 4KE™ Core

The 4KE™ processor core includes a Memory Management Unit (MMU) that interfaces between the execution unit and
the cache controller. The 4KEc core contains a Translation Lookaside Buffer (TLB), while the 4KEm and 4KEp cores
implement a simpler Fixed Mapping (FM) style MMU.

This chapter contains the following sections:

» Section 3.1, "Introduction”

» Section 3.2, "Modes of Operation"

» Section 3.3, "Translation Lookaside Buffer (4KEc™ Core Only)"

» Section 3.4, "Virtual-to-Physical Address Translation (4KEc™ Core)"

Section 3.5, "Fixed Mapping MMU (4KEm™ & 4KEp™ Cores)"

Section 3.6, "System Control Coprocessor"

3.1 Introduction

The MMU in a 4KE processor core will translate any virtual address to a physical address before a request is sent to the
cache controllers for tag comparison or to the bus interface unit for an external memory reference. This translation is a
very useful feature for operating systems when trying to manage physical memory to accommodate multiple tasks active
in the same memory, possibly on the same virtual address but of course in different locations in physical memory (4KEc

core only). Other features handled by the MMU are protection of memory areas and defining the cache protocol.

In the 4KEc processor core, the MMU is TLB based. The TLB consists of three address translation buffers: a 16
dual-entry fully associative Joint TLB (JTLB), a 4-entry instruction micro TLB (ITLB), and a 4-entry data micro TLB
(DTLB). When an address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed first. If the translation
is not found in the micro TLB, the JTLB is accessed. If there is a miss in the JTLB, an exception is taken.

In the 4KEm and 4KEp processor cores, the MMU is based on a simple algorithm to translate virtual addresses into
physical addresses via a Fixed Mapping (FM) mechanism. These translations are different for various regions of the
virtual address space (useg/kuseg, ksegO, ksegl, kseg2/3).

Figure 3-1shows how the memory management unit interacts with cache accesses in the 4KEc cdrgyundniBe2
shows the equivalent for the 4KEm and 4KEp cores. In the 4KEm and 4KEp cores, note that the FM MMU replaces the
ITLB, DTLB and JTLB found in the 4KEc core.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 34

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

Instruction
Tag (IPA
Cache g (IPA)
RAM Instruction
Physical
Instruction Address
Virtual Address q ITLB (IPA) C
> omparator
(IVA) P
VA A Entry Instruction
Hit/Miss
JTLB
Data
Entry Physical Data
Data Address l—’ Hit/Miss
Virtual Address (DPA)
(DVA) ——> DTLB Comparator
A

Data Tag (DPA)

Cache

RAM

Figure 3-1 Address Translation During a Cache Access in the 4KEc™ core

Instruction
Tag (IPA
Cache g (IPA)
RAM Instruction
Physical
Instruction Address
Virtual Address . (IPA)
> Comparator
(IVA) P
Instruction
Hit/Miss
FM MMU
Data
Physical Dgta _
Data Address |—>Hlt/Mlss
Virtual Address (DPA)
(DVA) —e Comparator
Data Tag (DPA)
Cache
RAM

Figure 3-2 Address Translation During a Cache Access in the 4AKEm™ and 4KEp™ Cores

3.2 Modes of Operation

A 4KE processor core supports three modes of operation:

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 35

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

36

» User mode

» Kernel mode

* Debug mode

User mode is most often used for application programs. Kernel mode is typically used for handling exceptions and

privileged operating system functions, including CPO management and I/O device accesses. Debug mode is used for
software debugging and most likely occurs within a software development tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.

3.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of opdfajime. 3-3 on page 3¥hows the
segmentation for the 4 GByte¥2bytes) virtual memory space addressed by a 32-bit virtual address, for the three modes
of operation.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, software has
access to the entire address space, as well as all CPO registers. User mode accesses are limited to a subset of the virtual
address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from accessing CPO functions. In User mode,
virtual addresses 0x8000_ 0000 to OxFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same address
space and CPO registers as for Kernel mode. In addition, while in Debug mode the core has access to the debug segment
dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned on or off, allowing
full access to the entire kseg3 in Debug mode, if so desired.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

Virtual Address User Mode Kernel Mode Debug Mode
OXFFFF FFFF- """ """""-""====°=°°~° S kseg3
OXFF40 0000 . ..ce==-"""77""" .-
-------------- e e kseg3 e - dseg
OXFF3F_FFFF .- kseq3
OXFF20 0000 ..-*"" _.etTC
OXFF1F_FFFF L
OxEQ0_0000 ___.-" kseg2 kseg2
OxDFFF_FFFF o
0xC000 0000 _.-="""

OXBFFF_FFFF ksegl ksegl
OXAQ00_0000 . .e--enn 77T o
OX9FFF_FFFF
kseg0 kseg0
0x8000_0000 __
OX7FFF_FFFF
useg kuseg kuseg
0x0000,0000, __ A ...

Figure 3-3 4KE™ processor core Virtual Memory Map.

Each of the segments shownkigure 3-3 on page 3are either mapped or unmapped. The following two sub-sections
explain the distinction. Then sectioBsction 3.2.2, "User ModgSection 3.2.3, "Kernel Mode&indSection 3.2.4,
"Debug Mode"specify which segments are actually mapped and unmapped.

3.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB (4KEc core) or the FM (4KEm and 4KEp cores) to translate from
virtual-to-physical addresses. Especially after reset, it is important to have unmapped memory segments, because the
TLB is not yet programmed to perform the translation.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the translations
the FM provides for the 4KEm and 4KEp cores, but we will still make the distinction.

Except for kseg0, unmapped segments are always uncached. The cacheability of ksegO is set in the KO field of the CPO
register Config (seBection 5.2.21, "Config Register (CPO Register 16, Select 0)"

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 37

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

38

3.2.1.2 Mapped Segments

A mapped segment does use the TLB (4KEc core) or the FM (4KEm and 4KEp cores) to translate from
virtual-to-physical addresses.

For the 4KEc core, the translation of mapped segments is handled on a per-page basis. Included in this translation is
information defining whether the page is cacheable or not, and the protection attributes that apply to the page.

For the 4KEm and 4KEp cores, the mapped segments have a fixed translation from virtual to physical address. The

cacheability of the segment is defined in the CPO register Config, fields K23 and K3¢¢tee 5.2.21, "Config
Register (CPO Register 16, Select)0Write protection of segments is not possible during FM translation.

3.2.2 User Mode

In user mode, a single 2 GByte’ tdytes) uniform virtual address space called the user segment (useg) is available.
Figure 3-4 on page 3hows the location of user mode virtual address space.

32 hit
OxFFFF_FFFF
Address
Error
0x8000_0000
OX7FFF_FFFF
2GB
Mapped useg
0x0000_0000

Figure 3-4 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address Ox7FFF_FFFF. Accesses to all other addresses
cause an address error exception.

The processor operates in User mode wheistatisregister contains the following bit values:

s UM=1
*« EXL=0
*« ERL=0

In addition to the above values, the DM bit in Bebugregister must be 0.

Table 3-1lists the characteristics of the useg User mode segments.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

Table 3-1 User Mode Segments

Status Register
Bit Value Segment
Address ¢
Bit Value EXL | ERL | UM Name Address Range Segment Size|
32-hit 0x0000_0000 -->
— 2 GByte
0 0 1 useg 31
A(31)=0 OX7FFF_FFFF (2°" bytes)

All valid user mode virtual addresses have their most significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all referencesisegthrough the TLB (4KEc core) or FM (4KEm and 4KEp cores). For the 4KEc
core, the virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address before
translation. Also for the 4KEc core, bit settings within the TLB entry for the page determine the cacheability of a
reference. For the 4KEm and 4KEp cores, the cacheability is set via the KU field of the CPO Config register.

3.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit ilD@lgugregister is 0 and th8tatusregister contains one
or more of the following values:

s UM=0
* ERL=1
s EXL=1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruction
jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address, as
shown inFigure 3-5 on page 4@lso, Table 3-2lists the characteristics of the Kernel mode segments.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 39

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

40

OXFFFF_FFFF

O0xE000_0000

Kernel virtual address space
Mapped, 512MB

kseg3

OXDFFF_FFFF

0xC000_0000

Kernel virtual address space
Mapped, 512MB

kseg2

OXBFFF_FFFF

0XA000_0000
OX9FFF_FFFF

Kernel virtual address space
Unmapped, Uncached, 512MB

ksegl

0x8000_0000

Kernel virtual address space
Unmapped, 512MB

kseg0

OX7FFF_FFFF

0x0000_0000

Mapped, 2048MB

kuseg

Figure 3-5 Kernel Mode Virtual Address Space

Table 3-2 Kernel Mode Segments

Status Register Is
One of These Values

Address Bit Segment Segment
Values UM | EXL |ERL Name Address Range Size
0x0000_0000
A(BL) =0 kuseg through (%S?Eyttgss)
OX7FFF_FFFF y
(UM=0 0x8000_0000 512 MBvtes
A(31:29) = 109 or kseg0 through (229 b és)
OX9FFF_FFFF y
BXL=1 0xA000_0000
X,
A(31:29) = 10% or ksegl through 5(%%9'\653256)3
OXBFFF_FFFF Y
ERL = 1)
0xC000_0000
A(31:29) = 119 and kseg2 through 5&%9'\883/;;5
_ OXDFFF_FFFF Y
DM =0 -
OxE000_0000
A(31:29) = 113 kseg3 through %%J‘g?g’e‘g)s

OXFFFF_FFFF

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

3.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address
space is selected and covers the fili¥tes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - Ox7FFF_FFFF. For the 4KEc core, the virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

When ER. = 1 in theStatugegister, the user address region becomés-agte unmapped and uncached address space.
While in this setting, the kuseg virtual address maps directly to the same physical address, and does notinclude the ASID
field.

3.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address age3MDit ksegO virtual address space

is selected; it is theZQ—byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 - Ox9FFF_FFFF.
References to kseg0 are unmapped; the physical address selected is defined by subtracting 0x8000_0000 from the virtual
address. The KO field of ti@onfigregister controls cacheability.

3.2.3.3 Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address g5e8PMit kseg1l virtual address

space is selected. kseg1l is tﬁ%ﬁyte (512-MByte) kernel virtual space located at addresses 0XxA000_0000 -
OxBFFF_FFFF. References to ksegl are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) are accessed directly.

3.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM =0, ERL = 1, or EXL = 1 in ®&tusregister, and DM = 0 in theebugregister, and the
most-significant three bits of the 32-bit virtual address arg, BBbit kseg?2 virtual address space is selected. In the
4KEm and 4KEp processor cores, trﬁg-ﬁyte (512-MByte) kernel virtual space is located at physical addresses
0xC000_0000 - OxDFFF_FFFF. In the 4KEc processor core, this space is mapped through the TLB.

3.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address aréhkllseg3 virtual address
space is selected. In the 4KEm and 4KEp processor cores?sﬂtdyté (512-MByte) kernel virtual space is located at
physical addresses 0XEO00_0000 - OxFFFF_FFFF. In the 4KEc processor core, this space is mapped through the TLB.

3.2.4 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped areas,
except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range 0xFF20_0000 to OxFF3F_FFFF.
The layout is shown ifigure 3-6 on page 42

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 41

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

42

OXFFFF_FFFF
O0xFF40_0000 _

OxFF20_0000 _ | 9sed

ksegl

kseg0 Unmapped

Mapped if mapped in Kernel Mode

0x0000_0000

Figure 3-6 Debug Mode Virtual Address Space

The dseg is sub-divided into the dmseg segment at 0xFF20_0000 to OxFF2F_FFFF which is used when the probe
services the memory segment, and the drseg segment at 0OxFF30_0000 to OXxFF3F_FFFF which is used when
memory-mapped debug registers are accessed. The subdivision and attributes for the segments afi@ablo@43 in

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-enter debug
mode via a debug mode exception. This includes accesses usually causing a TLB exception (4KEc core only), with the
result that such accesses are not handled by the usual memory management routines.

The unmapped kseg0 and ksegl segments from kernel mode address space are available from debug mode, which allows
the debug handler to be executed from uncached and unmapped memory.

Table 3-3 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment | Sub-Segment Cache
Name Name Virtual Address | Generates Physical Address Attribute

O0xFF20_0000

dmseg maps to addresses
0x0_0000-0xF_FFFFin EJTAG
OXFF2F FFFF probe memory space.
dseg - Uncached
O0xFF30_0000

dmseg through

drseg maps to the breakpoint]
drseg through registers Ox0_0000 - OxF_FFFF

OXFF3F_FFFF

3.2.4.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of CPU access to the drseg address range at 0xFF30_0000 to OxFF3F_FFFF is determined as shown in
Table 3-4

Table 3-4 CPU Access to drseg Address Range

LSNM bitin Debug

Transaction register Access
Load / Store 1 Kernel mode address space (kseg3)
Fetch Don't care

drseg, see comments below

Load / Store 0

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.3 Translation Lookaside Buffer (4KEc™ Core Only)

Debug software is expected to read the debug control register (DCR) to determine which other memory mapped registers
exist in drseg. The value returned in response to a read of any unimplemented memory mapped register is unpredictable,
and writes are ignored to any unimplemented register in the drseg. R€fayter 9, “EJTAG Debug Support in the

4KE™ Core,"for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the processor is
undefined for other transaction sizes.

3.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of CPU access to the dmseg address range at OxFF20_0000 to OxFF2F_FFFF is determined by the table

shown inTable 3-5

Table 3-5 CPU Access to dmseg Address Range

ProbEn bit in LSNM bit in
Transaction DCR register Debug register Access
Load / Store Don't care 1 Kernel mode address space (kseg3)
Fetch 1 Don't care
dmseg
Load / Store 1 0
Fetch 0 Don't care
See comments below
Load / Store 0 0

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such

a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that there will
never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race between the
debug software sampling the ProbEn bit as 1 and the probe clearing it to O.

3.3 Translation Lookaside Buffer (4KEc™ Core Only)

The following subsections discuss the TLB memory management scheme used in the 4KEc processor core. The TLB
consists of one joint and two micro address translation buffers:

16 dual-entry fully associative Joint TLB (JTLB)
 4-entry fully associative Instruction micro TLB (ITLB)

 4-entry fully associative Data micro TLB (DTLB)

3.3.1 Joint TLB

The 4KEc core implements a 16 dual-entry, fully associative Joint TLB that maps 32 virtual pages to their corresponding
physical addresses. The purpose of the TLB is to translate virtual addresses and their corresponding ASID into a physical
memory address. The translation is performed by comparing the upper bits of the virtual address (along with the ASID
bits) against each of the entries in tiag portion of the JTLB structure. Because this structure is used to translate both
instruction and data virtual addresses, it is referred to as a “joint” TLB.

The JTLB is organized as 16 pairs of even and odd entries containing descriptions of pages that range in size from
4-KBytes (or 1-KByte) to 256-MBytes into the 4-GByte physical address space. By default, the minimum page size is
normally 4-KBytes on the 4KEc core; as a build-time option, it is possible to specify a minimum page size of 1-KByte.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 43

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

44

The JTLB is organized in pairs of page entries to minimize its overall size. Eachtagealry corresponds to two

physical data entries, an even page entry and an odd page entry. The highest order virtual address bit not participating in
the tag comparison is used to determine which of the two data entries is used. Since page size can vary on a page-pair
basis, the determination of which address bits participate in the comparison and which bit is used to make the even-odd

selection must be done dynamically during the TLB lookup.

Figure 3-7 on page 4ghows the contents of one of the 16 dual-entries in the JTLB. The bit range indication in the figure

serves to clarify which address bits are (or may be) affected during the translation process.

PageMask[28:11]

Tag Entry

Data Entries

VPN2[31:13], VPN2X[12:11] G ASID[7:0]

19 1 8
PENO[31:12] or [29:10] CO[2:0] ﬁ E
PEN1[31:12] or [29:10] C1[2:0] Vi

20 3 11

Figure 3-7 JTLB Entry (Tag and Data)

Table 3-6andTable 3-7explain each of the fields in a JTLB entry.

Table 3-6 TLB Tag Entry Fields

Field Name

Description

PageMask[28:11]

Page Mask Value. The Page Mask defines the page size by masking the

appropriate VPN2 bits from being involved in a comparison. It is also used to
determine which address bit is used to make the even-odd page (PFNO-HFN1)

determination. See the table below.

PageMask Page Size Even/Odd Bank
Select Bit
00_0000_0000_0000_0000 1KB VAddr[10]
00_0000_0000_0000_0011 4KB VAddr[12]
00_0000_0000_0000_1111 16KB VAddr[14]
00_0000_0000_0011_1111 64KB VAddr{16]
00_0000_0000_1111 1111 256KB VAddr[18]
00_0000_0011 1111 1111 1MB VAddr[20]
00_0000_ 1111 1111 1111 4MB VAddr{22]
00_0011_1111 11211 1111 16MB VAddr[24]
00 1111 1111 1111 1111 64MB VAddr[26]
11 1111 1111 1111 1111 256MB VAddr{28]

The PageMask column above shows all the legal values for PageMask. Be
each pair of bits can only have the same value, the physical entry in the
will only save a compressed version of the PageMask using only 8 bits. TH
however transparent to software, which will always work with a 18 bit fiel

cause
UTLB
isis

d

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.3 Translation Lookaside Buffer (4KEc™ Core Only)

Table 3-6 TLB Tag Entry Fields (Continued)

Field Name Description
Virtual Page Number divided by 2. This field contains the upper bits of the
VPN2[31:13] virtual page number. Because it represents a pair of TLB pages, it is dividgd by
: 2. Bits 31:25 are always included in the TLB lookup comparison. Bits 24113
are included depending on the page size, defined by PageMask.
VPN2X[12:11] Extension to the VPN2 field to support 1KB pages.
G Global Bit. When set, indicates that this entry is global to all processes and/or
threads and thus disables inclusion of the ASID in the comparison.
ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is
) associated with.

Table 3-7 TLB Data Entry Fields

Field Name Description

Physical Frame Number. Defines the upper bits of the physical address.

The [29:10] range illustrates that if 1Kbytes page granularity is enabled,
. . the PFN is shifted to the right, before being appended to the untranglated
lF;ENN(i(([[%llllzz]] %r} [[22%11%]])) part of the virtual address. In this mode the upper two physical address bits
)) are not covered by PFN but forced to zero.

For page sizes larger than 4 KBytes, only a subset of these bits is actually
used.

Cacheability. Contains an encoded value of the cacheability attributeg and
determines whether the page should be placed in the cache or not. The field
is encoded as follows:

C[2:0] Coherency Attribute
000 Cacheable, noncoherent, write-through, no
write-allocate
Cacheable, noncoherent, write-through,
001 .
write-allocate
010 Uncached
CO0[2:Q], 011 Cacheable, noncoherent, write-back,
C1[2:0] write-allocate
100 Maps to entry 011b*
101 Maps to entry 011b*
110 Maps to entry 011b*
111 Maps to entry 010b*

Note: * These mappings are not used on the 4KE procg¢ssor
cores but do have meaning in other MIPS Technoldgies
implementations. Refer to the MIPS32 specification for
more information.

DO “Dirty” or Write-enable Bit. Indicates that the page has been written

D1 and/or is writable. If this bit is set, stores to the page are permitted. If the
bit is cleared, stores to the page cause a TLB Modified exception.

VO Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping

V1 are valid. If this bit is set, accesses to the page are permitted. If the bit is

cleared, accesses to the page cause a TLB Invalid exception.

In order to fill an entry in the JTLB, software executes a TLBWI or TLBWR instruction§8et®n 3.4.3, "TLB
Instructions" on page 30Prior to invoking one of these instructions, several CPO registers must be updated with the
information to be written to a TLB entry:

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 45

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

» PageMask is set in the CPageMaskegister.

VPN2, VPN2X, and ASID are set in the CEBOtryHi register.
PFNO, CO, DO, VO and G bits are set in the ER@yLoOregister.
PFN1, C1, D1, V1 and G bits are set in the ER@yLolregister.

Note that the global bit “G” is part of botBntryLoOandEntryLol The resulting “G” bit in the JTLB entry is the logical
AND between the two fields iEntryLoOandEntryLol Please refer t€hapter 5, “CP0 Registers of the 4AKE™ Core,”
for further details.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The existence
of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value is stored in the
EntryHi register and is compared to the ASID value of each entry.

3.3.2 Instruction TLB

The ITLB is a small 4-entry, fully associative TLB dedicated to perform translations for the instruction stream. The ITLB
only maps 4-Kbyte pages/sub-pages or 1-Kbyte pages/sub-p&yedif3—1 andPageGraiggp=1.

The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated by the ITLB,
the JTLB is accessed trying to translate it in the following clock cycle. If successful, the translation information is copied
into the ITLB. The ITLB is then re-accessed and the address will be successfully translated. This results in an ITLB miss
penalty of at least 2 cycles. If the JTLB is busy with other operations, it may take additional cycles.

3.3.3 Data TLB

The DTLB is a small 4-entry, fully associative TLB which provides a faster translation for Load/Store addresses than is
possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages or 1-Kbyte pages/sub-Gagég#1 and
PageGrairgp=1.

Like the ITLB, the DTLB is managed by hardware and is transparent to software. Unlike the ITLB, an access to the
DTLB starts a parallel access to the JTLB. If there isa DTLB miss and a JTLB hit, the DTLB can be reloaded that cycle.
The DTLB is then re-accessed and the translation will be successful. This parallel access reduces the DTLB miss penalty
to 1 cycle.

3.4 Virtual-to-Physical Address Translation (4KEc™ Core)

46

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with the
virtual addresses in the TLB. There is a match when the VPN of the address is the same as the VPN field of the entry,
and either:

e The Global (G) bit of both the even and odd pages of the TLB entry are set, or
» The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TUBt. If there is no match, a TLBnissexception is taken by the processor and software
is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 3-8 on page 4Shows the logical translation of a virtual address into a physical address.

In this figure the virtual address is extended with an 8-bit ASID, which reduces the frequency of TLB flushing during a
context switch. This 8-bit ASID contains the number assigned to that process and is stored in teti@HAOregister.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.4 Virtual-to-Physical Address Translation (4KEc™ Core)

Virtual Address
1.Virtual address (VA) represented by

the virtual page number (VPN) is G ASID VPN Offset
compared with tag in TLB.

2. Ifthere is a match, the page frame ASID VPN2
number (PFNO or PFN1)
representing the upper bits of the
physical address (PA) is output from

TLB
Entry

3. The Offset, which does not pass
through the TLB, is then concatenated PFN | Offset I
with the PFN.

Physical Address

Figure 3-8 Overview of a Virtual-to-Physical Address Translation in the 4KEc™ Core

If there is a virtual address match in the TLB, the Physical Frame Number (PFN) is output from the TLB and
concatenated with th@ffset to form the physical address. T@dfsetrepresents an address within the page frame space.

As shown inFigure 3-8 on page 4teOffsetdoes not pass through the TUBgure 3-9 on page 4¢hows a flow

diagram of the 4KEc core address translation process for two page sizes. The top portion of the figure shows a virtual
address for a 4 KByte page size. The width of@fésetis defined by the page size. The remaining 20 bits of the address
represent the virtual page number (VPN). The bottom portidigofe 3-9 on page 4¢hows the virtual address for a

16 MByte page size. The remaining 8 bits of the address represent the VPN.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 47
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

Virtual address with 1M (229) 4-KByte

39 32 31 20 bits = 1M pages 12 11 0
ASID VPN Offset
AL J
Virtual-to-physical Offset passed unchanged
translation in TLB to physical memory.
Bit 31 of the virtual address
selects user and kernel 32-bit Physical Address
address spaces. 31 0
| PFNO/1 | Offset I
Virtual-to-physical Offset passed unchanged
translation in TLB to physical memory.
A A
A\l ™
-~
39 32 31 24 23 0
ASID VPN Offset

8 bits = 256 pages
Virtual Address with 256 (28)16-MByte pages

Figure 3-9 32-bit Virtual Address Translation

3.4.1 Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag and two data fields. If a match is found, the upper bits of the virtual address are replaced
with the page frame number (PFN) stored in the corresponding entry in the data array of the JTLB. The granularity of
JTLB mappings is defined in terms of TLB pages. The 4KEc core JTLB supports pages of different sizes ranging from
1 KB to 256 MB in powers of 4. If a match is found, but the entry is invalid (i.e., the V bit in the data field is 0), a TLB
Invalid exception is taken.If no match occurs (TLB miss), an exception is taken and software refills the TLB from the
page table resident in memoRjgure 3-10 on page Shows the translation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into a random emgndd a
register selects which TLB entry to use on a TLBWR. This register decrements almost every cycle, wrapping to the
maximum once its value is equal to tiMdredregister. Thus, TLB entries below thdiredvalue cannot be replaced by

a TLBWR allowing important mappings to be preserved. In order to reduce the possibility for a livelock situation, the
Randonregister includes a 10-bit LFSR that introduces a pseudo-random perturbation into the decrement.

The 4KEc core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur. On the
TLB write operation, the VPN2 field to be written is compared with all other entries in the TLB. If a match occurs, the
4KECc core takes a machine-check exception, sets the TS bit in thet@&B&egister, and aborts the write operation.

For further details on exceptions, please refeCkapter 4, “Exceptions and Interrupts in the 4KE™ Core,” on page 54
There is a hidden bit in each TLB entry that is cleared on a ColdReset. This bit is set once the TLB entry is written and
is included in the match detection. Therefore, uninitialized TLB entries will not cause a TLB shutdown.

Note: This hidden initialization bit leaves the entire JTLB invalid after a ColdReset, eliminating the need to flush the
TLB. But, to be compatible with other MIPS processors, it is recommended that software initialize all TLB entries with
unique tag values and V bits cleared before the first access to a mapped location.

48 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.4 Virtual-to-Physical Address Translation (4KEc™ Core)

3.4.2 Memory Space

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory regions,
the 4KEc core provides two mechanisms.

3.4.2.1 Page Sizes

First, the page size can be configured, on a per entry basis, to map different page sizes ranging from 4 KByte to 256
MByte, in multiples of 4 (optionally, the 4KEc core can also support a smaller page size of 1 KByte). TiRa@ask

register is loaded with the desired page size, which is then entered into the TLB when a new entry is written. Thus,
operating systems can provide special-purpose maps. For example, a typical frame buffer can be memory mapped with
only one TLB entry.

The 4KEc core implements the following page sizes:
(optionally 1K), 4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M.
Software may determine which page sizes are supported by writing all ones to tiagéNaskegister, then reading

the value back. For additional information, Smetion 5.2.5, "PageMask Register (CPO Register 5, Select 0)" on page
97.

To enable support of 1 KByte pages in the 4KEc core a few steps must be taken. First, check that small pages are
implemented by reading the CRIbnfigspbit. If set, small page sizes can be enabled by setting 8fbit of the CPO
PageGrairregister. Se&ection 5.2.6, "PageGrain Register (CP0O Register 5, Select 1)" on pégya®@re information.

3.4.2.2 Replacement Algorithm

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be written
with a new mapping, the 4KEc core provides a random replacement algorithm. However, the processor also provides a
mechanism whereby a programmable number of mappings can be locked into the TLB via the CPO Wired register, thus
avoiding random replacement. Please ref&eotion 5.2.7, "Wired Register (CP0 Register 6, Select 0)" on pag®i00
further details.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 49

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

For valid address Virtual Address (Input)

space, see the section
describing Modes of

operation in this
chapter.

User No

Address? ~

Unmapped\ Ye
Address

Exception

ksegO/kseg
Address

No

<
-

Y

ven o _
Match? =
No o
Yes
Y Y
Noncacheable TLB TLB
Invalid Refill

/

Access
Cache

Physical Address (Output).

Figure 3-10 TLB Address Translation Flow in the 4KE™ Processor Core

3.4.3 TLB Instructions

Table 3-8lists the 4KEc core’s TLB-related instructions. RefeCioapter 11, “4KE™ Processor Core Instructions,” on
page 24Zor more information on these instructions.

Table 3-8 TLB Instructions

Op Code Description of Instruction
TLBP Translation Lookaside Buffer Probe
TLBR Translation Lookaside Buffer Read
TLBWI Translation Lookaside Buffer Write Index
50 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.5 Fixed Mapping MMU (4KEm™ & 4KEp™ Cores)

Table 3-8 TLB Instructions

Op Code Description of Instruction

TLBWR Translation Lookaside Buffer Write Random

3.5 Fixed Mapping MMU (4KEm™ & 4KEp™ Cores)

The 4KEm and 4KEp cores implement a simple Fixed Mapping (FM) memory management unit that is smaller than the
a full translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FM performs virtual-to-physical
address translation and provides attributes for the different memory segments. Those memory segments which are
unmapped in a TLB implementation (kseg0 and ksegl) are translated identically by the FM in the 4KEm and 4KEp
MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bisirigregister.
Table 3-9shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and KO (bits 2:0) Gbtifegregister.

Table 3-9 Cache Coherency Attributes

Config Register Fields
K23, KU, and KO Cache Coherency Attribute
0 Cacheable, noncoherent, write-through, no write-allocate
1 Cacheable, noncoherent, write-through, write-allocate
3,4,5,6 Cacheable, noncoherent, write-back, write-allocate
2,7 Uncached

In the 4KEm and 4KEp cores, no translation exceptions can be taken, although address errors are still possible.

Table 3-10 Cacheability of Segments with Block Address Translation

Virtual Address
Segment Range Cacheability

0x0000_0000- Controlled by the KU field (bits 27:25) of theonfigregister. Refer to

useg/kuseg OX7FFF_FFFF Table 3-9for the encoding.

0x8000_0000- Controlled by the KO field (bits 2:0) of tl@&onfigregister. Se&able

ksegO i
g OX9FFF_FFFF 3-9for the encoding.

0xA000_0000-
ksegl Always uncacheable
OxBFFF_FFFF

kseqg? 0xC000_0000- Controlled by the K23 field (bits 30:28) of tieonfigregister. Refer to
g OXDFFF_FFFF Table 3-9for the encoding.
kseg3 OxE000_0000- Controlled by K23 field (bits 30:28) of tl@@onfigregister. Refer to

OXFFFF_FFFF Table 3-9for the encoding.

The FM performs a simple translation to map from virtual addresses to physical addresses. This mapping is shown in
Figure 3-11 on page 52vhen ERL=1, useg and kuseg become unmapped and uncached. The ERL behavior is the same
as if there was a TLB. The ERL mapping is showRigure 3-12 on page 53

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 51

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management of the 4KE™ Core

The ERL bitis usually never asserted by software. Itis asserted by hardware after a Reset, SoftReset orSidti@Bee
4.8, "Exceptions" on page 70r further information on exceptions.

Virtual Address Physical Address
kseg3 kseg3
0XEO000_0000 > 0XE000_0000
kseg2 kseg2
0xC000_0000 > 0xC000_0000
ksegl
0XA000_0000
kseg0
0x8000_0000
useg/kuseg
useg/kuseg 0x4000_0000
reserved
0x2000_0000
kseg0O/ksegl
0x0000_0000 0x0000_0000

Figure 3-11 FM Memory Map (ERL=0) in the 4KEm™ and 4KEp™ Processor Cores

52 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

3.6 System Control Coprocessor

Virtual Address Physical Address

kseg3 kseg3

OXEO0O 0000 OxE000_0000
= -

kseg2 kseg2
0xC000_0000 > 0xC000_0000

ksegl
0xA000_0000 T

kseg0
0x8000_0000 0x8000_0000

useg/kuseg useg/kuseg
0x2000 0000 _ _ _ _ _ |
ksegO/ksegl

0x0000_0000 x0000_0000

Figure 3-12 FM Memory Map (ERL=1) in the 4AKEm™ and 4KEp™ Processor Cores

3.6 System Control Coprocessor

The System Control Coprocessor (CPO) is implemented as an integral part of the 4KE processor cores and supports
memory management, address translation, exception handling, and other privileged operations. Certain CPO registers are
used to support memory management. Ref@ttapter 5, “CPO Registers of the 4KE™ Core,” on pag®BBiore

information on the CPO register set.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 53
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4

Exceptions and Interrupts in the 4KE™ Core

The 4KE™ processor core receives exceptions from a number of sources, including translation lookaside buffer (TLB)
misses, arithmetic overflows, I/O interrupts, and system calls. When the CPU detects one of these exceptions, the normal
sequence of instruction execution is suspended and the processor enters kernel mode.

In kernel mode the core disables interrupts and forces execution of a software exception processor (called a handler)
located at a specific address. The handler saves the context of the processor, including the contents of the program
counter, the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can
be restored when the exception has been serviced.

When an exception occurs, the core load€theeption Program Count€dEPC) register with a location where

execution can restart after the exception has been serviced. Most exceptasiaegvhich mean thaEPC can be

used to identify the instruction that caused the exception. For precise exceptions the restart locatiBR @ragister

is the address of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the
address of the branch instruction immediately preceding the delay slot. To distinguish between the two, software must
read the BD bit in the CRDauseregister. Bus error exceptions and CP2 exceptions may be imprecise. For imprecise
exceptions the instruction that caused the exception can not be identified.

This chapter contains the following sections:

» Section 4.1, "Exception Conditions"

» Section 4.2, "Exception Priority"

» Section 4.3, "Interrupts"

» Section 4.4, "GPR Shadow Registers"

» Section 4.5, "Exception Vector Locations"

» Section 4.6, "General Exception Processing"

» Section 4.7, "Debug Exception Processing"

» Section 4.8, "Exceptions"

» Section 4.9, "Exception Handling and Servicing Flowcharts"

4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are cancelled.
Accordingly, any stall conditions and any later exception conditions that may have referenced this instruction are
inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions that
follow. When this instruction reaches the W stage, the exception flag causes it to write various CPO registers with the
exception state, change the current program counter (PC) to the appropriate exception vector address, and clear the
exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instructions
from completing. Thus, the value in tB# C(ErrorEPCfor errors, oDEPCfor debug exceptions) is sufficient to restart

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 54

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.2 Exception Priority

execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception may itself

be killed by an instruction further down the pipeline that takes an exception in a later cycle.

4.2 Exception Priority

Table 4-1lists all possible exceptions, and the relative priority of each, highest to lowest. Several of these exceptions can

happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 4-1 Priority of Exceptions

bled.

nin

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT
input, or by setting the EjtagBrk bit in tE&CRreqgister.

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry (4KEc core).

Interrupt Assertion of unmasked hardware or software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).
Fetch address alignment error.

AdEL
User mode fetch reference to kernel address.
Fetch TLB miss (4KEc core).

TLBL
Fetch TLB hit to page with V=0 (4KEc core).

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enal

RI Execution of a Reserved Instruction.

C2E Execution of coprocessor 2 instruction which caused a general exceptid
the coprocessor.

IS1 Execution of coprocessor 2 instruction which caused an Implementatior
Specific exception 1 in the coprocessor.

1S2 Execution of coprocessor 2 instruction which caused an Implementatior
Specific exception 2 in the coprocessor.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

55

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

Table 4-1 Priority of Exceptions (Continued)

Exception Description
EJTAG Data Address Break (address only) or EJTAG Data Value Break|on
DDBL / DDBS Store (address and value).
WATCH A reference to an address in one of the watch registers (data).
Load address alignment error.
AdEL
User mode load reference to kernel address.
Store address alignment error.
AdES
User mode store to kernel address.
Load TLB miss (4KEc core).
TLBL Load TLB hit to page with V=0 (4KEc core).
Store TLB miss (4KEc core).
TLBS
Store TLB hit to page with V=0 (4KEc core).
TLB Mod Store to TLB page with D=0 (4KEc core).
DBE Load or store bus error.
DDBL EJTAG data hardware breakpoint matched in load data compare.

4.3 Interrupts

Older 32-bit cores available from MIPS that implemented Release 1 of the Architecture included support for two
software interrupts, six hardware interrupts, and a special-purpose timer interrupt. (Note that the Architecture also
defines a performance counter interrupt, but this is not implemented on the 4KE core.) The timer interrupt was provided
external to the core and typically combined with hardware interrupt 5 in an system-dependent manner. Interrupts were
handled either through the general exception vector (offset 16#180) or the special interrupt vector (16#200), based on
the value of Caugg Software was required to prioritize interrupts as a function of the (paaitsein the interrupt

handler prologue.

Release 2 of the Architecture, implemented by the 4KE core, adds an upward-compatible extension to the Release 1
interrupt architecture that supports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports
the use of an external interrupt controller by changing the interrupt architecture.

4.3.1 Interrupt Modes

The 4KE core includes support for three interrupt modes, as defined by Release 2 of the Architecture:
* Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architecture.

» Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to that
interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is denoted
by the VInt bit in theConfig3register. This mode is architecturally optional; but it is always present on the 4KE core,
so the Vint bit will always read as a 1 for the 4KE core.

» External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence of this
mode denoted by the VEIC bit in tl@onfig3register. Again, this mode is architecturally optional. On the 4KE core,

56 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

the VEIC bit is set externally by the static inp&, EICPresentto allow system logic to indicate the presence of an
external interrupt controller.

The reset state of the processor is to interrupt compatibility mode such that a processor supporting Release 2 of the
Architecture, like the 4KE core, is fully compatible with implementations of Release 1 of the Architecture.

Table 4-2shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields that can
affect the mode.

Table 4-2 Interrupt Modes

Causgy

Statussgy
IntCtl VS
Config3ynt
Config3ygc

Interrupt Mode

Compatibly

=
x
x
x
x

x| 0| x | x| x| Compatibility

X | x | =0 [x | x | Compatibility

0|1 |20 | 1| 0| Vectored Interrupt

0|21]#0 | x| 1| External Interrupt Controller

Can't happen - IntGfls can not be non-zero if neither
0| 1] #0 | 0| O | Vectored Interrupt nor External Interrupt Controller
mode is implemented.

“x" denotes don't care|

4.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, interrupts
are non-vectored and dispatched though exception vector offset 16#180 (if,GaQper vector offset 16#200 (if
Causg, = 1). This mode is in effect if any of the following conditions are true:

» Causg, =0
» Statugpy =1
* IntCtlyg = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

A typical software handler for interrupt compatibility mode might look as follows:

/*

* Assumptions:

* -Cause |y =1 (if it were zero, the interrupt exception would have to
be isolated from the general exception vector before getting
here)

- GPRs k0 and k1 are available (no shadow register switches invoked in

compatibility mode)

- The software priority is IP7..IPO (HW5..HWO, SW1..SWO0)

* X X X X X X

Location: Offset 0x200 from exception base
*/

IVexception:
mfcO kO, CO_Cause /* Read Cause register for IP bits */
mfcO k1, CO_Status [* and Status register for IM bits */
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 57

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

andi kO, kO, M_CauselM /* Keep only IP bits from Cause */

and kO, kO, k1 /* and mask with IM bits */

beq kO, zero, Dismiss /* no bits set - spurious interrupt */

clz kO, kO /* Find first bit set, IP7..IPO; kO = 16..23 */

xori kO, kO, 0x17 /¥16..23=>7..0%

sli ko, k0, VS /* Shift to emulate software IntCitl vs ¥/
la k1, VectorBase [* Get base of 8 interrupt vectors */

addu kO, kO, k1 /* Compute target from base and offset */

jr kO [* Jump to specific exception routine */

nop

/*

* Each interrupt processing routine processes a specific interrupt, analogous

* to those reached in VI or EIC interrupt mode. Since each processing routine

* is dedicated to a particular interrupt line, it has the context to know

* which line was asserted. Each processing routine may need to look further

* to determine the actual source of the interrupt if multiple interrupt requests

* are ORed together on a single IP line. Once that task is performed, the

* interrupt may be processed in one of two ways:

*

- Completely at interrupt level (e.g., a simply UART interrupt). The
Simplelnterrupt routine below is an example of this type.

- By saving sufficient state and re-enabling other interrupts. In this
case the software model determines which interrupts are disabled during
the processing of this interrupt. Typically, this is either the single
StatusIM bit that corresponds to the interrupt being processed, or some
collection of other Status v bits so that “lower” priority interrupts are

also disabled. The NestedInterrupt routine below is an example of this type.

*
*
*
*
*
*
*
*

*

Simplelnterrupt:
/*
* Process the device interrupt here and clear the interupt request
* at the device. In order to do this, some registers may need to be
* saved and restored. The coprocessor O state is such that an ERET
* will simple return to the interrupted code.
*/
eret /* Return to interrupted code */

NestedException:

/*

* Nested exceptions typically require saving the EPC and Status registers,

* any GPRs that may be modified by the nested exception routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting

* the processor in kernel mode, and re-enabling interrupts. The sample code
* below can not cover all nuances of this processing and is intended only

* to demonstrate the concepts.

*/

/* Save GPRs here, and setup software context */

mfcO kO, CO_EPC /* Get restart address */

sw kO, EPCSave /* Save in memory */

mfcO kO, CO_Status [* Get Status value */

sw kO, StatusSave /* Save in memory */

li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
[* others */

and ko, kO, k1 [* Clear bits in copy of Status */

ins kO, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

58 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

/* Clear KSU, ERL, EXL bits in kO */
mtcO kO, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

/*

* Process interrupt here, including clearing device interrupt.

* In some environments this may be done with a thread running in

* kernel or user mode. Such an environment is well beyond the scope of
* this example.

*/

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
Iw kO, StatusSave [* Get saved Status (including EXL set) */
Iw k1, EPCSave /* and EPC */
mtcO kO, CO_Status /* Restore the original value */
mtcO k1, CO_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

4.3.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This mode
also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Interrupt mode
is in effect if all of the following conditions are true:

» Config3)t =1
i Configa/EK; =0
|ntCt|VS z0

* Causg, =1
i StatU%EV =0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
interrupt is combined in a system-dependent way (external to the core) with the hardware interrupts (the interrupt with
which they are combined is indicated by thtCtl p, field) to provide the appropriate relative priority of the timer
interrupt with that of the hardware interrupts. The processor interrupt logic ANDs eaclCaiutgp bits with the
correspondingtatugy, bits. If any of these values is 1, and if interrupts are enabled (gtatisStatusy, =0, and
Statugg, = 0), an interrupt is signaled and a priority encoder scans the values in the order Sredve 473

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 59

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

Table 4-3 Relative Interrupt Priority for Vectored Interrupt Mode

Interrupt
Request Vector Number
Relative Interrupt | Interrupt Calculated Generated by
Priority Type Source From Priority Encoder
Highest Priority HWS5 IP7 and IM7 7
HW4 IP6 and IM6 6
HW3 IP5 and IM5 5
Hardware
HW2 IP4 and IM4 4
HW1 IP3 and IM3 3
HWO IP2 and IM2 2
Swi IP1 and IM1 1
Software
Lowest Priority SWO0 IPO and IMO 0

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs an
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is shown
pictorially in Figure 4-1

Latch Mask Encode Generate

|ntctl|p'|'|
Any
HWS5 | IP7 - IM7 > |Request Interrupt
Reque
HW4 o ——»|1P6—pe{iMBl— B QW
HW3 5 | IP5 B IM5 B 3| IntCthyg
= 2
HW2——f 3 | P4 - IM4 Y
HW1 . wliP3 | IM3 » 2 = | Exception
8| Vector =% | Vector Offset
HWO | IP2 - IM2 o Number P % ‘ .
=
IP1 - IM1 > og
IPO——-{IMO|—— Bt
Cause SRSMap |
Shadow Set
Number -

Figure 4-1 Interrupt Generation for Vectored Interrupt Mode

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the 1\Vexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt handler may
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown
above need not save the GPRs.

60 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might look
as follows:

NestedException:

/*

* Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
* setting up the appropriate GPR shadow set for the routine, disabling

* the appropriate IM bits in Status to prevent an interrupt loop, putting

* the processor in kernel mode, and re-enabling interrupts. The sample code

* below can not cover all nuances of this processing and is intended only

* to demonstrate the concepts.

*/

/* Use the current GPR shadow set, and setup software context */

mfcO kO, CO_EPC [* Get restart address */

S k0, EPCSave [* Save in memory */

mfcO kO, CO_Status /* Get Status value */

S kO, StatusSave /* Save in memory */

mfcO kO, CO_SRSCtl /* Save SRSCtl if changing shadow sets */

sw k0, SRSCtlSave

li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and ko, kO, k1 [* Clear bits in copy of Status */

[* If switching shadow sets, write new value to SRSCtl psshere */

ins kO, zero, S_StatusEXL, (W_StatusKkSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in kO */
mtcO kO, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

/*

* |f switching shadow sets, clear only KSU above, write target

* address to EPC, and do execute an eret to clear EXL, switch

* shadow sets, and jump to routine

*/

/* Process interrupt here, including clearing device interrupt */

/*

* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
Iw kO, StatusSave /* Get saved Status (including EXL set) */
Iw k1, EPCSave /* and EPC */
mtcO kO, CO_Status /* Restore the original value */
Iw k0, SRSCtISave /* Get saved SRSCtl */
mtcO k1, CO_EPC /* and EPC */
mtcO kO, CO_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret [* Dismiss the interrupt */

4.3.1.3 External Interrupt Controller Mode

External Internal Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide
support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, including

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 61

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

62

hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector number
of the highest priority interrupt. EIC interrupt mode is in effect if all of the following conditions are true:

d COﬂﬁga/HC =1
. |ntCt|VS 0

» Causg, =1
d StatU@EV =0

In EIC interrupt mode, the processor sends the state of the software interrupt requesgs, (¢auaed the timer

interrupt request (Causg to the external interrupt controller, where it prioritizes these interrupts in a system-dependent
way with other hardware interrupts. The interrupt controller can be a hard-wired logic block, or it can be configurable
based on control and status registers. This allows the interrupt controller to be more specific or more general as a function
of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the vector number of the highest priority
interrupt to be serviced. The vector number, called the Requested Interrupt Priority Level (RIPL), is a 6-bit encoded
value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The values 1..63
represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller passes this value
on the 6 hardware interrupt line, which are treated as an encoded value in EIC interrupt mode.

Statugp, (Which overlays Statyg; v2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL witfpStatdetermine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than g{atasd interrupts are enabled
(Statuge = 1, Statugy, =0, and Statysg, = 0) an interrupt request is signaled to the pipeline. When the processor starts
the interrupt exception, it loads RIPL into Cagge (which overlays Cauge; p9 and signals the external interrupt
controller to notify it that the request is being serviced. The interrupt exception uses the value ¢f|&aasthe vector
number. Because Cauygg, is only loaded by the processor when an interrupt exception is signaled, it is available to
software during interrupt processing.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number to
use when servicing the interrupt. As such, 8RRSMapegister is not used in this mode, and the mapping of the vectored
interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the correct GPR
shadow set number when an interrupt is requested. When the processor loads an interrupt request it daise

loads the GPR shadow set number into SRR&SE which is copied to SRSGiswhen the interrupt is serviced.

The operation of EIC interrupt mode is shown pictoriallfigure 4-2

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.3 Interrupts

Encode Latch Compare Generate
Any
Cavept gl [RET] e e
Statugpq g —> IPL? Statu%«Di—q—‘
Statugpg n

thﬁm

Number »

Shadow Se
‘ Mapping F

@ Exception
S | Interrupt Service
> 5 Eta”ed Load IntCtl
n
% Fields VS v
3 2 |Requested - Vector 5 \E/xceptglrgf
S et & IPL & Numbe, 7 © | Vector Offset
S £ j— > 0 » N o #
S el = > E
(I) | < Oo
g —» 5 o o
Tl 7
= O
c _» By Shadow Set
O
D
o
n

Figure 4-2 Interrupt Generation for External Interrupt Controller Interrupt Mode

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the [Vexception label
shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching directly

to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may take
advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the Simplelnterrupt code shown above

need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
Causgp to Statug, to prevent lower priority interrupts from interrupting the handler. Such a routine might look as

follows:

NestedException:

/*

* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
* setting up the appropriate GPR shadow set for the routine, disabling

* the appropriate IM bits in Status to prevent an interrupt loop, putting

* the processor in kernel mode, and re-enabling interrupts. The sample code

* below can not cover all nuances of this processing and is intended only

* to demonstrate the concepts.

*/

/* Use the current GPR shadow set, and setup software context */

mfcO k1, CO_Cause /* Read Cause to get RIPL value */
mfcO kO, CO_EPC [* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
S k0, EPCSave [* Save in memory */
mfcO kO, CO_Status /* Get Status value */
sw kO, StatusSave /* Save in memory */
ins ko, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfcO k1, CO_SRSCitl /* Save SRSCtl if changing shadow sets */
S k1, SRSCtlSave
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 63

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

[* If switching shadow sets, write new value to SRSCtl psshere */
ins kO, zero, S_StatuseEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtcO kO, CO_Status /* Modify IPL, switch to kernel mode, */
/* re-enable interrupts */
/*
* |f switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine
*/

/* Process interrupt here, including clearing device interrupt */
/*

* The interrupt completion code is identical to that shown for VI mode above.
*

4.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control logic.
This number is combined with IntGH to create the interrupt offset, which is added to 16#200 to create the exception
vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC interrupt mode, the vector
number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The\|gtfld specifies the spacing
between vector locations. If this value is zero (the default reset state), the vector spacing is zero and the processor reverts
to Interrupt Compatibility Mode. A non-zero value enables vectored interruptSadne 4-4shows the exception vector

offset for a representative subset of the vector numbers and values of thgsIfietil

Table 4-4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtly,q Field

Vector Number 2#00001| 2#0001Q0 2#0010p 2#01000 2#10Q00
0 16#0200 16#0200 16#020(16#0200 DO
1 16#0220 16#0240 16#028(16#0300 DO
2 16#0240 16#0280 16#030(16#0400 16#06P0
3 16#0260 16#02C0 16#038(16#0500 16#08P0
4 16#0280 16#0300 16#040(16#0600 16#0AP0
5 16#02A0 16#0340 16#0480 16#070D 16#0CPO
6 16#02C0 16#0380 16#050(16#0800 16#0EPO
7 16#02E0 16#03C0 16#058(16#0900 16#10P0
61 16#09A0 16#1140 16#208(16#3F00 16#7CpO
62 16#09CO0 16#1180 16#210(16#4040 16#7E00
63 16#09EO0 16#11CO0 16#218(16#41Q0 DO

64 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.4 GPR Shadow Registers

The general equation for the exception vector offset for a vectored interrupt is:
vectorOffset ~ 16#200 + (vectorNumber x (IntCtl vs || 2#00000))

4.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority interrupts
or exceptions, and to provide specified processor modes with the same capability. This is done by introducing multiple
copies of the GPRs, calledhadow setsand allowing privileged software to associate a shadow set with entry to kernel
mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the 4KE core. Although Release 2 of the Architecture defines
a maximum of 16 shadow sets, the core allows one (the normal GPRSs), two, or four shadow sets. The highest number
actually implemented is indicated by the SR{gEdlfield. If this field is zero, only the normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly as
one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may need
to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode. The
RDPGPR and WRPGPR instructions are used for this purpose. The CSS fiel &&3i@tegister provides the number

of the current shadow register set, and the PSS field ddRf@Cttegister provides the number of the previous shadow
register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
theSRSMapegister. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific shadow
set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Binding of
an exception or non-vectored interrupt to a shadow set is done by writing to the ESS fiel &&Si@tregister. When

an exception or interrupt occurs, the value of SR8&4ls copied to SRSGtlsg and SRSCHggis set to the value taken

from the appropriate source. On an ERET, the value of SRgGH copied back into SRSGihsto restore the shadow

set of the mode to which control returns. More precisely, the rules for updating the fieldSRSG#egister on an

interrupt or exception are as follows:

1. Nofield in theSRSCtregister is updated if any of the following conditions is true. In this case, steps 2 and 3 are
skipped.

* The exception is one that sets Stagys Reset, Soft Reset, or NMI.
» The exception causes entry into EJTAG Debug Mode
o Statuggy =1
o Statugy; =1
2. SRSCitggis copied to SRSGikg
3. SRSCitgsis updated from one of the following sources:

* The appropriate field of tfeRSMapegister, based on IPL, if the exception is an interrupt, Gaese,
Config3,gic = 0, and Configg,; = 1. These are the conditions for a vectored interrupt.

» The EICSS field of th&RSCttegister if the exception is an interrupt, Cagse 1, and Configgg,c = 1. These
are the conditions for a vectored EIC interrupt.

» The ESS field of th8RSCtlegister in any other case. This is the condition for a non-interrupt exception, or a
non-vectored interrupt.

Similarly, the rules for updating the fields in tBRSCtregister at the end of an exception or interrupt are as follows:

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 65

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

1. Nofield in theSRSCtlegister is updated if any of the following conditions is true. In this case, step 2 is skipped.
* A DERET is executed
* An ERET is executed with Stagg =1

2. SRSCthggis copied to SRSGikg

These rules have the effect of preservingSRSCttegister in any case of a nested exception or one which occurs before
the processor has been fully initialize (Stafys= 1).

Privileged software may switch the current shadow set by writing a new value into $3§€thding EPC with a target
address, and doing an ERET.

4.5 Exception Vector Locations

66

The Reset, Soft Reset, and NMI exceptions are always vectored to loté#&#C0.0000 . EJTAG Debug exceptions

are vectored to locatiot6#BFC0.0480 , or to locatiorl6#FF20.0200 if the ProbTrap bit is zero or one,

respectively, in the EJTAG_Control_register. Addresses for all other exceptions are a combination of a vector offset and
avector base address. In Release 1 of the architecture, the vector base address was fixed. In Release 2 of the architecture,
software is allowed to specify the vector base address vieBhseregister for exceptions that occur when Sigtys

equals OTable 4-5gives the vector base address as a function of the exception and whether the BEV bit is set in the
Statusregister.Table 4-6gives the offsets from the vector base address as a function of the exception. Note that the IV

bit in theCauseregister causes Interrupts to use a dedicated exception vector offset, rather than the general exception
vector. For implementations of Release 2 of the Architecflable 4-4gives the offset from the base address in the case
where Statuszy = 0 and Causgg = 1. For implementations of Release 1 of the architecture in which Gaugethe

vector offset is as if IntGjk were 0.Table 4-7combines these two tables into one that contains all possible vector
addresses as a function of the state that can affect the vector selection. To avoid complexity in the table, the vector address
value assumes that tliBaseregister, as implemented in Release 2 devices, is not changed from its reset state and that
|ntCt|VS is 0.

Table 4-5 Exception Vector Base Addresses

Statusey
Exception 0 1
Reset, Soft Reset, NMI 16#BFC0.0000
EJTAG Debug (with ProbEn =0 in
the EJTAG_Control_register) 16#BFC0.0480
EJTAG Debug (with ProbEn =1 in 164#FF20.0200

the EJTAG_Control_register)

For Release 1 of the architecture:
16#8000.0000

For Release 2 of the architecture: 16#BEC0.0200
EBasegl._lz ” 16#000

Other

Note that EBasg 3ghave the
fixed value2#10

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.6 General Exception Processing

Table 4-6 Exception Vector Offsets

Exception Vector Offset
TLB Refill, EXL =0 16#000
General Exception 16#180

16#200 (In Release 2

implementations, this is the base of

the vectored interrupt table when
Statuggy = 0)

Interrupt, Causg =1

Reset, Soft Reset, NMI None (Uses Reset Base Addrefss)

Table 4-7 Exception Vectors

Vector
For Release 2
Implementations, assumes
EJTAG | that EBase retains its reset
Exception Statuggy | Statusey, | Causgy, | ProbEn | state and that IntCtly,5=0
Reset, Soft Reset, NM| X X X X 16#BFC0.0000
EJTAG Debug X X X 0 16#BFC0.0480
EJTAG Debug X X X 1 16#FF20.0200
TLB Refill 0 0 X X 16#8000.0000
TLB Refill 0 1 X X 16#8000.0180
TLB Refill 1 0 X X 16#BFC0.0200
TLB Refill 1 1 X X 16#BFC0.0380
Interrupt 0 0 0 X 16#8000.0180
Interrupt 0 0 1 X 16#8000.0200
Interrupt 1 0 0 X 16#BFC0.0380
Interrupt 1 0 1 X 16#BFC0.0400
All others 0 X X X 16#8000.0180
All others 1 X X X 16#BFC0.0380
‘X’ denotes don't care

4.6 General Exception Processing
With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own special
processing as described below, exceptions have the same basic processing flow:

« If the EXL bit in theStatusregister is zero, thEPCregister is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in@suseregister (sedable 5-22 on page 1).7The value loaded into
theEPCregister is dependent on whether the processor implements the MIPS16 ASE, and whether the instruction is

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 67

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

68

in the delay slot of a branch or jump which has delay Slatse 4-8shows the value stored in each of the CPO PC
registers, includingePC. For implementations of Release 2 of the Architecture if Sigtys 0, the CSS field in the
SRSCitlegister is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in theStatusregister is set, thEPCregister is not loaded and the BD bit is not changed i€ thse
register. For implementations of Release 2 of the Architectur§RISECtkegister is not changed.

Table 4-8 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16 In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combirled
with theISA Modebit
Upper 31 bits of the branch or jump instruction (PC-2 jn

Yes Yes the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with thESA Modebit

» The CE, and ExcCode fields of tBauseregisters are loaded with the values appropriate to the exception. The CE
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

» The EXL bit is set in th&tatusregister.
» The processor is started at the exception vector.
The value loaded into EPC represents the restart address for the exception and need not be modified by exception handler

software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to identify the
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the description
of each exception type below.

Operation:
[* If Status exL IS 1, all exceptions go through the general exception vector */
/* and neither EPC nor Cause gp hor SRSCtl are modified */

if Status EXL ™= 1 then
vectorOffset ~ 16#180
else
if InstructionInBranchDelaySlot then
EPC - restartPC/* PC of branch/jump */
Causegp ~ 1
else
EPC - restartPC [* PC of instruction */
Causegp ~ 0
endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ~ SRSCtl ggg [* Assume exception, Release 2 only */
if ExceptionType = TLBREfill then
vectorOffset ~ 16#000
elseif (ExceptionType = Interrupt) then
if (Cause |y =0)then
vectorOffset ~ 16#180
else
if (Status gev= 1) or (IntCtl vs = 0) then

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.7 Debug Exception Processing

vectorOffset ~ 16#200
else

if Config3 ygic = 1then
VecNum ~ Cause gipL
NewShadowSet ~ SRSCtl gcgg

else
VecNum ~ VIntPriorityEncoder()
NewShadowSet — SRSMapp, *4+3.1pL %4

endif
vectorOffset ~ 16#200 + (VecNum x (IntCtl vs || 2#00000))
endif /* if (Status gev= 1) or (IntCtl vs = 0) then */
endif /* if (Cause v = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */

/* Release 2 of the architecture */

if ((ArchitectureRevision = 2) and (SRSCitl Hss > 0) and (Status gev= 0) and
(Status ERL™ 0)) then
SRSCtl pgs « SRSCHl cgg
SRSCtl g5 ~ NewShadowSet

endif

endif /* if Status exL = 1 then*/

Causecg ~ FaultingCoprocessorNumber
Causegyccode — EXxceptionType
Status gy < 1

/* Calculate the vector base address */
if Status ~ ggy= 1 then
vectorBase ~ 16#BFC0.0200

else
if ArchitectureRevision =2 then
[* The fixed value of EBase 31.30 forces the base to be in ksegO or ksegl */
vectorBase -~ EBase 3; ;, || 16#000
else
vectorBase ~ 16#8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC — vectorBase 3; 30 |[l(vectorBase o9 g + vectorOffset 29.0)
/* No carry between bits 29 and 30 */

4.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

» TheDEPCregister is loaded with the program counter (PC) value at which execution will be restarted and the DBD
bit is set appropriately in tHeebugregister. The value loaded into thEPCregister is the current PC if the
instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot of a
branch.

» The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in tligebugregister are updated appropriately
depending on the debug exception type.

» Halt and Doze bits in thBebugregister are updated appropriately.

« DM bit in theDebugregister is set to 1.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 69

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

» The processor is started at the debug exception vector.

The value loaded intDEPCrepresents the restart address for the debug exception and need not be modified by the debug
exception handler software in the usual case. Debug software need not look at the DBD bdé@btigeegister unless
it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in
the Debugregister.

No other CPO registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionIinBranchDelaySlot then
DEPC ~ PC-4
Debugpgp - 1
else
DEPC ~ PC
DebugDBD <0
endif
Debugp« pits at at [5:0] ~ DebugExceptionType
Debugp,r < HaltStatusAtDebugException
Debugpgze « DozeStatusAtDebugException
Debugpy < 1
if EJTAGControlRegister ProbTrap = 1 then
PC ~ OxFF20_0200
else
PC ~ OxBFCO0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the ProbTrap
bit in the EJTAG Control register (ECR), as showiiable 4-9

Table 4-9 Debug Exception Vector Addresses

ProbTrap bit in
ECR Register Debug Exception Vector Address
0 OxBFCO0_0480
1 0xFF20_0200 in dmseg

4.8 Exceptions

70

The following subsections describe each of the exceptions listed in the same sequence asTsibbsva-h

4.8.1 Reset Exception

A reset exception occurs when Bk ColdResegignal is asserted to the processor. This exception is not maskable.

When a Reset exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset exception, the state of the processor is not defined, with the following
exceptions:

» TheRandonregister is initialized to the number of TLB entries - 1.
» TheWiredregister is initialized to zero.
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

TheConfigregister is initialized with its boot state.
The RP, BEV, TS, SR, NMI, and ERL fields of thmtusregister are initialized to a specified state.
* The I, R, and W fields of thé&/atchLoregister are initialized to 0.

TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruction
in the delay slot of a branch. Otherwise, EreorEPC register is loaded with PC. Note that this value may or may
not be predictable.

PC is loaded with 0xBFCO_0000.

CauseRegister ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:
Random ~ TLBEntries -1
Wired ~ 0

Config « ConfigurationState

Status RP < 0

Status ggy < 1

Status TS < 0

Status gg ~ 0

Status gy < O

Status ERL < 1

WatchLo| ~ 0O

WatchLog ~ O

WatchLoy < O

if InstructionInBranchDelaySlot then
ErrorEPC -~ PC-4

else
ErrorEPC -~ PC

endif

PC ~ 0xBFCO0_0000

4.8.2 Soft Reset Exception

A soft reset exception occurs when e Resesignal is asserted to the processor. This exception is not maskable. When

a soft reset exception occurs, the processor performs a subset of the full reset initialization. Although a soft reset
exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place the
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus, cache, or
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsistent. In
addition to any hardware initialization required, the following state is established on a soft reset exception:

e The BEV, TS, SR, NMI, and ERL fields of tBéatusregister are initialized to a specified state.

e TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruction
in the delay slot of a branch. Otherwise, BrerEPC register is loaded with PC. Note that this value may or may
not be predictable.

» PCis loaded with 0XBFCO_0000.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 71

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

72

CauseRegister ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Status ggy < 1
Status TS < 0
Status gg ~ 1
Status ayy < O
Status ERL < 1
if InstructioninBranchDelaySlot then
ErrorEPC - PC-4
else
ErrorEPC <~ PC
endif
PC —~ 0xBFCO0_0000

4.8.3 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction in
the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug register,
and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never set
for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken on
the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g. returning
to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint exception, and
the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch) just before the
SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved
None

Entry Vector Used

Debug exception vector

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

4.8.4 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit BIRAG Control registe¢controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. TiePCregister is set to the instruction where execution should continue
after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was executing in the
delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved
None

Entry Vector Used
Debug exception vector

4.8.5 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs whersthélMlsignal is asserted to the procesSdr.NMlis an edge

sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

» The BEV, TS, SR, NMI, and ERL fields of tBe¢atusregister are initialized to a specified state.

» TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruction
in the delay slot of a branch. Otherwise, EreorEPC register is loaded with PC.

» PC is loaded with OxBFCO_0000.

CauseRegister ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (OxBFCO_0000)

Operation:

Status BEV < 1
Status 15 < 0
Status SR < 0
Status gy < 1
Status gg. < 1
if InstructionIinBranchDelaySlot then
ErrorEPC ~ PC-4
else
ErrorEPC ~ PC
endif
PC ~ 0xBFCO0_0000

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 73

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

74

4.8.6 Machine Check Exception (4KEc™ core)

A machine check exception occurs when the processor detects an internal inconsistency. The following condition causes
a machine check exception:

» The detection of multiple matching entries in the TLB (4KEc core only). The core detects this condition on a TLB
write and prevents the write from being completed. The TS bit iBtdiesregister is set to indicate this condition.
This bit is only a status flag and does not affect the operation of the device. Software clears this bit at the appropriate
time. This condition is resolved by flushing the conflicting TLB entries. The TLB write can then be completed.
CauseRegister ExcCode Value:

MCheck

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.7 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requests is enabled
by theStatusregister and the interrupt input is asserted. Seetion 4.3, "Interrupts" on page & more details about
the processing of interrupts.

XXX Is this paragraph still relevant? XXX The delay from assertion of an unmasked interrupt to the fetch of the first
instructions at the exception vector is a minimum of 5 clock cycles. More may be needed if a committed instruction has
to complete, before the exception can be taken; i.e., an uncached load that has started on the bus must wait complete
before the interrupt exception can be taken.

Register ExcCode Value:

Int

Additional State Saved:

Table 4-10 Register States an Interrupt Exception

Register State Value

Causgp indicates the interrupts that are pending.

Entry Vector Used:

SeeSection 4.3.2, "Generation of Exception Vector Offsets for Vectored Interrupts” on pdoe 4 entry vector
used, depending on the interrupt mode the processor is operating in.

4.8.8 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruction.
The DEPCregister and DBD bit in thBebugregister indicate the instruction that caused the instruction hardware
breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.
Debug Register Debug Status Bit Set:
DIB
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.8.9 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored WahehHiandWatchLoregisters. A Watch exception is taken
immediately if the EXL and ERL bits of tt&tatusregister are both zero and the DM bit of Bebugis also zero. If

any of those bits is a one at the time that a watch exception would normally be taken, then the WP kiting®ister

is set, and the exception is deferred until all three bits are zero. Software may use the WP Galsdfegister to
determine if theePCregister points at the instruction that caused the watch exception, or if the exception actually
occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:
WATCH

Additional State Saved:

Table 4-11 Register States on a Watch Exception

Register State Value

Indicates that the watch exception was deferred until ajter
Statugy, , Statugg,, and Debugy, were zero. This bit
directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler
execution.

Causgyp

Entry Vector Used:
General exception vector (offset 0x180)

4.8.10 Address Error Exception — Instruction Fetch/Data Access
An address error exception occurs on an instruction or data access when an attempt is made to execute one of the
following:
» Fetch an instruction, load a word, or store a word that is not aligned on a word boundary
» Load or store a halfword that is not aligned on a halfword boundary
» Reference the kernel address space from user mode
Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access

the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 75

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

CauseRegister ExcCode Value:
ADEL: Reference was a load or an instruction fetch
ADES: Reference was a store

Additional State Saved:
Table 4-12 CPO Register States on an Address Exception Error

Register State Value

BadVAddr failing address

Contex{/pn, | UNPREDICTABLE

EntryHiypn, | UNPREDICTABLE

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:

General exception vector (offset 0x180)

4.8.11 TLB Refill Exception — Instruction Fetch or Data Access (4KEc™ core only)

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry matches a reference to a
mapped address space and the EXL bitis 0 irBfadusegister. Note that this is distinct from the case in which an entry
matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

CauseRegister ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 4-13 CPO Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address.

The BadVPN2 field contains V., 30f the failing
Context address.

The VPN2 field contains V4 .,30f the failing address;

EntryHi the ASID field contains the ASID of the reference that
missed.
EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
TLB refill vector (offset 0x000) if Statgg, = O at the time of exception;

general exception vector (offset 0x180) if Statys= 1 at the time of exception

76 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

4.8.12 TLB Invalid Exception — Instruction Fetch or Data Access (4KEc™ core only)

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:
* No TLB entry matches a reference to a mapped address space; and the EXL bit isStatushegister.
» A TLB entry matches a reference to a mapped address space, but the matched entry has the valid bit off.

» The virtual address is greater than or equal to the bounds address in a FM-based MMU.

CauseRegister ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 4-14 CPO Register States on a TLB Invalid Exception

Register State Value

Bad\VAddr failing address

The BadVPN2 field contains .13 0f the failing

Context address.
The VPN2 field contains 4\ .,30f the failing address;
EntryHi the ASID field contains the ASID of the reference that

missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

4.8.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an instruction
fetch or a data access. Bus error exceptions that occur on an instruction fetch have a higher priority than bus error
exceptions that occur on a data access.

Bus errors taken on the requested (critical) word of an instruction fetch or data load are precise. Other bus errors, such
as stores or non-critical words of a burst read, can be imprecise. These errors are takenEBeRBEeror
EB_WABErrsignals are asserted and may occur on an instruction that was not the source of the offending bus cycle.

CauseRegister ExcCode Value:
IBE: Error on an instruction reference
DBE: Error on a data reference

Additional State Saved:
None

Entry Vector Used:

General exception vector (offset 0x180)

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 77

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

4.8.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executB&EPi@ieegister and DBD
bit in theDebugregister will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.8.15 Execution Exception — System Call

The system call exception is one of the nine execution exceptions. All of these exceptions have the same priority. A
system call exception occurs when a SYSCALL instruction is executed.

CauseRegister ExcCode Value:
Sys

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.16 Execution Exception — Breakpoint

The breakpoint exception is one of the nine execution exceptions. All of these exceptions have the same priority. A
breakpoint exception occurs when a BREAK instruction is executed.

CauseRegister ExcCode Value:
Bp

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the nine execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed. This
includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

CauseRegister ExcCode Value:
RI

78 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

Additional State Saved:

None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the nine execution exceptions. All of these exceptions have the same
priority. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one

of the following:
* a corresponding coprocessor unit that has not been marked usable by setting its CU Bibiustegister

» CPO instructions, when the unit has not been marked usable, and the processor is executing in user mode

CauseRegister ExcCode Value:
CpuU

Additional State Saved:

Table 4-15 Register States on a Coprocessor Unusable Exception

Register State Value

Causeg unit number of the coprocessor being referenced

Entry Vector Used:
General exception vector (offset 0x180)

4.8.19 Execution Exception — Coprocessor 2 Exception

The Coprocessor 2 exception is one of the nine execution exceptions. All of these exceptions have the same priority. A
Coprocessor 2 exception occurs when a valid Coprocessor 2 instruction cause a general exception in the Coprocessor 2.

CauseRegister ExcCode Value:
C2E

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be saved in a
Coprocessor 2 control register.

Entry Vector Used:
General exception vector (offset 0x180)

4.8.20 Execution Exception — Implementation-Specific 1 exception

The Implementation-Specific 1 exception is one of the nine execution exceptions. All of these exceptions have the same
priority. An implementation-specific 1 exception occurs when a valid coprocessor 2 instruction cause an
implementation-specific 1 exception in the Coprocessor 2.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 79
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

80

CauseRegister ExcCode Value:
IS1

Additional State Saved:

Depending on the coprocessor 2 implementation, additional state information of the exception can be saved in a
coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.21 Execution Exception — Implementation Specific 2 exception

The Implementation-Specific 2 exception is one of the nine execution exceptions. All of these exceptions have the same
priority. An implementation-specific 2 exception occurs when a valid Coprocessor 2 instruction cause an
implementation-specific 2 exception in the Coprocessor 2.

CauseRegister ExcCode Value:

1S2

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be saved in a
Coprocessor 2 control register.

Entry Vector Used:
General exception vector (offset 0x180)

4.8.22 Execution Exception — Integer Overflow

The integer overflow exception is one of the nine execution exceptions. All of these exceptions have the same priority.
An integer overflow exception occurs when selected integer instructions result in a 2's complement overflow.

CauseRegister ExcCode Value:
Ov

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.8.23 Execution Exception — Trap

The trap exception is one of the nine execution exceptions. All of these exceptions have the same priority. A trap
exception occurs when a trap instruction results in a TRUE value.

CauseRegister ExcCode Value:
Tr

Additional State Saved:
None
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.8 Exceptions

Entry Vector Used:
General exception vector (offset 0x180)

4.8.24 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an executed
load/store instruction. THBEPCregister and DBD bit in th®ebugregister will indicate the load/store instruction that

caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception has not
completed e.g. not updated the register file, and the instruction can be re-executed after returning from the debug handler.

Debug Register Debug Status Bit Set:
DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.8.25 TLB Modified Exception — Data Access (4KEc™ core only)

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the following
condition is true:

» The matching TLB entry is valid, but not dirty.

CauseRegister ExcCode Value:
Mod

Additional State Saved:

Table 4-16 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

The BadVPN2 field contains .13 0f the failing

Context address.

The VPN2 field contains V4 .,30f the failing address;
EntryHi the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 81

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

4.9 Exception Handling and Servicing Flowcharts

82

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

» General exceptions and their exception handler

* TLB miss exception and their exception handler

» Reset, soft reset and NMI exceptions, and a guideline to their handler.

» Debug exceptions

Generally speaking, the exceptions are handled by hardware; the exceptions are then serviced by software. Note that
unexpected debug exceptions to the debug exception vector at OxBFC0_0200 may be viewed as a reserved instruction
since uncontrolled execution of an SDBBP instruction caused the exception. The DERET instruction must be used at

return from the debug exception handler, in order to leave debug mode and return to non-debug mode. The DERET
instruction returns to the address in BEEPC register.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.9 Exception Handling and Servicing Flowcharts

Exceptions other than Reset, Soft Reset, NMI, or first-level TLB
missNote: Interrupts can be masked by IE or IMs and Watch is masked

Comments

EnHi and Context are set only for
EntryHi — VPN2, ASID TLB- Invalid, Modified, & Refill

Context — VPN2 exceptions. BadVA is set only for
Set Cause EXCCode,CE TLB- Invalid, Modified, Refill- and
BadVA ~ VA VCED/I exceptions. Note: not set if it

is a Bus Error

Check if exception within
another exception

EPC (PC - 4) EPC — PC
Cause.BD ~ 1 Cause.BD ~ 0

EXL -~ 1 -

Processor forced to Kernel
Mode &interrupt disabled

=1 (bootstrap)

=0 (normal)

PC ~ 0x8000_0000 + 180 PC ~ OxBFCO0_0200 + 180
(unmapped, cached) (unmapped, uncached)

I - I
Vl‘

To General Exception Servicing Guidelines

Figure 4-3 General Exception Handler (HW)

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

83

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB
Refill exceptions not possible

* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions

* Only Reset, Soft Reset, NMI exceptions

MFCO -
Context, EPC, Status, Cause

AL

possible.
Y
MTCO -
Set Status bits: (Optional - only to enable Interrupts while keeping
UM 0, EXL 0, Kernel Mode)
IE~1
Check Ca‘_‘ste vsalue_ & i:urr;p 0 * After EXL=0, all exceptions allowed.
appropriateé Service t.ode (except interrupt if masked by |E)

EXL=1
MTCO -
EPC,STATUS
* ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction
ERET which is in the ERET's branch delay slot

*PC « EPC,EXL « 0
*LLbit « O

Figure 4-4 General Exception Servicing Guidelines (SW)

84 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.9 Exception Handling and Servicing Flowcharts

f

EntryHi — VPN2, ASID
Context — VPN2
Set Cause EXCCode,CE
BadVA — VA

No

l Check if exception within

=1 another exception
EXL

Instr. in
Br.Dly. Slot?

=0
EPC — (PC-4) EPC — PC
Cause.BD ~ 1 Cause.BD ~ 0
[

\
Vec. Off. = 0x180

Vec. Off. = 0x000

Points to General Exception

A

Processor forced to Kernel
Mode &interrupt disabled

EXL - 1

=0 (normal) =1 (bootstrap)

Y
PC —~ 0x8000_0000 +
Vec.Off.(unmapped. cached)

[

PC ~ 0xBFCO0_0200 +
Vec.Off.(unmapped. uncached)

> < [
To TLB Exception Servicing Guidelines

Figure 4-5 TLB Miss Exception Handler (HW) — 4KEc™ Core

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

85
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions and Interrupts in the 4KE™ Core

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB

Refill exceptions not possible

MECO -CONTEXT < * EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions

* Only Reset, Soft Reset, NMI exceptions

possible.

* Load the mapping of the virtual address in
Context Reg. Move it to EntryLo and write into
the TLB
* There could be a TLB miss again during the
mapping of the data or instruction address. The
< processor will jump to the general exception
vector since the EXL is 1. (Option to complete
the first level refill in the general exception
handler or ERET to the original instruction and
take the exception again)

|
|
|
|
|
|
|
Service Code :
|
|
|
|
|
|
|

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction
which is in the ERET’s branch delay slot

*PC « EPC,EXL ~ O

*LLbit « O

ERET <

Figure 4-6 TLB Exception Servicing Guidelines (SW) — 4KEc™ Core

86 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

4.9 Exception Handling and Servicing Flowcharts

Reset Exception

Random — TLBENTRIES - 1

< Soft Reset or NMI Exception Wired — 0
% tatus: Config — Reset state
= BEV ~ 1 Status:
S TS <0 RP « 0
5 SR < 1/0 BEV ~ 1
S NMI « 0/1 TS < 0
T ERL « 1 SR 0
c
9 NMI < 0
2 ERL < 1
Q WatchLo:
8 LRW ~ 0
=
zZ
3 >
©
0
(0]
?:‘, ErrorEPC — PC
o)
0
]
@ PC — OxBFCO_0000
[a
[@)]
£ Status.NM|
(&)
b=
)
n
==
z 90

___________ l
oj e ! | =0
o c | _ \
$T ' NMI Service Code Status.SR
x2 | l
-] | |
5O ____________ B
2 !
© — —-—-—-—--L-- R B i ———-=--
a ERET Soft Reset Service Code | |, Reset Service Code

______________ | e — -

o (Optional) -

Figure 4-7 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

87

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

88

Chapter 5

CPO Regqisters of the 4AKE™ Core

The System Control Coprocessor (CPO) provides the register interface to the 4KE™ processor core and supports
memory management, address translation, exception handling, and other privileged operations. Each CPO register has a
unigue number that identifies it; this number is referred to asgtister numberor instance, thBageMaskegister is

register number 5. For more information on the EJTAG registers, refdvaoter 9, “EJTAG Debug Support in the

4KE™ Core.”

After updating a CPO register there is a hazard period of zero or more instructions from the update instruction (MTCO)
and until the effect of the update has taken place in the core. Refdrapter 11, “4KE™ Processor Core Instructions,”
for further details on CPO hazards.

The current chapter contains the following sections:
» Section 5.1, "CPO0 Register Summary" on page 90
» Section 5.2, "CPO Register Descriptions" on page 92

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 89

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.1 CPO Register Summary

Table 5-1lists the CPO registers in numerical order. The individual registers are described throughout this chapter. Where
more than one registers shares the same register number at different values of the “sel” field of the instruction, their
names are listed using a slash (/) as separator.

Table 5-1 CPO Registers

Register
Number Register Name Function
0 Indes® Index into the TLB array (4KEc core). This register is reserved
in the 4KEp and 4KEm cores.
1 Randord Randomly generated index into the TLB array (4KEc core). This
register is reserved in the 4KEp and 4KEm cores.
Low-order portion of the TLB entry for even-numbered virtugl
2 EntryLoG? pages (4KEc core). This register is reserved in the 4KEp and
4KEm cores.
Low-order portion of the TLB entry for odd-numbered virtug|
3 EntryLo® pages (4KEc core). This register is reserved in the 4KEp and
4KEm cores.
Pointer to page table entry in memory (4KEc core). This regigter
4 Context is reserved in the 4KEp and 4KEm cores.
PageMask controls the variable page sizes in TLB entries.
5 PageMask/ PageGrain enables support of 1KB pages in the TLB. Thesge
PageGraif registers are defined for the 4KEc core only, and reserved inthe
4KEp and 4KEm cores.
6 Wired? Controls the number of fixed (“wired”) TLB entries (4KEc
core). This register is reserved in the 4KEp and 4KEm corefs.
Enables access viathe RDHWR instruction to selected hardware
7 . registers in non-privileged mode.
Reports the address for the most recent address-related
8 BadVAddt exception.
9 Count Processor cycle count.
10 EntrvHB High-order portion of the TLB entry (4KEc core). This register
y is reserved in the 4KEp and 4KEm cores.
11 Comparé Timer interrupt control.
Status/
12 IntCtl/ Processor status and control; interrupt control; and shadow set
SRSCtl/ control.
SRSMap
13 Causé Cause of last exception.
14 EPG Program counter at last exception.
PRId/ . O o .
15 EBase Processor identification and revision; exception base address.
920 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.1 CPO Register Summary

Table 5-1 CPO Registers (Continued)

Register
Number Register Name Function
Config/
Configl/ ’ : :
16 Config2/ Configuration registers.
Config3
17 LLAddr Load linked address.
18 WatchLd Low-order watchpoint address.
19 WatchHf High-order watchpoint address.
20-22 Reserved Reserved
Debug/
TraceControl/
23 TraceControl2/ Debug control/exception status and EJTAG trace control.
UserTraceData/
TraceBP
24 DEPC Program counter at last debug exception.
25 Reserved Reserved
26 Errctl Software test enable of way-select and Data RAM arrays fqr
I-Cache and D-Cache.
27 Reserved Reserved
28 TagLo/DatalLo Low-order portion of cache tag interface.
29 Reserved Reserved
30 ErrorEPCG Program counter at last error.
31 DeSAVE Debug handler scratchpad register.
Note: 1. Registers used in exception processing.
Note: 2. Registers used in debug.
Note: 3. Registers used in memory management.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 91
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2 CPO Register Descriptions

The CPO registers provide the interface between the ISA and the architecture. Each register is discussed below, with the
registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the reset state of
the field. For the read/write properties of the field, the following notation is used:

Table 5-2 CPO Register Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation
A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are
R/W visible by hardware reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the yalue
before the first read will return a predictable value. This should not be confused with the fprmal
definition of UNDEFINED behavior.
ﬁﬁrglv‘\jlt?at is either static or is updated only by A fie|q to which the value written by software
ardware. is ignored by hardware. Software may write
‘< fiald e ai wry any value to this field without affecting
!.ggesg?sﬁériﬁgeoifﬂgiglileeelg tlr?ise |ft|2(|adr tg Zc;r o hardware behavior. Software reads of this figld
R or to the appropriate state, respectively, on return the last value updated by hardware.
powerup. If the Reset State of this field is “Undefined,
If the Reset State of this field is “Undefined”} SCftware reads of this field result in an
gglr:fnmns specified in the description of the specified in the description of the field.
A field that can be written by software but which can not be read by software.
w
Software reads of this field will return an UNDEFINED value.
A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may resultin UNDEFINED
) behavior of the hardware. Software reads o
0 A field that hardware does not update, and fothis field return zero as long as all previous
which hardware can assume a zero value. | software writes are zero.
If the Reset State of this field is “Undefined,
software must write this field with zero beforg
it is guaranteed to read as zero.

92 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.1 Index Register (CPO Register 0, Select 0)

Thelndexregister is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUOsiisg(Log(TLBENtries))

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is written
to thelndexregister.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp).

Figure 5-1Index Register Format

31 30 4 3 0
| P| 0 Index

Table 5-3 Index Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Probe Failure. Set to 1 when the previous TLBProbe :
P 31 (TLBP) instruction failed to find a match in the TLB. R Undefined
0 30:4 Must be written as zeros; returns zeros on reads. D 0
. Index to the TLB entry affected by the TLBRead and)
Index 3:0 TLBWrite instructions. RIW Undefined
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 93

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

94

5.2.2 RandomRegister (CPO Register 1, Select 0)

TheRandonregister is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that describedridetegister above.
The value of the register varies between an upper and lower bound as follow:

* Alower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the contents
of theWiredregister). The entry indexed by théiredregister is the first entry available to be written by a TLB Write
Random operation.

» An upper bound is set by the total number of TLB entries minus 1.
TheRandonregister is decremented by one almost every clock, wrapping after the valudfifirdfuzegister is reached.

To enhance the level of randomness and reduce the possibility of a live lock condition, an LFSR register is used that
prevents the decrement pseudo-randomly.

The processor initializes thiRandonregister to the upper bound on a Reset exception and wh@éhrdtregister is
written.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp).

Figure 5-2 RandomRegister Format

31 4 3 0
0 Random

Table 5-4RandomRegister Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
0 31:4 Must be written as zero; returns zero on reads. 0 0
Random 3.0 TLB Random Index R TLB Entries - 1

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.3 EntryLo0 and EntryLol Registers (CPO Registers 2 and 3, Select 0)

The pair ofEntryLoregisters act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructions.

For a TLB-based MMUEnNtryLoOholds the entries for even pages &miryLolholds the entries for odd pages.

The contents of thEntryLoOandEntryLolregisters are undefined after an address error, TLB invalid, TLB modified,
or TLB refill exception.

These registers are only valid with the TLB (4KEc core). They are reserved if the FM is implemented (4KEm and 4KEp).

31 30 29 26 25

Figure 5-3EntryLoO, EntryLol Register Format

[R] o

PFN

C

3 21
|

D|v G|

Table 5-5EntryLo0, EntryLol Register Field Descriptions

Fields

Name Bit(s)

Description

Read/

Write

Reset State

R 31:30

Reserved. Should be ignored on writes; returns zero dn
reads.

R

0 29:26

These 4 bits are normally part of the PFN, however, sirce

the core supports only 32 bits of physical address, the BFN RIW
r

is only 20 bits wide; therefore, bits 29:26 of this registe
must be written with zeros.

PFN 25:6

Page Frame Number. Contributes to the definition of the

high-order bits of the physical address.

If the processor is enabled to support 1KB pages
(Configkp= 1 and PageGraigp= 1), the PFN field

corresponds to bits 29..10 of the physical address (the fleld
is shifted left by 2 bits relative to the Release 1 definitipn R/W

to make room for Pfy 9.

If the processor is not enabled to support 1KB pages
(Config3p= 0 or PageGrajp= 0), the PFN field
corresponds to bits 31..12 of the physical address.

Undefined

Coherency attribute of the page. $able 5-6

R/W

Undefined

“Dirty” or write-enable bit, indicating that the page has
been written, and/or is writable. If this bit is a one, the}f{

stores to the page are permitted. If this bit is a zero, then

stores to the page cause a TLB Modified exception.

R/W

Undefined

Valid bit, indicating that the TLB entry, and thus the virtuial

page mapping are valid. If this bitis a one, then accesses top
the page are permitted. If this bitis a zero, then accesses to

the page cause a TLB Invalid exception.

Undefined

Global bit. On a TLB write, the logical AND of the G bitg
in both the EntryLo0 and EntryLo1 register becomes the
bit in the TLB entry. If the TLB entry G bit is a one, the
the ASID comparisons are ignored during TLB matche
On aread from a TLB entry, the G bits of both EntryLq
and EntryLol reflect the state of the TLB G bit.

=]
Y=o

R/W

Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

95

Chapter 5 CPO Registers of the 4KE™ Core

96

Table 5-6lists the encoding of the C field of thentryLoOandEntryLolregisters and the KO field of ti@onfigregister.

Table 5-6 Cache Coherency Attributes

example,

C[5:3] Value Cache Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
1 Cacheable, noncoherent, write-through, write allocate
3*4,5,6 Cacheable, noncoherent, write-back, write allocate
2% 7 Uncached
Note: * These two values are required by the MIPS32 architecture. Only values 0, 1, 2 and 3 are used in a 4KE core. For
values 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Note that these values do have
meaning in other MIPS Technologies processor implementations. Refer to the MIPS32 specification for more infornation.

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

5.2 CPO Register Descriptions

5.2.4 ContextRegister (CPO Register 4, Select 0)

The Contextregister is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operating
system loads the TLB with the missing translation from the PTE arrayCaihiextregister duplicates some of the
information provided in thBadVAddrregister but is organized in such a way that the operating system can directly
reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits M4 30f the virtual address to be written
into the BadVPNZ2 field of th€ontextregister. The PTEBase field is written and used by the operating system.

The BadVPN2 field of th€ontextregister is not defined after an address error exception.

Figure 5-4 ContextRegister Format

31 23 22 4 3 2 10
PTEBase BadVPN2 0

Table 5-7ContextRegister Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
This field is for use by the operating system and is
PTEBase 31:23 normally written with a value that allows the operating R/W Undefined

system to use the Context Register as a pointer into the
current PTE array in memory.

. This field is written by hardware on a TLB miss. It .
BadVPN2 224 contains bits VA;.130f the virtual address that missed R Undefined
0 3:0 Must be written as zero; returns zero on reads. qQ 0
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 97

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.5 PageMaskRegister (CPO Register 5, Select 0)

ThePageMaskegister is a read/write register used for reading from and writing to the TLB. It holds a comparison mask
that sets the variable page size for each TLB entry, as shoihathile 5-9 Figure 5-5shows the format of thBageMask
register;Table 5-8describes thPageMaskegister fields.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp).

Figure 5-5PageMaskRegister Format

31 29 28 13 12 11 10 0
| 0 | Mask | Mask)* 0

Table 5-8PageMaskRegister Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State

The Mask field is a bit mask in which a “1” bit indicate
Mask 28..13 | thatthe corresponding bit of the virtual address should R/W Undefined
not participate in the TLB match.

o

In Release 2 of the Architecture, the MaskX field is an
extension to the Mask field to support 1KB pages with
definition and action analogous to that of the Mask
field, defined above.

If 1KB pages are enabled (Config3= 1 and
PageGraipsp= 1), these bits are writable and readable

and their values are copied to and from the TLB entrg/ 0
MaskX 12.11 | onaTLB write or read, respectivly. R/W (See
If 1KB pages are not enabled (Config3- 0 or Description)

PageGraipsp= 0), these bits are not writable, returr
zero on read, and the effect on the TLB entry on a wrjte
is as if they were written with the value 2#11.

In Release 1 of the Architecture, these bits must be
written as zero, return zero on read, and have no effect
on the virtual address translation.

31..29,

10.0 Ignored on write; returns zero on read. R 0

Table 5-9 Values for the Mask and MaskX Fields of thePageMaskRegister

Bit

Page Size | 28| 27| 26| 25| 24 23 22 21 20 1p 18 17 16 15 p4 (131121t

1 KByte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

98 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-9 Values for the Mask and MaskX Fields of thePageMaskRegister

Page Size | 28| 27| 26| 25| 24/ 23 22 21 20 10 18 17 16 15 p4 [131j1art

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. PageMasj 1,= PaskMasjg,skx €Xists only on implementations of Release 2 of the architecture and are treated as if they had the value 2#11 if 1K
pages are not enabled (Config3- 0 or PageGragyp= 0).

It is implementation dependent how many of the encodings describ&abie 5-9are implemented. All processors

must implement the 4KB page size. If a particular page size encoding is not implemented by a processor, a read of the
PageMaskegister must return zeros in all bits that correspond to encodings that are not implemented, thereby poten-
tially returning a value different than that written by software.

Software may determine which page sizes are supported by writing all onesRagbBlaskegister, then reading the

value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the proces-
sor iSUNDEFINED if software loads the Mask field with a value other than one of those list@édbife 5-9 even if

the hardware returns a different value on read. Hardware may depend on this requirement in implementing hardware
structures.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 99

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.6 PageGrainRegister (CPO Register 5, Select 1)

100

ThePageGrainregister is a read/write register used for enabling 1KB page support. It is used for reading from and
writing to the TLB.

The contents of thPageGrainregister are not reflected in the contents of the TLB; therefore, the TLB must be flushed
before any change to the PageGrain register is made. Behavior is UNDEFINED if a value other than those listed is used.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp).
Figure 5-6 PageGrainRegister Format

31 29 28 27 0
0 |ESF} 0

Table 5-10PageGrainRegister Field Descriptions

Fields
Read/

Name Bit(s) Description Write | Reset State

0 31:29 Reserved. Must be written as zero; returns zero on fead. 0 0

Enables support for 1KB pages.

Encoding Meaning

0 1KB page support is not enabled

1 1KB page support is enabled

If this bit is a 1, the following changes occur to
coprocessor 0 registers:
e The PFN field of th&ntryLoOandEntryLolregisters

holds the physical address down to bit 10 (the field is
ESP 28 shifted left by 2 bits from the Release 1 definition)) R/W 0

« The MaskX field of thdPageMaskegister is writable
and is concatenated to the right of the Mask field {o
form the “don’t care” mask for the TLB entry.

« The VPN2X field of the&EntryHi register is writable
and bits 12..11 of the virtual address.

e The virtual address translation algorithm is modifigd
to reflect the smaller page size.

If Config3sp= 0, 1KB pages are not implemented, and
this bit is ignored on write and returns zero on read.

0 27:0 Must be written as zero; returns zero on reads. (I) 0

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.7 Wired Register (CP0O Register 6, Select 0)

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in the TLB
as shown irFFigure 5-7 on page 10The width of the Wired field is calculated in the same manner as that described for
theIndexregister above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR
instruction. Wired entries can be overwritten by a TLBWI instruction.

TheWiredregister is reset to zero by a Reset exception. Writingvired register causes thRandonregister to reset
to its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written to the
Wiredregister.

This register is only valid with a TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp cores).

Entry n-1

I £
, o

=]
' c
) <
' 14

Wired Register —» Enwry10 v
! kel
X o
! =
Entry O

Figure 5-7 Wired and Random Entries in the TLB

Figure 5-8 Wired Register Format

31 4 3 0
0 Wired

Table 5-11 Wired Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write | Reset State
0 314 Must be written as zero; returns zero on reads. 0
Wired 3.0 TLB wired boundary. R/W 0
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 101

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.8 HWREnNa Register (CPO Register 7, Select 0)

TheHWREnaregister contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction.

Figure 5-9shows the format of thdWREnaRegister;Table 5-12describes thelWREnaregister fields.

Figure 5-9 HWREna Register Format
31 4 3 0

Mask

0
0000 0000 0000 0000 0000 0000 0000

Table 5-12 HWRENa Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State

0 31.4 Must be written with zero; returns zero on read D 0

Each bit in this field enables access by the RDHWR
instruction to a particular hardware register (whi¢h
may not be an actual register). If bit ‘n’ in this fielg
is a 1, access is enabled to hardware register ‘n’. IfRNV 0

Mask 3.0 bit ‘n’ of this field is a 0, access is disabled.

See the RDHWR instruction for a list of valid
hardware registers.

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In doing
S0, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the instruction,
and returning the virtualized value. For example, if it is not desirable to provide direct acces€ taititeegister, access

to that register may be individually disabled and the return value can be virtualized by the operating system.

102 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.9 BadVAddrRegister (CP0O Register 8, Select 0)

TheBadVAddrregister is a read-only register that captures the most recent virtual address that caused one of the

following exceptio

ns:

» Address error (AdEL or AdES)

* TLB Refill (4KEc core)
* TLB Invalid (4KEc core)

* TLB Modified (4KEc core)

TheBadVAddrregister does not capture address information for cache or bus errors, since they are not addressing errors.

Figure 5-10BadVAddr Register Format

31 0
BadVAddr
Table 5-13BadVAddrRegister Field Description
Fields
Read/
Name Bits Description Write | Reset State
BadVAddr 31:.0 Bad virtual address. R Undefine

)

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

103

Chapter 5 CPO Registers of the 4KE™ Core

104

TheCountregister acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired, or
any forward progress is made through the pipeline. The counter increments every other clock, if the DC Kitinsthe

register is 0.

The Countregister can be written for functional or diagnostic purposes, including at reset or to synchronize processors.

By writing the CountDM bit in thé®ebugregister, it is possible to control whether @auntregister continues

5.2.10 Count Register (CPO Register 9, Select 0)

incrementing while the processor is in debug mode.

Figure 5-11Count Register Format

31 0
Count
Table 5-14Count Register Field Description
Fields
Read/
Name Bits Description Write | Reset State
Count 310 Interval counter. R/W Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.11 EntryHi Register (CPO Register 10, Select 0)
TheEntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits MA;30f the virtual address to be written

into the VPN2 field of th&ntryHi register. An implementation of Release 2 of the Architecture which supports 1KB
pages also writes iy _;4into the VPN2X field of theentryHiregister. A TLBR instruction writes thEéntryHi register

with the corresponding fields from the selected TLB entry. The ASID field is written by software with the current address
space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID around
use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other memory
management software.

The VPNX2 and VPNZ2 fields of tHentryHi register are not defined after an address error exception and these fields
may be modified by hardware during the address error exception sequence. Software writ€nhtitHieregister (via
MTCO) do not cause the implicit write of address-related fields iBaa&/Addr Contextregisters.

This register is only valid with the TLB (4KEc core). It is reserved if the FM is implemented (4KEm and 4KEp cores).

Figure 5-12EntryHi Register Format

31 1312 11 10 8 7 0
\ VPN2 \VPN2>{(0 \ ASID

Table 5-15EntryHi Register Field Descriptions

Fields

Read/ Reset
Name Bits Description Write State

VA3, 130f the virtual address (virtual page number/ 2).
VPN2 31.13 This field is written by hardware on a TLB exception ¢

- on a TLB read, and is written by software before a TL|
write.

Undefined

W=
P
2

In Release 2 of the Architecture, the VPN2X field is an
extension to the VPN2 field to support 1KB pages. These
bits are not writable by either hardware or software
unless Config3p= 1 and PageGraigp= 1. If enabled
for write, this field contains V{14 0f the virtual

VPN2X 12..11 | address and is written by hardware on a TLB exceptionR/W 0
oronaTLB read, and is by software before a TLB write.

If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be written
with zero and returns zeros on read.

0 10..8 Must be written as zero; returns zero on read. 0 0

Address space identifier. This field is written by

hardware on a TLB read and by software to establish th .
ASID 7.0 current ASID value for TLB write and against which “RIW Undefined
TLB references match each entry’s TLB ASID field.
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 105

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.12 CompareRegister (CPO Register 11, Select 0)

106

TheCompareregister acts in conjunction with tif@ountregister to implement a timer and timer interrupt function. The
timer interrupt is an output of the cores. TBempareregister maintains a stable value and does not change on its own.

When the value of th€ountregister equals the value of t®mpareregister, the SI_TimerInt pin is asserted. This pin
will remain asserted until thEompareregister is written. The SI_TimerInt pin can be fed back into the core on one of
the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware interrupt 5

to set interrupt bit IP(7) in th@auseregister.

For diagnostic purposes, tRmmpareregister is a read/write register. In normal use, howeve€ dhgpareregister is
write-only. Writing a value to th€Eompareregister, as a side effect, clears the timer interrupt.

Figure 5-13CompareRegister Format

31 0
Compare
Table 5-16CompareRegister Field Description
Fields
Read/
Name Bit(s) Description Write | Reset State
Compare 31:0 Interval count compare value. R/W Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.13 StatusRegister (CPO Register 12, Select 0)

The Statugregister is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic states
of the processor. Fields of this register combine to create operating modes for the processorRetenc3.2, "Modes

of Operation" on page 3®r a discussion of operating modes, éettion 4.3, "Interrupts” on page &6 a discussion

of interrupt modes.

Interrupt Enable : Interrupts are enabled when all of the following conditions are true:

* [E=1
* EXL=0
*« ERL=0
* DM =0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

Operating Modes If the DM bit in the Debug register is 1, then the processor is in debug mode; otherwise the processor
is in either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode:

e User mode: UM =1, EXL=0,and ERL=0

» Kernel mode: UM =0,0orEXL=1,0orERL=1

Coprocessor Accessibility: THgtatugegister CU bits control coprocessor accessibility. If any coprocessor is unusable,
then an instruction that accesses it generates an exception.

Figure 5-14shows the format of th8tatusregister;Table 5-17describes th8tatusregister fields.

Figure 5-14 Status Register Format
31 2827 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3

CU3.CUORPFR RE R | BEV TS SRNMI b R IM7..IM2 IMLUINO R | UM R ERL E*LllE

IPL

Table 5-17 Status Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State
cu3 31 Controls access to coprocessor 3. COP3 is not suppoited. R 0

This bit cannot be written and will read as 0.

Controls access to coprocessor 2. This bit can only be
written if coprocessor is attached to the COP2 interfage.

cuz 30 | (C2bitin Configl is set). This bit will read as Oif no | /W 0

coprocessor is present.

cu1l 29 Controls access to Coprocessor 1. COPL1 is not supported. R 0
This bit cannot be written and will read as 0.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 107

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

Table 5-17 Status Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State

Controls access to coprocessor 0
0: access not allowed

Ccuo og | 1+ accessallowed RW | Undefined
Coprocessor 0 is always usable when the processor is
running in kernel mode, independent of the state of the
CUO0 hit.
Enables reduced power mode. The state of the RP bit is 0 for Cold

RP 27 available on the external core interface assSh&RP R/W Reset only,

signal.

This bitis related to floating point registers. Since the 4KE
FR 26 core does not contain a floating point unit, this bit is R 0
ignored on write and read as zero.

Used to enable reverse-endian memory references while
the processor is running in user mode:

Encoding Meaning

RE 25 0 User mode uses configured endianness | Ry Undefined

1 User mode uses reversed endianngss

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

R 24:23 | Reserved. This field is ignored on write and read as 0. R 0

Controls the location of exception vectors:

Encoding Meaning

BEV 22 0 Normal R/W 1

1 Bootstrap

TLB shutdown. Indicates that the TLB has detected a
match on multiple entries. This bit is set if a TLBWI o
TLBWR instruction is issued that would cause a TLB
shutdown condition if allowed to complete. A maching
TS 21 check exception is also issued. This bitis only used in thep 0

4KEc processor and is reserved in the 4KEp and 4KEm
processors.

Software can only write a O to this bit to clear it and canrjot
force a 0-1 transition.

Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Encoding Meaning
SR 20 0 Not Soft Reset (NMI or Reset) R/W 1ng£(in
1 Soft Reset otherwise
Software can only write a O to this bit to clear it and canrjot
force a 0-1 transition.
108 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-17 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

NMI

19

Indicates that the entry through the reset exception ve
was due to an NMI:

Encoding Meaning
0 Not NMI (Soft Reset or Reset)
1 NMI

Software can only write a 0 to this bit to clear it and canrf
force a 0-1 transition.

tor

R/W

ot

1 for NMI; 0
otherwise

18

Must be written as zero; returns zero on read.

17:16

Reserved. Ignored on write and read as zero.

IM7..1IM2

15..10

Interrupt Mask: Controls the enabling of each of the
hardware interrupts. Refer ®ection 4.3, "Interrupts" on
page 56or a complete discussion of enabled interrupt

An interrupt is taken if interrupts are enabled and the
corresponding bits are set in both the Interrupt Mask fig
of the Status register and the Interrupt Pending field of
Cause register and the IE bit is set in the Status regis

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Confjgg = 1),
these bits take on a different meaning and are interpre
as the IPL field, described below.

old
he
ter.

R/W

ted

Undefined

IPL

15..10

Interrupt Priority Level.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Confjgg = 1),
this field is the encoded (0..63) value of the current IP
An interrupt will be signaled only if the requested IPL
higher than this value.

If EIC interrupt mode is not enabled (Configg: = 0),
these bits take on a different meaning and are interpre
as the IM7..IM2 bits, described above.

nr

ted

Undefined

IM1..IMO

9.8

Interrupt Mask: Controls the enabling of each of the
software interrupts. Refer to Section <<NEED
CROSSREF>> for a complete discussion of enabled
interrupts.

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Confjgg = 1),
these bits are writable, but have no effect on the interr

R/W

ipt

system.

Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

109

Chapter 5 CPO Registers of the 4KE™ Core

Table 5-17 Status Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State

R 7:5 Reserved. This field is ignored on write and read as (. R 0

This bit denotes the base operating mode of the procegsor.
SeeSection 3.2, "Modes of Operation" on pagef@5a
full discussion of operating modes. The encoding of th
bit is:

S

Encoding Meaning

UM 4 - R/W Undefined
0 Base mode is Kernel Mode

1 Base mode is User Mode

Note that the processor can also be in kernel mode if ERL
or EXL is set, regardless of the state of the UM bit.

R 3 This bit is reserved. This bit is ignored on write and read
as zero.

Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

Encoding Meaning

0 Normal level

1 Error level

When ERL is set:
¢ The processor is running in kernel mode

ERL 2 « Interrupts are disabled RIW 1
d

¢ The ERET instruction will use the return address he
in ErrorEPC instead of EPC

« The lower 2° bytes of kuseg are treated as an
unmapped and uncached region. Seapter 3,
“Memory Management of the 4KE™ Core,” on page
35. This allows main memory to be accessed in the
presence of cache errors. The operation of the procegsor
is UNDEFINED if the ERL bit is set while the
processor is executing instructions from kuseg.

Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, or NMI exceptions is taken.

Encoding Meaning

0 Normal level

1 Exception level

EXL 1 When EXL is set: R/W Undefined
* The processor is running in Kernel Mode

 Interrupts are disabled.

« TLB Refill exceptions use the general exception vector
instead of the TLB Refill vector.

» EPC, Causgy and SRSCtl (implementations of
Release 2 of the Architecture only) will not be updated
if another exception is taken

110 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-17 Status Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State

Interrupt Enable: Acts as the master enable for software

and hardware interrupts:

Encoding Meaning
IE 0 0 Interrupts are disabled R/W Undefined
1 Interrupts are enabled
In Release 2 of the Architecture, this bit may be modified
separately via the DI and El instructions.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

111

Chapter 5 CPO Registers of the 4KE™ Core

5.2.14 IntCtl Register (CPO Register 12, Select 1)

ThelntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vectored
interrupts and support for an external interrupt controller. This register does not exist in implementations of Release 1

of the Architecture.

Figure 5-15shows the format of thatCtl register;Table 5-18describes thintCtl register fields.

31 29 28 26 25

Figure 5-15 IntCtl Register Format

10 9

\ IPTI \ IPPCI‘

VS

Table 5-18 IntCtl Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset
State

IPTI

31..29

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which t
Timer Interrupt request is merged, and allows
software to determine whether to consider Cause
for a potential interrupt.

Encoding| [P bit Hardware
Interrupt Source

HWO
HW1
HW2
HW3
HW4
HW5S

N~N|jlojla|lbh|lw|N
N~N|jlojla|lbh|lw|N

The value of this hit is set by the static input,
SI_IPTI[2:0]. This allows external logic to
communicate the specifil_Inthardware interrupt
pin to which theSI_Timerlntsignal is attached.

The value of this field is not meaningful if Externa
Interrupt Controller Mode is enabled. The externg
interrupt controller is expected to provide this
information for that interrupt mode.

Externally
Set

IPPCI

28..26

For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP nhumber to which 4
Performance Counter Interrupt request is merged

he

and allows software to determine whether to consiger

Causec, for a potential interrupt.

Since performance counters are not implemented
the 4KE core (Configdc=0), this field is ignored on
write and returns zero on read.

R

25..10

Must be written as zero; returns zero on read.

112

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-18 IntCtl Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State
Vector Spacing. If vectored interrupts are
implemented (as denoted by Confjg3 or
Config3/g|c). this field specifies the spacing
between vectored interrupts.
Encoding| Spacing Between| Spacing Between
Vectors (hex) Vectors (decimal)
16#00 16#000 0
16#01 16#020 32
VS 9.5 R/W 0
16#02 16#040 64
16#04 16#080 128
16#08 16#100 256
16#10 16#200 512
All other values are reserved. The operation of the
processor i’JNDEFINED if a reserved value is
written to this field.
0 4.0 Must be written as zero; returns zero on read.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

113

Chapter 5 CPO Registers of the 4KE™ Core

5.2.15 SRSCtIRegister (CPO Register 12, Select 2)

The SRSCtregister controls the operation of GPR shadow sets in the processor. This register does not exist in
implementations of the architecture prior to Release 2.

Figure 5-16shows the format of tf@RSCtregister;Table 5-19describes th8RSCtlegister fields.

Figure 5-16 SRSCtl Register Format

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0
0 0 0 0 0
00 HSS 0000 EICSS 00 ESS 00 PSS 00 CSS

Table 5-19 SRSCtl Register Field Descriptions

Fields
Read/ Reset

Name Bits Description Write State

0 31..30 Must be written as zeros; returns zero on read. D q

Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this
processor. A value of zero in this field indicates that
only the normal GPRs are implemented.

Possible values of this field for the 4KE processo
are:

Encoding Meaning

0 One shadow set (normal GPR set) is present.

HSS 29..26 1 Two shadow sets are present. R Preset

3 Four shadow sets are present.
2, 3-15 | Reserved

The value in this field also represents the highest
value that can be written to the ESS, EICSS, PSS, and
CSsSfields of this register, or to any of the fields of the
SRSMapegister. The operation of the processor is
UNDEFINED if a value larger than the one in thig
field is written to any of these other fields.

0 25..22 Must be written as zeros; returns zero on read. D g

EIC interrupt mode shadow set. If Confjgg: is 1
(EIC interrupt mode is enabled), this field is loads
from the external interrupt controller for each
interrupt request and is used in place of 8RSMap
register to select the current shadow set for the
EICSS 21..18 | interrupt. R Undefined

o

SeeSection 4.3.1.3, "External Interrupt Controller
Mode" on page 6for a discussion of EIC interrupt
mode. If ConfigQgc is 0, this field must be written
as zero, and returns zero on read.

0 17..16 Must be written as zeros; returns zero on read. D q

114 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-19 SRSCtl Register Field Descriptions

Fields
Read/ Reset

Name Bits Description Write State

Exception Shadow Set. This field specifies the
shadow set to use on entry to Kernel Mode caused by
any exception other than a vectored interrupt.

ESS 15..12 | The operation of the processotdBIDEFINED if R/W 0
software writes a value into this field that is greater
than the value in the HSS field.

0 11..10 Must be written as zeros; returns zero on read. D q

Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the
next paragraph, this field is copied from the CSS field
when an exception or interrupt occurs. An ERET
instruction copies this value back into the CSS figld
if Statuggy = 0.

This field is not updated on any exception which sets
PSS 9..6 | Statugg to 1 (i.e., Reset, Soft Reset, NMI, cachg R/W 0
error), an entry into EJTAG Debug mode, or any
exception or interrupt that occurs with St?gg =1,
or Statuggy = 1. This field is not updated on an

exception that occurs while Stagyg = 1.

The operation of the processotUBIDEFINED if
software writes a value into this field that is greate
than the value in the HSS field.

=

0 5.4 Must be written as zeros; returns zero on read. 0

Current Shadow Set. If GPR shadow registers ar¢
implemented, this field is the number of the current
GPR set. With the exclusions noted in the next
paragraph, this field is updated with a new value pn
any interrupt or exception, and restored from the PSS
field on an ERETTable 5-20describes the various
sources from which the CSS field is updated on 3
exception or interrupt.

>

This field is not updated on any exception which sets
Css 3..0 | Statugg, to 1 (i.e., Reset, Soft Reset, NMI, cachg R 0
error), an entry into EJTAG Debug mode, or any
exception or interrupt that occurs with Statyg =1,
or Statuggy = 1. Neither is it updated on an ERE]
with Statugg, = 1 or Statuggy = 1. This field is not
updated on an exception that occurs while Sigtys
=1.

The value of CSS can be changed directly by
software only by writing the PSS field and executing
an ERET instruction.

Table 5-20 Sources for new SRSGikson an Exception or Interrupt

Exception Type Condition SRSCtEggSource Comment
Exception All SRSCigs
Non-Vectored _ ;
Interrupt Causg, =0 SRSCisg Treat as exception
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 115

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

Table 5-20 Sources for new SRSGtkgon an Exception or Interrupt

Exception Type Condition SRSCtEggSource Comment
d C?usg, =1and g Source is internal map registe.
Vectored Interrupt Config3/g;c = 0 an SRSMagectnuM
Config3nt = 1 (for VECTNUMeeTable 4-3
Vectored EIC Causg, =1 and Source is external interrupt
Interrupt Configl/gic = 1 SRSCteicss controller.
116 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.16 SRSMapRegister (CPO Register 12, Select 3)

The SRSMapegister contains 8 4-bit fields that provide the mapping from an vector number to the shadow set number
to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception, or a
non-vectored interrupt (Cayge= 0 or IntCt{,5 = 0). In such cases, the shadow set number comes from $RSCil

If SRSCtlyssis zero, the results of a software read or write of this regist&iNMiRREDICTABLE .

The operation of the processotdBIDEFINED if a value is written to any field in this register that is greater than the
value of SRSCilgg

The SRSMagpegister contains the shadow register set numbers for vector numbers 7..0. The same shadow set number
can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single shadow
register set number.

Figure 5-17shows the format of tiBRSMapegister;Table 5-21describes th&RSMagpegister fields.

Figure 5-17 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
SSv7 SSV6 SSV5 SSv4 SSV3 SSV2 SSv1 SSV0
Table 5-21 SRSMap Register Field Descriptions
Fields
Read/
Name Bits Description Write | Reset State
SSv7 31..28 Shadow register set number for Vector Number ¥ RIW 0
SSV6 27..24 Shadow register set number for Vector Number 6 RIW 0
SSV5 23..20 Shadow register set number for Vector Number 5 RIW 0
SSv4 19..16 Shadow register set number for Vector Number # RIW 0
SSv3 15..12 Shadow register set number for Vector Number B RIW 0
SSVv2 11..8 Shadow register set number for Vector Number 2 RIW 0
SSv1 7.4 Shadow register set number for Vector Number 1 RiW 0
SSVO 3.0 Shadow register set number for Vector Number () RiW 0
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 117

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

118

5.2.17 CauseRegister (CPO Register 13, Select 0)

The Causeregister primarily describes the cause of the most recent exception. In addition, fields also control software
interrupt requests and the vector through which interrupts are dispatched. With the exceptiom of, tBE|RV, and

WP fields, all fields in th€auseregister are read-only. Release 2 of the Architecture added optional support for an
External Interrupt Controller (EIC) interrupt mode, in which Bare interpreted as the Requested Interrupt Priority

Level (RIPL).

Figure 5-18shows the format of th@auseregister;Table 5-22describes th€auseregister fields.

Figure 5-18 Cause Register Format

3130 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0

\BD\Tl\ CE \quc' 0 \ |v\ WP\ 0 IP7..1P2 |P1..|ﬁ>op

Exc Code ‘ O‘

RIPL

Table 5-22 Cause Register Field Descriptions

Fields

Name

Bits

Read/
Description Write

Reset State

BD

31

Indicates whether the last exception taken occurred
a branch delay slot:

n

Encoding Meaning

0 Not in delay slot

1 In delay slot

The processor updates BD only if Stagtyp was zero
when the exception occurred.

Undefined

TI

30

Timer Interrupt. This bit denotes whether a timer
interruptis pending (analogous to the IP bits for other
interrupt types):

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

The state of the Tl bit is available on the external cqre
interface as th&I_TimerIntsignal

Undefined

CE

29..28

Coprocessor unit number referenced when a
Coprocessor Unusable exception is taken. This fie
is loaded by hardware on every exception, but is
UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

d

Undefined

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

5.2

CPO Register Descriptions

Table 5-22 Cause Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

DC

27

DisableCountregister. In some power-sensitive
applications, th€ountregister is not used and is th
source of meaningful power dissipation. This bit
allows theCountregister to be stopped in such
situations.

Encoding Meaning

0 Enable counting d€ountregister

1 Disable counting o€ountregister

1%

R/W

PCI

26

Performance Counter Interrupt. In an
implementation of Release 2 of the Architecture, th
bit denotes whether a performance counter interr
is pending (analogous to the IP bits for other interrd

types):

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Since performance counters are not implemented
(Configlpc = 0), this bit must be written as zero an
returns zero on read.

is

pt

upt

23

Indicates whether an interrupt exception uses the
general exception vector or a special interrupt vec

Encoding Meaning

0 Use the general exception vector (16#180)

1 Use the special interrupt vector (16#200

In implementations of Release 2 of the architectu
if the Causgy is 1 and Statysgy, is O, the special
interrupt vector represents the base of the vector
interrupt table.

re,

D

bd

R/W

Undefined

WP

22

Indicates that a watch exception was deferred

because Statpg, or Statugg, were a one at the
time the watch exception was detected. This bit bqg
indicates that the watch exception was deferred, 3
causes the exception to be initiated once Stgjus

and Statusg, are both zero. As such, software mu
clear this bit as part of the watch exception handler
prevent a watch exception loop.

Software should not write a 1 to this bit when its
value is a 0, thereby causing a 0-to-1 transition. |
such a transition is caused by software, it is
UNPREDICTABLE whether hardware ignores th

th

5t
to

D

write, accepts the write with no side effects, or

accepts the write and initiates a watch exception oTce

Statugy, and Statusg, are both zero.

ind

R/W

Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

119

Chapter 5 CPO Registers of the 4KE™ Core

Table 5-22 Cause Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State
Indicates an interrupt is pending:

Bit Name Meaning
15 IP7 | Hardware interrupt 5
14 IP6 | Hardware interrupt 4
13 IP5 | Hardware interrupt 3
12 IP4 | Hardware interrupt 2
11 IP3 | Hardware interrupt 1

IP7..1P2 15..10 10 IP2 | Hardware interrupt 0 R Undefined

If EIC interrupt mode is not enabled (Configdc =
0), timer interrupts are combined in a
system-dependent way with any hardware interrupt.
If EIC interrupt mode is enabled (Configdc = 1),
these bits take on a different meaning and are
interpreted as the RIPL field, described below.

SeeSection 4.3, "Interrupts" on page & a general
description of interrupt processing.

Requested Interrupt Priority Level.

If EIC interrupt mode is enabled (Configdc = 1),
this field is the encoded (0..63) value of the requested

interrupt. A value of zero indicates that no interrupt .
RIPL 15..10 is requested. R Undefined
If EIC interrupt mode is not enabled (Config3c =
0), these hits take on a different meaning and are
interpreted as the IP7..1P2 bits, described above.

Controls the request for software interrupts:

Bit Name Meaning

9 IP1 | Request software interrupt 1

8 IPO | Request software interrupt 0
IP1..IPO 9.8 R/W Undefined

These bits are exported to an external interrupt
controller for prioritization in EIC interrupt mode
with other interrupt sources. The state of these bitg
available on the external core interface as the
SI_SWiInt[1:0]bus.

S

ExcCode 6..2 Exception code - sksble 5-23 R Undefined

25..24,
0 21..16, | Must be written as zero; returns zero on read. 0 0
7,1..0

120 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-23 Cause Register ExcCode Field

Exception Code Value
Decimal Hexadecimal | Mnemonic Description

0 16#00 Int Interrupt
1 16#01 Mod TLB modification exception (4KEc core)
2 16#02 TLBL TLB exception (load or instruction fetch) (4KEc core)
3 16#03 TLBS TLB exception (store) (4KEc core)
4 16#04 AdEL Address error exception (load or instruction fetch)
5 16#05 AdES Address error exception (store)
6 16#06 IBE Bus error exception (instruction fetch)
7 16#07 DBE Bus error exception (data reference: load or store)
8 16#08 Sys Syscall exception
9 16#09 Bp Breakpoint exception
10 16#0a RI Reserved instruction exception
11 16#0b CpuU Coprocessor Unusable exception
12 16#0c Ov Arithmetic Overflow exception
13 16#0d Tr Trap exception

14-15 16#0e-16#0f - Reserved
16 16#10 I1S1 Implementation-Specific Exception 1 (COP2)
17 16#11 I1S2 Implementation-Specific Exception 2(COP2)
18 16#12 C2E Coprocessor 2 exceptions

19-22 16#13-16#16 - Reserved
23 16#17 WATCH Reference to WatchHi/WatchLo address
24 16#18 MCheck Machine check

25-31 16#19-16#1f - Reserved

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

121

Chapter 5 CPO Registers of the 4KE™ Core

5.2.18 Exception Program Counter (CPO Register 14, Select 0)

The Exception Program Count&RC) is a read/write register that contains the address at which processing resumes

after an exception has been serviced. All bits oBRE register are significant and must be writable.

For synchronous (precise) exceptions,ERE contains one of the following:

» The virtual address of the instruction that was the direct cause of the exception

* The virtual address of the immediately preceding branch or jump instruction, when the exception causing instruction
is in a branch delay slot and tBeanch Delaybit in theCauseregister is set.

On new exceptions, the processor does not write tERt@register when the EXL bit in tHétatusregister is set,
however, the register can still be written via the MTCO instruction.

In processors that implement the MIPS16 ASE, a read of the EPC register (via MFCO) returns the following value in the
destination GPR:

GPR[rt] -~ ExceptionPC 3; ; | ISAMode g

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field and written to the
GPR.

Similarly, a write to the EPC register (via MTCO) takes the value from the GPR and distributes that value to the exception
PC and the ISAMode field, as follows

ExceptionPC — GPR[rt] 3,1 |0
ISAMode ~ 2#0 || GPR]rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower bit of

the GPR.
Figure 5-19EPC Register Format
31 0
EPC
Table 5-24EPC Register Field Description
Fields
Read/
Name Bit(s) Description Write Reset State
EPC 31:0 Exception Program Counter. R/W Undefined
122 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.19 Processor Identification (CPO Register 15, Select 0)

The Processor IdentificatioRRI0) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 5-20PRId Register Format

31 24 23 16 15 8 7 5 4 210
R Company ID Processor ID Revision

Table 5-25PRId Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write | Reset State
R 31:24 Reserved. Must be ignored on write and read as zerp R 0
Compan Identifies the company that designed or manufactured|the
le y 23:16 processor. In the 4KE this field contains a value of 1{o R 1
indicate MIPS Technologies, Inc.
4KEc
Processor Identifies the type of processor. This field allows software core - 0x90
D 15:8 to distinguish between the various types of MIPS R AKEM &
Technologies processors. 4KEp cores -
0x91
Specifies the revision number of the processor. This field
o allows software to distinguish between one revision gnd
Revision 7:0 another of the same processor type. R Preset
This field is broken up into the following three subfields
Major . This number is increased on major revisions of the
Revision 75 processor core R Preset
Minor 4:2 This number is increased on each incremental revision of R Preset
Revision : the processor and reset on each new major revision
. If a patch is made to modify an older revision of the
Patch Level 1.0 processor, this field will be incremented R Preset
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 123

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.20 EBaseRegister (CPO Register 15, Select 1)

124

TheEBaseregister is a read/write register containing the base address of the exception vectors used wkgp Status
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multi-processor system.

The EBaseregister provides the ability for software to identify the specific processor within a multi-processor system,
and allows the exception vectors for each processor to be different, especially in systems composed of heterogeneous
processors. Bits 31..12 of tEeBaseregister are concatenated with zeros to form the base of the exception vectors when
Statuggy is 0. The exception vector base address comes from the fixed defauisBer 4.5, "Exception Vector
Locations" on page §@vhen Statusey is 1, or for any EJTAG Debug exception. The reset state of bits 31..12 of the
EBaseregister initialize the exception base registet648000.0000 , providing backward compatibility with

Release 1 implementations.

Bits 31..30 of th&eBaseRegister are fixed with the val@¢10 to force the exception base address to be in the kseg0
or ksegl unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done withSfatgsal 1. The operation of
the processor IENDEFINED if the Exception Base field is written with a different value when Sfatuss 0.

Combining bits 31..20 with the Exception Base field allows the base address of the exception vectors to be placed at any
4KBbyte page boundary.

Figure 5-21shows the format of tnEBaseRegister;Table 5-26describes thEBaseregister fields.

Figure 5-21 EBase Register Format
31 30 29 12 11 10 9 0
‘ 1 ‘ 0 ‘ Exception Base ‘ 0 0‘ CPUNum

Table 5-26 EBase Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State
1 31 This bit is ignored on write and returns one on read. R 1
0 30 This bitis ignored on write and returns zero on repd. R 0

In conjunction with bits 31..30, this field specifieg
the base address of the exception vectors when| R/W 0
Statuggy is zero.

Exception
Base 29..12

0 11..10 Must be written as zero; returns zero on read. 0 0

This field specifies the number of the CPU in a
multi-processor system and can be used by software
to distinguish a particular processor from the others.

CPUNum 9.0 The value in this field is set by the
SI_CPUNum[9:0]static input pins to the core. In a
single processor system, this value should be set to
zero.

Externally
R Set

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.21 Config Register (CPO Register 16, Select 0)

The Configregister specifies various configuration and capabilities information. Most of the fieldsQottiigregister
are initialized by hardware during the Reset exception process, or are constant. The KO, KU, and K23 fields must be
initialized by software in the Reset exception handler, if the reset value is not desired.

Figure 5-22Config Register Format — Select O

3130 2827 2524 23 22 21 20 1918 17 16 15 141312 10 9 7 6 3 2 0
|M|K23| KU |ISP|DSI1>UD'843Mqu MM|BM| BE| AT| AR | MT | 0 | KO |

Figure 5-23Config Register Field Descriptions

Fields
Read/W

Name Bit(s) Description rite Reset State

M 31 This bit is hardwired to ‘1’ to indicate the presence of the R 1
Configl register.

This field controls the cacheability of the kseg2 and ksgg3

address segments in FM implementations. This field i$) :

K23 30:28 valid in the 4KEp and 4KEm processor and is reserved irFM' RIW FM: 010
) the 4KEc processor. TLB: R TLB: 000

Refer toTable 5-27for the field encoding.

This field controls the cacheability of the kuseg and useg
address segments in FM implementations. This field i$. .
KU 27:25 valid in the 4KEp and 4KEm processor and is reserved irlnzM' RIW FM: 010

the 4KEc processor. TLB: R TLB: 000
Refer toTable 5-27for the field encoding.

Indicates whether Instruction ScratchPad RAM is present.
Set by thdSP_Presenstatic input pin, if scratchpad wa
ISP 24 enabled when the core was built. R

T

Externally Set

0 = No Instruction ScratchPad is present
1 = Instruction ScratchPad is present

Indicates whether Data ScratchPad RAM is present. Set by
the DSP_Presenstatic input pin, if scratchpad was

DSP 23 enabled when the core was built. R Externally Set

0 = No Data ScratchPad is present
1 = Data ScratchPad is present

This bit indicates that CorExtend User Defined
Instructions have been implemented.

UDI 22 R Preset
0 = No User Defined Instructions are implemented
1 = User Defined Instructions are implemented

Indicates whether SimpleBE bus mode is enabled. Set|via
S|_SimpleBE[0]nput pin.
SB 21 R Externally Set
0 = No reserved byte enables on EC interface

1 = Only simple byte enables allowed on EC interface

This bit indicates the type of Multiply/Divide Unit present.

MDU 20 R Preset

0 = Fast, high-performance MDU (4KEc and 4KEm corgs)
1 = Iterative, area-efficient MDU (4KEp cores)

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 125

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

126

Figure 5-23Config Register Field Descriptions (Continued)

Fields
Read/W
Name Bit(s) Description rite Reset State
0 19 Must be written as 0. Returns zero on reads. 0
This bit indicates whether merging is enabled in the 32
byte collapsing write buffer. Set visl_MergeMode[1:0]
input pins:
MM 18:17 R Externally Set
00 = No Merging
10 = Merging allowed
x1 = Reserved
Burst order. Set vig&B_SBlocknput pin.
BM 16 0: Sequential R Externally Set
1: SubBlock
Indicates the endian mode in which the processor is
running. Set vi&l_Endianinput pin.
BE 15 R Externally Set
0: Little endian
1: Big endian
. Architecture type implemented by the processor. This field
AT 14:13 is always 00 to indicate the MIPS32 architecture. R 00
Architecture revision level. This field is always 001 to
indicate MIPS32 Release 2.
AR 1210 | 5 Release 1 R 001
1: Release 2
2-7: Reserved
MMU Type:
MT 9:7 1: Standard TLB (4KEc core) R Preset
3: Fixed Mapping(4KEp, 4KEm cores)
0, 2, 4-7: Reserved
0 6:3 Must be written as zeros; returns zeros on reads. 0
. Kseg0 coherency algorithm. ReferTable 5-27for the
KO 20 field encoding. RIW 010
Table 5-27 Cache Coherency Attributes
C(2:0) Value Cache Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
1 Cacheable, noncoherent, write-through, write allocate
3* 4,56 Cacheable, noncoherent, write-back, write allocate
2% 7 Uncached

Note: * These two values are required by the MIPS32 architecture. In the 4KE processor core, only values 0, 1, 2 and 3
For example, values 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Notd
values do have meaning in other MIPS Technologies processor implementations. Refer to the MIPS32 specification

information.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.22 Configl Register (CPO Register 16, Select 1)

TheConfiglregister is an adjunct to ti@onfigregister and encodes additional information about capabilities present
on the core. All fields in th€onfiglregister are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the line size,
and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.

Figure 5-24Configl Register Format — Select 1

31 30 2524 2221 1918 16 15 1312 109 7 6 5 4 3 2 1 0
||v|| MMU Size | IS | IL | IA | DS | DL | DA |C2|MD|PC|WR|CA|EFI’FF|>

Table 5-28Configl Register Field Descriptions — Select 1

Fields
Read/
Name Bit(s) Description Write Reset State
M 31 This bit is hardwired to ‘1’ to indicate the presence of the R 1
Config2 register.
This field qontains the number qf entries inthe TLB minyus
MMU Size 30:25 | One. The field is read as 15 decimal in the 4KEc core. The R Preset

field is read as 0 decimal in the 4KEp and 4KEm coreg,
since no TLB is present.

This field contains the number of instruction cache sets per
way. Five options are available in the 4KE core. All others
values are reserved:

. 0x0: 64
IS 24:22 Ox1- 128 R Preset
0x2: 256

0x3: 512

0x4: 1024

0x5 - 0x7: Reserved

This field contains the instruction cache line size. If an
instruction cache is present, it must contain a fixed line size
of 16 bytes.
IL 21:19 R Preset
0x0: No Icache present

0x3: 16 bytes

0x1, 0x2, 0x4 - Ox7: Reserved

This field contains the level of instruction cache
associativity.

0x0: Direct mapped

1A 18:16 0x1: 2-way R Preset
0x2: 3-way
0x3: 4-way
0x4 - Ox7: Reserved
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 127

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

Table 5-28Configl Register Field Descriptions — Select 1 (Continued)

Fields
Read/

Name Bit(s) Description Write Reset State

This field contains the number of data cache sets per way.

0x0: 64
Ox1: 128
Ox2: 256 R Preset
0x3: 512

0x4: 1024

0x5 - 0x7: Reserved

DS 15:13

This field contains the data cache line size. If a data caghe
is present, then it must contain a line size of 16 bytes.

DL 12:10 R Preset

0x0: No Dcache present
0x3: 16 bytes
0x1, 0x2, Ox4 - 0x7: Reserved

This field contains the type of set associativity for the data
cache.

0x0: Direct mapped
0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

DA 9.7 R Preset

Coprocessor 2 present.

0: No coprocessor is attached to the COP2 interface
Cc2 6 1: A coprocessor is attached to the COP2 interface R Preset

If the Cop2 interface logic is not implemented, this bit wil
read O.

MD 5 MDMX implemented. This bit always reads as 0 becayse R 0
MDMX is not supported.

Performance Counter registers implemented. Always & 0
PC 4 since the 4KE core does not contain Performance R 0
Counters.

Watch registers implemented.

WR 3 0: No Watch registers are present R

1: One or more Watch registers are present Preset

Code compression (MIPS16) implemented.

0: No MIPS16 present R Preset
1: MIPS16 is implemented

CA 2

EP 1 EJTAG present: This bit is always set to indicate that the R 1
core implements EJTAG.

FP 0 FPU implemented. This bit is always zero since the core R 0
does not contain a floating point unit.

128 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.23 Config2 Register (CPO Register 16, Select 2)

The Config2register is an adjunct to ti@onfigregister and is reserved to encode additional capabilities information.
Config2is allocated for showing the configuration of level 2/3 caches. These fields are reset to 0 because L2/L3 caches
are not supported by the 4KE core. All fields in @anfig2register are read-only.

Figure 5-25Config2 Register Format — Select 2

31 30 0
[M] 0

Table 5-29Configl Register Field Descriptions — Select 1

Fields
Read/
Name Bit(s) Description Write Reset State
M 31 This bit is hardwired to ‘1’ to indicate the presence of the R 1
Config3 register.
0 30:0 These bits are reserved. R 0
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 129

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.24 Config3Register (CPO Register 16, Select 3)
The Config3register encodes additional capabilities. All fields inGloafig3register are read-only.

Figure 5-26shows the format of th@onfig3register;Table 5-30describes th€onfig3register fields.

Figure 5-26 Config3 Register Format
31 30 7 6 5 4 3 2 1 0

0
000 0000 0000 0000 0000 0000 0 VEIQVInt SR 0| SMTL

Table 5-30 Config3 Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State

This bitis reserved to indicate that a Config4 register is
M 31 present. With the current architectural definition, this R 0
bit should always read as a 0.

0 30:7,3:2| Must be written as zeros; returns zeros on read D 0

Support for an external interrupt controller is
implemented.

Encoding Meaning

0 Support for EIC interrupt mode is notj

implemented
VEIC 6 : : R Externally
1 Support for EIC interrupt mode is Set

implemented

The value of this bit is set by the static input,
SI_EICPresentThis allows external logic to

communicate whether an external interrupt controller
is attached to the processor or not.

Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

Encoding Meaning
Vint 5 0 Vector interrupts are not implemente R 1
1 Vectored interrupts are implemented

On the 4KE core, this bit is always a 1 since vectorgd
interrupts are implemented.

Small (1KByte) page support is implemented, and the
PageGrainregister exists. This bit will always read gs
0 on the 4KEm and 4KEp cores, since no TLB is

present.
SP 4 R Preset
Encoding Meaning
0 Small page support is not implemented
1 Small page support is implemented
130 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-30 Config3 Register Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State

SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented. Sinc
SmartMIPS is not present on the 4KE core, this bit wj
always be 0.

SM 1 R 0
Encoding Meaning

0 SmartMIPS ASE is not implementegd
1 SmartMIPS ASE is implemented

1%

Trace Logic implemented. This bit indicates whether
PC or data trace is implemented.

TL 0 Encoding Meaning R Preset
0 Trace logic is not implemented

1 Trace logic is implemented

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 131

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.25 Load Linked Address (CPO Register 17, Select 0)

TheLLAddrregister contains the physical address read by the most recent Load Linked (LL) instruction. This register
is for diagnostic purposes only, and serves no function during normal operation.

Figure 5-27LLAddr Register Format

31 28 27 0
0 PAddr[31:4]

Table 5-31LLAddr Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
0 31:28 Must be written as zeros; returns zeros on reads. D 0
. . This field encodes the physical address read by the most "
PAddr[31:4] 270 recent Load Linked instruction. R Undefined
132 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.26 WatchLo Register (CPO Register 18, Select 0-7)

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility that initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are both zero in the
Statugegister. If either bitis a one, the WP bit is set in @@useregister, and the watch exception is deferred until both

the EXL and ERL bits are zero.

The 4KE core can be configured with 0 to 8 Watch register pairs

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to match.

Figure 5-28WatchLo Register Format

31 3 2 10
VAddr | | |R|W|

Table 5-32WatchLo Register Field Descriptions

Fields
Read/

Name Bits Description Write Reset State

This field specifies the virtual address to match. Note that
VAddr 31:3 this is a doubleword address, since bits [2:0] are used|to R/W Undefined
control the type of match.

| > If this bit is set, watch exceptions are enabled for RIW 0
instruction fetches that match the address. :

If this bit is set, watch exceptions are enabled for loads that
R 1 match the address. RIW 0

If this bitis set, watch exceptions are enabled for stores that
W 0 match the address. RIW 0

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 133

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.27 WatchHi Register (CP0O Register 19, Select 0-7)

134

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility that initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zerStimtise

register. If either bit is a one, then the WP bit is set in@aseregister, and the watch exception is deferred until both

the EXL and ERL bits are zero.

TheWatchHiregister contains information that qualifies the virtual address specified WatehLoregister: an ASID,

a Global (G) bit, and an optional address mask. If the G bit is 1, then any virtual address reference that matches the
specified address will cause a watch exception. If the G bit is a 0, only those virtual address references for which the
ASID value in theNatchHiregister matches the ASID value in thetryHi register cause a watch exception. The

optional mask field provides address masking to qualify the address spedifiattivhio

31 30 29

Figure 5-29WatchHi Register Format

24 23 16 15 12 11

[ofe] o

ASID 0

Mask

Table 5-33WatchHi Register Field Descriptions

Fields

Name Bit(s)

Description

Read/
Write

Reset State

M 31

Indicates whether additional Watch register pairs beyd
this one are present or not

ndR

Preset

If this bit is one, any address that matches that specifie

theWatchLoregister causes a watch exception. If this bit

is zero, the ASID field of thgVatchHiregister must match
the ASID field of theEntryHi register to cause a watch
exception.

din

R/W

Undefined

0 29:24

Must be written as zeros; returns zeros on read.

0

ASID 23:16

ASID value which is required to match that in thatryHi
register if the G bit is zero in th&¥atchHiregister.

R/W

Undefined

0 15:12

Must be written as zero; returns zero on read.

0

Mask 11:3

Bit mask that qualifies the address in atchLo
register. Any bit in this field that is a set inhibits the
corresponding address bit from participating in the
address match.

R/W

Undefined

This bit is set by hardware when an instruction fetch

condition matches the values in this watch register pdi

When set, the bit remains set until cleared by softwar
which is accomplished by writing a 1 to the bit.

Ir. Wi1C

Undefined

This bit is set by hardware when a load condition match
the values in this watch register pair. When set, the b
remains set until cleared by software, which is
accomplished by writing a 1 to the bit.

es

—

wicC

Undefined

This bitis set by hardware when a store condition matc
the values in this watch register pair. When set, the b
remains set until cleared by software, which is
accomplished by writing a 1 to the bit.

nes

U wic

Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 135

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.28 DebugRegister (CP0O Register 23, Select 0)

The Debugregister is used to control the debug exception and provide information about the cause of the debug
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The read only
information bits are updated every time the debug exception is taken or when a normal exception is taken when already
in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and fields
are UNPREDICTABLE. Operation of the processor is UNDEFINED ifDebugregister is written from non-debug
mode.
Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:
» DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug modes
» DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception
» Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode
» DBD is updated on both debug and on exceptions in debug modes
All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.
EJTAGver and DM.
Figure 5-30DebugRegister Format

31 30 29 28 27 26 25 24 23 22 21 20 19
|DBD| DM |NoDCR| LSNM|Doz¢ Half CountDM 1BusEP MCheckP Cach¢EP DBUSEP |EXI DDBSjmpr

18 17 15 14 0 9 8 76 5 4 3 2 1 0
|DDBLImp|1 Ver | DExcCode |NoS1St S$t R| D||~{|TD|B DDE*S DDEISL DE*p DISS

Table 5-34DebugRegister Field Descriptions

Fields
_ Read/
Name Bit(s) Description Write | Reset State
Indicates whether the last debug exception or exception
in debug mode, occurred in a branch delay slot:
DBD 31 R Undefined
0: Not in delay slot
1: In delay slot
Indicates that the processor is operating in debug mode:
DM 30 0: Processor is operating in non-debug mode R 0
1: Processor is operating in debug mode
Indicates whether the dseg memory segment is pregent
and the Debug Control Register is accessible:
NoDCR 29 R 0
0: dseqg is present
1: No dseg present

136

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-34DebugRegister Field Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

LSNM

28

Controls access of load/store between dseg and m
memory:

0: Load/stores in dseg address range goes to dseg
1: Load/stores in dseg address range goes to main
memory.

aln

R/W

Doze

27

Indicates that the processor was in any kind of low
power mode when a debug exception occurred:

0: Processor not in low power mode when debug
exception occurred

1: Processor in low power mode when debug except
occurred

Undefined

Halt

26

Indicates that the internal system bus clock was stop
when the debug exception occurred:

0: Internal system bus clock stopped
1: Internal system bus clock running

Undefined

CountDM

25

Indicates the Count register behavior in debug mode.

0: Count register stopped in debug mode
1: Count register is running in debug mode

)

R/W

IBuseP

24

Instruction fetch Bus Error exception Pending. Set
when an instruction fetch bus error event occurs or i
1 is written to the bit by software. Cleared when a B
Error exception on instruction fetch is taken by the
processor, and by reset. If IBUSEP is set when IEX
cleared, a Bus Error exception on instruction fetch
taken by the processor, and IBUSEP is cleared.

fa
IS

R/W1
IS

S

MCheckP

23

Indicates that an imprecise Machine Check exceptio
pending. All Machine Check exceptions are precise

the 4KE processors so this bit will always read as Q.

nis
on R

CacheEP

22

Indicates that an imprecise Cache Error is pending
Cache Errors cannot be taken by the 4KE cores so
bit will always read as 0

his R

DBuUsEP

21

Data access Bus Error exception Pending. Covers
imprecise bus errors on data access, similar to beha

of IBUSEP for imprecise bus errors on an instruction

fetch.

‘/ioh/\Nl

IEXI

20

Imprecise Error eXception Inhibit controls exceptions

taken due to imprecise error indications. Set when
processor takes a debug exception or exception in
debug mode. Cleared by execution of the DERET
instruction; otherwise modifiable by debug mode
software. When IEXI is set, the imprecise error
exception from a bus error on an instruction fetch o
data access, cache error, or machine check is inhib
and deferred until the bit is cleared.

he

R/W

r
ted

DDBSImpr

19

Indicates that an imprecise Debug Data Break Stor|
exception was taken. All data breaks are precise on
4KE cores, so this bit will always read as 0.

D

the R

DDBLImpr

18

Indicates that an imprecise Debug Data Break Loa
exception was taken. All data breaks are precise on
4KE cores, so this bit will always read as 0.

the R

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

137

Chapter 5 CPO Registers of the 4KE™ Core

Table 5-34DebugRegister Field Descriptions (Continued)

Fields
_ Read/
Name Bit(s) Description Write | Reset State
Ver 17:15 EJTAG version. R 010

Indicates the cause of the latest exception in debug

mode. The field is encoded as the ExcCode field in the
. Cause register for those normal exceptions that mgy)

DExcCode 14:10 occur in debug mode. R Undefined

Value is undefined after a debug exception.

Indicates whether the single-step feature controllahle
by the SSt bit is available in this implementation:
NoSST 9 R 0
0: Single-step feature available

1: No single-step feature available

Controls if debug single step exception is enabled:

Sst 8 0: No debug single-step exception enabled RIW 0
1: Debug single step exception enabled
R 76 Reserved. Must be written as zeros; returns zeros ¢n R 0

reads.

Indicates that a debug interrupt exception occurred
Cleared on exception in debug mode.

DINT 5 R Undefined
0: No debug interrupt exception
1: Debug interrupt exception

Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.
DIB 4 R Undefined
0: No debug instruction exception
1: Debug instruction exception

Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.
DDBS 3 R Undefined
0: No debug data exception on a store

1: Debug instruction exception on a store

Indicates that a debug data break exception occurred on
a load. Cleared on exception in debug mode.
DDBL 2 R Undefined
0: No debug data exception on a load

1: Debug instruction exception on a load

Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.
DBp 1 R Undefined
0: No debug software breakpoint exception
1: Debug software breakpoint exception

Indicates that a debug single-step exception occurred.
Cleared on exception in debug mode.
DSS 0 R Undefined
0: No debug single-step exception
1: Debug single-step exception

138 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.29 Trace ControlRegister (CP0O Register 23, Select 1)

TheTraceControlregister configuration is shown below. Note the special behavior of the ASID_M, ASID, and G fields
for the 4KEm and 4KEp processors.

This register is only implemented if the EJTAG Trace capability is present.

Figure 5-31Trace ControlRegister Format

31 30 29 28 27 26 25 24 23 22 21 20 13 12

5 4 3

1 0

ITs{uT o [TH 10| D E| K] S| U ASID_M ASID

| G| Mode | oh

Table 5-35TraceControlRegister Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

TS

31

The trace select bit is used to select between the
hardware and the software trace control bits. A valug
zero selects the external hardware trace block sign
and a value of one selects the trace control bits in t
software control register.

of

alR/W

his

uT

30

This bit is used to indicate the type of user-triggere
trace record. A value of zero implies a user type 1 al
a value of one implies a user type 2.

The actual triggering of a user trace record happeng
a write to thdJserTraceDataegister.

R/W
on

Undefined

29:28

Reserved for future use; Must be written as zero;
returns zero on read.

TB

27

Trace All Branch. When set to one, this tells the
processor to trace the PC value for all taken branc
not just the ones whose branch target address is
statically unpredictable.

Undefined

26

Inhibit Overflow. This signal is used to indicate to th
core trace logic that slow but complete tracing is
desired. When set to one, the core tracing logic does
allow a FIFO overflow or discard trace data. This is
achieved by stalling the pipeline when the FIFO is
nearly full, so that no trace records are ever lost.

Undefined

25

When set to one, this enables tracing in Debug Mo
(seeSection 9.7.1, "Processor Modes" on page).209
For trace to be enabled in Debug mode, the On bitm
be one, and either the G bit must be one, or the curr
process ASID must match the ASID field in this
register.

When set to zero, trace is disabled in Debug Mode
irrespective of other bits.

He

ust
ent
RIW

Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

139

Chapter 5 CPO Registers of the 4KE™ Core

Table 5-35TraceControlRegister Field Descriptions (Continued)

Fields
Read/

Name Bits Description Write | Reset State

When set to one, this enables tracing in Exception
Mode (seeSection 9.7.1, "Processor Modes" on page
209). For trace to be enabled in Exception mode, the On
bit must be one, and either the G bit must be one, or the
E 24 current process ASID must match the ASID field in tHisR/W Undefined
register.

When set to zero, trace is disabled in Exception Modgle,
irrespective of other bits.

When set to one, this enables tracing in Kernel Mogle
(seeSection 9.7.1, "Processor Modes" on page).209
For trace to be enabled in Kernel mode, the On bit must
be one, and either the G bit must be one, or the current
K 23 process ASID must match the ASID field in this R/W Undefined
register.

When set to zero, trace is disabled in Kernel Mode
irrespective of other bits.

0 22 This bit is reserved. Must be written as zero; returns 0 0
zero on read.

When setto one, this enables tracing in User Mode (see
Section 9.7.1, "Processor Modes" on page).2e8r
trace to be enabled in User mode, the On bit must pe
one, and either the G bit must be one, or the current
U 21 process ASID must match the ASID field in this R/W Undefined
register.

When set to zero, trace is disabled in User Mode,
irrespective of other bits.

This is a mask value applied to the ASID comparison
(done when the G bit is zero). A “1” in any bit in thig
field inhibits the corresponding ASID bit from
participating in the match. As such, a value of zerofin
this field compares all bits of ASID. Note that the
. ability to mask the ASID value is not available in the :
ASID_M 2013 hardware signal bit; it is only available via the softwa'eR/W Undefined
control register.

In the 4KEm and 4KEp cores where ASID is not
supported, this field is ignored on write and returns zero
on read.

The ASID field to match when the G bit is zero. When
the G bit is one, this field is ignored.

ASID 12:5 In the 4KEm and 4KEp cores where ASID is not RIW Undefined

supported, this field is ignored on write and returns zero
on read.

Global bit. When set to one, tracing is to be enabled
all processes, provided that other enabling function
(like U, S, etc.,) are also true.

w o

In the 4KEm and 4KEp cores where ASID is not RIW Undefined
supported, this field is ignored on write and returns 1 pn
read. This causes all match equations to work corregtly
in the absence of an ASID.

140 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-35TraceControlRegister Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset State

Mode

3:1

These three bits control the trace mode function.

Mode

Trace Mode

000

Trace PC

001

Trace PC and load address

010

Trace PC and store address

011

Trace PC and both load/store addresses

100

Trace PC and load data

101

Trace PC and load address and data

110

Trace PC and store address and data

111

Trace PC and both load/store address and |d3

TheTraceControl24jigmodesfield determines which of
these encodings are supported by the processor. T
operation of the processorUNPREDICTABLE if

this field is
processor.

R/W

ta

he

set to a value which is not supported by the

Undefined

On

This is the

control. When zero, tracing is always disabled. Wh

set to one,

enabling functions are also true.

master trace enable switch in software

tracing is enabled whenever the other

FTRiw

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

141

Chapter 5 CPO Registers of the 4KE™ Core

5.2.30 Trace Control2Register (CPO Register 23, Select 2)

142

The TraceControl2register provides additional control and status information. Note that some fields in the
TraceControl2egister are read-only, but have a reset state of “Undefined”. This is because these values are loaded from
the Trace Control Block (TCB) (s&ection 9.9, "Trace Control Block (TCB) Registers (hardware control)" on page
213). As such, these fields in tieaceControl2register will not have valid values until the TCB asserts these values.

This register is only implemented if the EJTAG Trace capability is present.

Figure 5-32Trace Control2Register Format

31 7 6 5 4 3 2 0
0 Valid | TBI |TBU SyP
Modes

Table 5-36TraceControl2Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State
0 315 Reserved for future use; Must be written as zero; 0 0

returns zero on read.

This field specifies the type of tracing that is supported
by the processor, as follows:

Encoding Meaning

00 PC tracing only

ValidModes | 6:5 01 PC and load and store address tracing [only| R 10

10 PC, load and store address, and load gnd
store data

11 Reserved

This bit indicates how many trace buffers are
implemented by the TCB, as follows:

Encoding Meaning
Only one trace buffer is implemented, and Per
TBI 4 0 the TBU bit c_)f Fhis register indicates whigh R implementati
trace buffer is implemented on

Both on-chip and off-chip trace buffers are
implemented by the TCB and the TBU bit pf
this register indicates to which trace buffer
the trace is currently written.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

Table 5-36TraceControl2Register Field Descriptions (Continued)

Fields
Read/

Name Bits Description Write | Reset State

This bit denotes to which trace buffer the trace is
currently being written and is used to select the
appropriate interpretation of tfieaceControl2,p
field.

TBU 3 Encoding Meaning R Undefined
0 Trace data is being sent to an on-chip trace
buffer

1 Trace Data is being sent to an off-chip trdce
buffer

Used to indicate the synchronization period.

The period (in cycles) between which the periodic
synchronization information is to be sent is defined|as
shown below, for both when the trace buffer is on-chip
and off-chip.

SyP On-chip Off-chip
000 pa 27

001 28

010
SyP 2.0 011
100
101
110
111

210 R Undefined

Nb| No| N| M| M| N N
N)
2
=

The “On-chip” column value is used when the trace
data is being written to an on-chip trace buffer (e.g,
TraceControlzgy = 0). Conversely, the “Off-chip”

column is usec?when the trace data is being writter) to
an off-chip trace buffer (e.graceControlzgy = 1).

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 143

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

5.2.31 User Trace DateRegister (CPO Register 23, Select 3)

A software write to any bits in theserTraceDataegister will trigger a trace record to be written indicating a type 1 or
type 2 user format. The type is based on the UT bit iffthesControlregister. This register cannot be written in
consecutive cycles. The trace output data is UNPREDICTABLE if this register is written in consecutive cycles.
This register is only implemented if the EJTAG Trace capability is present.

Figure 5-33User Trace DateRegister Format

31 0
Data

Table 5-37UserTraceDataRegister Field Descriptions

Fields
Read/

Name Bits Description Write | Reset State

Software readable/writable data. When written, this
Data 31:.0 triggers a user format trace record out of the PDtragceR/W 0
interface that transmits the Data field to trace memory.

144 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.32 TraceBPCRegister (CPO Register 23, Select 4)

This register is used to control start and stop of tracing using an EJTAG Hardware breakpoint. The Hardware breakpoint
would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the EJTAG Trace capability are present.

Figure 5-34Trace BPCRegister Format

31 30 18 17 16 15 14 4 3 0
|DE| 0 | DBPOn| |E| 0 IBPON

Table 5-38TraceBPCRegister Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State

Used to specify whether the trigger signal from EJTAG
data breakpoint should trigger tracing functions or not:

DE 31 0: disables trigger signals from data breakpoints RIW 0
1: enables trigger signals from data breakpoints

0 30:18 Reserved 0 0

Each of the 2 bits corresponds to the 2 possible EJTAG
hardware data breakpoints that may be implemented.
For example, bit 16 corresponds to the first data

breakpoint. If 2 data breakpoints are present in the
EJTAG implementation, then they correspond to bits[16
DBPON 30:16 and 17. The rest are always ignored by the tracing Iogiguw 0
) since they will never be triggered.

A value of one for each bit implies that a trigger from
the corresponding data breakpoint should start tracipg.
And a value of zero implies that tracing should be
turned off with the trigger signal.

=}

Used to specify whether the trigger signal from EJTAG
instruction breakpoint should trigger tracing functions

or not:
IE 15 R/W 0
0: disables trigger signals from instruction breakpoints

1: enables trigger signals from instruction breakpoints

0 14:4 Reserved 0 0

Each of the 4 bits corresponds to the 4 possible EJTAG

hardware instruction breakpoints that may be

implemented. Bit O corresponds to the first instructipn

breakpoint, and so on. If only 2 instruction breakpoints

are present in the EJTAG implementation, then onl
. bits 0 and 1 are used. The rest are always ignored byt

IBPON 30 tracing logic since they will never be triggered. %/W 0

A value of one for each bit implies that a trigger from
the corresponding instruction breakpoint should stdrt
tracing. And a value of zero implies that tracing should
be turned off with the trigger signal.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 145

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

146

5.2.33 Debug Exception Program Counter Register (CPO Register 24, Select 0)

The Debug Exception Program CounteEQC) register is a read/write register that contains the address at which

processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptiobd; Bigcontains either:

» The virtual address of the instruction that was the direct cause of the debug exception, or

» The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot, and the Debug Branch Delay (DBD) bit Dethegregister is set.

For asynchronous debug exceptions (debug interrupth EfRC contains the virtual address of the instruction where
execution should resume after the debug handler code is executed.

In processors that implement the MIPS16 ASE, a read of the DEPC register (via MFCO) returns the following value in
the destination GPR:

GPR[rt] ~ DebugExceptionPC 37 ; [/ ISAMode g

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the DEPC register (via MTCO) takes the value from the GPR and distributes that value to the debug
exception PC and the ISAMode field, as follows

DebugExceptionPC ~ — GPR[rt] 3;.1 |0
ISAMode ~ 2#0 || GPRrt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of the
debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower
bit of the GPR.

Figure 5-35DEPC Register Format

31 0
DEPC

Table 5-39DEPC Register Formats

Fields
Read/

Name Bit(s) Description Write Reset

The DEPCregister is updated with the virtual address |of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot, then the virtual
. address of the immediately preceding branch or jump -
DEPC 310 instruction is placed in this register. RIW Undefined

Execution of the DERET instruction causes a jump to the
address in thBEPC.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.34 ErrCtl Register (CPO Register 26, Select 0)

The ErrCtl register provides a mechanism for enabling software testing of the way-select and data RAM arrays for both
the ICache and DCache. The way-selection RAM test mode is enabled by setting the WST bit. It modifies the
functionality of the CACHE Index Load Tag and Index Store Tag operations so that they modify the way-selection RAM
and leave the Tag RAMs untouched. When this bit is set, the lower 6 bits of the PA field in the TagLo register are used
as the source and destination for Index Load Tag and Index Store Tag CACHE operations.

The WST bit also enables the data RAM test mode. When this bit is set, the Index Store Data CACHE instruction is
enabled. This CACHE operation writes the contents of the DatalLo register to the word in the data array that is indicated
by the index and byte address.

The SPR bit enables CACHE accesses to the optional Scratchpad RAMs. When this bit is set, Index Load Tag, Index
Store Tag, and Index Store Data CACHE instructions will send reads or writes to the Scratchpad RAM port. The effects
of these operations are dependent on the particular Scratchpad implementation.

Figure 5-36ErrCtl Register Format

3130 29 28 27 0
| R |wsﬂ spd R

Table 5-40ErrCtl Register Field Descriptions

Fields

Read/
Name Bit(s) Description Write Reset State

Indicates whether the tag array or the way-select arra
should be read/written on Index Load/Store Tag CACHE

WST 29 instructions. R/W 0

Also enables the Index Store Data CACHE instruction
which writes the contents of DatalLo to the data array.

Forces indexed CACHE instructions to operate on the
SPR 28 ScratchPad RAM instead of the cache RIW 0
R 31:30, | b :) d
>7:0 ust be written as zero; returns zero on reads. 0 0
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 147

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

148

5.2.35 TagLo Register (CPO Register 28, Select 0)

TheTagLoregister acts as the interface to the cache tag array. The Index Store Tag and Index Load Tag operations of the
CACHE instruction use th@agLoregister as the source of tag information. Note that the 4KE core does not implement
the TagHi register.

Figure 5-37TagLo Register Format

31 16 15 109 8 7 6 5 4 0
PA PA/LRU |R\V|D|L| R

Table 5-41TagLo Register Field Descriptions

Fields
Read/

Name Bit(s) Description Write Reset State

This field contains the physical address of the cache line.
PA 31:10 Bit 31 corresponds to bit 31 of the PA and bit 10 R/W Undefined
corresponds to bit 10 of the PA.

LRU 15:10 This field contains the value read from or to be stored|to RIW

the WS array if the WST bit in the ErrCtl register is sef. Undefined
9:8, 4.0 Must be written as zero; returns zero on read. q 0

\% 7 This field indicates whether the cache line is valid. R/ Undefined
D 6 This field indicates whether the cache line is dirty. It wjll RIW Undefined

only be set if bit 7 (valid) is also set.

Specifies the lock bit for the cache tag. When this bit is get,
L 5 and the valid bit is set, the corresponding cache line will R/W Undefined
not be replaced by the cache replacement algorithm.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.36 DatalLo Register (CPO Register 28, Select 1)

TheDatal oregister is a register that acts as the interface to the cache data array and is intended for diagnostic operations
only. The Index Load Tag operation of the CACHE instruction reads the corresponding data valuePiatal iine

register. If the WST bit in thErrCtl register is set, then the content®atalocan be written to the cache data array

by doing an Index Store Data CACHE instruction. Note that the 4KE core does not implement the DataHi register.

Figure 5-38Datalo Register Format

31 0
DATA
Table 5-42Datal o Register Field Description
Fields

Read/W Reset

Name Bit(s) Description rite State

DATA 31:.0 Low-order data read from the cache data array. RV Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 149

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers of the 4KE™ Core

150

5.2.37 ErrorEPC (CPO Register 30, Select 0)

TheErrorEPC register is a read/write register, similar to BRRC register, except th&rrorEPC is used on error
exceptions. All bits of th&rrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

TheErrorEPCregister contains the virtual address at which instruction processing can resume after servicing an error.

This address can be:

» The virtual address of the instruction that caused the exception

* The virtual address of the immediately preceding branch or jump instruction when the error causing instruction is in
a branch delay slot

Unlike theEPCregister, there is no corresponding branch delay slot indication farthwe&EPC register.

In processors that implement the MIPS16 ASE, a read of the ErrorEPC register (via MFCO) returns the following value
in the destination GPR:

GPR[rt] ~ ErrorExceptionPC 31.1 || ISAMode ¢

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written to
the GPR.

Similarly, a write to the ErrorEPC register (via MTCO) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC ~ GPR[t] 311 IO
ISAMode ~ 2#0 || GPRrt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower
bit of the GPR.

Figure 5-39ErrorEPC Register Format

31 0
ErrorEPC

Table 5-43ErrorEPC Register Field Description

Fields
Read/
Name Bit(s) Description Write Reset State
ErrorEPC 31.0 Error Exception Program Counter. R/W Undefingd

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

5.2 CPO Register Descriptions

5.2.38 DeSaveRegister (CPO Register 31, Select 0)

The Debug Exception SavBéSavgregister is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of the contex
to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of exception
handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

Figure 5-40DeSaveRegister Format

31 0
DESAVE
Table 5-44DeSaveRegister Field Description
Fields
_ Read/
Name Bit(s) Description Write | Reset State
DESAVE 31:0 Debug exception save contents. R/W Undefingd
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 151

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 152

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

6.1 Hardware-Initialized Processor State

Chapter 6

Hardware and Software Initialization of the 4KE™ Core

A 4KE™ processor core contains only a minimal amount of hardware initialization and relies on software to fully
initialize the device.

This chapter contains the following sections:

» Section 6.1, "Hardware-Initialized Processor State"

» Section 6.2, "Software Initialized Processor State"

6.1 Hardware-Initialized Processor State

A 4KE processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal subset
of the processor state is cleared. This is enough to bring the core up while running in unmapped and uncached code
space. All other processor state can then be initialized by softBar€oldReseds asserted after power-up to bring the
device into a known state. Soft reset can be forced by asserti8f] fResepin. This distinction is made for

compatibility with other MIPS processors. In practice, both resets are handled identically with the exception of the
setting ofStatugg

6.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor O.

* Random(4KEc core only)- cleared to maximum value on Reset/SoftReset

» Wired (4KEc core only)- cleared to 0 on Reset/SoftReset

+ Statuggy - cleared to 1 on Reset/SoftReset

» Statugg- cleared to 0 on Reset/SoftReset

+ Statugr- cleared to O on Reset, set to 1 on SoftReset

* Statugyy, - cleared to 0 on Reset/SoftReset

» Statugg - set to 1 on Reset/SoftReset

+ Statugp - cleared to 0 on Reset/SoftReset

» WatchLgg \y- cleared to 0 on Reset/SoftReset

» Configfields related to static inputs - set to input value by Reset/SoftReset

» Configeg - set to 010 (uncached) on Reset/SoftReset

» Config - set to 010 (uncached) on Reset/SoftReset (4AKEm™ and 4KEp™ cores only)
» Configcoz - set to 010 (uncached) on Reset/SoftReset (4KEm and 4KEp cores only)
» ContextConfig - set to 0x007ffff0 on Reset/SoftReset (MIPS32 configuration)

* PageGraigy,sk - Set to 11 on Reset/SoftReset (MIPS32 compatibility mode)

» DebugDM- cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode, see
Chapter 9, “EJTAG Debug Support in the 4KE™ Cofer"details)

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 153

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 6 Hardware and Software Initialization of the 4KE™ Core

» Debug g\ - cleared to 0 on Reset/SoftReset

» Debugg,sep- cleared to 0 on Reset/SoftReset
» Debugyg,sgp- cleared to 0 on Reset/SoftReset
* Debuggy, - cleared to O on Reset/SoftReset

* Debugsst cleared to 0 on Reset/SoftReset

6.1.2 TLB Initialization (4KEc™ core only)
Each 4KEc TLB entry has a “hidden” state bit which is set by Reset/SoftReset and is cleared when the TLB entry is

written. This bit disables matches and prevents “TLB Shutdown” conditions from being generated by the power-up
values in the TLB array (when two or more TLB entries match on a single address). This bit is not visible to software.

6.1.3 Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a Reset or
SoftReset exception is taken.

6.1.4 Static Configuration Inputs

All static configuration inputs (defining the bus mode and cache size for example) should only be changed during Reset.

6.1.5 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FCO00000). This address is in KSeg1,which is unmapped and uncached, so that the TLB and caches do not require
hardware initialization.

6.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

6.2.1 Register File

The register file powers up in an unknown state with the exception of rO which is always 0. Initializing the rest of the
register file is not required for proper operation. Good code will generally not read a register before writing to it, but the
boot code can initialize the register file for added safety.

6.2.2 TLB (4KEc™ Core Only)

Because of the hidden bit indicating initialization, the 4KEc core does not require TLB initialization upon ColdReset.
This is an implementation specific feature of the 4KEc core and cannot be relied upon if writing generic code for
MIPS32/64 processors. When initializing the TLB, care must be taken to avoid creating a “TLB Shutdown” condition
where two TLB entries could match on a single address. Unique virtual addresses should be written to each TLB entry
to avoid this.

154 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

6.2 Software Initialized Processor State

6.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache arrays
should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function). This can
be a long process, especially since the instruction cache initialization needs to be run in an uncached address region.

6.2.4 Coprocessor 0 State

Miscellaneous COPO states need to be initialized prior to leaving the boot code. There are various exceptions which are
blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

Cause WP (Watch Pending), SWO0/1 (Software Interrupts) should be cleared.
Config KO should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing KsegO.

Config (4KEm and 4KEp cores only) KU and K23 should be set to the desired CCA for USeg/KUSeg and KSeg2/3
respectively prior to accessing those regions.

Count Should be set to a known value if Timer Interrupts are used.

Compare Should be set to a known value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (Thu€ountshould be set befo@ompareto avoid any unexpected interrupts).

Status Desired state of the device should be set.

Other COPO state: Other registers should be written before they are read. Some registers are not explicitly writeable,
and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should be
masked off after reading these registers.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 155

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 156

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 157

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

158 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.1 Cache Configurations

Chapter 7

Caches of the 4KE™ Core

This chapter describes the caches present in a 4KE processor core. It contains the following sections:
» Section 7.1, "Cache Configurations"

» Section 7.2, "Cache Protocols"

» Section 7.3, "Instruction Cache"

» Section 7.4, "Data Cache"

» Section 7.5, "CACHE Instruction”

» Section 7.6, "Software Cache Testing"

» Section 7.7, "Memory Coherence Issues"

7.1 Cache Configurations

A 4KE processor core supports separate instruction and data caches which may be flexibly configured at build time for
various sizes, organizations and set-associativities. The use of separate caches allows instruction and data references to
proceed simultaneously. Both caches are virtually indexed and physically tagged, allowing cache access to occur in
parallel with virtual-to-physical address translation.

The instruction and data caches are independently configured. For example, the data cache can be 2 KB in size and 2-way
set associative, while the instruction cache can be 8 KB in size and 4-way set associative. Each cache is accessed in a
single processor cycle.

Cache refills are performed using a 4-word fill buffer, which holds data returned from memory during a 4-beat burst
transaction. The critical miss word is always returned first. The caches are blocking until the critical word is returned,
but the pipeline may proceed while the other 3 beats of the burst are still active on the bus.

Table 7-1lists the instruction and data cache attributes:

Table 7-1 Instruction and Data Cache Attributes

Parameter Instruction Data
Size 0-64 KB 0-64 KB
Number of Cache Sets 0, 64, 128, 256, 512 and 10p4 0, 64, 128, 256, 512 and 1024
Lines Per Set (Associativity) 1 - 4 way set associative 1 - 4 way set associative

Line Size 16 Bytes 16 Bytes

Read Unit 32 hits 32 bits
Minimum Write Unit 32 bits 8 bits

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 159

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches of the 4KE™ Core

Table 7-1 Instruction and Data Cache Attributes (Continued)

Parameter Instruction Data

Software selectable options:

» write-back with write-allocate

Write Policy N/A
« write-through with write-allocate
 write-through without write-allocate
Miss restart after transfer of miss word miss word
Cache Locking per line per line

Table 7-2shows the cache size and organization options; note that the same total cache size may be achieved with several
different set associativities. Software can identify the instruction or data cache configuration on a 4KE core by reading
the appropriate bits of theonfiglregister; se&ection 5.2.22, "Configl Register (CP0 Register 16, Select 1)" on page

127.
Table 7-2 Instruction and Data Cache Sizes
Cache Size (bytes) Way Organization Options
0K No cache
1K One 1K way
One 2K way
2K
Two 1K ways
3K Three 1K ways
One 4K way
4K Two 2K ways
Four 1K ways
6K Three 2K ways
One 8K way
8K Two 4K ways
Four 2K ways
12K Three 4K ways
One 16K way
16K Two 8K ways
Four 4K ways
24K Three 8K ways
Two 16K ways
32K
Four 8K ways
48K Three 16K ways
64K Four 16K ways
160 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.2 Cache Protocols

7.2 Cache Protocols

This section describes cache organization, attributes, and cache-line replacement for the instruction and data caches. This
section also discusses issues relating to virtual aliasing.

7.2.1 Cache Organization

The instruction and data caches each consist of three arrays: tag, data and way-select. The caches are virtually indexed,
since a virtual address is used to select the appropriate line within each of the three arrays. The caches are physically
tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays haldvays of information per set, corresponding tortiveay set associativity of the cache,
wheren can be between 1 and 4 for a cache in a 4KE core. The way-select array holds information to choose the way to
be filled, as well as dirty bits in the case of the data cache.

Figure 7-1 on page 16thows the format of each line in the tag, data and way-select arrays.

22 1 1
Tag (per way): PA Valid L
32 32 32 32
Data (per way): Word3 Word2 Word1 Word0O
0-6 1-4
D Way-Select: LRU Dirty
0-6
| Way-Select: LRU

Figure 7-1 Cache Array Formats

A tag entry consists of the upper 22 bits of the physical address (bits [31:10]), one valid bit for the line, and a lock bit.
A data entry contains the four 32-bit words in the line, for a total of 16 bytes. All four words in the line are present or

not in the data array together, hence the single valid bit stored with the tag. Once a valid line is resident in the cache,
byte, halfword, triple-byte or full word stores can update all or a portion of the words in that line. The tag and data entries
are repeated for each of théines in the set, per the associativity.

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU) algorithm. The
LRU information applies to all the ways and there is one way-select entry for all the ways in the set. The number of bits
in the way-select entry depends on the set associativity. In a direct mappecdheaghehére is no need for LRU bits,

since fills can only go to one place onlable 7-3shows the number of LRU bits required as a function of associativity.
The array with way-select entries for the data cache also holds dirty bit(s) for the lines. One dirty bit is required per line,

as shown iffable 7-3 The instruction cache only supports reads, hence only LRU entries are stored in the instruction
way-select array.

Table 7-3 LRU and Dirty Width in Way-Select Array

Dirty Bits (data
Associativity (n) LRU Bits cache only)
1 0 1
2 1 2
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 161

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches of the 4KE™ Core

Table 7-3 LRU and Dirty Width in Way-Select Array

Dirty Bits (data
Associativity (n) LRU Bits cache only)
3 3 3
4 6 4

7.2.2 Cacheability Attributes

A 4KE core supports the following cacheability attributes:

» Uncached Addresses in a memory area indicated as uncached are not read from the cache. Stores to such addresses
are written directly to main memory, without changing cache contents.

» Write-back with write allocationLoads and instruction fetches first search the cache, reading main memory only if
the desired data does not reside in the cache. On data store operations, the cache is first searched to see if the target
address is cache resident. If it is resident, the cache contents are updated, but main memory is not written. If the
cache lookup misses on a store, main memory is read to bring the line into the cache and merge it with the new store
data. Hence, the allocation policy on a cache miss is read- or write-allocate. Data stores will update the appropriate
dirty bit in the way-select array to indicate that the line contains modified data. When a line with dirty data is
displaced from the cache, it is written back to memory.

» Write-through with no write allocatiorioads and instruction fetches first search the cache, reading main memory
only if the desired data does not reside in the cache. On data store operations, the cache is first searched to see if the
target address is cache resident. If it is resident, the cache contents are updated, and main memory is also written. If
the cache lookup misses on a store, only main memory is written. Hence, the allocation policy on a cache miss is
read-allocate only.

» Write-through with write allocationLoads and instruction fetches first search the cache, reading main memory only
if the desired data does not reside in the cache. On data store operations, the cache is first searched to see if the target
address is cache resident. If it is resident, the cache contents are updated, and main memory is also written. If the
cache lookup misses on a store, main memory is read to bring the line into the cache and merge it with the new store
data. In addition, the store data is also written to main memory. Hence, the allocation policy on a cache miss is read-
or write-allocate.

Some segments of memory employ a fixed caching policy; for example the kseg1 is always uncacheable. Other segments
of memory allow the caching policy to be selected by software. Generally, the cache policy for these programmable
regions is defined by a cacheability attribute field associated with that region of mem&iapes 3, “Memory
Management of the 4KE™ Core,” on pagef@dfurther detalils.

7.2.3 Replacement Policy

162

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will result in a
cache fill, when a cache is at least two-way set associative. In a direct mapped cache (one-way set associative), the
replacement policy is irrelevant since there is only one way available. The replacement policy is least recently used
(LRU), but excluding any locked ways. The LRU bit(s) in the way-select array encode the order in which ways on that
line have been accessed.

On a cache miss, the lock and LRU bits for the tag and way-select entries of the selected line may be used to determine
the way which will be chosen. The number of lock bits and the number of LRU bits depend on the set associativity of
the cache.

The LRU field in the way select array is updated as follows:

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.2 Cache Protocols

* On a cache hit, the associated way is updated to be the most recently used. The order of the other ways relative to
each another is unchanged.

* On a cache refill, the filled way is updated to be the most recently used.

* On CACHE instructions, the update of the LRU bits depends on the type of operation to be performed:
 Index (Writeback) Invalidate: Least-recently used.
* Index Load Tag: No update.

 Index Store Tag, WST=0:Most-recently used if valid bit is set TagLoCPO register. Least-recently used if
valid bit is cleared iTagLoCPO register.

* Index Store Tag, WST=1:Update the field with the contents of ffegLoCPO register (refer to Table 7-5,
Table 7-6 or Table 7-7 for the valid values of this field).

* Index Store Data:No update.

« Hit Invalidate: Least-recently used if a hit is generated, otherwise unchanged.

 Fill: Most-recently used.

» Hit (Writeback) Invalidate: Least-recently used if a hit is generated, otherwise unchanged.
» Hit Writeback: No update.

» Fetch and Lock: Most-recently used.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. For the unlocked ways,
the LRU bits are used to identify the way which has been used least recently, and that way is selected for replacement.
If all ways are locked: Fill data will not fill into the cache, and Write-back stores turn into Write-through Write-allocate
stores.

If the way selected for replacement has its dirty bit asserted in the way-select array, then that 16-byte line will be written
back to memory before the new fill can occur.

7.2.4 Virtual Aliasing

Since the caches are virtually indexed and physically tagged, a potential issue referrgidtt@baliasingmight exist.

Virtual aliasing occurs if the virtual bits used to index a cache array are not consistent with the overlapping physical bits,
after the virtual address has been translated to a physical address. The possibility of virtual aliasing only occurs in
address regions which are mapped through a TLB-based memory management unit, so it is only relevant for the 4KEc
core and cannot occur in the 4KEm or 4KEp cores which contain a fixed memory management unit.

In TLB-mapped address regions, virtual aliasing may occur if the cache size per way is greater than the page size. For
example, consider a 16 KB cache organized as 2-way set associative. The size per way is then 8 KB, so virtual address
bits [12:0] are used to index the array. If the address is in a translated region with a page size of 4 KB, then address bits
[11:0] are untranslated but address bits [31:12] will be mapped and for these bits the virtual and physical addresses may
be different. In this example, bit [12] could pose a potential problem due to virtual aliasing. Imagine two virtual
addresses, VAO and VA1, whose only difference is the value of bit [12], which map to the same physical address. These
two virtual addresses would be indexed to two different lines by the cache, even though they were intended to represent
the same physical address. Then if a program does a load using VAO and a store using VAL, or vice-versa, the cache may
not return the expected data.

Table 7-4 shows the overlapped virtual/physical address bits which could potentially be involved in virtual aliasing,
given the possible minimum page sizes and cache way sizes supported by a 4KE core. Virtual aliasing is generally only
a problem for the D-cache, since stores don't happen to the I-cache. No special hardware mechanism is provided to
prevent the possibility of virtual aliasing, so it must be handled by software. The software solution must ensure that the

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 163

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches of the 4KE™ Core

mapping of virtual address bits which overlap with physical address bits be handled consistently. The simplest approach
is to ensure that the overlapping bits are unity-mapped (VA equals PA).

Table 7-4 Potential Virtual Aliasing Bits

Overlapped address
Minimum Page Size Cache Way Size bits with possible
(KB) (KB) aliasing
2 [10]
4 [11:10]
1
8 [12:10]
16 [13:10]
8 [12]
4
16 [13:12]
8 16 [13]

A related issue can occur in virtually indexed, physically tagged caches if the number of physical bits stored in the tag
array do not fully overlap the physically translated bits for the smallest page size. For a 4KE core, there are always 22
address bits stored in the cache tag, representing bits [31:10] of the physical address. Since the minimum page size is 1
KB for the 4KEc, with bits [31:10] physically translated by the TLB, the cache tag size does overlap the translated bits
and this issue will not occur.

7.3 Instruction Cache

The instruction cache (I-cache) is an optional on-chip memory block of up to 64 KB. The virtually indexed, physically
tagged cache allows the virtual-to-physical address translation to occur in parallel with the cache access rather than
having to wait for the physical address translation.

The core supports instruction cache locking. Cache locking allows critical code or data segments to be locked into the
cache on a “per-line” basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always enabled on all instruction cache entries. Entries can then be marked as locked or
unlocked on a per entry basis using the CACHE instruction.

7.4 Data Cache

164

The data cache (D-cache) is an optional on-chip memory block of up to 64 KB. The virtually indexed, physically tagged
cache allows the virtual-to-physical address translation to occur in parallel with the cache access rather than having to
wait for the physical address translation.

The core also supports a data cache locking mechanism identical to the instruction cache. Critical data segments to be
locked into the cache on a “per-line” basis. The locked contents can be updated on a store hit, but cannot be selected for
replacement on a miss.

The cache locking function is always enabled on all data cache entries. Entries can then be marked as locked or unlocked
on a per entry basis using the CACHE instruction.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.5 CACHE Instruction

7.5 CACHE Instruction

Both caches support the CACHE instructions, which allow users to manipulate the contents of the Data and Tag arrays,
including the locking of individual cache lines. Note that before the CACHE instructions are allowed to execute, all
initiated refills are completed and stores are sent to the write buffer. The CACHE instructions are described in detail in
Chapter 11, “4KE™ Processor Core Instructions,” on page 242

The CACHE Index Load Tag and Index Store Tag instructions can be used to read and write the WS- RAM by setting
theWSThit in the ErrCtl register. (TheéerrCtl register is described iBection 5.2.34, "ErrCtl Register (CPO Register 26,
Select 0)" on page 14)/Note that when th8VSThit is zero, the CACHE index instructions access the cache Tag array.

Not all values of the WS field are valid for defining the order in which the ways are selected. This is only an issue,
however, if the WS-RAM is written after the initialization (invalidation) of the Tag array. Valid WS field encodings for
way selection order is shown in Table 7-5, Table 7-6, and Table 7-7.

Table 7-5 Way Selection Encoding, 4 Ways

Selection Ordert WS[5:0] Selection Order WS[5:0]
0123 000000 2013 100010
0132 000001 2031 110010
0213 000010 2103 100110
0231 010010 2130 101110
0312 010001 2301 111010
0321 010011 2310 111110
1023 000100 3012 011001
1032 000101 3021 011011
1203 100100 3102 011101
1230 101100 3120 111101
1302 001101 3201 111011
1320 101101 3210 111111

1. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

Table 7-6 Way Selection Encoding, 3 Ways

Selection Ordert WS[5:O]2 Selection Order WS[5:0]
012 0xx00x 120 1xx10x
021 0xx01x 201 1xx01x
102 0xx10x 210 Ixx11x

1. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

2. A“?"indicates a don't care when written and unpredictable when read.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 165

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches of the 4KE™ Core

Table 7-7 Way Selection Encoding, 2 Ways

Selection Ordert WS[5:O]2 Selection Order WS[5:0]

01 XXXOXX 10 XXXIXX

1. The order is indicated by listing the least-recently used way to the left and the most-recently used way
to the right, etc.

2. A “?”indicates a don't care when written and unpredictable when read.

7.6 Software Cache Testing

Typically, the cache RAM arrays will be tested using BIST. Itis, however, possible for software running on the processor
to test all of the arrays. Of course, testing of the I-cache arrays should be done from an uncacheable space with interrupts

disabled in order to maintain the cache contents. There are multiple methods for testing these arrays in software, only
one is presented here.

7.6.1 I-Cache/D-cache Tag Arrays

These arrays can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. Index Store

Tag will write the contents of thEagLoregister into the selected tag entry. Index Load Tag will read the selected tag
entry into theTagLa

7.6.2 |-Cache Data Array

This array can be tested using the Index Invalidate, Fill, and Index Load Tag varieties of the CACHE instruction. Fill
will force a refill of the I-cache with data from a given address. In order to predict where the Fill data will go, it is
advisable to invalidate the I-cache array prior to filling it. The last way invalidated will be the first way selected for
replacement. Index Load Tag will read the selected data word infodted_oregister. The entire I-cache may be flushed

using Index Invalidate. Then a test pattern can be stored into memory and the CACHE Fill operation will force the test
pattern into the I-cache data array. Index Load Tags can be used to walk through each word of the I-cache array, checking
the contents of thBatal oregister against the expected value.

7.6.3 I-Cache WS Array

The testing of this array is very similar to the testing of the tag array. By setting the WST bit in the ErrCtl register, Index
Load Tag and Index Store Tag CACHE instructions will read and write the WS array instead of the tag array.

7.6.4 D-Cache Data Array

This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store Tag to set
the initial state of the tags to valid with a known physical address (PA). Write the array using SW instructions to the PAs
that are resident in the cache. The value can then be read using LW instructions and compared to the expected data.

7.6.5 D-cache WS Array

The dirty bits in this array will be tested when the data tag is tested. The LRU bits can be tested using the same
mechanism as the I-cache WS array.

166 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

7.7 Memory Coherence Issues

7.7 Memory Coherence Issues

A cache presents coherency issues within the memory hierarchy which must be considered in the system design. Since
a cache holds a copy of memory data, it is possible for another memory master to modify a memory location, thus
making other copies of that location stale if those copies are still in use. A detailed discussion of memory coherence is
beyond the scope of this document, but following are a few related comments.

A 4KE processor contains no direct hardware support for managing coherency with respect to its caches, so it must be
handled via system design or software. The 4KE data cache supports either write-back or write-through protocols.

In write-through mode, all data writes will eventually be sent to memory. Due to write buffers, however, there could be

a delay in how long it takes for the write to memory to actually occur. If another memory master updates cacheable
memory which could also be in the 4KE caches, then those locations may need to be flushed from the cache. The only
way to accomplish this invalidation is by use of the CACHE instruction.

In write-back mode, data writes only go to the cache and not to memory. So the processor cache may amiyain the
copy of data in the system until that data is written to main memory. Dirty lines are only written to memory when
displaced from the cache as a new line is filled or if explicitly forced by certain flavors of the CACHE or PREF
instructions.

The SYNC instruction may also be useful to software enforcing memory coherence, as it flushes the 4KE core’s write
buffers.

MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02 167

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 167

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 8 Power Management of the 4KE™ Core

Chapter 8

Power Management of the 4KE™ Core

A 4KE™ processor core offers a number of power management features, including low-power design, active power
management and power-down modes of operation. The core is a static design that supports a WAIT instruction designed
to signal the rest of the device that execution and clocking should be halted, reducing system power consumption during
idle periods.

The core provides two mechanisms for system level low-power support discussed in the following sections.

» Section 8.1, "Register-Controlled Power Management"

» Section 8.2, "Instruction-Controlled Power Management"

8.1 Register-Controlled Power Management

The RP bit in the CP8tatusregister enables a standard software mechanism for placing the system into a low power
state. The state of the RP bit is available externally vicsthé&r Poutput signal. Three additional pirSl_EX_, SI_ERL,
andEJ_DebugMsupport the power management function by allowing the user to change the power state if an exception
or error occurs while the core is in a low power state.

Setting the RP bit of the CP&tatugegister causes the core to asser3heRPsignal. The external agent can then decide
whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending on the
needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting of the
EXL bit causes the assertion of tBe EXLsignal on the external bus, indicating to the external agent that an interrupt
has occurred. At this time the external agent can choose to either speed up the clocks and service the interrupt or let it
be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion o&hd=RLsignal on the external bus, indicating to the external agent
that an error has occurred. At this time the external agent can choose to either speed up the clocks and service the error
or let it be serviced at the lower clock speed.

Similarly, theEJ_DebugMsignal indicates that the processor is in debug mode. Debug mode is entered when the
processor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides four power down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CPatusregister are set or cleared. The fourth pin indicates that the processor is in debug
mode:

» TheSI_RPsignal represents the state of the RP bit (27) in theST&Qsregister.
» TheSI_EXLsignal represents the state of the EXL bit (1) in the Safusregister.
» TheSI_ERLsignal represents the state of the ERL bit (2) in the &Risregister.

» TheEJ_DebugMsignal indicates that the processor has entered debug mode.

168 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

8.2 Instruction-Controlled Power Management

8.2 Instruction-Controlled Power Management

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus is idle

at the time the WAIT instruction reaches the M stage of the pipeline the internal clocks are suspended and the pipeline
is frozen. However, the internal timer and some of the input Binsn{5:0], SI_NM|, SI_ResetSI_ColdResetand

EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the M stage, the pipeline stalls
until the bus becomes idle, at which time the clocks are stopped. Once the CPU is in instruction controlled power
management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the CPU to exit this mode and
resume normal operation. While the part is in this low-power mod&|tigl EERsignal is asserted to indicate to

external agents what the state of the chip is.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 169

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 170

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9

EJTAG Debug Support in the 4AKE™ Core

The EJTAG debug logic in the 4KE™ processor cores provide three optional modules:

1.

Hardware breakpoints

2. Test Access Port (TAP) for a dedicated connection to a debug host

3.

EJTAG Trace for program counter/data address/data value trace to On-chip memory or to Trace probe.

This chapter contains the following sections:

Section 9.1, "Debug Control Register" on page 172

Section 9.2, "Hardware Breakpoints" on page 174

Section 9.3, "Test Access Port (TAP)" on page 193

Section 9.4, "EJTAG TAP Registers" on page 200

Section 9.5, "TAP Processor Accesses" on page 209

Section 9.7, "EJTAG Trace" on page 210

Section 9.8, "PDtrace™ Registers (software control)" on page 214
Section 9.9, "Trace Control Block (TCB) Registers (hardware control)" on page 215
Section 9.10, "EJTAG Trace Enabling" on page 229

Section 9.11, "TCB Trigger logic" on page 231

Section 9.12, "EJTAG Trace cycle-by-cycle behavior" on page 234
Section 9.13, "TCB On-Chip Trace Memory" on page 236

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 171

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.1 Debug Control Register

172

The Debug Control RegisteDCR) register controls and provides information about debug issues, and is always
provided with the CPU core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug software
is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to the
other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit, and a
pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of none, some or all sources for soft reset. The soft reset masking
may only be applied to a soft reset source if that source can be efficiently masked in the system, thus resulting in no reset
at all. If that is not possible, then that soft reset source should not be masked, since a partial soft reset may cause the
system to fail or hang. There is no automatic indication of whether the SRE is effective, so the user must consult system
documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control regigi€@R), whereby the probe can indicate to the debug
software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table below takes
effect on both hard and soft resets.

Debug Control Register
31 30 29 28 18 17 16 15 5 4 3 2 1 0

| Res|ENl\.{l Res | DE‘K nj Res | INTF NMIF NMI|P SF{E P|E

Table 9-1Debug Control RegisteField Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Res 31:30 Reserved R 0
Endianess in Kernel and Debug mode.
ENM 29 0: Little Endian R Preset
1: Big Endian
Res 28:18 Reserved R 0
Data Break Implemented.
bB 17 0: No Data Break feature implemented R Preset
1: Data Break feature is implemented
Instruction Break Implemented.
1B 16 0: No Instruction Break feature implemented R Preset
1: Instruction Break feature is implemented
Res 15:5 Reserved R 0

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.1 Debug Control Register

Table 9-1Debug Control RegisteField Descriptions (Continued)

Fields
Read/

Name Bit(s) Description Write Reset State

Interrupt Enable in Normal Mode. This bit provides the
hardware and software interrupt enable for non-debud
mode, in addition to other masking mechanisms:
INTE 4 R/W 1
0: Interrupts disabled.

1: Interrupts enabled (depending on other enabling
mechanisms).

Non-Maskable Interrupt Enable for non-debug mode
NMIE 3 0: NMI disabled. RIW 1
1: NMI enabled.

NMI Pending Indication.

NMIP 2 0: No NMI pending. R 0
1: NMI pending.
Soft Reset Enable
SRE 1 This bit allows the system to mask soft resets. The cofe RIW 1
does not internally mask soft resets. Rather the state ofthis
bit appears on theJ_SRstEexternal output signal,
allowing the system to mask soft resets if desired.
Probe Enable Same value as
This bit reflects the ProbEn bit in the EJTAG Control Pr%%Eé‘ n
PE 0 register. R
0: No accesses to dmseg allowed (seg_ Iable
1: EJTAG probe services accesses to dmseg)
MIPS32 4KE™ Processor Core Family Software User’'s Manual, Revision 2.02 173

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transactions.
Itis possible to set instruction breakpoints on addresses even in ROM area,. Data breakpoints can be set to cause a debug
exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many aspects, and are
thus described in parallel in the following. The term hardware is not applied to breakpoint, unless required to distinguish

it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 4KE cores; Instruction breakpoints and Data
breakpoints.

A core may be configured with the following breakpoint options:

» No data or instruction breakpoints

» Two instruction and one data breakpoint

 Four instruction and two data breakpoints

9.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address on the bus between the
CPU and the instruction cache. Instruction breaks can also be made on the ASID value used by the MMU. Finally, a
mask can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID with the registers for
each instruction breakpoint including masking of address and ASID. When an instruction breakpoint matches, a debug
exception and/or a trigger is generated. An internal bit in the instruction breakpoint registers is set to indicate that the
match occurred.

9.2.2 Features of Data Breakpoint
Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to the
Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set based on
the value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/store value.
Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transaction
(ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data breakpoint
including masking or qualification on the transaction properties. When a data breakpoint matches, a debug exception
and/or a trigger is generated, and an internal bit in the data breakpoint registers is set to indicate that the match occurred.
The match is precise in that the debug exception or trigger occurs on the instruction that caused the breakpoint to match.

9.2.3 Instruction Breakpoint Registers Overview

The register with implementation indication and status for instruction breakpoints in general is shalla 2

Table 9-2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic Register Name and Description
IBS Instruction Breakpoint Status
174 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number is indicated by n. The
registers for each breakpoint are showiiable 9-3

Table 9-3 Overview of Registers for Each Instruction Breakpoint

Register Mnemonic Register Name and Description
IBAN Instruction Breakpoint Address n
IBMn Instruction Breakpoint Address Mask n
IBASIDnN Instruction Breakpoint ASID n
IBCn Instruction Breakpoint Control n

9.2.4 Data Breakpoint Registers Overview

The register with implementation indication and status for data breakpoints in general is shalla 4

Table 9-4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number is indicated by n. The
registers for each breakpoint are showiiable 9-5

Table 9-5 Overview of Registers for each Data Breakpoint

Register Mnemonic Register Name and Description
DBAN Data Breakpoint Address n
DBMn Data Breakpoint Address Mask n
DBASIDn Data Breakpoint ASID n
DBCn Data Breakpoint Control n
DBVn Data Breakpoint Value n

9.2.5 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data
transaction, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or TE bits
in thelBCn or DBCnregisters are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the
implementation.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 175

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

176

9.2.5.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction in

non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch. The
breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are unaligned

with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level,
and match also can include an optional compare of ASID value. The registers for each instruction breakpoint have the
values and mask used in the compare, and the equation that determines the match is shown below in C-like notation.

IB_match =
(! chnASlDUSE |I (ASID == IBASIDn ASID)) &&
(<all 1's> == IBMnigm |~(PCH IBAN ga))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the IB_match
to be true.

9.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruction
executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on data
access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of explicit
load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or destination
address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data value
of a transaction. The registers for each data breakpoint have the values and mask used in the compare, and the equation
that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE ==load) &&! DBCRor) |l
((TYPE == store) && ! DBCRyosB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR), the ASID
value, and the accessed bytes (BYTELANE) where BYTELANE[O] is 1 only if the byte at bits [7:0] on the bus is
accessed, and BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown below.

DB_addr_match =
(! DBCrsipuse Il (ASID == DBASIDnpgp)) &&
(<all 1's> == DBMpgyl ~ (ADDR DBAmgp))) &&
(<all0's>!=(~BAI & BYTELANE))

The size o0DBCrgp and BYTELANE is 4 bits.
Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE as
described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare is

shown below.

DB_no_value_compare =
(<all1's> == DBCry | DBCrgp | ~BYTELANE))

The size oDBCrg| \, DBCrga @and BYTELANE is 4 bits.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus (DATA)
is compared and masked with the registers for the data breakpoint. The endianess is not considered in these match
equations for value, as the compare uses the data bus value directly, thus debug software is responsible for setup of the
breakpoint corresponding with endianess.

DB_value_match =

((DATA[7:0] == DBV’bBV[?:O]) || ' BYTELANE[O] || DBC’BLM[O] Il DBCFBN[O]) &&

((DATA[15:8] == DBVrpgypis:g)) |l ' BYTELANE[1] || DBCrympy I DBCrgayy) &&
((DATA[23:16] == DBVbeV[ZS:lG]) || ' BYTELANE[2] || DBC’BLM[Z] Il DBC’BAI[Z])&&
((DATA[31:24] == DBVipgyi3124)) || ! BYTELANE[3] || DBCry vz || DBCrgayz;)

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the load/store
instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the DB_match
to be true.

9.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.

9.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in t#Cn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit inBt®ister is set when the breakpoint generates the debug
exception.

The debug instruction break exception is always precise, SDERCregister and DBD bit in th®ebugregister point
to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load or
store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions receiving a
debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

9.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in tBBBCnregister, then a debug exception occurs when the DB_match condition
is true. The corresponding BS[n] bit in tb8Sregister is set when the breakpoint generates the debug exception.

A debug data break exception occurs when a data breakpoint indicates a match. In this D&f&Ghegister and DBD
bit in theDebugregister points to the instruction that caused the DB_match equation to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:
A store transaction is not allowed to complete the store to the memory system.

» A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, is not
allowed to complete the load.

» A load transaction for a breakpoint with data value compare must occur from the memory system, since the value is
required in order to evaluate the breakpoint.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 177

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

The result of this is that the load or store instruction causing the debug data break exception appears as not executed,
with the exception that a load from the memory system does occur for a breakpoint with data value compare, but the
result of this load is discarded since the register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the following rules apply with respect to updating the BS[n] bits.

» On both a load and store the BS[n] bits are required to be set for all matching breakpoints without a data value
compare.

» On a store the BS[n] bits are allowed but not required to be set for all matching breakpoints with a data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

* On a load then no of the BS[n] bits are allowed to be set, since the load is not allowed to occur due to the debug
exception from a breakpoint without a data value compare, and a valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug
software.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction is
re-executed. This re-execution may result in a repeated load from system memory, since the load may have occurred

previously in order to evaluate the breakpoint as described above. 1/0O devices with side effects on loads must be able to
allow such reloads, or debug software should alternatively avoid setting data breakpoints with data value compares on
such 1/O devices. Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise

the debug data break exception will reoccur.

9.2.7 Breakpoint used as TriggerPoint

Both instruction and data hardware breakpoints can be setup by software so a matching breakpoint does not generate a
debug exception, but only an indication through the BS[n] bit. The TE bit iB@®ror DBCnregister controls if an
instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only compared
for instructions executed in non-debug mode.

The BS[n] bit in thdBS or DBSregister is set when the respective IB_match or DB_match bit is true.

The triggerpoint feature can be used to start and stop tracingesten 9.10, "EJTAG Trace Enablinfpl details.

9.2.8 Instruction Breakpoint Registers

178

The registers for instruction breakpoints are described below. These registers have implementation information and are
used to set up the instruction breakpoints. All registers are in drseg, and the addresses arelabtad+-&

Table 9-6 Addresses for Instruction Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1000 IBS Instruction Breakpoint Status
0x1100 + n * 0Ox100 IBAN Instruction Breakpoint Address n
0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n
0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

Table 9-6 Addresses for Instruction Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

Note: n is breakpoint number in range 0 to 3 (or 0 to 1, depending on the implemented hardware)

An example of some of the registeliBAO is at offset 0x1100 an@C2 is at offset 0x1318.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 179

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.2.8.1 Instruction Breakpoint Status (BS) Register
Compliance Level:Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Statu8§) register holds implementation and status information about the instruction
breakpoints.

The ASID applies to all the instruction breakpoints.

IBS Register Format
31 30 29 28 27 24 23 4 3 0

Reg ASID Res BCN Res BS
sup

Table 9-71BS Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Res 31 Must be written as zero; returns zero on read. R 0
Indicates that ASID compare is supported in instructipn
breakpoints.
0: No ASID compare.
1: ASID compare (IBASIDn register implemented) 4KEc core- 1
ASIDsup 30 - P 9 p - R
4KEm/p cores O
1: Supported
0: Not supported
Res 29:28 Must be written as zero; returns zero on read. R 0
BCN 27:24 Number of instruction breakpoints implemented. R Aor 2
Res 23:4 Must be written as zero; returns zero on read. R 0
Break status for breakpoint n is at BS[n], with n from|0
BS 3.0 to 3. The bit is set to 1 when the condition for the R/W Undefined
corresponding breakpoint has matched.
Note: [a] Based on actual hardware implemented.
Note: [b] In case of only 2 Instruction breakpoints bit 2 and 3 become reserved.

180 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.8.2 Instruction Breakpoint Address n [BAn) Register
Compliance Level:Implemented only for implemented instruction breakpoints.
The Instruction Breakpoint AddressIBAn) register has the address used in the condition for instruction breakpoint n

IBAn Register Format
31 0

IBA

Table 9-8I1BAn Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
IBA 31:.0 Instruction breakpoint address for condition. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 181

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.2.8.3 Instruction Breakpoint Address Mask n [BMn) Register
Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address MaskIB§n) register has the mask for the address compare used in the condition
for instruction breakpoint n.

IBMn Register Format
31 0

IBM

Table 9-91BMn Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Instruction breakpoint address mask for condition:
IBM 31:0 0: Corresponding address bit not masked. R/W Undefined
1: Corresponding address bit masked.
182 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.8.4 Instruction Breakpoint ASID n (BASIDn) Register

Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint ASID hBASIDn) register has the ASID value used in the compare for instruction
breakpoint n. The number of bits in the ASID field is 8, to match the ASID size in the TLB. This register is only valid
for the 4KEc core.

IBASIDn Register Format

31 8 7 0
Res ASID
Table 9-10IBASIDn Register Field Descriptions
Fields
Read/

Name Bit(s) Description Write Reset State

Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7:0 Instruction breakpoint ASID value for a compare. R/W Undefineg

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 183

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

184

9.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control iBCn) register controls the setup of instruction breakpoint n.

IBCn Register Format

31 24 23 22 3 210
Res ASIO Res TE Rgs BE
use
Table 9-111BCn Register Field Descriptions
Fields
Name Bits Description Read/Write Reset State
Res 31:24 Must be written as zero; returns zero on read. R 0
Use ASID value in compare for instruction breakpoint|n: 4KEc core-
ASIDuse 23 0: Don’t use ASID value in compare RV Undefined
4KEm/4AKEp
1: Use ASID value in compare cores 0
Res 22:3 Must be written as zero; returns zero on read. R 0
Use instruction breakpoint n as triggerpoint:
TE 2 0: Don'’t use it as triggerpoint R/W 0
1: Use it as triggerpoint
Res 1 Must be written as zero; returns zero on read. R 0
Use instruction breakpoint n as breakpoint:
BE 0 0: Don'’t use it as breakpoint R/W 0

1: Use it as breakpoint

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are Eiine®-ih2

Table 9-12 Addresses for Data Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x2000 DBS Data Breakpoint Status
0x2100 + 0x100 * n DBAN Data Breakpoint Address n
0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n
0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n
0x2118 + 0x100 * n DBCn Data Breakpoint Control n
0x2120 + 0x100 * n DBVn Data Breakpoint Value n
Note: n is breakpoint number as 0 or 1 (or just 0, depending on the implemented hardware)

An example of some of the registeBMO is at offset 0x2108 andBV1is at offset 0x2220.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 185

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.2.9.1 Data Breakpoint StatusPBS) Register
Compliance Level:Implemented if data breakpoints are implemented.

The Data Breakpoint StatuBBS register holds implementation and status information about the data breakpoints.

The ASIDsup field indicates whether ASID compares are supported.

DBS Register Format

31 30 29 28 27 24 23 210
Reg ASID Res BCN Res BS
sup
Table 9-13DBS Register Field Descriptions
Fields
Read/
Name Bit(s) Description Write Reset State
Res 31 Must be written as zero; returns zero on read. R 0
Indicates that ASID compares are supported in data
breakpoints. AKEc core - 1
ASID 30 . R
0: Not supported 4KEm/p cores - 0
1: Supported
Res 29:28 Must be written as zero; returns zero on read. R 0
BCN 27:24 Number of data breakpoints implemented. R Forl
Res 23:2 Must be written as zero; returns zero on read. R 0
Break status for breakpoint n is at BS[n], with n from|0
BS 1:0 to 1°. The bit is set to 1 when the condition for the R/WO Undefined
corresponding breakpoint has matched.
Note: [a] Based on actual hardware implemented.
Note: [b] In case of only 1 data breakpoint bit 1 become reserved.

186 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.9.2 Data Breakpoint Address n[PBANn) Register

Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint Address DEAN) register has the address used in the condition for data breakpoint n.

DBAn Register Format

31 0
DBA
Table 9-14DBAnN Register Field Descriptions
Fields
Read/
Name Bit(s) Description Write Reset State
DBA 31:.0 Data breakpoint address for condition. R/W Undefined

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

187

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.2.9.3 Data Breakpoint Address Mask nlIBMn) Register
Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint Address MaskDBMn) register has the mask for the address compare used in the condition for
data breakpoint n.

DBMn Register Format
31 0

DBM

Table 9-15DBMn Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Data breakpoint address mask for condition:
DBM 31:0 0: Corresponding address bit not masked R/W Undefined
1: Corresponding address bit masked
188 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.9.4 Data Breakpoint ASID n DPBASIDn) Register

Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint ASID miDBASIDn register has the ASID value used in the compare for data breakpoint n.
This register is only valid in the 4Kc core.

DBASIDn Register Format
31 8 7 0

Res ASID

Table 9-16DBASIDn Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Res 31:8 Must be written as zero; returns zero on read. R 0
ASID 7:0 Data breakpoint ASID value for compares. R/W Undefined
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 189

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.2.9.5 Data Breakpoint Control n DBCn) Register
Compliance Level:Implemented only for implemented data breakpoints.
The Data Breakpoint Control DBCn) register controls the setup of data breakpoint n.

DBCn Register Format

31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 O
Re ASID Res BAI NoSB NoLB Res BLM Ras TE Res BE
use

Table 9-17DBCn Register Field Descriptions

Fields
Name Bits Description Read/Write Reset State
Res 31:24 Must be written as zero; returns zero on reads. R 0
Use ASID value in compare for data breakpoint n: 4Kc core - RIW
ASIDuse 23 0: Don't use ASID value in compare 4Km/4Kp Undefined
1: Use ASID value in compare cores -0
Res 22:18 Must be written as zero; returns zero on reads. R 0

Byte access ignore controls ignore of access to a
specific byte. BAI[O] ignores access to byte at bits [7:
of the data bus, BAI[1] ignores access to byte at bits

BAI 17:14 | [15:8], ete. RIW Undefined
0: Condition depends on access to corresponding lyte

=

1: Access for corresponding byte is ignhored

Controls if condition for data breakpoint is not fulfilled
on a store transaction:

NoSB 13 R/W Undefined

0: Condition may be fulfilled on store transaction

1: Condition is never fulfilled on store transaction

Controls if condition for data breakpoint is not fulfilled
on a load transaction:

NolLB 12 R/W Undefined

0: Condition may be fulfilled on load transaction

1: Condition is never fulfilled on load transaction

Res 11:8 Must be written as zero; returns zero on reads. R 0

Byte lane mask for value compare on data breakpdint.
BLM[0] masks byte at bits [7:0] of the data bus,

BLM[1] masks byte at bits [15:8], etc.:
BLM 74 R/W Undefined

0: Compare corresponding byte lane

1: Mask corresponding byte lane

Res 3 Must be written as zero; returns zero on reads. R 0

190 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

Table 9-17DBCn Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write Reset State

Use data breakpoint n as triggerpoint:

TE 2 0: Don't use it as triggerpoint R/W 0
1: Use it as triggerpoint

Res 1 Must be written as zero; returns zero on reads. R 0
Use data breakpoint n as breakpoint:

BE 0 0: Don't use it as breakpoint R/W 0
1: Use it as breakpoint

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

191

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.2.9.6 Data Breakpoint Value n[DBVn) Register

Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint Value DBVn) register has the value used in the condition for data breakpoint n.

DBVn Register Format

31 0
DBV
Table 9-18DBVn Register Field Descriptions
Fields
Read/
Name Bit(s) Description Write Reset State
DBV 31:.0 Data breakpoint value for condition. R/W Undefined

192

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

9.3 Test Access Port (TAP)

The following main features are supported by the TAP module:

» 5-pin industry standard JTAG Test Access POICK, TMS TDI, TDO, TRST_Ninterface which is compatible with
IEEE Std. 1149.1.

 Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

» The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is achieved
through Processor Access (PA), and is used to eliminate the use of the system memory for debug routines.

» Support for both ROM based debugger and debugging both through TAP.

9.3.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

Table 9-19 EJTAG Interface Pins

[©]

—

Pin Type Description
Test Clock Input
Input clock used to shift data into or out of the Instruction or data
TCK | registers. Th@CK clock is independent of the processor clock, so th
EJTAG probe can drivECK independently of the processor clock
frequency.
The core signal for this is callé]_TCK
Test Mode Select Input
™S | TheTMSinput signal is decoded by the TAP controller to control teg
operationTMSis sampled on the rising edgeTa@@K.
The core signal for this is callél_TMS
Test Data Input
Serial input dataT(DI) is shifted into the Instruction register or data
TDI | registers on the rising edge of fi€K clock, depending on the TAP
controller state.
The core signal for this is callé_TDI
Test Data Output
Serial output data is shifted from the Instruction or data register to |
TDO o TDO pin on the falling edge of tHECK clock. When no data is shifted
out, theTDO is 3-stated.
The core signal for this is call&l_TDOwith output enable controlled
by EJ_TDOzstate

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

193

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-19 EJTAG Interface Pins (Continued)

Pin Type Description

Test Reset Input (Optional pin)

The TRST_Npin is an active-low signal for asynchronous reset of th
TAP controller and instruction in the TAP module, independent of th
processor logic. The processor is not reset by the asserfl&?S3_N

TRST_N ! The core signal for this is callé]_TRST_N

D

This signal is optional, but power-on reset must apply a low pulse on this
signal at power-on and then leave it high, in case the signal is not
available as a pin on the chip. If available on the chip, then it must be low

on the board when the EJTAG debug features are unused by the pllobe.

9.3.2 Test Access Port Operation

194

The TAP controller is controlled by the Test Clo@iCK) and Test Mode Select1S inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small
controller, driven by th& CK input, which responds to tAeVISinput as shown in the state diagranfrigure 9-1 on

page 195The TAP uses both clock edgesT@K. TMSandTDI are sampled on the rising edgel@K, while TDO
changes on the falling edge BEK

At power-up the TAP is forced into tfiest-Logic-Resdiy low value onTRST_NThe TAP instruction register is
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset throligbtthegic-Resedtate.

When test access is required, a protocol is applied vigNt®&andTCK inputs, causing the TAP to exit the
Test-Logic-Resettate and move through the appropriate states. FroRuheTest/IdIestate, an Instruction register scan
or a data register scan can be issued to transition the TAP through the appropriate states Blypwa 831 on page 195

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the
protocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers,
the Capture-DRstate is used to capture (or parallel load) the data into the selected serial data path. In the Instruction
register, theCapture-IRstate is used to capture status information into the Instruction register.

From theCapturestates, the TAP transitions to either 8teft or Exitl states. Normally th8hiftstate follows the
Capturestate so that test data or status information can be shifted out for inspection and new data shifted in. Following
the Shiftstate, the TAP either returns to tRein-Test/Idlestate via théExitl andUpdatestates or enters tHeéausestate

via Exitl. The reason for entering tRausestate is to temporarily suspend the shifting of data through either the Data
or Instruction Register while a required operation, such as refilling a host memaory buffer, is performed. From the Pause
state shifting can resume by re-entering $fftstate via thdexit2 state or terminate by entering tRein-Test/Idlestate

via theExit2 andUpdatestates.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not output
through the shadow latch until the TAP entersipelate-DRor Update-IRstate. TheéJpdatestate causes the shadow

latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

1

Update_DR

Figure 9-1 TAP Controller State Diagram

9.3.2.1 Test-Logic-Reset State

In theTest-Logic-Resedtate the boundary scan test logic is disabled. The test logic entéestii@gic-Resedtate
when theTMSinput is held HIGH for at least five rising edgesT@K. The BYPASS instruction is forced into the
instruction register output latches during this state. The controller remains Testd.ogic-Resettate as long aEMS
is HIGH.

9.3.2.2 Run-Test/Idle State

The controller enters tHeun-Test/Idlestate between scan operations. The controller remains in this state as Tii§as
is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot change
when the TAP controller is in this state.

WhenTMSis sampled HIGH on the rising edgeT@K, the controller transitions to ti&elect DRstate.

9.3.2.3 Select DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previous
state. IfTMSis sampled LOW at the rising edge BEK, then the controller transitions to tlapture_DRstate. A HIGH
onTMScauses the controller to transition to tBelect_|Rstate. The instruction cannot change while the TAP controller

is in this state.

9.3.2.4 Select IR_Scan State

This is atemporary controller state in which all test data registers selected by the current instruction retain their previous
state. IfTMSis sampled LOW on the rising edge DEK, the controller transitions to tHéapture_|Rstate. A HIGH on
TMScauses the controller to transition to Trest-Reset-Logistate. The instruction cannot change while the TAP
controller is in this state.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 195

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

196

9.3.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
value is then shifted out in thghift_DR If TMSis sampled LOW at the rising edge BEK, the controller transitions to

the Shift_DRstate. A HIGH oimMScauses the controller to transition to Ehetl DRstate. The instruction cannot

change while the TAP controller is in this state.

9.3.2.6 Shift_DR State

In this state the test data register connected betWeeandTDO as a result of the current instruction shifts data one
stage toward its serial output on the rising edg€@K. If TMSis sampled LOW on the rising edge BEK, the controller
remains in the&shift_DRstate. A HIGH oriTMScauses the controller to transition to theitl DRstate. The instruction
cannot change while the TAP controller is in this state.

9.3.2.7 Exitl_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previous
state. IfTMSis sampled LOW at the rising edgeTdEK, the controller transitions to tiRause_DRstate. A HIGH on
TMScauses the controller to transition to tgdate_DRstate which terminates the scanning process. The instruction
cannot change while the TAP controller is in this state.

9.3.2.8 Pause_DR State

ThePause_DHRtate allows the controller to temporarily halt the shifting of data through the test data register in the serial
path betwee DI andTDO. All test data registers selected by the current instruction retain their previous sTaus If

is sampled LOW on the rising edge B€K, the controller remains in thRause DRstate. A HIGH onTMScauses the
controller to transition to thExit2_DRstate. The instruction cannot change while the TAP controller is in this state.

9.3.2.9 Exit2_DR State

This is atemporary controller state in which all test data registers selected by the current instruction retain their previous
state. IfTMSis sampled LOW at the rising edge DEK, the controller transitions to tHghift DRstate to allow another

serial shift of data. A HIGH omMScauses the controller to transition to Wgdate DRstate which terminates the
scanning process. The instruction cannot change while the TAP controller is in this state.

9.3.2.10 Update_DR State

When the TAP controller is in this state the value shifted in durin§hife DRstate takes effect on the rising edge of
the TCK for the register indicated by the Instruction register.

If TMSis sampled LOW at the rising edge BEK, the controller transitions to tHeun-Test/Idlstate. A HIGH onTMS

causes the controller to transition to tBelect DR_Scastate. The instruction cannot change while the TAP controller

is in this state and all shift register stages in the test data registers selected by the current instruction retain their previous
state.

9.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed patter)(660@B& rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMSis sampled LOW at the rising edge DEK, the controller transitions to tt&hift_IRstate. A HIGH onifTMScauses
the controller to transition to thexitl_IRstate. The instruction cannot change while the TAP controller is in this state.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

9.3.2.12 Shift_IR State

In this state the instruction register is connected betWiddrandTDO and shifts data one stage toward its serial output
on the rising edge ofCK. If TMSis sampled LOW at the rising edge DEK, the controller remains in thghift_IRstate.
A HIGH on TMScauses the controller to transition to Eratl [IRstate.

9.3.2.13 Exitl_IR State

This is atemporary controller state in which all registers retain their previous statSis sampled LOW at the rising

edge ofTCK, the controller transitions to tHeause_IRstate. A HIGH onTMScauses the controller to transition to the
Update_|Rstate which terminates the scanning process. The instruction cannot change while the TAP controller is in
this state and the instruction register retains its previous state.

9.3.2.14 Pause_IR State

ThePause_|Rstate allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path betweefiDl andTDO. If TMSis sampled LOW at the rising edgeTaK, the controller remains in the
Pause_|Rstate. A HIGH onTMScauses the controller to transition to theit2_IRstate. The instruction cannot change
while the TAP controller is in this state.

9.3.2.15 Exit2_IR State
This is a temporary controller state in which the instruction register retains its previous 3tsigidfsampled LOW
atthe rising edge of CK, then the controller transitions to tihift_IRstate to allow another serial shift of data. A HIGH

onTMScauses the controller to transition to tipdate_IRstate which terminates the scanning process. The instruction
cannot change while the TAP controller is in this state.

9.3.2.16 Update_IR State
The instruction shifted into the instruction register takes effect on the rising etigéof
If TMSis sampled LOW at the rising edge BEK, the controller transitions to tHeun-Test/Idlestate. A HIGH onTMS
causes the controller to transition to 8elect DR_Scastate.

9.3.3 Test Access Port (TAP) Instructions
The TAP Instruction register allows instructions to be serially input into the device when TAP controller iSimithER
state. Instructions are decoded and define the serial test data register path that is used to shift databieanwd€@bDO

during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BYPASS instruction.

Table 9-20 Implemented EJTAG Instructions

Value Instruction Function
0x01 IDCODE Select Chip Identification data register
0x03 IMPCODE Select Implementation register
0x08 ADDRESS Select Address register
0x09 DATA Select Data register
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 197

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

198

Table 9-20 Implemented EJTAG Instructions (Continued)

Value Instruction Function

O0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value
0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to O as reset value

Ox0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects thECBTCONTROLAegister in the Trace Control Block
0x11 TCBCONTROLB Selects tHECBTCONTROLBegister in the Trace Control Block
0x12 TCBDATA Selects th@ CBDATAregister in the Trace Control Block

Ox1F BYPASS Bypass mode

9.3.3.1 BYPASS Instruction
The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register to
be connected betwediDl andTDO. The BYPASS instruction allows serial data to be transferred through the processor

from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the IEEE
1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

9.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification (ID)
register to be connected betweERI andTDO. The Device ID register is a 32-bit shift register containing information
regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not interfere

with the operation of the processor. Also, access to the Identification Register is immediately available, via a TAP data
scan operation, after power-up when the TAP has been reset with on-chip power-on or through the BR&dnapin.

9.3.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

9.3.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected bEResd TDO. The EJTAG Probe shifts
32 bits through th&DI pin into the Address register and shifts out the captured address Via@han.

9.3.3.5 DATA Instruction

This instruction is used to select the Data register to be connected b&®lemmdTDO. The EJTAG Probe shifts 32
bits of TDI data into the Data register and shifts out the captured data i@@epin.

9.3.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected bé&tiveandTDO. The EJTAG Probe
shifts 32 bits offDI data into the EJTAG Control register and shifts out the EJTAG Control register bitd@ia

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

9.3.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control register
betweenTDI andTDO. It can be used in particular if switching instructions in the instruction register takes too many
TCKcycles. The first bit shifted out is bit O.

DI —>| Address 0 }—‘

—>| Data 0 }—‘

L_»{EJTAG Control 0}— TDO

Figure 9-2 Concatenation of the EJTAG Address, Data and Control Registers

9.3.3.8 EJTAGBOOT Instruction

When the EJTAGBOOT instruction is given and the Update-IR state is left, then the reset values of the ProbTrap, ProbEn
and EjtagBrk bits in the EJTAG Control register are set to 1 after a hard or soft reset.

This EJTAGBOOT indication is effective until a NORMALBOOT instruction is givERST_Ns asserted or a rising
edge ofTCK occurs when the TAP controller is in Test-Logic-Reset state.

It is possible to make the CPU go into debug mode just after a hard or soft reset, without fetching or executing any
instructions from the normal memory area. This can be used for download of code to a system which have no code in
ROM.

The Bypass register is selected when the EJTAGBOOT instruction is given.

9.3.3.9 NORMALBOQOT Instruction

When the NORMALBOQOT instruction is given and the Update-IR state is left, then the reset value of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 0 after hard or soft reset.

The Bypass register is selected when the NORMALBOQOT instruction is given.

9.3.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as skagunard-3

DI —>| Data 0|—>| Fastdata|—> TDO

Figure 9-3 TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

9.3.3.11 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected beti¢@amdTDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 199

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.3.3.12 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected bef¢andTDO. This register is
only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register.

9.3.3.13 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected bef®@eandTDO. This register is only
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of
the TCBDATA register is dependent on the specific TCB register.

9.4 EJTAG TAP Registers

200

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

9.4.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruction
register scan operation the TAP controller selects the output of the Instruction register to iY@ fie. The shift

register consists of a series of bits arranged to form a single scan path bEDk@adTDO. During an Instruction

register scan operations, the TAP controls the register to capture status information and shift dai tawhDO. Both

the capture and shift operations occur on the rising ed@€st However, the data shifted out from tR®O occurs on

the falling edge oTCK. In the Test-Logic-Reset ai@hpture-IRstate, the instruction shift register is set to 0gpas

for the IDCODE instruction. This forces the device into the functional mode and selects the Device ID register. The
Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register scan operation. A
list of the implemented instructions are listed@ble 9-20

9.4.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the PpbMriaput to the primaryrDO

output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control signals
to capture the register and shift data frdiml to TDO. During a data register scan operation, the TAP selects the output

of the data register to drive ti®O pin. The register is updated in thpdate-DRstate with respect to the write bits.

This description applies in general to the following data registers:

» Bypass Register

 Device Identification Register

* Implementation Register

» EJTAG Control Register (ECR)

» Processor Access Address Register

» Processor Access Data Register

» FastData Register

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

9.4.2.1 Bypass Register

TheBypasgegister consists of a single scan register bit. When selected, the Bypass register provides a single bit scan
path betweef DI andTDO. The Bypass register allows abbreviating the scan path through devices that are not involved

in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to satisfy the
IEEE 1149.1 Bypass instruction requirement.

9.4.2.2 Device ldentification ID) Register

TheDevice Identificatiomegister is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revision,
and other device-specific informatiorable 9-21shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the core determine the value of these bits. These bits can be scannedbut of the
register after being selected. The register is selected when the Instruction register is loaded with the IDCODE instruction.

Device Identification Register Format

31 28 27 12 11 1 0
Version PartNumber ManuflD | FI?
Table 9-21 Device Identification Register
Fields
Read/
Name Bit(s) Description Write Reset State
Version (4 bits)
Version 31:28 This field identifies the version number of the R EJ_Version[3:0]
processor derivative.
Part Number (16 bits)
PartNumber | 27:12| s fie|d identifies the part number of the procesdor R EJ_PartNumber[15:0]

derivative.

Manufacturer Identity (11 bits)

ManuflD 11:1 | Accordinglyto IEEE 1149.1-1990, the manufacturer R EJ_ManufID[10:0]
identity code shall be a compressed form of the
JEDEC Publications 106-A.

R 0 reserved R 1

9.4.2.3 ImplementationRegister

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values are
set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE instruction.

Implementation Register Format

31 29 28 25 24 23 21 20 17 16 15 14 13 0
| EJTAGveri reserved | DINqup ASIDsiz*e reservkd MIP|Slq 0 No[*MA reserved
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 201

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-22ImplementationRegister Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
. EJTAG Version.

EJTAGver 31:29 2- \lersion 2.6 R 2

reserved 28:25| reserved R 0
DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is

DINTsup 24 supported: R EJ_DINTsup
0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.
Size of ASID field in implementation:
0: No ASID in iml] 4KEc core - 2

. . :No in implementation

ASIDsize | 2321 | 1. 6.hit ASID R 4KEM/4KEp
2: 8-bit ASID cores -0
3: Reserved

reserved 20:17| reserved R 0
Indicates whether MIPS16 is implemented

MIPS16 16 0: No MIPS16 support R Preset
1: MIPS16 implemented

reserved 15 reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

reserved 13:0 reserved R 0

9.4.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by shifting
out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in thpelate-DRstate unless the Reset occurred (Rocc) bit 31, is either O
or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on both hard and soft CPU resets, but not on TAP
controller resets by e. @RST_NTCK clock is not required when the hard or soft CPU reset occurs, but the bits are still
updated to the reset value when @K applies. The first FCK clocks after hard or soft CPU resets may result in reset

of the bits, due to synchronization between clock domains.

31 30 29 28 23 22 21 20 19 18 17 16 15 14

EJTAG Control Register Format

13 12

11 4 3 2 O

|Rocc| Psz| Res | Do|ze H%ilt Per'?st PR|nW PIIAC(1 Res If’rRst PIrobEn Pr{)beap Res I*EjtagBrk |Re51f DM Res

202

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

Table 9-23EJTAG Control Register Descriptions

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

Rocc

31

Reset Occurred

The bit indicates if a hard or soft reset has occurred;
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value as long as a hard |or

soft reset is applied.

This bit must be cleared by the probe, to acknowledge
that the incident was detected.

The EJTAG Control register is not updated in the
Update-DRstate unless Rocc is 0, or written to 0. This
in order to ensure proper handling of processor acce

0nwn

R/W

Psz[1:0]

30:29

Processor Access Transfer Size

These bits are used in combination with the lower two

address bits of the Address register to determine the $ize
of a processor access transaction. The bits are only valid

when processor access is pending.

PAA[1:0] [Psz[1:0] Transfer Size

00 00 |Byte (LE, byte 0; BE, byte 3)

01 00 |Byte (LE, byte 1; BE, byte 2)

10 00 |Byte (LE, byte 2; BE, byte 1)

11 00 |Byte (LE, byte 3; BE, byte 0)

00 01 |Halfword (LE, bytes 1:0; BE, bytes 3:2

10 01 |Halfword (LE, bytes 3:2; BE, bytes 1:0

00 10 (Word (LE, BE; bytes 3, 2, 1, 0)

00 11 |Triple (LE, bytes 2, 1, 0; BE, bytes 3, 2/1)

01 11 |Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1,|0)

All others Reserved

Note: LE=little endian, BE=big endian, the byte# refe
to the byte number in a 32-bit register, where byte 3
bits 31:24; byte 2 = bits 23:16; byte 1 = bits 15:8; by
O=bits 7:0, independently of the endianess.

ISR

Undefined

Res

28:23

reserved

Doze

22

Doze state

The Doze bitindicates any kind of low power mode. The

value is sampled in the Capture-DR state of the TAP
controller:

0: CPU not in low power mode.
1: CPU is in low power mode

Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

203

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields
Read/

Name Bit(s) Description Write Reset State

Halt state

The Halt bit indicates if the internal system bus clock fis

Halt 21 running or stopped. The value is sampled in the R 0
Capture-DR state of the TAP controller:

0: Internal system clock is running

1: Internal system clock is stopped

Peripheral Reset

When the bit is set to 1, it is only guaranteed that thg
peripheral reset has occurred in the system when the fead
value of this bitis also 1. This is to ensure that the setting

from theTCK clock domain gets effect in the CPU clock
PerRst 20 domain, and in peripherals. R/IW 0

When the bitis written to 0, then the bit must also be refad
as 0 before it is guaranteed that the indication is cleafed
in the CPU clock domain also.

This bit controls thé&J_PerRssignal on the cote

Processor Access Read and Write

This bit indicates if the pending processor access is fgr a
PRnW 19 read or write transaction, and the bit is only valid while R Undefined
PrAcc is set:

0: Read transaction
1: Write transaction

Processor Access (PA)

Read value of this bit indicates if a Processor Access
(PA) to the EJTAG memory is pending:
0: No pending processor access

1: Pending processor access

The probe’s software must clear this bit to 0 to indicate
the end of the PA. Write of 1 is ignored.

PrAcc 18 A pending Processor Access is cleared when Rocc is SGBANO 0

but another PA may occur just after the reset if a deljug
exception occurs.

Finishing a Processor Access is not accepted while the
Rocc bit is set. This is to avoid that a Processor Access
occurring after the reset is finished due to indication of a
Processor Access that occurred before the reset.

The FASTDATA access can clear this bit.

Res 17 reserved R 0

204 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields
Read/

Name Bit(s) Description Write Reset State

Processor Reset (Implementation dependent behavior)

When the bit is set to 1, then it is only guaranteed that
this setting has taken effect in the system when the r¢ad
value of this bitis also 1. This is to ensure that the setting
from theTCK clock domain gets effect in the CPU clock
domain, and in peripherals.

When the bit is written to 0, then the bit must also be read RIW 0
as 0 before it is guaranteed that the indication is cleafed
in the CPU clock domain also.

PrRst 16

This bit controls th&J_PrRssignal. If the signalis used
in the system, then it must be ensured that both the
processor and all devices required for a reset are properly
reset. Otherwise the system may fail or hang. The bit
resets itself, since the EJTAG Control register is reset| by
hard or soft reset.

Probe Enable

This bit indicates to the CPU if the EJTAG memory ig
handled by the probe so processor accesses are
answered:

0: The probe does not handle EJTAG memory
transactions

1: The probe does handle EJTAG memory transactians

It is an error by the software controlling the probe if i
sets the ProbTrap bit to 1, but resets the ProbEnto 0. The
operation of the processor is UNDEFINED in this case. Oorl

ProbEn 15 The ProbEn bit is reflected as a read-only bit in the R/W from
ProbEn bit, bit 0, in the Debug Control Register (DCR).
EJTAGBOOT
The read value indicates the effective value in the DR,
due to synchronization issues betw@&@K and CPU
clock domains; however, it is ensured that change of the
ProbEn prior to setting the EjtagBrk bit will have effegt
for the debug handler executed due to the debug
exception.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:

No EJTAGBOOT indication given: 0

EJTAGBOOT indication given: 1

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 205

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields
Read/
Name Bit(s) Description Write Reset State
Probe Trap
This bit controls the location of the debug exception
vector:
0: In normal memory 0xBFC0.0480
1: In EJTAG memory at 0xFF20.0200 in dmseg
Valid setting of the ProbTrap bit depends on the setting
of the ProbEn bit, see comment under ProbEn bit.
The ProbTrap should not be setto 1, for debug exception Oor1l
vector in EJTAG memory, unless the ProbEn bit is also
ProbTrap 14 set to 1 to indicate that the EJTAG memory may be R/W from
accessed.
o _ EJTAGBOOT
The read value indicates the effective value to the CRU,
due to synchronization issues betw@&@K and CPU
clock domains; however, it is ensured that change of the
ProbTrap bit prior to setting the EjtagBrk bit will have
effect for the EjtagBrk.
The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1
Res 13 reserved R 0
EJTAG Break
Setting this bit to 1 causes a debug exception to the
processor, unless the CPU was in debug mode or another
debug exception occurred.
When the debug exception occurs, the processor core Oor1l
EitaaBrk 12 clock is restarted if the CPU was in low power mode RIW1 ;
JtagBr This bit is cleared by hardware when the debug rom
exception is taken. EJTAGBOOT
The reset value of the bit depends on whether the
EJTAGBOOQT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOQT indication given: 1
Res 11:4 reserved R 0
Debug Mode
This bit indicates the debug or non-debug mode:
DM 3 0: Processor is in non-debug mode R 0
1: Processor is in debug mode
The bit is sampled in th@apture-DRstate of the TAP
controller.
Res 2:0 reserved R 0

9.4.3 Processor Access Address Register

The Processor Access AddreBaAQ) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this register
is selected by shifting in the ADDRESS instruction.

206 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

9.4.3.1 Processor Access Data Register

The Processor Access DaRAD) register is used to provide data value to and from a processor access. The length of
the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from this
register is only valid when a processor access write is pending. The register is used to provide the data value fora
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

ThePAD register is 32 bits wide. Data alignment is not used for this register, so the valuBPAbtregister matches
data on the internal bus. The undefined bytes for a PA write are undefined, aRéforead then 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in tHeAD register depends on the endianess of the core, as shdvigire 9-4 on page 207
The endian mode for debug/kernel mode is determined by the stateSof Exedianinput at power-up.

MSB LSB
bit 31 24 23 16 15 87 0
BIGENDIAN LAm0=4ll 5 [6 || 7 | Am2z=1
lAnoi=0|| 1 || 2 || 3 | Amnz=o
Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.
MSB LSB
bit 31 24 23 16 15 87 0
LTTLE-ENDIAN LA0=7| | 6 [5 || 4 | Amz=1
lano=3|| 2 || 1 || o | ARz

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

Figure 9-4 Endian Formats for thePAD Register

The size of the transaction and thus the number of bytes available/required Rétdhvegister is determined by the Psz
field in theECR

9.4.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bitis
shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether the
Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata access was
successful or not (if completion was requested).

Fastdata Register Format

0

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 207

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-24 Fastdata Register Field Description

Fields
Read/ | Power-up

Name Bits Description Write State

Shifting in a zero value requests completion of the
Fastdata access. The PrAcc bit in the EJTAG Control
register is overwritten with zero when the access succeegds.
(The access succeeds if PrAcc is one and the operatipn
address is in the legal dmseg Fastdata area.) When
successful, a one is shifted out. Shifting out a zero
SPrAcc 0 indicates a Fastdata access failure. R/W Undefined

Shifting in a one does not complete the Fastdata accgss
and the PrAcc bit is unchanged. Shifting out a one
indicates that the access would have been successful|if

allowed to complete and a zero indicates the access wc‘)uld

not have successfully completed.

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies the
legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The Data +
Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata area
accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (processor
access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download accesses
are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to see if the
attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used). Downloads will
also shiftin the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will shift out the data being
stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

» PrAcc must be 1, i.e., there must be a pending processor access.

» The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

Table 9-25shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

Table 9-25 Operation of the FASTDATA access

PrAccin
Address the LSB LSB
Probe Match Control (SPrAcc) | Action in the PrAcc shifted Data shifted
Operation check Register | shifted in | Data Register | changes to out out
Fails X X none unchanged 0 invalid
1 1 none unchanged 1 invalid
Download
using valid
FASTDATA Passes 1 0 write data 0 (SPrAcc) 1 (previous)
data
0 X none unchanged 0 invalid

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.5 TAP Processor Accesses

Table 9-25 Operation of the FASTDATA access (Continued)

PrAccin
Address the LSB LSB

Probe Match Control | (SPrAcc) | Action in the PrAcc shifted Data shifted

Operation check Register | shifted in | Data Register | changes to out out
Fails X X none unchanged 0 invalid
Upload 1 1 none unchanged 1 invalid
using
FASTDATA Passes 1 0 read data 0 (SPrAcc 1 valid data
0 X none unchanged 0 invalid

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between the
download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

9.5 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby the
TAP module can operate likeskave unitconnected to the on-chip bus. The core can then execute code taken from the
EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs in a serial
way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without occupying the
memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from 0xFF20.0000 to OXFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition the
LSNM bit in the CP0O Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from address
0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a soft or hard reset.

9.6 Fetch/Load and Store from/to the EJTAG Probe through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug exception:
0xFF20.0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc =1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.
The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 209

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the instruction is available.

The instruction becomes available in the instruction register and the processor starts executing.

The processor increments the program counter and outputs an instruction read request for the next instruction. This
starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For this
to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appropriate
range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The store
address must be in the range: 0xFF20.0000 to OxFF2F.FFFF, the ProbEn bit must be set and the processor has to be in
debug mode (DM=1). The sequence of actions is found below:

1.
2.
3.

© N o O

9.

The internal hardware latches the requested address into the PA Address register
The internal hardware latches the data to be written into the PA Data register.

The internal hardware sets the following bits in the EJTAG Control register:
PrAcc =1 (selects Processor Access operation)

PRnW = 1 (selects processor write operation)

Psz[1:0] = value depending on the transfer size

The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

The EJTAG Probe checks the PRnW bit to determine the required access.
The EJTAG Probe selects the PA Address register and shifts out the requested address.
The EJTAG Probe selects the PA Data register and shifts out the data to be written.

The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the write access is finished.

The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

9.7 BEJTAG Trace

210

EJTAG Trace enables the ability to trace program flow, load/store addresses and load/store data. Several run-time options
exist for the level of information which is traced, including tracing only when in specific processor modes (i.e. UserMode

or KernelMode). EJTAG Trace is an optional block in the 4KE core. If EJTAG Trace is not implemented, the rest of this
chapter is irrelevant. If EJTAG Trace is implemented GRE® Config3, bit is set.

The pipeline specific part of EJTAG Trace is architecturally specified indiwace ™ Interface Specificatioifhe

PDtrace module extracts the trace information from the processor pipeline, and presents it to a pipeline-independent
module called the Trace Control Block (TCB). The TCB is specified iEdA&G Trace Control Block Specification

The collective implementation of the two is callediTAG Trace

When EJTAG Trace is implemented, the 4KE core includes both the PDtrace and the Trace Control Block (TCB)
modules. The two modules “talk” to each other on the generic pin-interface called the PDtrace™ Interface. This interface
is embedded inside the 4KE core, and will not be discussed in detail here (rB&@drdue™ Interface Specification

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.7 EJTAG Trace

for a detailed description). While working closely together, the two parts of EJTAG Trace are controlled separately by
software. Figure 9-5shows an overview of the EJTAG Trace modules within the core.

CPO control bus EJTAG TAP access ! TAP
- - Control - I - Probe
_..--7 path -~
- R N I
I
Pipeline specific Pipeline independant I
PDtrace™ module PDtrace™ Trace Contol Block (TCB) module [
Interface ; Trace
Back-stall to . > Prob
pipeline . P = - robe
' Trace 1 On-chip
Extracted Pipeline Tracz_a < ' » compression Trace I I .
information extraction and 1 Memory I I AKE
I» allignment . (2pt2na_l) a2l boundary
I (m4k_top)

Figure 9-5 EJTAG Trace modules in the 4KE™ core

To some extent, the two modules both provide similar trace control features, but the access to these features is quite
different. The PDtrace controls can only be reached through access to CPO registers. The TCB controls can only be
reached through EJTAG TAP access. The TCB can then control what is traced through the PDtrace™ Interface.

Before describing the EJTAG Trace implemented in the 4KE core, some common terminology and basic features are
explained. The remaining sections of this chapter will then provide a more thorough explanation.

9.7.1 Processor Modes

Tracing can be enabled or disabled based on various processor modes. This section precisely describes these modes. The
terminology is then used elsewhere in the document.

DebugMode « (Debug py=1)

ExceptionMode ~ (not DebugMode) and ((Status exL = 1) or (Status erL=1)
KernelMode (nhot (DebugMode or ExceptionMode)) and (Status um=0)
UserMode < (not (DebugMode or ExceptionMode)) and (Status um=1)

9.7.2 Software versus Hardware control

In some of the specifications and in this text, the terms “software control” and “hardware control” are used to refer to
the method for how trace is controlled. Software control is when the CPO rdgéte€Controlis used to select the

modes to trace, etc. Hardware control is when the EJTAG regiSBCONTROLAN the TCB, via the PDtrace

interface, is used to select the trace modes.TraeeControl. TDit determines whether software or hardware control is
active.

9.7.3 Trace information

The main object of trace is to show the exact program flow from a specific program execution or just a small window of
the execution. In EJTAG Trace this is done by providing the minimal cycle-by-cycle information necessary on the
PDtrace™ interface for trace regeneration software to reproduce the trace. The following is a summary of the type of
information traced:

» Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag. The
PC is implicitly pointing to the next instruction.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 211
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

» Load instructions are indicated with a load-flag.

 Store instructions are indicated with a storelﬂag

» Taken branches are indicated with a branch-taken-flag on the target instruction.

* New PC information for a branch is only traced if the branch target is unpredictable from the static program
image.

» When branch targets are unpredictable, only the delta value from current PC is traced, if it is dynamically
determined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC value is traced.

* When a completing instruction is executed in a different processor mode from the previous one, the new
processor mode is traced.

» The first instruction is always traced as a branch target, with processor mode and full PC.

« Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and full
PC.

All the instruction flags above are combined into one 3-bit value, to minimize the bit information to trace. The possible
processor modes are explainedertion 9.7.1, "Processor Modes" on page 211

The target address is statically predictable for all branch and all jump-immediate instructions. If the branch is taken, then
the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which have an
unpredictable target address. These will have full/delta PC values included in the trace information. Also treated as
unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software is required to know the static program image in memory, in order to reproduce the dynamic
flow with the above information. But this is usually not a problem. Only the virtual value of the PC is used. Physical
memory location will typically differ.

Itis possible to turn on PC delta/full information for all branches, but this should not normally be necessary. As a safety
check for trace regeneration software, a periodic synchronization with a full PC is sent. The period of this
synchronization is cycle based and programmable.

9.7.4 Load/Store address and data trace information

212

In addition to PC flow, itis possible to getinformation on the load/store addresses, as well as the data read/written. When
enabled, the following information is optionally added to the trace.

» When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced to
compress the information which must be sent.

» When store-address tracing is on, the full store address of the first store instruction is traced (indicated by the
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

* When load-data tracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

» When store-data tracing is on, the full store data written by each store instruction is traced (indicated by the
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced
with the full address if load/store address tracing is enabled.

1A SC (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.7 EJTAG Trace

9.7.5 Programmable processor trace mode options

To enable tracing, a global Trace On signal must be set. When trace is on, it is possible to enable tracing in any
combination of the processor modes describefkiation 9.7.1, "Processor Modes" on page. 21 Addition to this, trace

can be turned on globally for all process, or only for specific processes by tracing only specific masked values of the
ASID found inEntryHiagp (4KEc cores only).

Additionally, an EJTAG Simple Break trigger point can override the processor mode and ASID selection and turn them
all on. Another trigger point can disable this override again.

9.7.6 Programmable trace information options

The processor mode changes are always traced:
* On the first instruction.
* On any synchronization instruction.

* When the mode changes and either the previous or the current processor mode is selected for trace.

The amount of extra information traced is programmable to include:
» PC information only.
* PC and load address.
» PC and store address.
» PC and load and store address.
» PC and load address and load data.
» PC and store address and store data.
* PC and load and store address and load and store data.
« PC and load data only.
The last option is helpful when used together with instruction accurate simulators. If the full internal state of the

processor is known prior to trace start, PC and load data are the only information needed to recreate all register values
on an instruction by instruction basis.

9.7.6.1 User Data Trace

In addition to the above, a special CPO regidtlserTraceDatacan generate a data trace. When this register is written,
and the global Trace On is set, then the 32-bit data written is put in the trace as special User Data information.

Remark The User Data is sent even if the processor is operating in an un-traced processor mode.

9.7.7 Enable trace to probe/on-chip memory

When trace is On, based on the options liste8éation 9.7.5, "Programmable processor trace mode optithestrace
information is continuously sent on the PDtrace™ interface to the TCB. The TCB must, however, be enabled to transmit
the trace information to the Trace probe or to on-chip trace memory, by havinGB@ONTROLRBy bit set. It is

possible to enable and disable the TCB in two ways:

+ Set/clear th@ CBCONTROLB, bit via an EJTAG TAP operation.
* Initialize a TCB trigger to set/clear tT€BCONTROLB, bit.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 213

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.7.8 TCB Trigger

The TCB can optionally include 0O to 8 triggers. A TCB trigger can be programmed to fire from any combination of:
» Probe Trigger Input to the TCB.
» Chip-level Trigger Input to the TCB.

» Processor entry into DebugMode.

When a trigger fires it can be programmed to have any combination of actions:
» Create Probe Trigger Output from TCB.
» Create Chip-level Trigger Output from TCB.
* Set, clear, or start countdown to clear TI@BCONTROLRBy bit (start/end/about trigger).

» Put an information byte into the trace stream.

9.7.9 Cycle by cycle information

All of the trace information listed isection 9.7.3, "Trace informatioahdSection 9.7.4, "Load/Store address and data
trace information,'will be collected from the PDtrace™ interface by the TCB. The trace will then be compressed and
aligned to fit in 64 bit trace words, with no loss of information. It is possible to exclude/include the exact cycle-by-cycle
relationship between each instruction. If excluded, the number of bits required in the trace information from the TCB is
reduced, and each trace word will only contain information from completing instructions.

9.7.10 Trace Message Format

The TCB collects trace information every cycle from the PDtrace™ interface. This information is collected into six
different Trace Formats (TF1 to TF6). The definition of these Trace Formats is proprietary and will not be released at
this time. One important feature is that all Trace Formats have at least one non-zero bit.

9.7.11 Trace Word Format

After the PDtrace™ data has been turned into Trace Formats, the trace information must be streamed to either on-chip
trace memory or to the trace probe. Each of the major Trace Formats are of different size. This complicates how to store
this information into an on-chip memory of fixed width without too much wasted space. It also complicates how to
transmit data through a fixed-width trace probe interface to off-chip memory. To minimize memory overhead and or
bandwidth-loss, the Trace Formats are collected into Trace Words of fixed width.

A Trace Word (TW) is defined to be 64 bits wide. An empty/invalid TW is built of all zeros. A TW which contains one

or more valid TF's is guaranteed to have a non-zero value on one of the four least significant bits [3:0]. During operation
of the TCB, each TW is built from the TF’s generated each clock cycle. When all 64 bits are used, the TW is full and
can be sent to either on-chip trace memory or to the trace probe. The exact definition of the TW's is proprietary and will
not be released at this time.

9.8 PDtrace™ Registers (software control)

The CPO registers associated with PDtrace are listéahile 9-26and described i€hapter 5, “CPO Registers of the
4KE™ Core.”

214 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

Table 9-26 A List of Coprocessor 0 Trace Registers

Register Register

Number | Sel Name Reference
23 1 TraceControl | Section 5.2.29, "Trace Control Register (CPO Register 23, Select 1)" on page 139
23 2 TraceControl2| Section 5.2.30, "Trace Control2 Register (CPO Register 23, Select 2)" on page|142
23 3 UserTraceDatg Section 5.2.31, "User Trace Data Register (CP0O Register 23, Select 3)" on pade 144
23 4 TraceBPC | Section 5.2.32, "TraceBPC Register (CP0 Register 23, Select 4)" on page 145

9.9 Trace Control Block (TCB) Registers (hardware control)

The TCB registers used to control its operation are listethinle 9-27andTable 9-28 These registers are accessed via

the EJTAG TAP interface.

Table 9-27 TCB EJTAG registers

EJTAG
Register Name Reference Implemented
0x10 TCBCONTROLA | Section 9.9.1, "TCBCONTROLA Register" on page 215 Yes
0x11 TCBCONTROLB | Section 9.9.2, "TCBCONTROLB Register" on page 218 Yes
0x12 TCBDATA Section 9.9.3, "TCBDATA Register" on page 222 Yes
Table 9-28 Registers selected BYCBCONTROLBRgg
TCBCONTROLB
rEg field Name Reference Implemented
0 TCBCONFIG Section 9.9.4, "TCBCONFIG Register (Reg 0)" on page 223 Yes
4 TCBTW Section 9.9.5, "TCBTW Register (Reg 4)" on page 224
Yes
5 TCBRDP Section 9.9.6, "TCBRDP Register (Reg 5)" on page 225 if on-chip memory
exists.
6 TCBWRP Section 9.9.7, "TCBWRP Register (Reg 6)" on page 225)
Otherwise No
7 TCBSTP Section 9.9.8, "TCBSTP Register (Reg 7)" on page 225
Only the number
. " : " 4 indicated by
16-23 TCBTRIGx Section 9.9.9, "TCBTRIGXx Register (Reg 16-23)" on page "2§CBCONFIGTR|G
are implemented.

9.9.1 TCBCONTROLARegister

The TCB is responsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the core’s

tracing logic. Most of the control is done using T@BCONTROLAegister.

The TCBCONTROLAegister is written by an EJTAG TAP controller instructio@BCONTROLA0x10).

The format of th CBCONTROLAegister is shown below, and the fields are describédhbte 9-29

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

215

Chapter 9 EJTAG Debug Support in the 4KE™ Core

TCBCONTROLA Register Format
31 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 1 0

0 |[VModes ADW syP [T8 19 O B ¢ K ASID | § Mode| dn

Table 9-29TCBCONTROLARegister Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State
0 31:26 Reserved. Must be written as zero; returns zero on read R 0
This field specifies the type of tracing that is supported by the
processor, as follows:
Encoding Meaning
00 PC tracing only
VModes 25:24 01 PC and Load and store address tracing pnly R 10
10 PC, load and store address, and load gnd
store data.
11 Reserved
This field is preset to the value BDO_ValidModes
PDO_ADbus width.
ADW 23 | 0: ThePDO_ADbus is 16 bits wide. R 0
1: ThePDO_ADbus is 32 bits wide.
Used to indicate the synchronization period.
The period (in cycles) between which the periodic
synchronization information is to be sent is defined as shqwn
in the table below, when the trace buffer is either on-chip|or
off-chip (as determined by tTeCBCONTROLB;i¢ bit).
SyP On-chip Off-chip
000 2z 27
001 2 28
SyP 22:20 010 7 > R/W 100
011 ® 210
100 ® 21
101 7 212
110 Vi 213
111 2 214
This field defines the value on tR®I_SyncPeriodignal.
Trace All Branches. When set to one, this field indicates that
the core must trace either full orincremental PC values forlall
branches. When set to zero, only the unpredictable branches
B 19 are traced. R/W Undefined
This field defines the value on tR®I_TraceAllBranch
signal.
216 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

Table 9-29TCBCONTROLARegister Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write | Reset State

Inhibit Overflow. This bit is used to indicate to the core tragce
logic that slow but complete tracing is desired. Hence, the
core tracing logic must not allow a FIFO overflow and discgrd
trace data. This is achieved by stalling the pipeline when|the,)

10 18 FIFO is nearly full so that no trace records are ever lost. RIW Undefined
This field defines the value on tR®I_InhibitOverflow
signal.
When set to one, this enables tracing in Debug mode, i.€.,
when the DM bit is one in thBebugregister. For trace to be
enabled in Debug mode, the On bit must be one and eithef the
G bit must be one, or the current process must match the

D 17 ASID field in this register. R/W Undefined
When set to zero, trace is disabled in Debug mode,
irrespective of other bits.
This field defines the value on tR®I_DM signal.
This controls when tracing is enabled. When set, tracing |is
enabled when either of the EXL or ERL bits in 8tatus
register is one, provided that the On bit (bit 0) is also set, gnd]

E 16 either the G bit is set, or the current process ASID matches theR/W Undefined
ASID field in this register.
This field defines the value on tR®I_E signal.

0 15 Reserved. Must be written as zero; returns zero on read R 0
When set, this enables tracing when the On bit is set and the
core is in Kernel mode. Unlike the usual definition of Kerngl
Mode, this bit enables tracing only when the ERL and EXL
bits in theStatugegister are zero. This is provided the On bit)

K 14 (bit 0) is also set, and either the G bit is set, or the current RIW Undefined
process ASID matches the ASID field in this register.
This field defines the value on tR®1_K signal.
When set, this enables tracing when the core is in User mpde
as defined in the MIPS32 or MIPS64 architecture
specification. This is provided the On bit (bit 0) is also set, and)

U 13 either the G bit is set, or the current process ASID matchestheR/W Undefined
ASID field in this register.
This field defines the value on tR®1_U signal.
The ASID field to match when the G bit is zero. When the|G
bit is one, this field is ignored.

ASID 125 On 4KEm and 4KEp cores, this field is ignored. RIW Undefined
This field defines the value on tR®I_ASIDsignal.
When set, this implies that tracing is to be enabled for all
processes, provided that other enabling functions (like U] S,
etc.,) are also true.

G 4 On 4KEm and 4KEp cores, this field is ignored. R/W Undefined
This field defines the value on tR®1_G signal.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

217

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-29TCBCONTROLARegister Field Descriptions (Continued)

Fields

Read/
Name Bits Description Write | Reset State

When tracing is turned on, this signal specifies what
information is to be traced by the core.

Mode Trace Mode
000 Trace PC
001 Trace PC and load address

010 Trace PC and store address

011 Trace PC and both load/store addresses

100 Currently un-implemented

Mode 31 R/W Undefined

101 Trace PC and load address and data

110 Trace PC and store address and data

111 Trace PC and both load/store address and data

The VModes field determines which of these encodings are
supported by the processor. The operation of the processpr is
UNPREDICTABLE if Mode is set to a value which is not
supported by the processor

This field defines the value on tR®1_TraceModesignal.

This is the global trace enable switch to the core. When zgro,
tracing from the core is always disabled, unless enabled |by
core internal software override of tR®I_* input pins.
When set to one, tracing is enabled whenever the other RIW 0
enabling functions are also true.

This field defines the value on tR®1_TraceOnsignal.

9.9.2 TCBCONTROLBRegister

The TCB includes a second control regist€@ BCONTROLROx11). This register generally controls what to do with
the trace information received.

The format of thdf CBCONTROLBegister is shown below, and the fields are describ&dbte 9-30

TCBCONTROLB Register Format

31 30 26 25 21 20 19 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0
| WE| 0 REG |lwg o |[RMTRBF TM| o CR |cCHl 0o | daofcEn
Table 9-30TCBCONTROLBRegister Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State

Write Enable.

Only when set to 1 will the other bits be written in

WE 31 | TCBCONTROLB R 0
This bit will always read 0.
218 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

Table 9-30TCBCONTROLBRegister Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write | Reset State
0 30:26 Reserved. Must be written as zero; returns zero on read. R 0
Register select: This field select the registers accessible
REG 25:21 | through theTCBDATAregister. Legal values are shown in R/W 0

Table 9-28

Write Registers: When set, the register selected by REG field
WR 20 is read and written wheRCBDATAIs accessed. Otherwise the R/W 0
selected register is only read.

0 19:17 Reserved. Must be written as zero; returns zero on read. R 0

Read on-chip trace memory.

When written to 1, the read address-pointer of the on-chip
memory is set to point to the oldest memory location written
since the last reset of pointers.

Subsequent access to t(heBTWregister (through the

TCBDATAregister), will automatically increment the read
pointer TCBRDPregister) after each read. [Note: The read
RM 16 pointer does not auto-increment if the WR field is one.] R/W1 0

When the write pointer is reached, this bit is automatically
reset to 0, and thECBTWregister will read all zeros.

Once set to 1, writing 1 again will have no effect. The bit i
reset by setting the TR bit or by reading the last Trace word
TCBTW

_.w

n

This bit is reserved if on-chip memory is not implemented|

Trace memory reset.

When written to one, the address pointers for the on-chip trace
memory are reset to zero. Also the RM bit is reset to 0.
TR 15 R/W1 0
This bit is automatically de-asserted back to 0, when the rgset
is completed.

This bit is reserved if on-chip memory is not implemented|

Buffer Full indicator that the TCB uses to communicate to
external software in the situation that the on-chip trace
memory is being deployed in thrace-from andtrace-to

BE 14 mode. (Se&ection 9.13, "TCB On-Chip Trace Memoyy" R 0

This bit is cleared when writing 1 to the TR bit

This bit is reserved if on-chip memory is not implemented|

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 219

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-30TCBCONTROLBRegister Field Descriptions (Continued)

Fields
Read/

Name Bits Description Write | Reset State

Trace Mode. This field determines how the trace memory|
filled when using the simple-break control in the PDtrace]
interface to start or stop trace.

S

<

™ Trace Mode
00 Trace-To

01 Trace-From

10 Reserved

11 Reserved

™ 13:12 In Trace-To mode, the on-chip trace memory is filled, R/W 0
continuously wrapping around and overwriting older Trace
Words, as long as there is trace data coming from the core.

In Trace-From mode, the on-chip trace memory is filled frgm
the point thaPDO_lamTracings asserted, and until the
on-chip trace memory is full.

In both cases, de-asserting the EN bit in this register will a|so
stop fill to the trace memory.

If a TCBTRIGxrigger control register is used to start/stop
tracing, then this field should be set to Trace-To mode.

This bit is reserved if on-chip memory is not implemented|

0 11 Reserved. Must be written as zero; returns zero on read. R 0

Off-chip Clock Ratio. Writing this field, sets the ratio of the
core clock to the off-chip trace memory interface clock. The
clock-ratio encoding is shown ifable 9-31 on page 222

CR 10:8 Remark: As the Probe interface works in double data ratg R/W 100
(DDR) mode, a 1:2 ratio indicates one data packet sent per
core clock rising edge.

This bit is reserved if off-chip trace option is not implementefd.

220 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

Table 9-30TCBCONTROLBRegister Field Descriptions (Continued)

Fields
Read/

Name Bits Description Write | Reset State

Calibrate off-chip trace interface.

If set to one, the off-chip trace pins will produce the following
pattern in consecutive trace clock cycles. If more than 4 data
pins exist, the pattern is replicated for each set of 4 pins. [The
pattern repeats from top to bottom until the Cal bit is
de-asserted.

Calibrations
pattern

2 1

Cal 7 R/W 0

Apins.

of TR_DAT

This pattern is replicated for every 4 bits

o|r|r|r|o|lo|o|fr|r|lo|lo|r|o|w
r|lo|lr|[rr|Oo|lO|fr|O|lO|r|O|rR]|O
Rr|lrRr|O|rR|O|rr|O|O|r|O|O|r|O
R|lrR|r|O|r|O|O|lO|O|r|O|rr|O|O

Note: The clock source of the TCB and PIB must be running.

This bitis reserved if off-chip trace option is notimplemented.

0 6:3 Reserved. Must be written as zero; returns zero on read. R 0

Cycle accurate trace.

When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and
remove bit zero from all transmitted TF'’s.

CA 2 R/W 0
The stall information included/excluded is:

* TF6 formats with TCBcode 0001 and 0101.
* All TF1 formats.

If set to 1, trace is sent to off-chip memory usliRl DATA
pins.

ofC 1 If set to 0, trace info is sent to on-chip memory. R/W Preset

This hit is read only if a single memory option exists (eithe
off-chip or on-chip only).

=

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 221

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-30TCBCONTROLBRegister Field Descriptions (Continued)

Fields
Read/

Name Bits Description Write | Reset State

Enable trace.

This is the master enable for trace to be generated from the
TCB. This bit can be set or cleared, either by writing this
register or from a start/stop/about trigger.

When set to 1, trace information is sampled orPB® _*
EN 0 pins. Trace Words are generated and sent to either on-chjp R/W 0
memory or to the Trace Probe. The target of the trace is
selected by the OfC bit.

When set to 0, trace information on BO_* pins is

ignored. A potential TF6-stop (from a stop trigger) is
generated as the last information, the TCB pipe-line is flushed,
and trace output is stopped.

Table 9-31 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio
000 8:1 (Trace clock is eight times that of core clock)
001 4:1 (Trace clock is four times that of core clock)
010 2:1 (Trace clock is double that of core clock)
011 1:1 (Trace clock is same as core clock)
100 1:2 (Trace clock is one half of core clock)
101 1:4 (Trace clock is one fourth of core clock)
110 1:6 (Trace clock is one sixth of core clock)
111 1:8 (Trace clock is one eighth of core clock)

9.9.3 TCBDATA Register

The TCBDATAregister (0x12) is used to access the registers defined ByABEONTROLRBgfield; seeTable 9-28
Regardless of which register or data entry is accessed thf@BBATA the register is only written if the
TCBCONTROLRyR bit is set. For read-only registers, M@BCONTROLR is a don't care.

The format of th& CBDATAregister is shown below, and the field is describethliie 9-32 The width ofTCBDATA
is 64 bits when on-chip trace words (TWSs) are acceSseBTWaccess).

TCBDATA Register Format
31(63) 0

| Data

222 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

Table 9-32TCBDATA Register Field Descriptions

Fields
Reset

Names Bits Description Read/Write State

31:0 Register fields or data as defined by the T(?Bncl:yovl\(lr'ilzaR%?_g,R 0

Data | 3.0 | TCBCONTROLRg field is set

9.9.4 TCBCONFIG Register (Reg 0)

The TCBCONFIGregister holds information about the hardware configuration of the TCB. The format of the
TCBCONFIGregister is shown below, and the field is describethliie 9-33

TCBCONFIG Register Format
31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

|CF1| 0 TRIG sz CRMax| CRMin| PW| PiN | Or||TO|‘T REV

Table 9-33TCBCONFIG Register Field Descriptions

Fields
Read/
Name Bits Description Write | Reset State
This bit is set if I CBCONFIG1register exists. In this
CF1 31 revision, TCBCONFIG1does not exist and this bit always R 0
reads zero.
0 30:25 Reserved. Must be written as zero; returns zero on read. R 0
TRIG 24:21 Number of triggers implemented. This also indicates the R Legal values
) number ofTCBTRIGxregisters that exist. are0-8
On-chip trace memory size. This field holds the encoded gize
of the on-chip trace memory.
sz 20:17 | The size in bytes is given byS*8) implying that the R Preset

minimum size is 256 bytes and the largest is 8Mb.

This bit is reserved if on-chip memory is not implemented|

Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the core clock to the
CRMax 16:14 | off-chip trace memory interface clock. The clock-ratio R Preset
encoding is shown ifiable 9-31 on page 222

This bitis reserved if off-chip trace option is not implemented.

Off-chip Minimum Clock Ratio.

This field indicates the minimum ratio of the core clock to the
CRMin 13:11 | off-chip trace memory interface clock.The clock-ratio R Preset
encoding is shown ifable 9-31 on page 222

This bit is reserved if off-chip trace option is not implementeled.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 223

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-33TCBCONFIG Register Field Descriptions (Continued)

Fields
Read/

Name Bits Description Write | Reset State

1]

Probe Width: Number of bits available on the off-chip trac
interfaceTR_DATApins. The number of TR_DATA pins is
encoded, as shown in the table.

PW Number of bits used onTR_DATA
00 4 bits
01 8 bits

PW 10:9 R Preset
10 16 bits

11 reserved

This field is preset based on input signals to the TCB and the
actual capability of the TCB.

This bitis reserved if off-chip trace option is notimplemented.

Pipe number.
PiN 8:6 _ o R 0
Indicates the number of execution pipelines.

When set, this bit indicates that on-chip trace memory is
onT 5 present. This bit is preset based on the selected option when R Preset
the TCB is implemented.

When set, this bit indicates that off-chip trace interface is

OfT 4 present. This bit is preset based on the selected option when R
the TCB is implemented, and on the existence of a PIB module

(TC_PibPresenasserted).

Preset

REV 3:0 Revision of TCB. An implementation that conforms to the R 0
: described architecture in this document must have revisign 0.

9.9.5 TCBTW Register (Reg 4)

The TCBTWregister is used to read Trace Words from the on-chip trace memory. The TW read is the one pointed to by
the TCBRDPregister. A side effect of reading thR€BTWregister is that the CBRDPregister increments to the next

TW in the on-chip trace memory. FCBRDPis at the max size of the on-chip trace memory, the increment wraps back
to address zero.

This register is reserved if on-chip trace memory is not implemented.
The format of th& CBTWregister is shown below, and the field is describethlsie 9-34

TCBTW Register Format
63 0

Data

Table 9-34TCBTW Register Field Descriptions

Fields
Read/ Reset
Names Bits Description Write State
Data 63:0 Trace Word R/W 0
224 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

9.9.6 TCBRDP Register (Reg 5)

TheTCBRDPregister is the address pointer to on-chip trace memory. It points to the TW read when readiGg 4/
register. When writing theCBCONTROLRB,, bit to 1, this pointer is reset to the current valuE @BSTP

This register is reserved if on-chip trace memory is not implemented.

The format of theTCBRDPregister is shown below, and the field is describet@iahle 9-35 The value of n depends on
the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

TCBRDP Register Format
31 n+l n 0

Address

Table 9-35TCBRDP Register Field Descriptions

Fields
Read/ Reset
Names Bits Description Write State
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0)
Address n:0 Byte address of on-chip trace memory word. RMW 0

9.9.7 TCBWRPRegister (Reg 6)

The TCBWRPegister is the address pointer to on-chip trace memory. It points to the location where the next new TW
for on-chip trace will be written.

This register is reserved if on-chip trace memory is not implemented.

The format of thef CBWRPregister is shown below, and the fields are describ&8@bie 9-36 The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always zero.

TCBWRP Register Format
31 n+l n 0

Address

Table 9-36 TCBWRPRegister Field Descriptions

Fields
Read/ Reset
Names Bits Description Write State
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0)
Address n:0 Byte address of on-chip trace memory word. RW 0

9.9.8 TCBSTPRegister (Reg 7)

The TCBSTPregister is the start pointer register. This register points to the on-chip trace memory address at which the
oldest TW is located. This pointer is reset to zero wheniB8CONTROLRx, bit is written to 1. If a continuous trace
to on-chip memory wraps around the on-chip memb®BSTRwill have the same value aEBWRP

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 225

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

This register is reserved if on-chip trace memory is not implemented.

The format of th& CBSTRregister is shown below, and the fields are describ&dbite 9-37 The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

TCBSTP Register Format
31 n+l n 0

Address

Table 9-37TCBSTPRegister Field Descriptions

Fields
Read/ Reset
Names Bits Description Write State
Data 31:(n+1) | Reserved. Must be written zero, reads back zero. 0 D
Address n:0 Byte address of on-chip trace memory word. R/W 0

9.9.9 TCBTRIGx Register (Reg 16-23)
Up to eight Trigger Control registers are possible. Each register is ma@BIRIGx wherex is a single digit number
from O to 7 TCBTRIGOis Reg 16). The actual number of trigger registers implemented is defined in the
TCBCONFIGRg field. An unimplemented register will read all zeros and writes are ignored.
Each Trigger Control register controls when an associated trigger is fired, and the action to be taken when the trigger
occurs. Please also re@tapter 9, “EJTAG Debug Support in the 4KE™ Core,” on pagefdBtietailed description
of trigger logic issues.

The format of th@ CBTRIGxregister is shown below, and the fields are describ&dhite 9-38

TCBTRIGx Register Format

31 24 23 22 17 16 15 14 13 7 6 5 4 3 2 1 0
TCBinfo Trg 0 CHPD| 0 DM|CHIPD| Type [FQ TH
ce TroTro| Tri| Tri

Table 9-38TCBTRIGx Register Field Descriptions

Fields
Read/ Reset
Names Bits Description Write State
:) TCBinfo to be used in a possible TF6 trace format when this
TCBinfo | 31:24 trigger fires. R/W 0
When set, generate TF6 trace information when this trigger fifes.
Use TCBinfo field for the TCBinfo of TF6 and use Type field fqr
the two MSB of the TCBtype of TF6. The two LSB of TCBtypge
are 00.
The write value of this bit always controls the behavior of this
Trace 23 trigger. R/W 0
When this trigger fires, the read value will change to indicate if the
TF6 format was ever suppressed by a simultaneous trigger. If so,
the read value will be 0. If the write value was 0, the read valug is
always 0. This special read value is valid until TI@BTRIGx
register is written.
226 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.9 Trace Control Block (TCB) Registers (hardware control)

Table 9-38TCBTRIGx Register Field Descriptions (Continued)

Fields
Read/ Reset
Names Bits Description Write State
0 22:16 Reserved. Must be written as zero; returns zero on read.
When set, generate a single cycle strob&6n ChipTrigOutwhen
CHTro 15 this trigger fires. RIW 0
When set, generate a single cycle strob&@©@nProbeTrigOut
PDTro 14 when this trigger fires. RIW 0
0 13:7 Reserved. Must be written as zero; returns zero on read.
When set, this Trigger will fire when a rising edge on the Debug
mode indication from the core is detected.
The write value of this bit always controls the behavior of this
trigger.
DM 6 o]) o | RW 0
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the actionjwas
suppressed). If so the read value will be 1. If the write value wds 0
the read value is always 0. This special read value is valid untilthe
TCBTRIGxregister is written.
When set, this Trigger will fire when a rising edge on
TC_ChipTriglnis detected.
The write value of this bit always controls the behavior of this
trigger.
CHTri 5 o]) o | RW 0
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the actionjwas
suppressed). If so the read value will be 1. If the write value wds 0
the read value is always 0. This special read value is valid untilthe
TCBTRIGxregister is written.
When set, this Trigger will fire when a rising edge on
TC_ProbeTriglnis detected.
The write value of this bit always controls the behavior of this
trigger.
PDTri 4 o)) o | RW 0
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the actionjwas
suppressed). If so the read value will be 1. If the write value wds 0
the read value is always 0. This special read value is valid untilthe
TCBTRIGxregister is written.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

227

Chapter 9 EJTAG Debug Support in the 4KE™ Core

Table 9-38TCBTRIGx Register Field Descriptions (Continued)

Fields
Read/ Reset

Names Bits Description Write State

Trigger Type: The Type indicates the action to take when this
trigger fires. The table below show the Type values and the Trigger
action.

Type Trigger action

00 [Trigger Start: Trigger start-point of trace.

01 |[Trigger End: Trigger end-point of trace.

W

10 |Trigger About: Trigger center-point of trac

Trigger Info: No action trigger, only for trac
info.

11

11

The actual action is to set or clear I@BCONTROLBy bit. A

Start trigger will sesTCBCONTROLBy;, a End trigger will clear

TCBCONTROLBy. The About trigger will clear

Type 3:2 TCBCONTROLBy half way through the trace memory, from the RIW 0
: trigger. The size determined by thEeBCONFIG;; field for

on-chip memory. Or from thECBCONTROLApfield for

off-chip trace.

If Trace is set, then a TF6 format is added to the trace words. [For
Start and Info triggers this is done before any other TF’s in thjat
same cycle. For End and About triggers, the TF6 format is adgled
after any other TF'’s in that same cycle.

If the TCBCONTROLB,, field is implemented it must be set tg
Trace-To mode (00), for the Type field to control on-chip trace fill.

The write value of this bit always controls the behavior of this
trigger.

When this trigger fires, the read value will change to indicate if the

trigger action was ever suppressed. If so the read value will be/11.
If the write value was 11 the read value is always 11. This spegial
read value is valid until thECBTRIGxregister is written.

7]

Fire Once. When set, this trigger will not re-fire until the TR bit
FO 1 de-asserted. When de-asserted this trigger will fire each timel onB/W 0
of the trigger sources indicates trigger.

Trigger happened. When set, this trigger fired since the TR bit yvas
last written 0.

This bit is used to inspect whether the trigger fired since this pit

was last written zero.

When set, all the trigger source bits (bit 4 to 13) will change thgir WO 0
read value to indicate if the particular bit was the source to fire fhid}

trigger. Only enabled trigger sources can set the read value, put
more than one is possible.

TR 0

Also when set the Type field and the Trace field will have read
values which indicate if the trigger action was ever suppressed by
a higher priority trigger.

9.9.10 Register Reset State

Reset state for all register fields is entered when either of the following occur:
1. TAP controller enters/is in Test-Logic-Reset state.
2. EJ_TRST_ Nnputis asserted low.
228 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.10 EJTAG Trace Enabling

9.10 EJTAG Trace Enabling

As there are several ways to enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This
section should help clarify the enabling of trace.

9.10.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the 4KE core, then these breakpoint can be used as
triggers to start/stop trace. When used for this, the breakpoints need not also generate a debug exception, but are capable
of only generating an internal trigger to the trace logic. This is done by only setting the TE bit and not the BE bit in the
Breakpoint Control register. Please S=tion 9.2.8.5, "Instruction Breakpoint Control n (IBCn) Register" on page 184
andSection 9.2.9.5, "Data Breakpoint Control n (DBCn) Register" on pagddradetails on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint ConiralceBPQ register is used to define the trace action

when a trigger happens. When a breakpoint is enabled as a trigger (TE = 1), it can be selected to be either a start or a
stop trigger to the trace logic. Please S&etion 5.2.32, "TraceBPC Register (CPO Register 23, Select 4)" on page 145

for detail in how to define a start/stop trigger.

9.10.2 Turning OnPDtrace™ Trace
Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits in the
control register are used instead of the input enable signals from the TCBath€ontro}g bit controls whether
hardware (via the TCB), or software (via ffraceControlregister) controls tracing functionality.

Trace is turned on when the following expression evaluates true:

(
(
(TraceControl g and TraceControl on or
((not TraceControl Ts) and TCBCONTROLA,)
)
and
(MatchEnable or TriggerEnable)
)
where,
MatchEnable —
(
TraceControl g
and
(
(TraceControl yand UserMode) or
(TraceControl ¢ and KernelMode) or
(TraceControl g and ExceptionMode) or
(TraceControl pand DebugMode)
)
)
or
(
(not TraceControl T9)
and
(
(TCBCONTROLAand UserMode) or
(TCBCONTROLpand KernelMode) or
(TCBCONTROLAand ExceptionMode) or
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 229

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

(TCBCONTROLAyand DebugMode)

)

and where,

TriggerEnable -

(
DBCitg and
DB%S[I] and
TraceBPC pe and
(TraceBPC DBPON[i] = 1)

)

or

(
IBCi 1g and
IBS BSIi] and

TraceBPC | and
(TraceBPC IBPON[] = 1)

)

As seen in the expression above, trace can be turned on only if the masterBadeontroh,,or TCBCONTROLA,
is first asserted.

Once this is asserted, there are two ways to turn on tracing. The first welgtthgnableexpression, uses the input
enable signals from the TCB or the bits in TneceControlregister. This tracing is done over general program areas.
For example, all of the user-level code for a particular process (if ASID is specified), and so on.

The second way to turn on tracing, theggerEnableexpression, is from the processor side using the EJTAG hardware
breakpoint triggers. If EJTAG is implemented, and hardware breakpoints can be set, then using this method enables finer
grain tracing control. It is possible to send a trigger signal that turns on tracing at a particular instruction. For example,

it would be possible to trace a single procedure in a program by triggering on trace at the first instruction, and triggering
off trace at the last instruction.

The easiest way to unconditionally turn on trace is to assert either hardware or software tracing and the corresponding
trace on signal with other enables. For example, WitlseContro}s=0, i.e., hardware controlled tracing, assert
TCBCONTROLA,, TCBCONTROLA, and all the other signals in the second part of expreddmichEnableTo only

trace when a particular process with a known ASID is executing, 3&BEONTROLA,, the correct

TCBCONTROLAgp value, and all 0TCBCONTROL#, TCBCONTROLA, TCBCONTROLA, and

TCBCONTROLAy. (Ifitis known that the particular process is a user-level process, then it would be sufficient to only
asserTCBCONTROLA for example). When using the EJTAG hardware triggers to turn trace on and off, it is best if
TCBCONTROLA, is asserted and all the other processor mode selection BEBIGONTROLAre turned off. This

would be the least confusing way to control tracing with the trigger signals. Tracing can be controlled via software with
the TraceControlregister in a similar manner.

9.10.3 Turning Off PDtrace™ Trace

Trace is turned off when the following expression evaluates true:

(
(TraceControl tgand (not TraceControl on))) and
((not TraceControl T5) and (not TCBCONTROLA o))
)
or
(
(not MatchEnable) and
(not TriggerEnable) and
230 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.11 TCB Trigger logic

TriggerDisable
)

where,

TriggerDisable -

(
DBCitg and
DB%S[I] and
TraceBPC pe and
(TraceBPC pgponj; = 0)

)

or

(
IBCi g and
IBS BS[i] and

TraceBPC g and
(TraceBPC IBPON[] = 0)

)

Tracing can be unconditionally turned off by de-assertingtheeControp, bit or theTCBCONTROLA,, signal.

When either of these are asserted, tracing can be turned off if all of the enables are de-asserted, irrespective of the
TraceContrg} bit (TCBCONTROLA) and TraceContrgkp (TCBCONTROLAgp) values. EJTAG hardware

breakpoints can be used to trigger trace off as well. Note that if simultaneous triggers are generated, and even one of
them turns on tracing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on. This
condition is reflected in presence of the “(not TriggerEnable)” term in the expression above.

9.10.4 TCB Trace Enabling
The TCB must be enabled in order to produce a trace on the probe or to on-chip memory, when trace information is sent
on the PDtrace™ interface. The main switch for this iST@@BCONTROLB, bit. When set, the TCB will send trace
information to either on-chip trace memory or to the Trace Probe, controlled by the settingl@B@ONTROLB;c
bit.

The TCB can optionally include trigger logic, which can control@8CONTROLRBy, bit. Please seBection 9.11,
"TCB Trigger logic"for details.

9.10.5 Tracing a reset exception
Tracing a reset exception is possible. However,TitseeControg bit is reset to O at core reset, so all the trace control
must be from the TCB (usinfCBCONTROLANdTCBCONTROLR The PDtrace fifo and the entire TCB are reset

based on an EJTAG reset. It is thus possible to set up the trace modes, etc., using the TAP controller, and then reset the
processor core.

9.11 TCB Trigger logic

The TCB is optionally implemented with trigger unit. If this is the case, then the TCBCONFIGTRIG field is non-zero.
This section will explain some of the issues around triggers in the TCB.

9.11.1 Trigger units overview

A TCB trigger logic features three main parts.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 231

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

1. A common Trigger Source detection unit.
2. 1to 8 separate Trigger Control units.

3. A common Trigger Action unit.

Figure 9-6show the functional overview of the trigger flow in the TCB.

Trigger sources

YV YUYy

Trigger Source Unit

\ 5 5 5 5 5 Trigger strobes

Trigger control Unit Trigger Control Unit 7
1 to 7 are optional, 7
when trigger logic is e

implemented. - - ~
Trigger Control Unit 1

Trigger Control Unit O

Priority/
OR-function

Depending on the trigger
action, the Action
strobes must pass
through a priority
function or an OR-gate

Priority/
OR-function

Trigger Action Unit

Figure 9-6 TCB Trigger processing overview

9.11.2 Trigger Source Unit

232

The TCB has three trigger sources:
1.Chip-level trigger inputTC_ChipTriglr).
2. Probe trigger inpuffR_TRIGIN)

3. Debug Mode (DM) entry indication from the processor core.

The input triggers are all rising-edge triggers, and the Trigger Source Units convert the edge into a single cycle strobe to
the Trigger Control Units.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.11 TCB Trigger logic

9.11.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them has it's own Trigger Control REYRARIGX,

x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger Sources
as possible trigger event and they can fire one or more of the Trigger Actions. This is all defined in the Trigger Control
registerTCBTRIGx(seeSection 9.9.9, "TCBTRIGx Register (Reg 16-23)" on pagg.226

9.11.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger outpuflC_ChipTrigOu}.

2. Probe trigger outpuTR_TRIGOUT.

3. Trace information. Put a programmable byte into the trace stream from the TCB.
4. Start, End or About (delayed end) control of I@BCONTROLRB, bit.

The basic function of the trigger actions is explaine&éction 9.9.9, "TCBTRIGx Register (Reg 16-23)" on page. 226
Please also read the n®&dction 9.11.5, "Simultaneous triggers"

9.11.5 Simultaneous triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them, and
whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Prioritized
and OR’ed.

9.11.5.1 Prioritized trigger actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes precedence over
the higher numbered units. Thén TCBTRIGxregisters defines the number. The oldest trigger takes precedence over
everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

« Trigger Start, End and About type triggeFCBTRIGX, . field set to 00, 01 or 10), which will assert/de-assert the
TCBCONTROLB, bit. The About trigger is delayed and will always chaR@BCONTROLPBy because it is the
oldest trigger when it de-asse€BCONTROLBy. An About trigger will not start the countdown if an even older
About trigger is using the Trace Word counter.

* Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, thECBTRIGxRg bit is set when the trigger fires. This is so even if a trigger action is suppressed
by a higher priority trigger action. If the trigger is set to only fire once RBTRIGx bit is set), then the suppressed
trigger action will not happen until aft@ICBTRIGxg is written 0.

If a Trigger action is suppressed by a higher priority trigger, then the read value, wii@BifRIGxg bit is set, for

the TCBTRIGx4cefield will be O for suppressed TF6 trace information actions. The read valueTIEBIRIGx, e

field for suppressed Start/End/About triggers will be 11. This indication of a suppressed action is sticky. If any of the
two actions (Trace and Type) are ever suppressed for a multi-fire trigg@CEIRIGx bit is zero), then the read

values in Trace and/or Type are set to indicate any suppressed action.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 233

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.12

About trigger

The About triggers delayed de-assertion of tTtBCONTROLB, bit is always executed, regardless of priority from
another Start trigger at the time of (€BCONTROLB, change. This means that if a simultaneous About trigger
action on the CBCONTROLRB, bit (n/2 Trace Words after the trigger) and a Start trigger hit the same cycle, then the
About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then a new About trigger,

will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11 in the
TCBTRIGx}ype field. But, if theTCBTRIGx4cebit is set, a TF6 trace information will still go in the trace.

9.11.5.2 OR’ed trigger actions
The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ed together to produce the final

trigger. One or more expected trigger strobes oM. ChipTrigOutcan thus disappear. External logic should not rely
on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.

EJTAG Trace cycle-by-cycle behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the real-time
behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

9.12.1 Fifo logic in PDtrace and TCB modules

Both the PDtrace module and the TCB module contain a fifo. This might seem like extra overhead, but there are good
reasons for this. The vast majority of the information compression happens in the PDtrace module. Any data information,
like PC and load/store address values (delta or full), load/store data and processor mode changes, are all sent on the same
16 data bus to the TCB on the PDtrace™ interface. When an instruction requires more than 16 bits of information to be
traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock cycles.

In the TCB, the on-chip trace memory is defined as a 64-bit wide synchronous memory running at core-clock speed. In
this case the fifo is not needed. For off-chip trace through the Trace Probe, the fifo comes into play, because only a limited
number of pins (4, 8 or 16) exist. Also the speed of the Trace Probe interface can be different (either faster or slower)
from that of the 4KE core. So for off-chip tracing, a specific TCB TW fifo is needed.

9.12.2 Handling of Fifo overflow in the PDtrace module

234

Depending on the amount of trace information selected for trace, and the frequency with which the 16-bit data interface
is needed, it is possible for the PDtrace fifo overflow from time to time. There are two ways to handle this case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.
2. Prevent the overflow by back-stalling the core, until the fifo has enough empty slots to accept new trace data.

The PDtrace fifo option is controlled by either thmceControlg or theTCBCONTROLg, bit, depending on the setting
of TraceContro}g bit.

The first option is free of any cycle-by-cycle change whether trace is turned on or not. This is achieved at the cost of
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is traced
as if it was the start of the trace (processor mode and full PC are traced). This guarantees that only the un-traced fifo
information is lost.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

9.12 EJTAG Trace cycle-by-cycle behavior

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved by
back-stalling the core pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trace
information from a new instruction. This option can obviously change the real-time behavior of the core when tracing is
turned on.

If PC trace information is the only thing enabled{raceControl,opg of TCBCONTROL{ope. depending on the

setting ofTraceControfs), and Trace of all branches is turned off (liaceContro}g or TCBCONTROLAg,

depending on the setting ®faceContro}g), then the fifo is unlikely to overflow very often, if at all. This is of course

very dependent on the code executed, and the frequency of exception handler jumps, but with this setting there is very
little information overhead.

9.12.3 Handling of Fifo overflow in the TCB

The TCB also holds a fifo, used to buffer the TW'’s which are sent off-chip through the Trace Probe. The data width of
the probe can be either 4, 8 or 16 pins, and the speed of these data pins can be from 16 times the core-clock to 1/4 of the
core clock (the trace probe clock always runs at a double data rate multiple to the core-cléggtiSed®.12.3.1,

"Probe width and Clock-ratio settingfst a description of probe width and clock-ratio options. The combination

between the probe width (4, 8 or 16) and the data speed, allows for data rates through the trace probe from 256 bits per
core-clock cycle down to only 1 bit per core-clock cycle. The high extreme is not likely to be supported in any
implementation, but the low one might be.

The datarate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maximum
produce one full 64-bit TW per core-clock cycle. This is true for any selection of trace nivdegRontrol;opg Or
TCBCONTROL{ope- The PDtrace module will guarantee the limited amount of data. If the TCB data rate cannot be
matched by the off-chip probe width and data speed, then the TCB fifo can possibly overflow. There is only one way to
handle this:

1. Preventthe overflow by asserting a stall-signal back to the &@& StallSending This will in turn stall the core
pipeline.

There is no way to guarantee that this back-stall from the TCB is never asserted, unless the effective data rate of the Trace
Probe interface is at least 64-bits per core-clock cycle.

As a practical matter, the amount of data to the TCB can be minimized by only tracing PC information and excluding
any cycle accurate information. This is explaine&grction 9.12.2, "Handling of Fifo overflow in the PDtrace module"

and below inSection 9.12.4, "Adding cycle accurate information to the tradéth this setting, a data rate of 8-bits per
core-clock cycle is usually sufficient. No guarantees can be given here, however, as heavy interrupt activity can increase
the number of unpredictable jumps considerably.

9.12.3.1 Probe width and Clock-ratio settings

The actual number of data pins (4, 8 or 16) is defined by@BCONFIG,, field. Furthermore, the frequency of the
Trace Probe can be different from the core-clock frequency. The trace dIBckJLK) is a double data rate clock. This
means that the data pinBR_DATA change their value on both edges of the trace clock. When the trace clock is running
at clock ratio of 1:2 (one half) of core clock, the data output registers are running a core-clock frequency. The clock ratio
is set in thefCBCONTROLBR, field. The legal range for the clock ratio is define#@BCONFIG grvaxand
TCBCONFIGRwmin (both values inclusive). FCBCONTROLBR is set to an unsupported value, the result is
UNPREDICABLE. The maximum possible value fBEBCONFIG-gpaxiS 8:1 (TR_CLKis running 8 times faster than
core-clock). The minimum possible value TEBCONFIGrwin is 1:8 TR_CLKis running at one eighth of the
core-clock). Se@able 9-31 on page 24@r a description of the encoding of the clock ratio fields.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 235

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support in the 4KE™ Core

9.12.4 Adding cycle accurate information to the trace

9.13

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each
instruction in the trace. This information is added to the trace, wheM@BCONTROLB, bit is set. The overhead on
the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the likelihood
of the TCB fifo overflowing.

TCB On-Chip Trace Memory

When on-chip trace memory is availablEaYBCONFIG, T is set) the memory is typically of smaller size than if it were
external in a trace probe. The assumption is that it is of some value to trace a smaller piece of the program.
With on-chip trace memory, the TCB can work in three possible modes:

1. Trace-From mode.

2. Trace-To mode.

3. Under Trigger unit control.

Software can select this mode using T@BCONTROLRB,, field. If one or more trigger control registertBGBTRIGX

are implemented, and they are using Start, End or About triggers, then the trace MA@RGONTROLR,, should be
set to Trace-To mode.

9.13.1 On-Chip Trace Memory size

The supported On-chip trace memory size can range from 256 byte to 8Mbytes, in powers of 2. The actual size is shown
in theTCBCONFIG; field.

9.13.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor enters into a processor mode/ASID value which is defined
to be traced or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is stopped when the
buffer is full. The TCB then signals buffer full usit@BCONTROLBE When external software polling this register

finds theTCBCONTROLRBg bit set, it can then read out the internal trace memory. Saving the trace into the internal
buffer will re-commence again only when thi€ BCONTROLRBg bit is reset and if the core is sending valid trace data
(i.e.,PDO_lamTracingnot equal 0).

9.13.3 Trace-To Mode

236

In the Trace-To mode, the TCB keeps writing into the internal trace memory, wrapping over and overwriting the oldest
information, until the processor is reaches an end of trace condition. End of trace is reached by leaving the processor
mode/ASID value which is traced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this point,
the on-chip trace buffer is then dumped out in a manner similar to that described al&aetion 9.13.2, "Trace-From

Mode".

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 10

|

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immediate,
Jump, and Register. Refer@hapter 11, “4KE™ Processor Core Instructiorigt’a complete listing and description of
instructions.

This chapter discusses the following topics

» Section 10.1, "CPU Instruction Formats" on page 237

» Section 10.2, "Load and Store Instructions" on page 238

» Section 10.3, "Computational Instructions" on page 239

» Section 10.4, "Jump and Branch Instructions" on page 240

» Section 10.5, "Control Instructions" on page 240

» Section 10.6, "Coprocessor Instructions" on page 240

» Section 10.7, "Enhancements to the MIPS Architecture" on page 241

10.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction formats
immediate (I-type), jump (J-type), and register (R-type)—as showigime 10-1 on page 238he use of a small

number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated
(and less frequently used) operations and addressing modes from these three formats as needed.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 237

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

I-Type (Immediate)
31 2625 2120 1615 0
op rs rt immediate

J-Type (Jump)
31 26 25 0
op target

R-Type (Register)

31 2625 2120 1615 1110 65 0
op rs rt rd sa funct
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch
condition
immediate ;g;jbrgsi?g;sgli:ir\]/qaelgte, branch displacement or
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

Figure 10-1 Instruction Formats

10.2 Load and Store Instructions

Load and store instructions are immediate (I-type) instructions that move data between memory and the general
registers. The only addressing mode that load and store instructions directly supasetrisgister plus 16-bit signed
immediate offset

10.2.1 Scheduling a Load Delay Slot
A load instruction that does not allow its result to be used by the instruction immediately following is delikegkd
load instruction The instruction slot immediately following this delayed load instruction is referred to ésatielelay
slot
In a 4KE core, the instruction immediately following a load instruction can use the contents of the loaded register;
however in such cases hardware interlocks insert additional real cycles. Although not required, the scheduling of load
delay slots can be desirable, both for performance and R-Series processor compatibility.

10.2.2 Defining Access Types

Access typéndicates the size of a core data item to be loaded or stored, set by the load or store instruction opcode.

238 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

10.3 Computational Instructions

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the addressed
field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian configuration, the
low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown iffable 10-1 Only the combinations shown Tiable 10-lare permissible; other combinations cause
address error exceptions.

Table 10-1 Byte Access Within a Word

Bytes Accessed
Low Order Big Endian Little Endian
Address Bits (31— 0) | (B1--------—mmmmmmmm- 0)
Access Type 2 1 0 Byte Byte
Word 0 0 0 0 1 2 3 3 2 1 0
0 0 0
Triplebyte
0 0 1
0 0 0
Halfword
0 1 0
0 0 0
0 0 1
Byte
0 1 0
0 1 1

10.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in
immediate (I-type) format, in which one operand is a 16-bit immediate.
Computational instructions perform the following operations on register values:

— Arithmetic

— Logical

— Shift

— Multiply

— Divide
These operations fit in the following four categories of computational instructions:

— ALU Immediate instructions

— Three-operand Register-type Instructions

— Shift Instructions

— Multiply And Divide Instructions

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 239

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

10.3.1 Cycle Timing for Multiply and Divide Instructions

10.4

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue through
the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply instruction is
followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product does become
available. Refer t&€hapter 2, “Pipeline of the 4KE™ Core,” on pageftBmore information on instruction latency and
repeat rates.

Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a delay
of one instruction: that is, the instruction immediately following the jump or branch (this is known as the instruction in
thedelay slo} always executes while the target instruction is being fetched from storage.

10.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructiddsdtion 11.3, "MIPS32™
Instruction Set for the 4KE™ core" on page 245

10.4.2 Overview of Branch Instructions

10.5

10.6

240

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset(shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

Coprocessor Instructions

CPO instructions perform operations on the System Control Coprocessor registers to manipulate the memory
management and exception handling facilities of the processor. R€feapter 11, “4KE™ Processor Core
Instructions,” on page 24f@r a listing of CPO instructions.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

10.7 Enhancements to the MIPS Architecture

10.7 Enhancements to the MIPS Architecture

The core execution unit implements the MIPS32 architecture, which includes the following instructions.
» CLOCount Leading Ones

» CLZCount Leading Zeros

* MADDMultiply and Add Word

* MADDUMultiply and Add Unsigned Word

» MSUBMultiply and Subtract Word

* MSUBUMultiply and Subtract Unsigned Word

* MULMultiply Word to Register

» SSNOPSuperscalar Inhibit NOP

10.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in the SRBBanned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written torthe GPR
If all 32 bits are set in the GRR, the result written to the GP# is 32.

10.7.2 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in thes (SBRanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to tide GPR
If all 32 bits are cleared in the GRR the result written to the GP® is 32.

10.7.3 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word value in the
GPRrsis multiplied by the 32-bit value in the GPR treating both operands as signed values, to produce a 64-bit result.
The product is added to the 64-bit concatenated values in the Hl and LO register pair. The resulting value is then written
back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

10.7.4 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 32-bit word
value in the GPRs is multiplied by the 32-bit value in the GRR treating both operands as unsigned values, to produce

a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO register pair. The resulting value
is then written back to the HI and LO registers. No arithmetic exception occurs under any conditions.

10.7.5 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit word value
in the GPRrsis multiplied by the 32-bit value in the GRR treating both operands as signed values, to produce a 64-bit
result. The product is subtracted from the 64-bit concatenated values in the HI and LO register pair. The resulting value
is then written back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 241
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

10.7.6 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair. The 32-bit
word value in the GPRs is multiplied by the 32-bit value in the GPRtreating both operands as unsigned values, to
produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the Hl and LO register pair. The
resulting value is then written back to the Hl and LO registers. No arithmetic exception occurs under any circumstances.

10.7.7 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in thre GPR
multiplied by the 32-bit value in the GRR treating both operands as signed values, to produce a 64-bit result. The
least-significant 32-bits of the product are written to the @&PRhe contents of the HI and LO register pair are not
defined after the operation. No arithmetic exception occurs under any circumstances.

10.7.8 SSNOP- Superscalar Inhibit NOP

The MIPS32 4KE processor cores treat this instruction as a regular NOP.

242 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 243

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

244 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.1 Understanding the Instruction Descriptions

111

11.2

Chapter 11

4KE™ Processor Core Instructions

This chapter supplements the MIPS32 Architecture Reference Manual by describing instruction behavior that is specific
to a MIPS32™ 4KE™ processor core. The chapter is divided into the following sections:

» Section 11.1, "Understanding the Instruction Descriptions" on page 245
» Section 11.2, "4KE™ Opcode Map" on page 245
» Section 11.3, "MIPS32™ Instruction Set for the 4KE™ core" on page 248

The 4KE processor core also supports the MIPS16 ASE to the MIPS32 architecture. The MIPS16 ASE instruction set
is described irChapter 12, “MIPS16 Application-Specific Extension to the MIPS32 Instruction Set,” on page 280

Understanding the Instruction Descriptions

Refer to Volume Il of the MIPS32 Architecture Reference Manual for more information about the instruction
descriptions. There is a description of the instruction fields, definition of terms, and a description function notation
available in that document.

4KE™ Opcode Map

Key

» CAPITALIZED text indicates an opcode mnemonic

« ltalicizedtext indicates to look at the specified opcode submap for further instruction bit decode

 Entries containing tha symbol indicate that a reserved instruction fault occurs if the core executes this instruction.

 Entries containing thf symbol indicate that a coprocessor unusable exception occurs if the core executes this
instruction

Table 11-1 Encoding of theDpcodeField

opcode | bits 28..26
0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111
0 | 000 Special Reglmm J JAL BEQ BNE BLEZ BGTzZ
1| 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2| 010 COPO B COP2 B BEQL BNEL BLEZL BGTZL
3011 a a a a Special2 JALX a Special3
4| 100 LB LH LWL Lw LBU LHU LWR a
5] 101 SB SH SWL SW [of [of SWR CACHE
6 | 110 LL B LwcC2 PREF [of B a [of
7111 SC B SWC2 a a B a a

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 11 4KE™ Processor Core Instructions

Table 11-2SpecialOpcode encoding of Function Field

function | bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0|oo0| sLL B A SRA SLLV a oyl | srav
1| 001 JR JALR MQOvZ MOVN SYSCALL| BREAK a SYNC
2| 010 MFHI MTHI MFLO MTLO a a a a
3| 011 MULT MULTU DIV DIVU a a a a
41 100 ADD ADDU SUB SUBU AND OR XOR NOR
51101 a a SLT SLTU a a a a
6 | 110 TGE TGEU TLT TLTU TEQ a TNE a
7111 a a a a a a a a
Table 11-3Special20pcode Encoding of Function Field
function | bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 MADD MADDU MUL a MSUB MSUBU a a
1| 001 a a a a a a a a
2| 010 1
UDI- ora
3| 011
41 100 CLz CLO a a a a a a
51101 a a a a a a a a
6 | 110 a a a a a a a a
71111 a a a a a a a SDBBP

1. CorExtend instructions are a build-time option of the 4KE Pro cores, if not implemented this instructions space will cause a reserved
instruction exception. If assembler support exists, the mnemonics for CorExtend instructions are most likely UDIO, UDI1, ..,
UDI15.

Table 11-4Special30pcode Encoding of Function Field

function | bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 EXT a a a INS a a a
1| 001 a a a a a a a a
2| 010 a a a a a a a a
3 (011 a a a a a a a a
41 100 BSHFL a a a a a a a
51101 a a a a a a a a
6 | 110 a a a a a a a a
71111 a a a RDHWR a a a a

246

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

11.2 4KE™ Opcode Map

Table 11-5ReglmmEncoding of rt Field

rt bits 18..16
0 1 2 3 4 5 6 7
bits 20..1 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL BGEZL a a a a
1| 01 TGEI TGEIU TLTI TLTIU TEQI a TNEI a
21 10 BLTZAL BGEZAL | BLTZALL [BGEZALL a a a a
3| 11 a a a a a a a SYNCI
Table 11-6COP2Encoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..2 000 001 010 011 100 101 110 111
0| 00 MFC2 a CFC2 MFHC2 MTC2 a CTC2 MTHC2
1| o1 BC2 BC2
2| 10
3| 11 co

1. The core will treat the entire row asBL2instruction. However compiler and assembler support only exists for the first one. Some

compiler and assembler products may allow the user to add new instructions.

Table 11-7COP2Encoding of rt Field When rs=BC2

rt bits 16

bits 17 0 1
0 BC2F BC2T
1 BC2FL BC2TL

Table 11-8COPOENcoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFCO a a a MTCO a a a
1| 01 a a RDPGPR MFMCO a a WRPGPR a
2| 10
Cco
3| 11

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

247

Chapter 11 4KE™ Processor Core Instructions

Table 11-9COPOEnNcoding of Function Field When rs€0

function | bits 2..0
0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111
0 | 000 a TLBR TLBWI a a a TLBWR a

1| 001 TLBP a a a a a a a

2| 010 a a a a a a a a

3 (011 ERET IACK a a a a a DERET
4| 100 WAIT a a a a a a a
51101 a a a a a a a a

6 | 110 a a a a a a a a
71111 a a a a a a a a

11.3 MIPS32™ |nstruction Set for the 4KE™ core

This section describes the MIPS32 instructions for the 4KE c@edsde 11-10ists the instructions in alphabetical order.
Instructions that have implementation dependent behavior are described afterwards. The descriptions for other
instructions exist in the architecture reference manual and are not duplicated here.

Table 11-10 Instruction Set

248

Instruction Description Function
ADD Integer Add Rd =Rs + Rt
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt = Rg tmmed
ADDU Unsigned Integer Add Rd = Rg,Rt
AND Logical AND Rd = Rs & Rt
ANDI Logical AND Immediate Rt = Rs & (|| Immed)
Unconditional Branch _
B (Assembler idiom for: BEQ r0, r0, offset) PC += (int)offset
BAL Branch and Link GPR[31]=PC + 8
(Assembler idiom for: BGEZAL rO0, offset) PC += (int)offset
s if COP2Condition(cc) ==
BC2F Branch On COP2 Condition False PC += (int)offset
if COP2Condition(cc) ==
BC2FL Branch On COP2 Condition False Likely eIF;(e: += (ingoffset
Ignore Next Instruction
- if COP2Condition(cc) == 1
BC2T Branch On COP2 Condition True PC += (int)offset
if COP2Condition(cc) ==
BC2TL Branch On COP2 Condition True Likely eII:;g += (intjoffset
Ignore Next Instruction
if Rs == Rt
BEQ Branch On Equal PC += (int)offset

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.3 MIPS32™ Instruction Set for the 4KE™ core

Table 11-10 Instruction Set (Continued)

Instruction

Description

Function

BEQL

Branch On Equal Likely

if Rs == Rt
PC += (int)offset
else
Ignore Next Instruction

BGEZ

Branch on Greater Than or Equal To Zero

if IRs[31]
PC += (int)offset

BGEZAL

Branch on Greater Than or Equal To Zero Ar
Link

4GPRI31] =PC +8
if IRS[31]
PC += (int)offset

BGEZALL

Branch on Greater Than or Equal To Zero An
Link Likely

GPR[31]=PC + 8
if IRs[31]
PC += (int)offset
else
Ignore Next Instruction

d

BGEZL

Branch on Greater Than or Equal To Zero
Likely

if IRs[31]
PC += (int)offset
else
Ignore Next Instruction

BGTzZ

Branch on Greater Than Zero

if IRS[31] && Rs =0
PC += (int)offset

BGTZL

Branch on Greater Than Zero Likely

if IRs[31] && Rs =0
PC += (int)offset

else
Ignore Next Instruction

BLEZ

Branch on Less Than or Equal to Zero

if Rs[31] || Rs ==
PC += (int)offset

BLEZL

Branch on Less Than or Equal to Zero Likel

if Rs[31] || Rs ==
PC += (int)offset
else
Ignore Next Instruction

BLTZ

Branch on Less Than Zero

if Rs[31]
PC += (int)offset

BLTZAL

Branch on Less Than Zero And Link

GPR[31]=PC +8
if Rs[31]
PC += (int)offset

BLTZALL

Branch on Less Than Zero And Link Likely

GPR[31]=PC + 8
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BLTZL

Branch on Less Than Zero Likely

if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BNE

Branch on Not Equal

if Rs I= Rt
PC += (int)offset

BNEL

Branch on Not Equal Likely

if Rs 1= Rt
PC += (int)offset
else
Ignore Next Instruction

BREAK

Breakpoint

Break Exception

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

249

Chapter 11 4KE™ Processor Core Instructions

250

Table 11-10 Instruction Set (Continued)

Instruction Description Function
CACHE Cache Operation See Cache Description
CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]
CLO Count Leading Ones Rd = NumLeadingOnes(Rs)
CLz Count Leading Zeroes Rd = NumLeadingZeroes(Rs)
COPO Coprocessor 0 Operation See Coprocessor Description
COP2 Coprocessor 2 Operation See Coprocessor 2 Descriptio
CTC2 Move Control Word To Coprocessor 2 CCR[2, n] =Rt
. PC = DEPC
DERET Return from Debug Exception Exit Debug Mode
Rt=Status
DI Disable Interrupts
Statug==0
- LO = (int)Rs / (int)Rt
DIV Divide HI = (int)Rs % (inHRt
: - LO = (uns)Rs / (uns)Rt
DIVU Unsigned Divide HI = (Uns)Rs % (Uns)Rt
: ; Stall until execution hazards are
EHB Execution Hazard Barrier cleared
Rt=Status
El Enable Interrupts
Statug==1
if SR[2]
PC = ErrorEPC
else
ERET Return from Exception PC =EPC
SR[1]=0
SR[2] =0
LL=0
EXT Extract Bit Field Rt=ExtractField(Rs,msbd,Isb)
INS Insert Bit Field Rt=InsertField(Rt,Rs,msb,Isb)
J Unconditional Jump PC = PCJ[31:28] || offset<<2
: GPR[31]=PC +8
JAL Jump and Link PC = PC[31:28] || offset<<2
. . Rd=PC+38
JALR Jump and Link Register PC = Rs
Rd=PC+8
PC =Rs
JALR.HB Jump and Link Register with Hazard Barrier|
Stall until all execution and
instruction hazards are cleared
JR Jump Register PC =Rs
PC =Rs
JR.HB Jump Register with Hazard Barrier

Stall until all execution and
instruction hazards are cleared

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.3 MIPS32™ Instruction Set for the 4KE™ core

Table 11-10 Instruction Set (Continued)

Instruction Description Function
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]
Rt = Mem[Rs+offset]
LL Load Linked Word LL=1
LLAdr = Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
LW Load Word Rt = Mem[Rs+offset]
LWC2 Load Word To Coprocessor 2 CPRJ[2, n, 0] = Mem[Rs+offset]
LWL Load Word Left See LWL instruction.
LWR Load Word Right See LWR instruction.
MADD Multiply-Add HI, LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI, LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPRI[O, n, sel]
MFC2 Move From Coprocessor 2 Rt = CPR[2, n35¢]
MFHC2 Move From High Word Coprocessor2 Rt= CPR[2,nzgetb
MFHI Move From HI Rd = HI
MFLO Move From LO Rd =LO
MOVN Move Conditional on Not Zero Ifg;::?[%%f gg;?[rr]s]
MOvz Move Conditional on Zero IfGGIEFﬁgjt}::gFtJ}l\?[?s]
MSUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPRJO, n, sel] =Rt
MTC2 Move To Coprocessor 2 CPR[2, n, gelh= Rt
MTHC2 Move To High Word Coprocessor 2 CPR[2, n,&eH,= Rt
MTHI Move To HI HI=Rs
MTLO Move To LO LO =Rs
MUL Multiply with register write Eldlzl_?(;Unpredictable
MULT Integer Multiply HI'| LO = (int)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NOP No Operation
(Assembler idiom for: SLL rO, r0, r0)

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

251

Chapter 11 4KE™ Processor Core Instructions

252

Table 11-10 Instruction Set (Continued)

Instruction Description Function
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd =Rs | Rt
ORI Logical OR Immediate Rt =Rs | Immed
PREF Prefetch Load Specified Line into Cache
RDHWR Read HardWare Register Rt=HWR[Rd]
RDPGPR Read GPR from Previous Shadow Set RA=SGPR[SRE®RI]
ROTR Rotate Word Right Rd = Bty oll RB1. sa
ROTRV Rotate Word Right Variable Rd =@Rt1 oll Rty Rs
SB Store Byte (byte)Mem[Rs+offset] = Rt
if LL =1
SC Store Conditional Word mem[Rxoffs] = Rt
Rt=LL
SDBBP Software Debug Breakpoint Trap to SW Debug Handler
SEB Sign Extend Byte Rd=SignExtend{Rj
SEH Sign Extend Half Rd=SignExtend(Rtq
SH Store Halfword (half)lMem[Rs+offset] = Rt
SLL Shift Left Logical Rd = Rt << sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
if (int)Rs < (int)Rt
SLT Set on Less Than Rd=1
else
Rd=0
if (int)Rs < (int)immed
SLTI Set on Less Than Immediate eEte: 1
Rt=0
if (uns)Rs < (uns)immed
SLTIU Set on Less Than Immediate Unsigned eEte: 1
Rt=0
if (uns)Rs < (uns)immed
SLTU Set on Less Than Unsigned ell:_i,g =
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation Nop
SUB Integer Subtract Rt = (int)Rs - (int)Rd

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

11.3 MIPS32™ Instruction Set for the 4KE™ core

Table 11-10 Instruction Set (Continued)

Instruction Description Function
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
SW Store Word Mem[Rs+offset] = Rt
SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2, n, (]
SWL Store Word Left See SWL instruction description
SWR Store Word Right See SWR instruction description.
SYNC Synchronize See SYNC instruction below.
SYNCI Synchronize Caches to Make Instruction Force D$ writeback and 1$
Writes Effective invalidate on specified address
SYSCALL System Call SystemCallException
. if Rs == Rt
TEQ Trap if Equal TrapException
. . if Rs == (int)immed
TEQI Trap if Equal Immediate TrapException
: if (inf)Rs >= (int)Rt
TGE Trap if Greater Than or Equal TrapException
: : if (int)Rs >= (int)lmmed
TGEI Trap if Greater Than or Equal Immediate TrapException
TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)immed
Unsigned TrapException
. : if (uns)Rs >= (uns)Rt
TGEU Trap if Greater Than or Equal Unsigned TrapException
TLBP Probe TLB for Matching Entry See TLBP instruction below.
TLBR Read Index for TLB Entry See TLBR instruction below.
TLBWI Write Indexed TLB Entry See TLBWI instruction below.
TLBWR Write Random TLB Entry See TLBWR instruction below.
: if (int)Rs < (int)Rt
TLT Trap if Less Than TrapException
: : if (int)Rs < (int)iImmed
TLTI Trap if Less Than Immediate TrapException
; : ; if (uns)Rs < (uns)immed
TLTIU Trap if Less Than Immediate Unsigned TrapException
: : if (uns)Rs < (uns)Rt
TLTU Trap if Less Than Unsigned TrapException
. if Rs I= Rt
TNE Trap if Not Equal TrapException
: ; if Rs I= (int)immed
TNEI Trap if Not Equal Immediate TrapException
WAIT Wait for Interrupts Stall until interrupt occurs
WRPGPR Write to GPR in Previous Shadow Set SGPR[SRS§RA]=Rt
WSBH Word Swap Bytes within Halfwords Rd=SwapBytesWithinHalfs(Rt)

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

253

Chapter 11 4KE™ Processor Core Instructions

Table 11-10 Instruction Set (Continued)

Instruction Description Function
XOR Exclusive OR Rd=Rs "Rt
XORI Exclusive OR Immediate Rt = Rs ” (uns)immed
254 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation CACHE
31 26 25 21 20 16 15 0
CACHE
base op offset
101111
6 5 5 16
Format: CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 11-11 Usage of Effective Address

Operation
Requires an

Type of
Cache

Usage of Effective Address

Address

Physical

The effective address is translated by the MMU to a physical address. The phy

address is then used to address the cache

sical

Index

N/A

Assuming that the total cache size in bytes is CS, the associativity is A, and

the

number of bytes per tag is BPT, the following calculations give the fields of the

address which specify the way and the index:

OffsetBit ~ Log2(BPT)

IndexBit ~ Log2(CS/A)

WayBit ~ IndexBit + Ceiling(Log2(A))
Way « Addr \aygit-1..IndexBit

Index — Addr IndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value

fully specifies the cache tag. This is shown symbolically in the figure below.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

255

256

Perform Cache Operation CACHE

Figure 11-1 Usage of Address Fields to Select Index and Way

’._ WayBit;._ IndexBit ’._ OffsetBit
0

Unused Way Index byte index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions should must be triggered by an Index Load Tag or Index
Store tag operation, as these operations are used for initialization and diagnostic purposes.

An address Error Exception (with cause code equal AJEL) occurs if the effective address references a portion of the
kernel address space which would normally result in such an exception.Data watch is not triggered by a cache instruc-
tion whose address matches the Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:
Table 11-12 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
2#00 | Primary Instruction

2#01 D Primary Data

2#10 T Not supported

2#11 S Not supported

Bits [20:18] of the instruction specify the operation to perform.On Index Load Tag and Index Store Data operations,
the specific word that is addressed is loaded into / read from the DataLo register. All other cache instructions are
line-based and the word and byte indexes will not affect their operation.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation

CACHE

Table 11-13 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI|WST,SPR] Cleared

Code

Caches

Name

Effective
Address
Operand

Type

Operation

Implemented?

2#000

Index Invalidate

Index

Set the state of the cache block at the specified

index to invalid.

This encoding may be used by software to
invalidate the entire instruction cache by
stepping through all valid indices.

Index Writeback
Invalidate

Index

ST

Reserved

Index

If the state of the cache block at the specified
index is valid and dirty, write the block back to

the memory address specified by the cache tag.

Yes

After that operation is completed, set the state

of the cache block to invalid. If the block is
valid but not dirty, set the state of the block {o
invalid.

This encoding may be used by software to

invalidate the entire data cache by stepping
through all valid indices. Note that Index Stor
Tag should be used to initialize the cache af
powerup.

1]

No

2#001

Index Load Tag

Index

Read the tag for the cache block at the specifijed

index into theTagLoCoprocessor O register.
Also read the data corresponding to the byt
index into theDataLoregister.

7%

Yes

2#010

Index Store Tag

Index

Write the tag for the cache block at the
specified index from th&aglLoCoprocessor 0
register.

This encoding may be used by software to
initialize the entire instruction or data cache
by stepping through all valid indices. Doing s|
requires that th@agLoandTagHi registers
associated with the cache be initialized first

oY

O

Yes

2#011

All

Reserved

Unspecifierr

Executed as a no-op.

No

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

257

Table 11-13 Encoding of Bits [20:18] of the CACHE Instruction, ErrCt|WST,SPR] Cleared

Effective
Address
Operand
Code Caches Name Type Operation Implemented?
I,D Hit Invalidate Address
If the cache block contains the specified Yes
address, set the state of the cache block to
24100 invalid.
This encoding may be used by software to
invalidate a range of addresses from the
S, T Reserved Address | jnstruction cache by stepping through the No
address range by the line size of the cache.
Fill the cache from the specified address.
; The cache line is refetched even if it is alreadly
| Fill Address in the cache. Ves
2#101 D Add If th he block contains th ified Y
SO\ ress e cache block contains the specifie es
Hlltn\\//\g;itggt%(:k address and it is valid and dirty, write the
contents back to memory. After that operation
is completed, set the state of the cache blockte
invalid. If the block is valid but not dirty, set the
state of the block to invalid. This encoding may
be used by software to invalidate a range of]
addresses from the data cache by stepping
S, T Reserved Address through the address range by the line size of the No
cache.
D Hit Writeback Address Yes
If the cache block contains the specified
2#110 address and it is valid and dirty, write the
contents back to memory. After the operation|is
completed, leave the state of the line valid, but
S, T Reserved Address | clear the dirty state. No
258 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Table 11-13 Encoding of Bits [20:18] of the CACHE Instruction, ErrCt|WST,SPR] Cleared

The lock state is cleared by executing an Index
Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation with the lock bit reset in
the TagLoregister.

Effective
Address
Operand
Code Caches Name Type Operation Implemented?
If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valjd
and locked. If the cache already contains the
specified address, set the state to locked. The
way selected on fill from memory is the least
2#111 I,D Fetch and Lock Address| "ecently used. Yes

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

259

Table 11-14 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[WST] Set. ErrCtl[SPR] Cleared

Effective
Address
Operand
Code Caches Name Type Operation Implemented?
Read the WS RAM at the specified index into
2#001 D Index Load WS Index the TagLoCoprocessor O register. Yes
Update the WS RAM at the specified index
2#010 1. D Index Store WS Index from theTagLoCoprocessor 0 register. Yes
Write the DatalLo Coprocessor 0 register
2#011 L, D Index Store Data Index contents at the way and byte index specified. Yes
All All All of the other codes behave the same as wten
Others ErrCt][WST] is cleared.
Table 11-15 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[SPR] Set
Effective
Address
Operand
Code Caches Name Type Operation Implemented?
Read the SPRAM tag at the specified index into
theTagLoCoprocessor O register. Also read the
2#001 LD Index Load Tag Index data corresponding to the byte index into the es
Dataloregister
Update the SPRAM tag at the specified indgx
2#010 D Index Store Tag Index from theTagLoCoprocessor 0 register. Yes
Write the Datal.o Coprocessor O register
2#011 I, D Index Store Data Index | contents into the SPRAM at the word index Yes
specified.
All All All of the other codes behave the same as when
Others ErrCt[SPR] is cleared.
260 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Perform Cache Operation (cont.) CACHE

Restrictions:
The operation of this instruction WNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction ISNDEFINED if the operaation requires an address, and that address is uncache-
able.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:
vAddr ~ GPR[base] + sign_extend(offset)
(pAddr, uncached) — AddressTranslation(vAddr, DataReadReference)

CacheOp(op, vAddr, pAddr)

Exceptions:

Coprocessor Unusable Exception
TLB REefill Exception.

TLB Invalid Exception

Address Error Exception

Bus Error Exception

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 261
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Load Linked Word LL

262

31 26 25 21 20 16 15 0
LL
base rt offset
110000
6 5 5 16
Format: LL rt, offset(base) MIPS32
Purpose:

To load a word from memory for an atomic read-modify-write

Description: it — memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPRt. The 16-bit signedffsetis added to the contents of GB&seto form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and 1/0O devices sharing the location; if it is not, the
result inUNPREDICTABLE . Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr — sign_extend(offset) + GPR[base]
ifvAddr 1 o #0 2then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword — LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ~ memword
LLbit <1

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Load Linked Word (cont.) LL

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 263
Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Prefetch PREF

31 26 25 21 20 16 15 0
PREF
base hint offset
110011
6 5 5 16
Format: PREF hint,offset(base) MIPS32
Purpose:

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signedfsetto the contents of GPRaseto form an effective byte address. Thimt field sup-
plies information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically prefetching the data into cache, to improve program perfor-
mance. The action taken for a specific PREF instruction is both system and context dependent. Any action, including
doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of a pro-
gram. Implementations are expected either to do nothing, or to take an action that increases the performance of the
program. The PrepareForStore function is unique in that it may modify the architecturally visible state.

PREF is an advisory instruction that may change the performance of the program. Howevehifdnallues except
for PrepareForStore, and all effective addresses, it neither changes the architecturally visible state nor does it alter the
meaning of the program.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exception, the
exception condition is ignored and no data movement occurs. However even if no data is prefetched, some action that
is not architecturally visible, such as writeback of a dirty cache line, can take place.

PREF never generates a memory operation for a location withcathednemory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the memory
access type of the effective address, just as it would be if the memory operation had been caused by a load or store to
the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

Thehint field supplies information about the way the data is expected to be used. With the exception of PrepareFor-
Store, ahint value cannot cause an action to modify architecturally visible state. A processor mahinseadue to
improve the effectiveness of the prefetch action.

264 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Prefetch (cont.) PREF

Any of the following conditions causes the core to treat a PREF instruction as a NOP.
* Areservedint value is used
* The address has a translation error
» The address maps to an uncacheable page

In all other cases, except whéimt equals 25, execution of the PREF instruction initiates an external bus read trans-
action. PREF is a non-blocking operation and does not cause the pipeline to stall while waiting for the data to be
returned.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 265

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Prefetch (cont.)

266

Table 11-16 Values of thénint Field for the PREF Instruction

PREF

Value

Name

Data Use and Desired Prefetch Action

load

Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

store

Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

Reserved

Reserved - treated as a NOP.

load_streamed

Use: Prefetched data is expected to be read (not modified) bu
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so th
does not displace data prefetched as “retained.”

not

at it

store_streamed

Use: Prefetched data is expected to be stored or modified but
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so
it does not displace data prefetched as “retained.”

not

that

load_retained

Use: Prefetched data is expected to be read (not modified) an
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so th
is not displaced by data prefetched as “streamed.”

at it

store_retained

Use: Prefetched data is expected to be stored or modified and r¢
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so
it is not displaced by data prefetched as “streamed.”

used

that

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Table 11-16 Values of thénint Field for the PREF Instruction

8-24 Reserved Reserved - treated as a NOP.

Use: Data is no longer expected to be used.

25 writeback_inval‘i‘date ~ Action: Schedule a writeback of any dirty data. The cache linelis
(alsoknown as *nudge”) marked as invalid upon completion of the writeback. If cache ling is
clean or locked, no action is taken.

26-29 Reserved Reserved - treated as a NOP.

Use: Prepare the cache for writing an entire line, without the

30 PrepareForStore overhead involved in filling the line from memory.
Reserved - treated as a NOP.
31 Reserved Reserved - treated as a NOP.
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 267

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Prefetch (cont.) PREF

268

Restrictions:
None

Operation:

vAddr ~ GPR[base] + sign_extend(offset)
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an address pointer
value before the validity of a pointer is determined.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Store Conditional Word scC

31 26 25 21 20 16 15 0
SC
base rt offset
111000
6 5 5 16
Format: SC rt, offset(base) MIPS32
Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] —rtrt ~ lelsert <0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPRt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signedffsetis added to the contents of GB&seto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

» The 32-bit word of GPRt is stored into memory at the location specified by the aligned effective address.
» A1, indicating success, is written into GRR

Otherwise, memory is not modified and a 0, indicating failure, is written intorGPR

If the following event occurs between the execution of LL and SC, the SC fails:
» An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

« A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

» The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for
instruction words.)

The following conditions must be true or the result of the SINBREDICTABLE :
» Execution of SC must have been preceded by execution of an LL instruction.

» An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 269

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Store Conditional Word (cont.) SC

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ~ sign_extend(offset) + GPR[base]
ifvAddr ;. #02then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
dataword — GPR]rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] « 031 || LLbit

270 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Store Conditional Word (cont.)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (TO) # load counter
ADDI T2,T1,1 #increment
SC T2, (TO) # try to store, checking for atomicity
BEQ T2, 0, L1 #if not atomic (0), try again
NOP # branch-delay slot

SC

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

lation assistance.

LL and SC function on a single processor frached noncoheremhemory so that parallel programs can be run on

uniprocessor systems that do not suppached cohererthemory access types.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

271

Synchronize Shared Memory SYNC

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SYNC
stype
000000 00 0000 0000 0000 0 001111
6 15 5 6
Format: SYNC (stype = 0 implied) MIPS32
Purpose:

To order loads and stores.

Description:

Simple Description:

» SYNC affects onlyuncachedaindcached cohererbads and stores. The loads and stores that occur before the SYNC
must be completed before the loads and stores after the SYNC are allowed to start.

» Loads are completed when the destination register is written. Stores are completed when the stored value is visible to
every other processor in the system.

» SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference results are visible
across operating mode changes. For example, a SYNC is required on entry to and exit from Debug Mode to
guarantee that memory affects are handled correctly.

Detailed Description:

* SYNC does not guarantee the order in which instruction fetches are performatydvalues 1-31 are reserved
for future extensions to the architecture. A value of zero will always be defined such that it performs all defined
synchronization operations. Non-zero values may be defined to remove some synchronization operations. As such,
software should never use a non-zero value oftypefield, as this may inadvertently cause future failures if
non-zero values remove synchronization operations.

» The SYNC instruction stalls until all loads, stores, refills are completed and all write buffers are empty.

272 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Synchronize Shared Memory (cont.) SYNC

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types otherdhemedandcached
coherentis UNPREDICTABLE .

Operation:
SyncOperation(stype)

Exceptions:
None

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 273

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry TLBR

274

31 26 25 24 6 5 0
COPO CcoO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format: TLBR MIPS32
Purpose:

To read an entry from the TLB.

Description:

The EntryHi, EntryLoQ EntryLol, andPageMaskegisters are loaded with the contents of the TLB entry pointed to
by the Index register. Note that the value written to EwdryHi, EntryLoQ andEntryLolregisters may be different
from that originally written to the TLB via these registers in that:

e The value returned in the G bit in both thetryLoOandEntryLolregisters comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G biEninyLoOandEntryLolwhen
the TLB was written.

Restrictions:

The operation i&JNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry

Operation:

i« Index
if i > (TLBEntries - 1) then
UNDEFINED
endif
PageMasKyask < TLB[i] mask
EntryHi ~
TLB[] venell
0° || TLB[] asip
EntryLol 02|
TLB[I] prna i
TLBl I TLBl pall TLB vi I TLBl ¢
EntryLo0 0 2|

TLB[i] penoll
TLB[i] coll TLBI] po |l TLBI[] vo || TLBI[i] G

Exceptions:
Coprocessor Unusable

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

TLBR

275

276

Write Indexed TLB Entry

TLBWI

31 26 25 24 0
COPO CcoO 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6
Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by tHedexregister.

Description:

The TLB entry pointed to by the Index register is written from the contents cEttigyHi, EntryLoQ EntryLol, and
PageMaskegisters. The information written to the TLB entry may be different from that irEtheyHi, EntryLoQ
andEntryLolregisters, in that:

» The single G bit in the TLB entry is set from the logical AND of the G bits ifttiieyLoOandEntryLol
registers.

Restrictions:

The operation i9JNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry

Operation:

i« Index

TLBIi]
TLBIi]
TLBI]
TLBI]
TLBI]
TLBI]
TLBI]
TLBIi]
TLBI]
TLBI]
TLBI]
TLBI]

Mask — PageMaskpask

venz < EntryHi ypnp
Asip < EntryHi agp
6 « EntryLol gand EntryLoO
prn1 — Entrylol pey
c1 < EntryLol

p1 « EntryLol p

vi1 « EntryLol
prno — EntryLoO pey
co « EntryLo0

po « EntryLo0 p

vo < EntryLo0

Exceptions:

Coprocessor Unusable

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

G

TLBWI

277

Write Random TLB Entry TLBWR

31 26 25 24 6 5 0
COPO CcO 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6
Format: TLBWR MIPS32
Purpose:

To write a TLB entry indexed by tiiRandonregister.

Description:

The TLB entry pointed to by thRandonregister is written from the contents of thmtryHi, EntryLoQ EntryLo],
and PageMaskregisters. The information written to the TLB entry may be different from that inBEh&ryHi,
EntryLoQ andEntryLolregisters, in that:

e The single G bit in the TLB entry is set from the logical AND of the G bits ifEtiieyLoOandEntryLol
registers.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

278 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Write Random TLB Entry

Operation:
i « Random
TLB[] mask — PageMaskyask
TLB[i] vpn2 < EntryHi ypyp
TLB[i] asip ~ EntryHi asp
TLB[]] g < EntryLol gand EntryLoO
TLB[] ppny < EntryLol peny
TLB[i] ¢; < EntryLol ¢
TLB[i] p; < EntryLol p
TLB[l] vi1 « EntryLol
TLBJi] PENO < EntryLoO PEN
TLB[]] o « EntryLo0 ¢
TLB[]] po « EntryLo0
TLB[i] o < EntryLo0

Exceptions:

Coprocessor Unusable

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

G

TLBWR

279

Enter Standby Mode

WAIT

280

31 26 25 24 0
COPO CcoO WAIT
Implementation-Dependent Code
010000 1 100000
6 1 19 6
Format: WAIT MIPS32
Purpose:

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or SI_ColdReset) is
signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the 4KE core does not use the
code field in this instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processorUlNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a

jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Enter Standby Mode (cont.) WAIT

Operation:

I: Enter lower power mode
1+1:/* Potential interrupt taken here */

Exceptions:
Coprocessor Unusable Exception

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 281

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 282

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 283

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

284 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

12.1 Instruction Bit Encoding

Chapter 12

MIPS16 Application-Specific Extension to the MIPS32 Instruction Set

This chapter describes the MIPS16 ASE as implemented in the 4KE core. Refer to Volume IV-a of the MIPS32
Architecture Reference Manual for a general description of the MIPS16 ASE as well as instruction descriptions.

This chapter covers the following topics:

» Section 12.1, "Instruction Bit Encoding" on page 284

» Section 12.2, "Instruction Listing" on page 286

12.1 Instruction Bit Encoding

Table 12-2throughTable 12-9describe the encoding used for the MIPS16 ARble 12-1describes the meaning of
the symbols used in the tables.

Table 12-1 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

ad

Operation or field codes marked with this symbol are reserved for future use. Executing s
instruction cause a Reserved Instruction Exception.

uch an

(Alsoitalic field name.) Operation or field codes marked with this symbol denotes a field g
The instruction word must be further decoded by examining additional tables that show valu
another instruction field.

lass.
es for

Operation or field codes marked with this symbol represent a valid encoding for a higher-
MIPS ISA level. Executing such an instruction cause a Reserved Instruction Exception.

brder

Operation or field codes marked with this symbol are available to licensed MIPS partners
avoid multiple conflicting instruction definitions, the partner must notify MIPS Technologies,
when one of these encodings is used. If no instruction is encoded with this value, executin
an instruction must cause a Reserved Instruction Exce@iBRCIAL2ncodings or coprocessd
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Un
Exception (coprocessor instruction encodings for a coprocessor to which access is not al

To
Inc.
j such
r
usable
owed).

Field codes marked with this symbol represent an EJTAG support instruction and implemen
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encodi
implemented, it must match the instruction encoding as shown in the table.

tation

ng is

Operation or field codes marked with this symbol are reserved for MIPS Application Speg
Extensions. If the ASE is not implemented, executing such an instruction must cause a Re
Instruction Exception.

ific
served

Operation or field codes marked with this symbol are obsolete and will be removed from a f
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

uture

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

285

Chapter 12 MIPS16 Application-Specific Extension to the MIPS32 Instruction Set

Table 12-2 MIPS16 Encoding of the Opcode Field

opcode | bits 13..11

0 1 2 3 4 5 6 7
bits 15..14 000 001 010 011 100 101 110 111
0| 00 | ADDIUSF | ADDIUPC? B JAL(X) BEQZ BNEZ SHIFT3 B
1| o1 | RRI-A5 | ADDIUSS SLTI SLTIU 185 LI CMP!I B
2| 10 LB LH LWSP* LW LBU LHU LWPC® B
3| 11 SB SH sSwsP SwW RRR3 RRd EXTENDS B

. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction
. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction
. The ADDIUS8 opcode is used by the ADDIU rx, immediate instruction

. The LWSP opcode is used by the LW rx, offset(sp) instruction

. The LWPC opcode is used by the LW rx, offset(pc) instruction

. The SWSP opcode is used by the SW rx, offset(sp) instruction

o O A W DN PP

Table 12-3 MIPS16 JAL(X) Encoding of the x Field

X bit 26

0 1
JAL JALX

Table 12-4 MIPS16 SHIFT Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
SLL B SRL SRA

Table 12-5 MIPS16 RRI-A Encoding of the f Field

f bit 4

0 1
ADDIU? B

1. The ADDIU function is used by the AD-
DIU ry, rx, immediate instruction

Table 12-6 MIPS16 18 Encoding of the funct Field

funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BTEQZ BTNEZ | SWRASP | ADJSF SVRS MOV32R3 * MOVR324

1. The SWRASP function is used by the SW ra, offset(sp) instruction
2. The ADJSP function is used by the ADDIU sp, immediate instruction
3. The MOV32R function is used by the MOVE r32, rz instruction

4. The MOVR32 function is used by the MOVE ry, r32 instruction

286 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

12.2 Instruction Listing

Table 12-7 MIPS16 RRR Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
B ADDU B SUBU

Table 12-8 MIPS16 RR Encoding of the Funct Field

funct bits 2..0
0 1 2 3 4 5 6 7
bits 4..3 000 001 010 011 100 101 110 111
0| 00 [J(AL)R(C)d| SDBBP SLT SLTU SLLV BREAK SRLV SRAV
1] 01 B * CMP NEG AND OR XOR NOT
2| 10 MFHI CNVTS MFLO B B * B B
3| 11 MULT MULTU DIV DIVU B B B B

Table 12-9 MIPS16 18 Encoding of the s Field when funct=SVRS

S bit 7

0 1
RESTORE SAVE

Table 12-10 MIPS16 RR Encoding of the ry Field when funetl(AL)R(C)

ry bits 7..5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
JR rx JRra JALR * JRC rx JRCra JALRC *

Table 12-11 MIPS16 RR Encoding of the ry Field when funetCNVT

ry bits 7..5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
ZEB ZEH B * SEB SEH B *

12.2 Instruction Listing

Table 12-12hrough12-19list the MIPS16 instruction set.

Table 12-12 MIPS16 Load and Store Instructions

Extensible
Mnemonic Instruction Instruction
LB Load Byte Yes
LBU Load Byte Unsigned Yes
LH Load Halfword Yes
MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 287

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Chapter 12 MIPS16 Application-Specific Extension to the MIPS32 Instruction Set

Table 12-12 MIPS16 Load and Store Instructions

Extensible
Mnemonic Instruction Instruction
LHU Load Halfword Unsigned Yes
LW Load Word Yes
SB Store Byte Yes
SH Store Halfword Yes
SW Store Word Yes

Table 12-13 MIPS16 Save and Restore Instructions

Extensible
Mnemonic Instruction Instruction
RESTORE Restore Registers and Deallocate Stack Frame Yes
SAVE Save Registers and Setup Stack Frame Yes

Table 12-14 MIPS16 ALU Immediate Instructions

Extensible
Mnemonic Instruction Instruction
ADDIU Add Immediate Unsigned Yes
CMPI Compare Immediate Yes
LI Load Immediate Yes
SLTI Set on Less Than Immediate Yes
SLTIU Set on Less Than Immediate Unsigned Yes

Table 12-15 MIPS16 Arithmetic Two or Three Operand Register Instructions

Extensible
Mnemonic Instruction Instruction
ADDU Add Unsigned No
AND AND No
CMP Compare No
MOVE Move No
NEG Negate No
NOT Not No
OR OR No
SEB Sign-Extend Byte No
SEH Sign-Extend Halfword No

288

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

12.2 Instruction Listing

Table 12-15 MIPS16 Arithmetic Two or Three Operand Register Instructions

Extensible
Mnemonic Instruction Instruction
SLT Set on Less Than No
SLTU Set on Less Than Unsigned No
SUBU Subtract Unsigned No
XOR Exclusive OR No
ZEB Zero-Extend Byte No
ZEH Zero-Extend Halfword No

Table 12-16 MIPS16 Special Instructions

Extensible
Mnemonic Instruction Instruction
BREAK Breakpoint No
SDBBP Software Debug Breakpoint No
EXTEND Extend No

Table 12-17 MIPS16 Multiply and Divide Instructions

Extensible
Mnemonic Instruction Instruction
DIV Divide No
DIVU Divide Unsigned No
MFHI Move From HI No
MFLO Move From LO No
MULT Multiply No
MULTU Multiply Unsigned No

Table 12-18 MIPS16 Jump and Branch Instructions

Extensible
Mnemonic Instruction Instruction
B Branch Unconditional Yes
BEQZz Branch on Equal to Zero Yes
BNEZ Branch on Not Equal to Zero Yes
BTEQZ Branch on T Equal to Zero Yes
BTNEZ Branch on T Not Equal to Zero Yes
JAL Jump and Link No

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

289

Chapter 12 MIPS16 Application-Specific Extension to the MIPS32 Instruction Set

290

Table 12-18 MIPS16 Jump and Branch Instructions

Extensible
Mnemonic Instruction Instruction
JALR Jump and Link Register No
JALRC Jump and Link Register Compact No
JALX Jump and Link Exchange No
JR Jump Register No
JRC Jump Register Compact No

Table 12-19 MIPS16 Shift Instructions

Extensible
Mnemonic Instruction Instruction
SRA Shift Right Arithmetic Yes
SRAV Shift Right Arithmetic Variable No
SLL Shift Left Logical Yes
SLLV Shift Left Logical Variable No
SRL Shift Right Logical Yes
SRLV Shift Right Logical Variable No

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 290

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Appendix A

Revision History

Table A-1 Revision History

Revision

Date

Description

0.90

November 13, 2000

First preliminary version

0.91

November 17, 2000

Changes for this revision:

* Added LWC2 and SWC2 to opcode mggble 11-1 on page

245

Updated TagLo CPO register format for new handling of LK
bits

Added ErrCtl CPO register
Added more details to WS description in cache chapter

Added description of how to test the cache arrays in softw

0.93

February 16, 2001

Instruction and data micro TLBs in the 4KEc are now 4
entries (previously 3).

Added support for 64KB maximum cache sizes.

Added support for write-through with write-allocate cache
policy.

Enhanced description of PrID revision field.

Added discussion about virtual aliasing in the caches.

01.00

March 27, 2001

Removed extraneous reference to “Supervisor mode” in T¢
11-1 on page 191, since Supervisor mode is not supporte

Standardized links to major sections in each chapter.

Added SimpleBE & UDI config bits. Cleaned up descriptid
of Config registers.

Added note about ASID field iEntryHinot being updated on|
an exception.

Updated descriptions of CACHE, PREF, and SYNC to
include processor specific information.

ble

>

01.01

April 2, 2001

Added note that it is invalid to have all ways locked in the d4
cache (no longer invalid, superseded by revision 1.07).

ita

01.02

May 16, 2001

¢ Added WST=1 table to CACHE instruction description

01.03

June 12, 2001

Minor changes in the instruction decode tables.

Added details on new mechanism for CACHE access to
ScratchPad RAMs.

Removed support for MIPS16 ASMACRO.

Modified text and reset state for CU2 bitStatusregister,
and updated text on C2 bit @onfigl

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

are.

2901

Appendix A Revision History

Table A-1 Revision History (Continued)

Revision Date Description

* Added MIPS16 bit in EJTAG Implementation register.
» Added missing footnote ifiable 2-6 on page 31

* Fixed typo in LSNM field description ifiable 5-34 on page
136

» Correct name of ASIDsup field in description of IB@&lfle
9-7 on page 180and DBS {Table 9-13 on page 186egisters.

01.04 July 16, 2001

» Correct name of ASIDuse field in description of IBCalfle
9-11 on page 184nd DBCn Table 9-17 on page 190
registers.

+ Added definitions of UNDEFINED and UNPREDICTABLE|

» Added definitions of precise and imprecise exception
(Chapter 4, “Exceptions and Interrupts in the 4KE™ Core|
on page 5%

+ Removed common instruction descriptions. Instructions wjith
processor specific behavior are included here, refer to
architecture documents for others.

* Noted that interrupts are not prioritized by the HW. Chang
example for long interrupt latency instruction from SYNC {
uncached load.

o

» Added CPO PDtrace register@napter 5, “CPO Registers of
01.05 August 30, 2001 the 4KE™ Core.”

» Added EJTAG Trace sections@hapter 9, “EJTAG Debug
Support in the 4KE™ Core.”

» Added FastData description $&ction 9.3, "Test Access Port
(TAP)" on page 193

* Changed EJTAGver field from 1 -> 2 (version 2.5 to 2.6), i
Section 9.4.2.3, "Implementation Register" on page 201

=]

« Added SDDBP MIPS16 instruction f@ble 12-16'Special
Instructions”.

» Marked unused J(AL)R(C) encodings as reserved.
01.06 October 4, 2001 | « Removed obsolete references to 2-bit ISA mode field.

« Corrected the heading format®ection 10.2.1, "Scheduling a
Load Delay Slot" on page 238

» Changed confidentiality level to “commercial”.

01.07 December 5, 2001 « Clarified handling of all locked cache ways.

» EJTAG Version field in Debug register is set to 010

01.08 January 30, 2002 | < Added description for constant fields in Debug register:
NoDCR, NoSSt, MCheckP, CacheEP, DDBSImpr,
DDBLImpr

» Major update for addition of MIPS32 Release 2 features.

» Added support for 64MB and 256MB pages in TLB (4KEc
core only).

02.00 November 8, 2002 | , \yrong bit of MM field inConfigregister was being used.

Describe as 2b field now.

» Address region for DSEG was wrong in figure in memory
management chapter.

292 MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

Table A-1 Revision History (Continued)

Revision Date Description

» Updated Watch register description to reflect multiple wat¢h
registers and new status bits

02.01 December 15, 2003 ° trademark updates
* replaced reference to obsolete MD00232 with MD0O0086

» updated crossrefs in Status register description

02.02 January 5, 2004 * Problems with 02.01 release

MIPS32 4KE™ Processor Core Family Software User's Manual, Revision 2.02 293

Copyright © 2000-2003 MIPS Technologies Inc. All rights reserved.

	MIPS32 4KE™ Processor Core Family Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32™ 4KE™ Processor Core Family
	1.1� The 4KEc™, 4KEm™, and 4KEp™ Cores
	1.2� Features
	1.3� 4KE™ Core Block Diagram
	1.3.1� Required Logic Blocks
	1.3.1.1� Execution Unit
	1.3.1.2� Multiply/Divide Unit (MDU)
	1.3.1.3� System Control Coprocessor (CP0)
	1.3.1.4� Memory Management Unit (MMU)
	1.3.1.5� Cache Controllers
	1.3.1.6� Bus Interface Unit (BIU)
	1.3.1.7� Power Management

	1.3.2� Optional Logic Blocks
	1.3.2.1� MIPS16e™ Application Specific Extension
	1.3.2.2� Instruction Cache
	1.3.2.3� Data Cache
	1.3.2.4� EJTAG Controller
	1.3.2.5� Coprocessor 2 Interface (CP2)
	1.3.2.6� CorExtend™ User Defined Instructions (UDI)

	Pipeline of the 4KE™ Core
	2.1� Pipeline Stages
	2.1.1� I Stage: Instruction Fetch
	2.1.2� E Stage: Execution
	2.1.3� M Stage: Memory Fetch
	2.1.4� A Stage: Align
	2.1.5� W Stage: Writeback

	2.2� Instruction Cache Miss
	2.3� Data Cache Miss
	2.4� Multiply/Divide Operations
	2.5� MDU Pipeline (4KEc™ and 4KEm™ Cores)
	2.5.1� 32x16 Multiply (4KEc™ & 4KEm™ Cores)
	2.5.2� 32x32 Multiply (4KEc¸™ & 4KEm™ Cores)
	2.5.3� Divide (4KEc™ & 4KEm™ Cores)

	2.6� MDU Pipeline (4KEp™ Core)
	2.6.1� Multiply (4KEp™ Core)
	2.6.2� Multiply Accumulate (4KEp™ Core)
	2.6.3� Divide (4KEp™ Core)

	2.7� Branch Delay
	2.8� Data Bypassing
	2.8.1� Load Delay
	2.8.2� Move from HI/LO and CP0 Delay

	2.9� Coprocessor 2 instructions
	2.10� Interlock Handling
	2.11� Slip Conditions
	2.12� Instruction Interlocks
	2.13� Hazards
	2.13.1� Types of Hazards
	2.13.1.1� Execution Hazards
	2.13.1.2� Instruction Hazards

	2.13.2� Instruction Listing
	2.13.2.1� Instruction Encoding

	2.13.3� Eliminating Hazards

	Memory Management of the 4KE™ Core
	3.1� Introduction
	3.2� Modes of Operation
	3.2.1� Virtual Memory Segments
	3.2.1.1� Unmapped Segments
	3.2.1.2� Mapped Segments

	3.2.2� User Mode
	3.2.3� Kernel Mode
	3.2.3.1� Kernel Mode, User Space (kuseg)
	3.2.3.2� Kernel Mode, Kernel Space 0 (kseg0)
	3.2.3.3� Kernel Mode, Kernel Space 1 (kseg1)
	3.2.3.4� Kernel Mode, Kernel Space 2 (kseg2)
	3.2.3.5� Kernel Mode, Kernel Space 3 (kseg3)

	3.2.4� Debug Mode
	3.2.4.1� Conditions and Behavior for Access to drseg, EJTAG Registers
	3.2.4.2� Conditions and Behavior for Access to dmseg, EJTAG Memory

	3.3� Translation Lookaside Buffer (4KEc™ Core Only)
	3.3.1� Joint TLB
	3.3.2� Instruction TLB
	3.3.3� Data TLB

	3.4� Virtual-to-Physical Address Translation (4KEc™ Core)
	3.4.1� Hits, Misses, and Multiple Matches
	3.4.2� Memory Space
	3.4.2.1� Page Sizes
	3.4.2.2� Replacement Algorithm

	3.4.3� TLB Instructions

	3.5� Fixed Mapping MMU (4KEm™ & 4KEp™ Cores)
	3.6� System Control Coprocessor

	Exceptions and Interrupts in the 4KE™ Core
	4.1� Exception Conditions
	4.2� Exception Priority
	4.3� Interrupts
	4.3.1� Interrupt Modes
	4.3.1.1� Interrupt Compatibility Mode
	4.3.1.2� Vectored Interrupt Mode
	4.3.1.3� External Interrupt Controller Mode

	4.3.2� Generation of Exception Vector Offsets for Vectored Interrupts

	4.4� GPR Shadow Registers
	4.5� Exception Vector Locations
	4.6� General Exception Processing
	4.7� Debug Exception Processing
	4.8� Exceptions
	4.8.1� Reset Exception
	4.8.2� Soft Reset Exception
	4.8.3� Debug Single Step Exception
	4.8.4� Debug Interrupt Exception
	4.8.5� Non-Maskable Interrupt (NMI) Exception
	4.8.6� Machine Check Exception (4KEc™ core)
	4.8.7� Interrupt Exception
	4.8.8� Debug Instruction Break Exception
	4.8.9� Watch Exception — Instruction Fetch or Data Access
	4.8.10� Address Error Exception — Instruction Fetch/Data Access
	4.8.11� TLB Refill Exception — Instruction Fetch or Data Access (4KEc™ core only)
	4.8.12� TLB Invalid Exception — Instruction Fetch or Data Access (4KEc™ core only)
	4.8.13� Bus Error Exception — Instruction Fetch or Data Access
	4.8.14� Debug Software Breakpoint Exception
	4.8.15� Execution Exception — System Call
	4.8.16� Execution Exception — Breakpoint
	4.8.17� Execution Exception — Reserved Instruction
	4.8.18� Execution Exception — Coprocessor Unusable
	4.8.19� Execution Exception — Coprocessor 2 Exception
	4.8.20� Execution Exception — Implementation-Specific 1 exception
	4.8.21� Execution Exception — Implementation Specific 2 exception
	4.8.22� Execution Exception — Integer Overflow
	4.8.23� Execution Exception — Trap
	4.8.24� Debug Data Break Exception
	4.8.25� TLB Modified Exception — Data Access (4KEc™ core only)

	4.9� Exception Handling and Servicing Flowcharts

	CP0 Registers of the 4KE™ Core
	5.1� CP0 Register Summary
	5.2� CP0 Register Descriptions
	5.2.1� Index Register (CP0 Register 0, Select 0)
	5.2.2� Random Register (CP0 Register 1, Select 0)
	5.2.3� EntryLo0 and EntryLo1 Registers (CP0 Registers 2 and 3, Select 0)
	5.2.4� Context Register (CP0 Register 4, Select 0)
	5.2.5� PageMask Register (CP0 Register 5, Select 0)
	5.2.6� PageGrain Register (CP0 Register 5, Select 1)
	5.2.7� Wired Register (CP0 Register 6, Select 0)
	5.2.8� HWREna Register (CP0 Register 7, Select 0)
	5.2.9� BadVAddr Register (CP0 Register 8, Select 0)
	5.2.10� Count Register (CP0 Register 9, Select 0)
	5.2.11� EntryHi Register (CP0 Register 10, Select 0)
	5.2.12� Compare Register (CP0 Register 11, Select 0)
	5.2.13� Status Register (CP0 Register 12, Select 0)
	5.2.14� IntCtl Register (CP0 Register 12, Select 1)
	5.2.15� SRSCtl Register (CP0 Register 12, Select 2)
	5.2.16� SRSMap Register (CP0 Register 12, Select 3)
	5.2.17� Cause Register (CP0 Register 13, Select 0)
	5.2.18� Exception Program Counter (CP0 Register 14, Select 0)
	5.2.19� Processor Identification (CP0 Register 15, Select 0)
	5.2.20� EBase Register (CP0 Register 15, Select 1)
	5.2.21� Config Register (CP0 Register 16, Select 0)
	5.2.22� Config1 Register (CP0 Register 16, Select 1)
	5.2.23� Config2 Register (CP0 Register 16, Select 2)
	5.2.24� Config3 Register (CP0 Register 16, Select 3)
	5.2.25� Load Linked Address (CP0 Register 17, Select 0)
	5.2.26� WatchLo Register (CP0 Register 18, Select 0-7)
	5.2.27� WatchHi Register (CP0 Register 19, Select 0-7)
	5.2.28� Debug Register (CP0 Register 23, Select 0)
	5.2.29� Trace Control Register (CP0 Register 23, Select 1)
	5.2.30� Trace Control2 Register (CP0 Register 23, Select 2)
	5.2.31� User Trace Data Register (CP0 Register 23, Select 3)
	5.2.32� TraceBPC Register (CP0 Register 23, Select 4)
	5.2.33� Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	5.2.34� ErrCtl Register (CP0 Register 26, Select 0)
	5.2.35� TagLo Register (CP0 Register 28, Select 0)
	5.2.36� DataLo Register (CP0 Register 28, Select 1)
	5.2.37� ErrorEPC (CP0 Register 30, Select 0)
	5.2.38� DeSave Register (CP0 Register 31, Select 0)

	Hardware and Software Initialization of the 4KE™ Core
	6.1� Hardware-Initialized Processor State
	6.1.1� Coprocessor 0 State
	6.1.2� TLB Initialization (4KEc™ core only)
	6.1.3� Bus State Machines
	6.1.4� Static Configuration Inputs
	6.1.5� Fetch Address

	6.2� Software Initialized Processor State
	6.2.1� Register File
	6.2.2� TLB (4KEc™ Core Only)
	6.2.3� Caches
	6.2.4� Coprocessor 0 State

	Caches of the 4KE™ Core
	7.1� Cache Configurations
	7.2� Cache Protocols
	7.2.1� Cache Organization
	7.2.2� Cacheability Attributes
	7.2.3� Replacement Policy
	7.2.4� Virtual Aliasing

	7.3� Instruction Cache
	7.4� Data Cache
	7.5� CACHE Instruction
	7.6� Software Cache Testing
	7.6.1� I-Cache/D-cache Tag Arrays
	7.6.2� I-Cache Data Array
	7.6.3� I-Cache WS Array
	7.6.4� D-Cache Data Array
	7.6.5� D-cache WS Array

	7.7� Memory Coherence Issues

	Power Management of the 4KE™ Core
	8.1� Register-Controlled Power Management
	8.2� Instruction-Controlled Power Management

	EJTAG Debug Support in the 4KE™ Core
	9.1� Debug Control Register
	9.2� Hardware Breakpoints
	9.2.1� Features of Instruction Breakpoint
	9.2.2� Features of Data Breakpoint
	9.2.3� Instruction Breakpoint Registers Overview
	9.2.4� Data Breakpoint Registers Overview
	9.2.5� Conditions for Matching Breakpoints
	9.2.5.1� Conditions for Matching Instruction Breakpoints
	9.2.5.2� Conditions for Matching Data Breakpoints

	9.2.6� Debug Exceptions from Breakpoints
	9.2.6.1� Debug Exception by Instruction Breakpoint
	9.2.6.2� Debug Exception by Data Breakpoint

	9.2.7� Breakpoint used as TriggerPoint
	9.2.8� Instruction Breakpoint Registers
	9.2.8.1� Instruction Breakpoint Status (IBS) Register
	9.2.8.2� Instruction Breakpoint Address n (IBAn) Register
	9.2.8.3� Instruction Breakpoint Address Mask n (IBMn) Register
	9.2.8.4� Instruction Breakpoint ASID n (IBASIDn) Register
	9.2.8.5� Instruction Breakpoint Control n (IBCn) Register

	9.2.9� Data Breakpoint Registers
	9.2.9.1� Data Breakpoint Status (DBS) Register
	9.2.9.2� Data Breakpoint Address n (DBAn) Register
	9.2.9.3� Data Breakpoint Address Mask n (DBMn) Register
	9.2.9.4� Data Breakpoint ASID n (DBASIDn) Register
	9.2.9.5� Data Breakpoint Control n (DBCn) Register
	9.2.9.6� Data Breakpoint Value n (DBVn) Register

	9.3� Test Access Port (TAP)
	9.3.1� EJTAG Internal and External Interfaces
	9.3.2� Test Access Port Operation
	9.3.2.1� Test-Logic-Reset State
	9.3.2.2� Run-Test/Idle State
	9.3.2.3� Select_DR_Scan State
	9.3.2.4� Select_IR_Scan State
	9.3.2.5� Capture_DR State
	9.3.2.6� Shift_DR State
	9.3.2.7� Exit1_DR State
	9.3.2.8� Pause_DR State
	9.3.2.9� Exit2_DR State
	9.3.2.10� Update_DR State
	9.3.2.11� Capture_IR State
	9.3.2.12� Shift_IR State
	9.3.2.13� Exit1_IR State
	9.3.2.14� Pause_IR State
	9.3.2.15� Exit2_IR State
	9.3.2.16� Update_IR State

	9.3.3� Test Access Port (TAP) Instructions
	9.3.3.1� BYPASS Instruction
	9.3.3.2� IDCODE Instruction
	9.3.3.3� IMPCODE Instruction
	9.3.3.4� ADDRESS Instruction
	9.3.3.5� DATA Instruction
	9.3.3.6� CONTROL Instruction
	9.3.3.7� ALL Instruction
	9.3.3.8� EJTAGBOOT Instruction
	9.3.3.9� NORMALBOOT Instruction
	9.3.3.10� FASTDATA Instruction
	9.3.3.11� TCBCONTROLA Instruction
	9.3.3.12� TCBCONTROLB Instruction
	9.3.3.13� TCBDATA Instruction

	9.4� EJTAG TAP Registers
	9.4.1� Instruction Register
	9.4.2� Data Registers Overview
	9.4.2.1� Bypass Register
	9.4.2.2� Device Identification (ID) Register
	9.4.2.3� Implementation Register
	9.4.2.4� EJTAG Control Register

	9.4.3� Processor Access Address Register
	9.4.3.1� Processor Access Data Register

	9.4.4� Fastdata Register (TAP Instruction FASTDATA)

	9.5� TAP Processor Accesses
	9.6� Fetch/Load and Store from/to the EJTAG Probe through dmseg
	9.7� EJTAG Trace
	9.7.1� Processor Modes
	9.7.2� Software versus Hardware control
	9.7.3� Trace information
	9.7.4� Load/Store address and data trace information
	9.7.5� Programmable processor trace mode options
	9.7.6� Programmable trace information options
	9.7.6.1� User Data Trace

	9.7.7� Enable trace to probe/on-chip memory
	9.7.8� TCB Trigger
	9.7.9� Cycle by cycle information
	9.7.10� Trace Message Format
	9.7.11� Trace Word Format

	9.8� PDtrace™ Registers (software control)
	9.9� Trace Control Block (TCB) Registers (hardware control)
	9.9.1� TCBCONTROLA Register
	9.9.2� TCBCONTROLB Register
	9.9.3� TCBDATA Register
	9.9.4� TCBCONFIG Register (Reg 0)
	9.9.5� TCBTW Register (Reg 4)
	9.9.6� TCBRDP Register (Reg 5)
	9.9.7� TCBWRP Register (Reg 6)
	9.9.8� TCBSTP Register (Reg 7)
	9.9.9� TCBTRIGx Register (Reg 16-23)
	9.9.10� Register Reset State

	9.10� EJTAG Trace Enabling
	9.10.1� Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints
	9.10.2� Turning On PDtrace™ Trace
	9.10.3� Turning Off PDtrace™ Trace
	9.10.4� TCB Trace Enabling
	9.10.5� Tracing a reset exception

	9.11� TCB Trigger logic
	9.11.1� Trigger units overview
	9.11.2� Trigger Source Unit
	9.11.3� Trigger Control Units
	9.11.4� Trigger Action Unit
	9.11.5� Simultaneous triggers
	9.11.5.1� Prioritized trigger actions
	9.11.5.2� OR’ed trigger actions

	9.12� EJTAG Trace cycle-by-cycle behavior
	9.12.1� Fifo logic in PDtrace and TCB modules
	9.12.2� Handling of Fifo overflow in the PDtrace module
	9.12.3� Handling of Fifo overflow in the TCB
	9.12.3.1� Probe width and Clock-ratio settings

	9.12.4� Adding cycle accurate information to the trace

	9.13� TCB On-Chip Trace Memory
	9.13.1� On-Chip Trace Memory size
	9.13.2� Trace-From Mode
	9.13.3� Trace-To Mode

	Instruction Set Overview
	10.1� CPU Instruction Formats
	10.2� Load and Store Instructions
	10.2.1� Scheduling a Load Delay Slot
	10.2.2� Defining Access Types

	10.3� Computational Instructions
	10.3.1� Cycle Timing for Multiply and Divide Instructions

	10.4� Jump and Branch Instructions
	10.4.1� Overview of Jump Instructions
	10.4.2� Overview of Branch Instructions

	10.5� Control Instructions
	10.6� Coprocessor Instructions
	10.7� Enhancements to the MIPS Architecture
	10.7.1� CLO - Count Leading Ones
	10.7.2� CLZ - Count Leading Zeros
	10.7.3� MADD - Multiply and Add Word
	10.7.4� MADDU - Multiply and Add Unsigned Word
	10.7.5� MSUB - Multiply and Subtract Word
	10.7.6� MSUBU - Multiply and Subtract Unsigned Word
	10.7.7� MUL - Multiply Word
	10.7.8� SSNOP- Superscalar Inhibit NOP

	4KE™ Processor Core Instructions
	11.1� Understanding the Instruction Descriptions
	11.2� 4KE™ Opcode Map
	11.3� MIPS32™ Instruction Set for the 4KE™ core
	CACHE
	LL
	PREF
	SC
	SYNC
	TLBR
	TLBWI
	TLBWR
	WAIT

	MIPS16 Application-Specific Extension to the MIPS32 Instruction Set
	12.1� Instruction Bit Encoding
	12.2� Instruction Listing

	Revision History

