uC/OS-ll — Real-Time Kernel

Tei-Wei Kuo

Dept. of Computer Science and
Information Engineering

National Taiwan University

« Slides come from my class notes, sides from graduates and studentsin my lab (Li-Pin Chang and Shi-Wu Lo),
and slides contributed by Labrosse, the author of MicroC/OS-1. All right reserved by CSIE, NTU.

Contents

Introduction
Kernel Structure

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Introduction

Different ports from the official uC/OS-II
Web site at

Neither freeware nor open source code.

uC/OS-ll is certified in an avionics
product by FAA in July 2000.

Text Book:

= Jean J. Labresse, “MicroC/OS-II: The
Real-Time Kernel,” CMP Book, ISBN:

1-57820-103-9

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Introduction

uC/OS-I

= Micro-Controller Operating Systems,
Version 2

= A very small real-time kernel.

Memory footprint is about 20KB
for a fully functional kernel.

Source code is about 5,500 lines,
mostly in ANSI C.

It's source is open but not free for

commercial usages.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Introduction

uC/OS-lI
» Preemptible priority-driven real-time
scheduling.
64 priority levels (max 64 tasks)
8 reserved for uC/OS-l
Each task is an infinite loop.
= Deterministic execution times for most
uC/OS-Il functions and services.

» Nested interrupts could go up to 256

levels.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Introduction

uC/OS-Il

= Supports of various 8-bit to 64-bit
platforms: x86, 68x, MIPS, 8051, etc

» Easy for development: Borland C++
compiler and DOS (optional).

However, uC/OS-Il still lacks of the
following features:

» Resource synchronization protocols.
» Sporadic task support.

I = Soft-real-time support.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Introduction

= Getting started with uC/OS-II!

» See how a uC/OS-Il program
looks like.

= Learn how to write a skeleton
program for uC/OS-II.

= How to initialize uC/OS-11?
= How to create real-time tasks?

= How to use i_nter-task _
communication mechanisms?

I! = How to catch system events?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 1: Multitasking

£-PHESS EBC' 10 QUIN-b

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 1 : Multitasking

13 tasks run concurrently.
= 2 internal tasks:

The idle task and the statistic task.
= 11 user tasks:

10 tasks randomly print numbers
onto the screen.

Focus: System initialization and
task creation.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 1: Multitasking

Files
= The main program (test.c)
» The big include file (includes.h)

» The configuration of uC/OS-II
(os_cfg.h) for each application

Tools needed:
» Borland C++ compiler (V3.1+)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 1

#include "includes.h"

/*

* CONSTANTS

*/

#define TASK_STK_SIZE 512 /* Size of each task"s
stacks (# of WORDs) */

#define N_TASKS 10 /* Number of identical
tasks */

/*

* VARIABLES

*/

OSfSTﬁ TaskStk[N_TASKS][TASK_STK_SIZE]; /* Tasks stacks
*

0S_STK TaskStartStk[TASK_STK_SIZE];

char TaskData[N_TASKS]; * D ma to
pass to each task

OS_EVENT *RandomSem; A sem_aphore

(explain later)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Main()

void main (voi
{
PC_DispClr
(€H)
@
(€))
(C))
RandomSem

®
@

1],

O
Q)

@

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

)

Scr(DISP_FGND_WHITE + DISP_BGND_BLACK);

O
(uCOS, 0SCtxSw);

@

3

(TaskStart,

(void *)0,
(void *)&TaskStartStk[TASK_STK_SIZE-

0

Main()

0:

» internal structures of uC/OS-2.
Task ready list.
Priority table.
Task control blocks (TCB).
Free pool.

» Create housekeeping tasks.
The idle task.
The statistics task.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

OSinit

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

OSinit()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Main()

0

= Save the current status of DOS for
the future restoration.

Interrupt vectors and the RTC tick
rate.
» Set a global returning point by calling
setjump().
uC/OS-II can come back here
when it terminates.

PC_DOSReturn()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

PC_DOSSaveReturn()

void PC_DOSSaveReturn (void)

{
PC_ExitFlag = FALSE;
OSTickDOSCtr = 8;
PC TickISR = PC_VectGet(VECT_TICK);

0S_ENTER_CRITICALQ);
PC_VectSet(VECT_DOS_CHAIN, PC_TickISR);
0S_EXIT_CRITICALQ;

setjmp(PC_JumpBuf);

if (PC_ExitFlag == TRUE) {
0S_ENTER_CRITICALQ);
PC_SetTickRate(18);
PC_VectSet(VECT TICK, PC_TickISR);
0S_EXIT_CRITICALQ):
PC_DispCIrScr(DISP_FGND_WHITE + DISP_BGND_ BLACK);
exit(0);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

@
@
e

()

®)

®)

@

®)
®

Main()

PC_VectSet(uCOS,0SCtxSw)
= |nstall the context switch handler.

» |nterrupt 0x08 under 80x86 family.

Invoked by INT instruction.
OSStart()
= Start multitasking of uC/OS-2.
» |t never returns to main().

» uC/OS-Il is terminated if
PC_DOSReturn() is called.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Main()

OSSemCreate()

= Create a semaphore for resource
synchronization.

To protect non-reentrant codes.

» The created semaphore becomes
a mutual exclusive mechanism if
“1” Is given as the initial value.

» |n this example, a semaphore is
created to protect the standard C

library “random()”.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Main()

OSTaskCreate()

= Create tasks with the given arguments.

» Tasks become “ready” after they are created.
Task

= An active entity which could do some
computations.

= Priority, CPU registers, stack, text,
housekeeping status.
The uC/OS-II picks up the highest-priority
task to run on context-switching.
= Tightly coupled with RTC ISR.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

OSTaskCreate()

Entry point of
the task (a
pointer to

function

OSTaskCreate

(void *)0,
&TaskStartStk[TASK STK_SIZE-1],

specified data

Top of Stack

Priority
(O=hightest)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

TaskStart()

void TaskStart (void *pdata)

{

#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
0S_CPU_SR cpu_sr;

#endif
char s[100];
INT16S key;

Change the
ticking rate

pdata = pdata; /* Prevent compiler warning */

TaskStartDisplInit(Q); /* Initialize the display */

osstatinit(); /* Initialize uC/0S-11"s statistics */
O: /* Create all the application tasks */
for ;3 {
TaskStartDisp(); /* Update the display */
if (PC_GetKey(&key) == TRUE) { /* See if key has been pressed */
if (key == 0x1B) { /* Yes, see if it"s the ESCAPE key */
PC_DOSReturn(Q); /* Return to DOS */
b
¥
0SCtxswCtr = 03 /* Clear context switch counter */
OSTimeDlyHMSM(O, 0, 1, 0); /* Wait one second */
b

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

TaskStart()

OS_ENTER_CRITICAL()/OS_EXIT_CRITICAL()
» Enable/disable most interrupts.
= An alternative way to accomplish mutual

exclusion.

No rescheduling is possible during the disabling of
interrupts. (different from semaphores)

» Processor specific.
CLI/STI (x86 real mode)
Interrupt descriptors (x86 protected mode)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

TaskStartCreateTasks()

Entry point of static void TaskStartCreateTasks (void)
the created

task

INTSU i

for (i = 0; 1 < N_TASKS; i++) {

TaskData[i] = "0 + i;

Argument:
character to
print

OSTaskCreate(

(void *)&TaskData[i],
&TaskStk[i][TASK_STK_SIZE - 1],
i+ 1);

.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task()

void Task (void *pdata)

{
INT8U Xx;
INTBU v Semaphore
INT8U err; operations.

for (55) {

/* Display the task number on the screen
*/
PC_DispChar(x, y + 5, *(char *)pdata, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY);
OSTimeDly(1); /* Delay 1 clock tick

*/

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Semaphores

A semaphore consists of a wait list and an
Integer counter.

= OSSemPend():

Counter--;
If the value of the semaphore <0, then the task is
blocked and moved to the wait list immediately.

A time-out value can be specified.

= OSSemPost():

Counter++;
If the value of the semaphore >= 0, then a task in
the wait list is removed from the wait list.

= Reschedule if needed.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 1: Multitasking

Summary:

= uC/OS-ll is initialized and started by calling
OSiInit() and OSStart(), respectively.

» Before uC/OS-Il is started,

The DOS status is saved by calling
PC_DOSSaveReturn().

A context switch handler is installed by calling
PC_VectSet().

User tasks must be created first!

» Shared resources can be protected by
semaphores.

OSSemPend(),0SSemPost().

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 2: Stack Checking

Five tasks do jobs on message
sending/receiving, char-displaying
with wheel turning, and char-printing.
= More task creation options
Better judgment on stack sizes
= Stack usage of each task
Different stack sizes for tasks
» Emulation of floating point operations
80386 or lower-end CPU'’s
= Communication through mailbox

Only the pointer is passed.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

The Stack Usage of a Task

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 2: Stack Checking

| wCOS-11\FxD_xB6L TEST\TEST.EXE

Tolal Stack Tree Stock Uked Slack Eueclime luS)

B P g B PP

18 A4 1w 54
Ll by i
£ g s &8
T @
¥
Tasks i P Usape: HED X
Tk sari lchesec; - : _q|
+-PHESS "ERL" 10 QUIN-#
*All , National Taiwan University, 2003.

#define TASK_STK_SIZE 512
*/

#define TASK_START_ID 0
*/

#define TASK_CLK_ID 1

#define TASK_1_1D 2

#define TASK_2_1D 3

#define TASK_3_ID 4

#define TASK_4_1D 5

#define TASK_5_ID 6

#define TASK_START_PRIO 10
*/

#define TASK_CLK_PRIO 11

#define TASK_1_PRIO 12

#define TASK_2_PRIO 13

#define TASK_3_PRIO 14

#define TASK_4_PRIO 15

#define TASK_5_PRIO 16

0S_STK TaskStartStk[TASK_STK_SIZE];
*/

0S_STK TaskCIKStK[TASK_STK_SIZE];
*/

0S_STK Task1Stk[TASK_STK_SIZE];
*/

0S_STK Task2Stk[TASK_STK_SIZE];
*/

0S_STK Task3Stk[TASK_STK_SIZE];
*/

0S_STK Task4Stk[TASK_STK_SIZE];
*/

0S_STK Task5Stk[TASK_STK_SIZE];
*/

OS_EVENT *AckMbox ;
*/

OS_EVENT *TxMbox;

2 Mailboxes

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

/*

/>

/>

/>

/>

/>

/>

/>

/%

Size of each task"s stacks (# of WORDs)

Application tasks IDs

Application tasks priorities

Startup task stack
Clock task stack
Task #1 task stack

Task #2 task stack
Task #3 task stack
Task #4 task stack

Task #5 task stack

Message mailboxes for Tasks #4 and #5

void main (void)
{
0S_STK *ptos;
0S_STK *pbos;
INT32U size;

PC_DiispCIrScr(DISP_FGND_WHITE);

osInit(Q);

PC_DOSSaveReturn();

DOS */

PC_VectSet(uC0S, OSCtxSw);
switch vector */

PC_ElapsedInit();

/* Clear the screen */
/* Initialize uC/0S-11 */
/* Save environment to return to
/* Install uC/0S-11"s context
/* Initialized elapsed time

/* TaskStart() will use Floating-

measurement */
ptos = &TaskStartStk[TASK_STK_SIZE - 1];
Point */
pbos = &TaskStartStk[0];
size = TASK_STK_SIZE;
(&ptos, é&pbos, &size);

(.

(void *)0,

ptos,

TASK_START_PRIO,

TASK_START_ID,

pbos,

size,

(void *)0,

0S_TASK_OPT_STK_CHK | 0S_TASK_OPT_STK_CLR);
osStart();

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

/* Start multitasking */

TaskStart

void TaskStart (void *pdata)

{
#if OS_CRITICAL_METHOD == 3

0S_CPU_SR cpu_sr;
#endi
INT16S key;

pdata = pdata;
TaskStartDispInitQ);

0S_ENTER_CRITICALQ:
PC_VectSet(0x08, OSTickISR);

PC_SetTickRate(0S_TICKS_PER_SEC);

0S_EXIT_CRITICALQ;

osstatinit(Q);

TaskStartCreateTasks();

for ;) {
TaskStartDisp(Q);
if (PC_GetKey(&key)) {
if (key == 0x1B) {
PC_DOSReturn(Q);
3

¥

0SCtxsSwCtr = 03

/* Allocate storage for CPU status register */

/* Prevent compiler warning */

/* Setup the display */

/* Install uC/0S-11"s clock tick ISR */

Create 2
mailboxes

/* Reprogram tick rate */

/* Initialize uC/0S-11"s statistics */
/* Create all other tasks */
/* Update the display */
/* See if key has been pressed */
/* Yes, see if it"s the ESCAPE key */

* Yes, return to DOS */

The dummy loop
wait for ‘ESC’

* Clear context switch counter */

OSTimeDly(OS_TICKS_PER_SEC); /* Wait one second */

Timer drifting

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Taskl

void Taskl (void *pdata)

INT8U err;

0S_STK_DATA data; /* Storage for task stack
data */

JyTlGU time; /* Execution time (in uS)
INT8U i;

char s[80];

pdata = pdata;
for (G3) {

for (i =0; i

Extra overheads
on measurement

3
0STimeDIyHMSM(O, 0, 0, 100);

}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

< 7; i++) {
PC_ElapsedStart();
err = (TASK_START_PRIO + i, &data);
time = PC_ElapsedStop();
if (err == 0S_NO_ERR) {
sprintf(s, "%4ld %4ld
data.OSFree + data.OSUsed,
data.OSFree,
data.OSUsed,
time);
PC_DispStr(19, 12 + i, s, DISP_FGND_BLACK +
DISP_BGND_LIGHT_GRAY);

%41d %6d",

}

/* Delay for 100 ms */

Taskl: total 1024 Free 654 Used 370

Task2() & Task3

void Task2 (void *data)

data = data
for) {
ispChar(70, 15, "|*, DISP_FGND_YELLOW + DISP_BGND_BLUE);

0STimeDly(10);
PC_DispChar(70, 15, */*, DISP_FGND_YELLOW + DISP_BGND_BLUE);

PC_DispChar(70, 15, "-", DISP_FGND_YELLOW + DISP_BGND_BLUE);
0STimeDly(10);
PC_DispChar(70, 15, "\\", DISP_FGND_YELLOW + DISP_BGND_BLUE);
0STimeDly(10);
3
} : o
Timer drifting
void Task3 (void *data)
{
char dummy[500] ;
INT16U i;
data = data;
fg/r (i =0; 1 <499; i++) { /* Use up the stack with "junk*®
dummy[i] = "?";
3
for G3) {
PC_DispChar(70, 16, "|*, DISP_FGND_YELLOW + DISP_BGND_BLUE);

0STimeDly(20);
PC_DispChar(70, 16, "\\", DISP_FGND_YELLOW + DISP_BGND_BLUE);

0STimeDly(20);
PC_DispChar(70, 16, "-", DISP_FGND_YELLOW + DISP_BGND_BLUE);
0STimeDly(20);
PC_DispChar(70, 16, "/, DISP_FGND_YELLOW + DISP_BGND_BLUE);
0STimeDly(20);

b
* All rights reserved, Tei-Wei }?uo, National Taiwan University, 2003.

Task4() and Taskb5

void Task4 (void *data)

char txmsg;
INT8U err;

data = data;

txmsg = “A";
for G5) {
0SMboxPost(TxMbox, (void *)&txmsg); /* Send message to Task #5 */
OSMboxPend(AckMbox, 0, &err); /* Wait for acknowledgement from Task #5 */
txmsg++; /* Next message to send */
if (txmsg == "Z%) {
txmsg = H /* Start new series of messages */
i
i

i
void Task5 (void *data)

char *rxmsg;

INT8U err;
data = data;
for G3) {
rxmsg = (char *)0SMboxPend(TxMbox, 0, &err); /* Wait for message from Task #4 */
PC_DispChar(70, 18, *rxmsg, DISP_FGND_YELLOW + DISP_BGND_BLUE);
OSTimeDlyHMSM(O, 0, 1, 0); /* Wait 1 second */
0SMboxPost(AckMbox, (void *)1); /* Acknowledge reception of msg */
3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Malil Box

A mailbox is for data exchanging between tasks.
= A mailbox consists of a data pointer and a wait-list.

OSMboxPend():
= The message in the mailbox is retrieved.

= |f the mailbox is empty, the task is immediately blocked
and moved to the wait-list.

= A time-out value can be specified.

OSMboxPost():
= A message is posted in the mailbox.
= |f there is already a message in the mailbox, then an
error is returned (not overwritten).
= |f tasks are waiting for a message from the mailbox, then
the task with the highest priority is removed from the
wait-list and scheduled to run.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

OSTaskStkinit FPE_x86()

OSTaskStkInit_ FPE_x86(&ptos, &pbos,
&size)

» Pass the original top address, the
original bottom address, and the size of
the stack.

= On the return, arguments are modified,
and some stack space are reserved for
the floating point library.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

OSCreateTaskExt()

(void *)O0,

ptos,
TASK_START_PRIO,
TASK_START_ID,

pbos,

size,

(void *)O0,
0S_TASK_OPT_STK_CHK |
0OS_TASK OPT_STK CLR

);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

OSTaskStkCheck()

Check for any stack overflow
» bos < (tos — stack length)

» Local variables, arguments for
procedure calls, and temporary
storage for ISR’s.

» uC/OS-Il can check for any stack
overflow for the creation of tasks and
when OSTaskStkCheck() is called.

» uC/OS-Il does not automatically
check for the status of stacks.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example2: Stack Checking

Summary:

= Local variable, function calls, and
ISR’s will utilize the stack space of
user tasks.

ISR will use the stack of the
interrupted task.
= |If floating-point operations are
needed, then some stack space
should be reserved.

= Mailboxes can be used to

synchronize the work of tasks.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 3: Extension of uC/OS-ll

A Pointer to from the TCB of each task to a
user-provided data structure

= Passing user-specified data structures on task
creations or have application-specific usage.

Message queues
= More than one potiners

Demonstration on how to use OS hooks to
receive/process desired event from the uC/OS-
Il

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 3: Extension of uC/OS-II

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

#define TASK_STK_SIZE 512 /* Size of each task"s stacks (# of WORDs) */
TASK_START_ID 0 /* Application tasks */
TASK_CLK_ID 1
TASK_1_ID 2
TASK_2_1D 3
TASK_3_ID 4
TASK_4_ID 5
TASK_5_ID 6
TASK_START_PRIO 10 /* Application tasks priorities */
TASK_CLK_PRIO 11
TASK_1_PRI0O 12
TASK_2_PRIO 13
TASK_3_PRIO 14
TASK_4_PRIO 15
#define TASK_5_PRIO 16
#define MSG_QUEUE_SIZE 20 /* Size of message queue used in example */
typedef struct {
char TaskName[30] ; T
T 2 anel 301 F User-defined data
INT16U TaskExecTime;
INT32U TaskTotExecTime; StrUCtu re to pass to taSks
} TASK_USER_DATA;
0S_STK TaskStartStk[TASK_STK_SIZE]; /* Startup task stack */
0S_STK TaskCIkStK[TASK_STK_SIZE]; /* Clock task stack */
0S_STK Task1Stk[TASK_STK_SIZE]; /* Task #1 task stack */
0S_STK Task2Stk[TASK_STK_SIZE]; /* Task #2 task stack */
0S_STK Task3Stk[TASK_STK_SIZE]; /* Task #3 task stack */
0S_STK Task4Stk[TASK_STK_SIZE]; /* Task #4 task stack */
0S_STK Task5StK[TASK_STK_SIZE]; /* Task #5 task stack */
TASK_USER_DATA TaskUserData[7];
O0S_EVENT *MsgQueue; /* Message queue pointer */

void *MsgQueueTbI[20]; Storage for messages */

Message queue and
an array of event

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

void Taskl (void *pdata)
{

char *msg;

INT8U err,

pdata = pdata;
for (;;) {
msg = (char *) (MsgQueue, 0, &err);
PC_DispStr(70, 13, msg, DISP_FGND_YELLOW + DISP_BGND_BLUE);
OSTimeDlyHMSM(0, 0, 0, 100);
}
}

void Task?2 (void *pdata)
Task 2, 3, 4 are
functionally
identical.

char msg[20];

pdata = pdata;
strepy(&msgl[0], "Task 2");

for () {
(MsgQueue, (void *)&msg[0]);

OSTimeDlyHMSM(0, 0, 0, 500);
}
}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Message Queues

A message queue consists of an array of
elements and a wait-list.

Different from a mailbox, a message queue can
hold many data elements (in a FIFO basis).

As same as mailboxes, there can be multiple
tasks pend/post to a message queue.

OSQPost(): a message is appended to the
gueue. The highest-priority pending task (in the
wait-list) receives the message and is scheduled
to run, if any.

OSQPend(): a message is removed from the
array of elements. If no message can be
retrieved, the task is moved to the wait-list and

becomes blocked.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Hooks

A hook function will be called by uC/OS-II
when the corresponding event occurs.

= Event handlers could be in user programs.

= For example, OSTaskSwHook () is called
every time when context switch occurs.

The hooks are specified in the compiling time
in uC/OS-II:

= uC/OS-Il is an embedded OS.
OS_CFG.H (OS_CPU_HOOKS EN =0)
= Many OS'’s can register and un-register

hooks.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

User Customizable Hooks for
uC/OS-ll

void OSInitHookBegin (void)

void OSInitHookEnd (void)

void OSTaskCreateHook (OS_TCB *ptch)
void OSTaskDelHook (OS_TCB *ptchb)
void OSTaskldleHook (void)

void OSTaskStatHook (void)

void OSTaskSwHook (void)

void OSTCBInitHook (OS_TCB *ptch)
void OSTimeTickHook (void)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

void OSTaskStatHook (void)
{

char s[80];
INTSU i;
INT32U total;
INTSU pct;

total = OL; /* Totalize TOT. EXEC. TIME for each task */
for (i =0; 1 <7; i+8) {

total += TaskUserData[i].TaskTotExecTime;

DispTaskStat(i); /* Display task data */

3
if (total > 0) {
for (i =0; 1 <7; i++) { /* Derive percentage of each task */
pct = 100 * TaskUserData[i].TaskTotExecTime / total;
sprintf(s, "%3d %", pct);
PC_DispStr(62, i + 11, s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY):
ks

3
if (total > 1000000000L) { /* Reset total time counters at 1 billion */
for (i =0; i <7; i+ {
TaskUserData[i].TaskTotExecTime = OL;

Elapsed
time
for the
current
task

¥
3

void OSTaskSwHook (void)

OSTCBCur >TCB of
the current task
OSTCBHighRdy—>TC
B of the new task

INT16U time;
TASK_USER_DATA *puser;

time = PC_ElapsedStop(); /* This task is done */
PC_ElapsedStart(); /* Start for next task */
puser = OSTCBCur->0STCBEXtPtr; /* Point to used data */

if (puser != (TASK_USER_DATA *)0) {
puser->TaskCtr++; /* Increment task counter */

puser->TaskExecTime = time; /* Update the task®s execution time */
puser->TaskTotExecTime += time; /* Update the task"s total execution time */
3
ks

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Example 3: Extension of uC/OS-lI

Summary:
* Message queues can be used to
synchronize among tasks.

Multiple messages can be held in a
queue.

Multiple tasks can “pend”/“post” to
message queues simultaneously.

» Hooks can be used to do some user-
specific computations on certain OS
events occurs.

They are specified in the compiling time.
A Pointer to from the TCB of each task to a

user-provided data structure

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Introduction

Getting Started with uC/OS-II:

= How to write a dummy uC/OS-Il program?
» How the control flows among procedures?
» How tasks are created?

= How tasks are synchronized by semaphore,
mailbox, and message queues?

= How the space of a stack is utilized?
» How to capture system events?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Contents

Introduction
Kernel Structure

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Objectives

To understand what a task is.
To learn how uC/OS-Il manages

tasks.

To know how an interrupt service

routine (ISR) works.

To learn how to determine the
percentage of CPU that your

application is using.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

The uC/OS-Il File Structure

Application Code (Your Code!)

Processor independent
implementations

*Scheduling policy
*Event flags
*Semaphores
*Mailboxes

*Event queues

*Task management
*Time management
*Memory management

Application Specific
Configurations

OS_CFG.H
*Max # of tasks

*Max Queue length

uC/0OS-2 port for processor specific codes

Software

Hardware

‘ CPU

Timer

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Source Avallability

Download the “Ports” of uC/OS-II
from the web site http://www.ucos-
[l.com/

» Processor-independent and
dependent code sections (for Intel
80x86) are contained in the
companion CD-ROM of the textbook

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Critical Sections

A critical section is a portion of code that is
not safe from race conditions because of
the use of shared resources.

They can be protected by interrupt
disabling/enabling interrupts or semaphores.

» The use of semaphores often imposes a
more significant amount of overheads.

» A RTOS often use interrupts disabling/
enabling to protect critical sections.

Once interrupts are disabled, neither
context switches nor any other ISR’s can
occur.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Critical Sections

Interrupt latency is vital to an RTOS!

= Interrupts should be disabled as
short as possible to improve the
responsiveness.

* |t must be accounted as a
blocking time in the
schedulability analysis.

Interrupt disabling must be used
carefully:

» E.g., if OSTimeDly() is called
with interrupt disabled, the
machine might hang!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Critical Sections

The states of the processor must be carefully
maintained across multiple calls of

OS _ENTER_CRITICAL() and
OS_EXIT_CRITICAL().

There are three implementations in uC/OS-II:
» |nterrupt enabling/disabling instructions.

» |nterrupt status save/restore onto/from stacks.

» Processor Status Word (PSW) save/restore
onto/from memory variables.

Interrupt enabling/disabling can be done by
various way:

» |n-line assembly.
@ = Compiler extension for specific processors.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Critical Sections

OS_CRITICAL_METHOD=1
» |nterrupt enabling/disabling instructions.

» The simplest way! However, this approach
does not have the sense of “save” and
“restore”.

» Interrupt statuses might not be consistent
across kernel services/function calls!!

Interrupts are now
implicitly re-enabled!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Critical Sections

OS_CRITICAL_ METHOD=2

Processor Status Word (PSW) can
be saved/restored onto/from stacks.

= PSW’s of nested interrupt enable/disable
operations can be exactly recorded in
stacks.

Some compilers might
not be smart enough to
adjust the stack pointer
after the processing of
in-line assembly.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Critical Sections

OS_CRITICAL_METHOD=3

The compiler and processor allow the
PSW to be saved/restored to/from a
memory variable.

...

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Tasks

A task is an active entity which could
do some computations.

Under real-time uC/OS-Il systems, a
task is typically an infinite loop.

Delay itself for the
next event/period,

so that other tasks
LOSTINSOIYINSNO. .ooveveeeeeeene : can run.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Tasks

uC/OS-1l can have up to 64 priorities.
» Each task must be associated with an unique
priority.
» 63 and 62 are reserved (idle, stat).
An insufficient number of priority might damage the
schedulability of a real-time scheduler.
» The number of schedulable task would be reduced.

Because there is no distinction among the tasks with the
same priority.

For example, under RMS, tasks have different periods
but are assigned with the same priority.

It is possible that all other tasks with the same priority are
always issued before a particular task.

= Fortunately, most embedded systems have a
limited number of tasks to run.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Tasks

A task is created by OSTaskCreate()
or OSTaskCreateExt().

The priority of a task can be changed
by OSTaskChangePrio().

A task could delete itself when it is
done.

The priority of
the current task

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task States

Dormant: Procedures residing on RAM/ROM is not
an task unless you call OSTaskCreate() to execute
them.

= No tasks correspond to the codes yet!
Ready: A task is neither delayed nor waiting for any
event to occur.

= Atask is ready once it is created.
Running: A ready task is scheduled to run on the
CPU.

= There must be only one running task.

= The task running might be preempted and become ready.
Waiting: A task is waiting for certain events to occur.

= Timer expiration, signaling of semaphores, messages in

mailboxes, and etc.
ISR: A task is preempted by an interrupt.
= The stack of the interrupted task is utilized by the ISR.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task States

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task States

A task can delay itself by calling
OSTimeDly() or OSTimeDIyHMSM().
» The task is placed in the waiting state.

» The task will be made ready by the
execution of OSTimeTick().

It is the clock ISR! You don’t have to call
it explicitly from your code.

A task can wait for an event by
OSFlagPend(), OSSemPend(),
OSMboxPend(), or OSQPend().

= The task remains waiting until the

occurrence of the desired event (or
timeout).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task States

The running task could be preempted
by an ISR unless interrupts are
disabled.
* |SR’s could make one or more tasks
ready by signaling events.
= On the return of an ISR, the scheduler
will check if rescheduling is needed.
Once new tasks become ready, the
next highest priority ready task is
scheduled to run (due to occurrences
of events, e.g., timer expiration).

If no task is running, and all tasks are
not in the ready state, the idle task
@ executes.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Control Blocks (TCB)

A TCB is a main-memory-resident data
structure used to maintain the state of a
task, especially when it is preempted.

Each task is associated with a TCB.
= All valid TCB’s are doubly linked.
= Free TCB'’s are linked in a free list.

The contents of a TCB is saved/restored
when a context-switch occurs.

= Task priority, delay counter, event to
wait, the location of the stack.

» CPU registers are stored in the stack
rather than in the TCB.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

typedef struct os_tcb {

0S_STK *0STCBStkPtr;
#if OS_TASK_CREATE_EXT_EN

void *OSTCBEXtPtr;

0S_STK *0STCBStkBottom;

INT32U OSTCBStkSize;

INT16U OSTCBOpt;

INT16U 0STCBId;
#endif

struct os_tchb *OSTCBNext;
struct os_tcb *OSTCBPrev;
#if (0S_Q EN && (0S_MAX_QS >= 2)) || OS_MBOX_EN || OS_SEM_EN

OS_EVENT *0STCBEventPtr;
#endif
#if (0S_Q EN && (0S_MAX_QS >= 2)) || 0S_MBOX_EN
void *0STCBMsg;
#endif
INT16U OSTCBDly;
INT8U OSTCBStat;
INT8U OSTCBPrio;
INT8U OSTCBX;
INT8U OSTCBY;
INT8U OSTCBBitX;
INT8U OSTCBBitY;

#if 0S_TASK_DEL_EN

BOOLEAN 0STCBDelReq;
#endif
3} 0S_TCB;

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Control Blocks (TCB)

.OSTCBStkPtr contains a pointer to the

current TOS for the task.

= |tis the first entry of TCB so that it can be
accessed directly from assembly
language. (offset=0)

.OSTCBEXtPtr is a pointer to a user-

definable task control block extension.

» Set OS_TASK_CREATE_EXT_EN to 1.

= The pointer is set when
OSTaskCreateExt() is called

= The pointer is ordinarily cleared in the
hook OSTaskDelHook().

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Control Blocks (TCB)

.OSTCBStkBottom is a pointer to the
bottom of the task’s stack.
.OSTCBStkSize holds the size of the
stack in the number of elements,
instead of bytes.

= The element size is a macro OS_STK.

» The total stack size is
OSTCBStkSize*OS_STK bytes

= .OSTCBStkBottom and .OSTCBStkSize
are used to check up stacks (if
OSTaskCreateExt() is invoked).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Control Blocks (TCB)

4 Bottom of Stack (BOS)

A Free Space

Current TOS, points to
«— the newest element.

Space in use

<& Top of Stack (TOS)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Stack growing direction

Task Control Blocks (TCB)

.OSTCBOpt holds “options” that can be passed to
OSTaskCreateExt()
= OS_TASK_OPT_STK_CHK: stack checking is enabled
for the task .
= OS TASK _OPT_STK_CLR: indicates that the stack
needs to be cleared when the task is created.
= OS_TASK_OPT_SAVE_FP: Tell OSTaskCreateExt()
that the task will be doing floating-point computations.
Floating point processor’s registers must be saved to
the stack on context-switches.
.OSTCBId: hold an identifier for the task.

.OSTCBNext and .OSTCBPrev are used to doubly
link OS_TCB's

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Control Blocks (TCB)

.OSTCBEVEventPtr is pointer to an event control
block.

.OSTCBMsg is a pointer to a message that is sent to
a task.

.OSTCBFlagNode is a pointer to a flagnode.
.OSTCBFlagsRdy maintains info regarding which
event flags make the task ready.

.OSTCBDly is used when

= atask needs to be delayed for a certain number of
clock ticks, or

* atask needs to wait for an event to occur with a
timeout.

.OSTCB Stat contains the state of the task (0 is ready

to run).
.OSTCBPrio contains the task priority.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Control Blocks (TCB)

.OSTCBX .OSTCBY .OSTCBBItX and .OSTCBBitY

* They are used to accelerate the process of making a
task ready to run or make a task wait for an event.

.OSTCBDelReq is a boolean used to indicate
whether or not a task requests that the current task
to be deleted.

OS_MAX_TASKS is specified in OS_CFG.H
= #0OS_TCB’s allocated by uC/OS-II
OSTCBTDbI[] : where all OS_TCB'’s are placed.

When uC/OS-ll is initialized, all OS_TCB'’s in the
@ table are linked in a singly linked list of free
OS_TCB'’s.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Control Blocks (TCB

= When a task is created, the OS_TCB pointed
to by OSTCBFreeList is assigned to the task,
and OSTCBFreelList is adjusted to point to the
next OS_TCB in the chain.

= When a task is deleted, its OS_TCB is returned
to the list of free OS_TCB.

= An OS_TCB is initialized by the function
OS_TCBInit(), which is called by
OSTaskCreate().

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

INT8U O0S_TCBInit (INT8U prio, OS_STK *ptos, 0S_STK *pbos, INT16U id, INT32U stk_size, void *pext, INT16U
opt)

#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
0S_CPU_SR cpu_sr;
#endif

0s_T1CB *ptch;

Get a free TCB from
the free list

/* Get a free TCB from the free TCB list */

ptgb = 0§TCBFreeLis;;
if (ptcb 1= (0S_TCB *)0) {

OSTCBFreelList = ptcb->0STCBNext? /* Update pointer to free TCB list */
[0S EXIT CRITICALQ; |
ptcb->0STCBStkPtr = ptos; /* Load Stack pointer in TCB */
ptcb->0STCBPrio = (INT8U)prio; /* Load task priority into TCB */
ptcb->0STCBStat = 0S_STAT_RDY; /* Task is ready to run */
ptcb->0STCBDly = 0; /* Task is not delayed */
#iF 0S_TASK_CREATE_EXT_EN > 0
ptcb->0STCBEXtPtr = pext; /* Store pointer to TCB extension */
ptcb->0STCBStkSize = stk_size; /* Store stack size */
ptcb->0STCBStkBottom = pbos; /* Store pointer to bottom of stack */
ptcb->0STCBOpt = opt; /* Store task options */
ptcb->0STCBId = id; /* Store task ID */
#else
pext = pext; /* Prevent compiler warning if not used */
stk_size = stk_size;
pbos = pbos;
opt = opt;
id = id;
#endif
#iF 0S_TASK_DEL_EN > 0
ptcb->0STCBDe IReq = OS_NO_ERR;
#endif
ptcb->0STCBY = prio >> 3; /* Pre-compute X, Y, BitX and BitY */
ptcb->0STCBBitY = OSMapTbl[ptch->0STCBY];
ptcb->0STCBX = prio & 0x07;

ptcb->0STCBBitX OSMapTbl [ptcb->0STCBX] ;

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

#if OS_EVENT_EN > 0

ptcb->0STCBEventPtr = (OS_EVENT *)0; /* Task is not pending on an event */
#endif
#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0) && (OS_TASK_DEL_EN > 0)

ptch->0STCBFlagNode = (OS_FLAG_NODE *)0; /* Task is not pending on an event flag */
#endif
#iT (OS_MBOX_EN > 0) || ((OS_Q_EN > 0) && (OS_MAX_QS > 0))

ptchb->0STCBMsg = (void *)0; /* No message received */
#endif
#iT OS_VERSION >= 204 . .

0STCBINi tHook(ptch) ; User-defined hook is
#endif called here.

OSTaskCreateHook(ptcb) ; /* Call user defined hook */

[OS_ENTER_CRITICALQ); | Priority table

OSTCBPrioTbl[prio] = ptchb;

ptchb->0STCBNext = OSTCBLiSt; =*=eea, /* Link into TCB chain */

ptcb->0STCBPrev = (0S_TCB *)0; :

if (OSTCBList != (0S_TCB *)0) { ;

OSTCBList->0STCBPrev = ptcb; H

b :

OSTCBList = ptch; aesss’

OSRdyGrp |= ptcb->0STCBBitY; /* Make task ready to run */

0SRdyTbl [ptcb->0STCBY] |= ptcb->0STCBBitX;
[0S EXIT CRITICALQ; |
return (OS_NO_ERR);
¥ B
0S_EXIT_CRITICALQ); Ready list

return (OS_NO_MORE_TCB);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Ready List

Ready list is a special bitmap to reflect which
task is currently in the ready state.
= Each task is identified by its unique priority in the bitmap.

A primary design consideration of the ready list
Is how to efficiently locate the highest-priority
ready task.

= The designer could trade some ROM space for an improved
performance.

If a linear list is adopted, it takes O(n) to locate
the highest-priority ready task.

= |t takes O(log n) if a heap is adopted.
= Under the design of ready list of uC/OS-Il, it takes only O(1).

Note that the space consumption is much more than other
approaches, and it also depends on the bus width.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

OSMapThbl

Index Bit mask (Binary)
0 00000001 Bit 0 in OSRdyGrp is 1 when any bit in OSRdyTbI[0] is 1.
£ 00000010 Bit 1 in OSRdyGrp is 1 when any bit in OSRdyTbl[1] is 1.
2 00000100 Bit 2 in OSRdyGrp is 1 when any bit in OSRdyTblI[2] is 1.
3 00001000 Bit 3 in OSRdyGrp is 1 when any bit in OSRdyTbI[3] is 1.
4 00010000 Bit 4 in OSRdyGrp is 1 when any bit in OSRdyTbl[4] is 1.
z 00100000 Bit 5 in OSRdyGrp is 1 when any bit in OSRdyTbl[5] is 1.
Z pep— Bit 6 in OSRdyGrp is 1 when any bit in OSRdyTbl[6] is 1.
Bit 7 in OSRdyGrp is 1 when any bit in OSRdyTbI[7] is 1.
7 10000000

* Make a task ready to run:

* Remove a task from the ready list:

What does this code do?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Coding Style

How about this:

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Coding Style

mov al ,byte ptr [bp-17
mov al,byte ptr [bp-17] and al 7y per themd
mov ah,0 mov byte ptr [bp-19],al
and ax,7 mov al,byte ptr [bp-17]
lea dx,word ptr [bp-8] mov ah,0
add ax,dx sar ax’3
mov bx,ax mov byte ptr [bp-20],al
mov al,byte ptr ss:[bx] mov al,byte ptr [bp-19]
not al mov ah,0
mov dl,byte ptr [bp-17] lea dx,word ptr [bp-8]
mov dh,0 add ax,dx
sar dx,3 mov bx,ax
lea bx,word ptr [bp-16] mov al ,byte ptr ss:[bx]
add dx, bx not al
mov bx, dx mov cl,al
and byte ptr ss:[bx],al mov al ,byte ptr [bp-19]
mov. al,byte ptr ss:[bx] mov ah,0
or al ,al lea dx,word ptr [bp-16]
jne short @1@86 add ax,dx
mov. al,byte ptr [bp-17] mov. bx,ax
mov ah,0 and byte ptr ss:[bx],cl
sar ax,3 mov al,byte ptr ss:[bx]
lea dx,word ptr [bp-8] or al,al
add ax,dx jne short @1@142
mov. bx,ax mov al ,byte ptr [bp-20]
mov al ,byte ptr ss:[bx] mov ah,0
not al lea dx,word ptr [bp-8]
and byte ptr [bp-18],al add ax, dx

mov bx, ax

mov al ,byte ptr ss:[bx]
not al

mov cl,al

and byte ptr [bp-18],cl

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

INT8U const OSUnMapTbl[] ={
0,010,2010,30,1,0,2,0,1,0, /* 0x00 to OXOF */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x10 to Ox1F */
5010,2010,30,1,0,2,0,1,0, /* 0x20 to Ox2F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x30 to Ox3F */
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x40 to Ox4F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x50 to Ox5F */
5010,2,0,1,0,30,1,0,2,0,1,0, /* 0x60 to Ox6F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x70 to OX7F */
7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x80 to Ox8F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0, 1, 0, /* 0x90 to Ox9F */
50,10,2,0,1,0,3,0,1,0,2,0,1,0, /* OxAO to OXAF */
4,0,1,0,2,0,1,0,3,0,1,0,2,0, 1, 0, /* 0xBO to OxBF */
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0xCO to OxCF */
4,0,1,0,2,0,1,0,3,0,1,0,2,0, 1,0, /* 0xDO to OXDF */
5010,201,0,30,1,0,2,0,1,0, /* OXEO to OXEF */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0 /* OxFO to OxFF */

b
oi H H _Nnrinri This matrix is used to locate

Finding the highest-priority the first LSB which is ‘2" by

task ready to run: given a value.

For example, if 00110010 is
@ given, then ‘1’ is returned.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Scheduling

The scheduler always schedules the highest-
priority ready task to run .

Task-level scheduling and ISR-level
scheduling are done by OS_Sched() and
OSIntEXxit(), respectively.

= The difference is the saving/restoration of
PSW (or CPU flags).

uC/OS-Il scheduling time is a predictable
amount of time, i.e., a constant time.

= For example, the design of the ready list
intends to achieve this objective.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Scheduling

void 0SSched (void)

{

INT8U vy;

0S_ENTER_CRITICALQ);
1T ((OSLockNesting | OSIntNesting) == 0) {)
y = 0SUnMapTbl [OSRdyGrp]; @
OSPrioHighRdy = (INT8U)((y << 3) + 0SUnMapTbI[OSRdyTbI[y1]);: (2)
if (OSPrioHighRdy != OSPrioCur) { A
OSTCBHighRdy = OSTCBPrioTbI[OSPrioHighRdy]; “)
OSCEXSWCEr++; ®)
0S_TASK_SWQ); ®)
¥

b
0S_EXIT_CRITICALQ);

Rescheduling will not be done if the scheduler is locked or an
ISR is currently serviced.

Find the highest-priority ready task.
If it is not the current task, then skip!
(4)~(6) Perform a context-switch.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task Scheduling

A context switch must save all CPU registers
and PSW of the preempted task onto its stack,
and then restore the CPU registers and PSW
of the highest-priority ready task from its stack.

Task-level scheduling will emulate that as if
preemption/scheduling is done in an ISR.
= OS_TASK_SW() will trigger a software interrupt.

= The interrupt is directed to the context switch
handler OSCtxSw(), which is installed when
uC/OS-ll is initialized.
Interrupts are disabled during the locating of
the highest-priority ready task to prevent
another ISR’s from making some tasks ready.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Task-Level Context Switch

By default, context switches are
handled at the interrupt-level.
Therefore task-level scheduling will
invoke a software interrupt to
emulate that effect:

» Hardware-dependent! Porting must
be done here.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Low Priority Task High Priority Task
OS_TCB OS_TCB

OSTCBCur — OSTCBHighRdy —*

Low Memory Low Memory

CPU
- o
Stack Growth 2> R3
R2
R1 R1
PC
PC PSW
PSW

High Memory High Memory

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Low Priority Task High Priority Task
| OS_TCB | | OS_TCB |
PN | osTcBHighRdy |
///// -,

Low Memory Low Memory

.| CPU
R4 gg R4
Stack Growth R3 Ro R3
Ro R2
o R1 RI
PC PC

PC

= PSW
PSW PSW

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Low Priority Task High Priority Task

0S_TCB OS_TCB

OSTCBHighRdy —
— OSTCBCur

Low Memory Low Memory

CPU
R4 gg R4 <
Stack Growth R3 R2 R3
R2 R R2
‘ R1 R1
PC PC
PC
PSW
PSW PSW

High Memory High Memory

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Locking and Unlocking the
Scheduler

OSSchedLock() prevents high-priority ready tasks from
being scheduled to run while interrupts are still
recognized.
» OSSchedLock() and OSSchedUnlock() must be used in
pairs.
= After calling OSSchedLock(), you must not call kernel
services which might cause context switch, such as
OSFlagPend(), OSMboxPend(), OSMutexPend(), OSQPend(),
OSSemPend(), OSTaskSuspend(), OSTimeDly,
OSTimeDIlyHMSM(), until OSLockNesting == 0. Otherwise,
the system will be locked up.
Sometimes we disable scheduling (but with interrupts
still recognized) because we hope to avoid lengthy
interrupt latencies without introducing race conditions.

OSLockNesting keeps track of the number of
OSSchedLock() has been called.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

OSSchedLock

void O0SSchedLock (void)

{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
0S_CPU_SR cpu_sr;
#endif
iT (OSRunning == TRUE) { /* Make sure multitasking is running
*/
OS_ENTER_CRITICALQ);
it (OSLockNesting < 255) {/* Prevent OSLockNesting from wrapping back to
0*/
OSLockNesting++; /* Increment lock nesting level
*/
¥
0S_EXIT_CRITICALQ);
3
3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

0OSSchedUnlock

void 0SScheduUnlock (void)

{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
0S_CPU_SR cpu_sr;
#endif
if (OSRunning == TRUE) { /* Make sure multitasking is running */
O0S_ENTER_CRITICALQ);
iT (OSLockNesting > 0) { /* Do not decrement if already O */
OSLockNesting--; /* Decrement lock nesting level */

if ((OSLockNesting == 0) &&
(OSIntNesting == 0)) { /* See if sched. enabled and not an ISR */
0S_EXIT_CRITICALQ;
0S_Sched(Q); /* See if a HPT is ready */
} else {
0S_EXIT_CRITICALQ);

¥
3} else {
0S_EXIT_CRITICALQ);
3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

|dle Task

The idle task is always
the lowest-priority task
and can not be deleted
or suspended by user-
tasks.

To reduce power
dissipation, you can
issue a HALT-like
instruction in the idle
task.

= Suspend services in

OSTaskldleHook()!!
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Statistics Task

It is created by uC/OS-Il. It executes every
second to compute the percentage of the
CPU usage.

= |tis with the OS_LOWEST_PRIO — 1 priority.

OSStatlnit() must be called before OSStart()
is called.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Statistics Task

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Statistics Task

(7) TaskStart: Delay for 2 ticks—> transfer CPU to the
statistics task to do some Initialization.

(9) OS TasksStat: Delay for 2 seconds—> Yield the CPU
to the task TaskStart and the idle task.

(13) TaskStart: Delay for 1 second-> Let the idle task
count OSldleCtr for 1 second.

(15) TaskStart: When the timer expires in (13),
OSldleCtr contains the value of OSIdleCtr can be
reached in 1 second.

Notes:

= Since OSStatinit() assume that the idle task will count the
OSOdleCtr at the full CPU speed, you must not install an idle
hook before calling OSStatlnit()!!!

= After the statistics task is initialized, it is OK to install a CPU idle

hook and perform some power-conserving operations! Note that
the idle task consumes the CPU power just for the purpose of
being idle.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Statistics Task

With the invocation of OSStatlnit(), we have
known how large the value of the idle counter
can reach in 1 second (OSldleCtrMax).

The percentage of the CPU usage can be
calculated by the actual idle counter and the

OSldleCtrMax.

,,,,,,,,,,,,,,

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

This term is always O
under an integer
operation

This term might overflow
under fast processors!
(42,949,672)

Statistics Task

#if OS_TASK_STAT_EN>0
void OS_TaskStat (void *pdata)

{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr;
#endif
INT32U run;
INT32U max;
INT8S usage;

pdata = pdata;
while (OSStatRdy == FALSE) {

OSTimeDly(2 * OS_TICKS_PER_SEC);

max = OSIdleCtrMax / 100L;

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

for () {
OS_ENTER_CRITICAL();
OSldleCtrRun = OSIdleCtr;
run = OSldleCtr;
OSldleCtr =0L;
OS_EXIT_CRITICAL();
if (max > 0L) {
usage = (INT8S)(100L - run / max);
if (usage >=0) {
OSCPUUsage = usage;
}else {
OSCPUUsage = 0;
}
}else {
OSCPUUsage = 0;
max = OSldleCtrMax / 100L;

}
OSTaskStatHook();
OSTimeDIly(OS_TICKS_PER_SEC);

Interrupts under uC/OS-lI

uC/OS-Il requires an ISR being
written in assembly if your compiler
does not support in-line assembly!

An ISR Template:

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupts under uC/OS-lI

(2) In an ISR, uC/OS-Il requires that all CPU registers
are saved onto the stack of the interrupted task.

= For processors like Motorola 68030 _, a different
stack is used for ISR.

= For such a case, the stack pointer of the
interrupted task can be obtained from
OSTCBCur (offset 0).

(2) Increase the interrupt-nesting counter counter.

(4) If it is the first interrupt-nesting level, we
immediately save the stack pointer to OSTCBCur.

= We do this because a context-switch might

occur.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupts under uC/OS-lI

(8) Call OSIntExit(), which checks if we are in the
inner-level of nested interrupts. If not, the
scheduler is called.

= A potential context-switch might occur.

= The Interrupt-nesting counter is
decremented.

(9) On the return from this point, there might be
several high-priority tasks since uC/OS-Il is a
preemptive kernel.

(10) The CPU registers are restored from the
stack, and the control is returned to the
interrupted task.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

.
%
W

V722

.
Y,

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupts under uC/0OS-2

void OSIntExit (void)
I no scheduler locking

OS_ENTER_CRITICAL(); and no interrupt
if ((--OSIntNesting | OSLockNesting) == 0) { nesting
OSIntExityY = OSUnMapTbI[OSRdyGrp];
OSPrioHighRdy = (INT8U)((OSINtEXitY < 3) +
OSUNnMapTbI[OSRdyTbI[OSIntEXitY]]); ﬁf there is another high-
if (OSPrioHighRdy != OSPrioCur) { priority task ready
OSTCBHighRdy = OSTCBPrioTbI[OSPrioHighRdy];
OSCtxSwCtr+t;

OSIntCtxSw(); —
} A context switch
} is executed.

OS_EXIT_CRITICAL();

}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

void OSIntEnter (void)

OS_ENTER_CRITICAL();
OSIntNesting++;
OS_EXIT_CRITICAL();

}

Note that OSIntCtxSw() is called,
instead of OS_TASK_SW(),
because the ISR already saves
the CPU registers onto the stack.

Clock Tick

A time source is needed to keep track
of time delays and timeouts.

You must enable ticker interrupts after
multitasking is started.

» |In the TaskStart() task of the
examples.

» Do not do this before OSStart().

Clock ticks are serviced by calling
OSTimeTick() from a tick ISR.

Clock tick ISR is always a port (of
uC/OS-2) of a CPU since we have to

access CPU registers in the tick ISR.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Clock Tick

void OSTickISR(void)
{
Save processor registers;
Call OSIntEnter() or increment OSIntNesting;
If(OSIntNesting == 1)
OSTCBCur->OSTCBStkPtr = SP;
Call OSTimeTick();
Clear interrupting device;
Re-enable interrupts (optional);
Call OSIntEXxit();
Restore processor registers;
Execute a return from interrupt instruction;

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Clock Tick

void OSTimeTick (void)
OS_TCB *ptch;

For all TCB’s
OSTimeTickHook();

if (OSRunning == TRUE) {

1while (ptcb->OSTCBPrio != OS_IDLE_PRIO) {

| OS_ENTER_CRITICAL(); X
if (ptch->OSTCBDIy 1= 0) { éecrement delay-counter if need@
if (--ptch->OSTCBDIy == 0) {
if ((ptch->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) {

OSRdyGrp |= ptcb->OSTCBBItY;
OSRdyTbl[ptch->OSTCBY] |= ptch->OSTCBBItX;
}else {

ptcb->OSTCBDIy = 1;
}

I the delay-counter
reaches zero, make the
task ready. Or, the task
remains waiting.

}

}
ptcb = ptcb->0OSTCBNext;
OS_EXIT_CRITICAL();

}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Clock Tick

OSTimeTick() is a hardware-
independent routine to service the
tick ISR.

A callout-list is more efficient on the
decrementing process of OSTCBDly.

= Constant time to determine if a task
should be made ready.

» Linear time to put a task in the list.

= Compare it with the approach of
uC/OS-II?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Clock Tick

You can also move the bunch of
code in the tick ISR to a user task:

void OSTicklISR(void)

{ void TickTask (void *pdata)
Save processor registers; {
Call OSIntEnter() or increment OSIntNesting; pdata = pdata;
If(OSIntNesting == 1) for () {
OSTCBCur->OSTCBStkPtr = SP; _ » OSMboxPend(...);
post2 =~ OSTimeTick():

- \
Post a ‘dummy’ message (e.g. (void *)1) - -~ messag

to the tick mailbox; }
}

OS_Sched();

Call OSIntExit();
Restore processor registers;

Execute a return from interrupt instruction; Do the rest of
the job!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

uC/OS-ll Initialization

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Starting of uC/OS-ll

OSiInit() initializes data structures for
uC/OS-Il and creates OS_Taskldle().

OSStart() pops the CPU registers of
the highest-priority ready task and
then executes a return from interrupt
instruction.

= |t never returns to the caller of
OSStart() (i.e., main()).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Starting of uC/OS-II

void main (void)
OSInit(); /* Initialize uC/0S-11 */
Create at least 1 task using either OSTaskCreate() or OSTaskCreateExt();

OSStart(); /* Start multitasking! OSStart() will not return */
}

void OSStart (void)

INT8U y;
INT8U Xx;
if (OSRunning == FALSE) {
y = OSUnMapTbI[OSRdyGrp];
X = OSUnMapTbI[OSRdyTbl[y]];
OSPrioHighRdy = (INT8U)((y <« 3) + x);
OSPrioCur = OSPrioHighRdy;
OSTCBHighRdy = OSTCBPrioTbI[OSPrioHighRdy];

OSTCBCur = OSTCBHighRdy;
OsSstartHighRdy(); Start the highest-
} priority ready task

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Summary

The study of the uC/OS-II kernel structure, we
learn something:

» What a task is? How uC/OS-1l manages a task
and related data structures.

= How the scheduler works, especially on
detailed operations done for context switching.

» The responsibility of the idle task and the
statistics task! How they works?

= How interrupts are serviced in uC/OS-II.

= The initialization and starting of uC/OS-I1.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

