
11

Introduction to
Real-Time Databases

郭大維郭大維 教授教授
ktw@csktw@csieie..ntntu.edu.twu.edu.tw

嵌入式系統嵌入式系統暨無線網路暨無線網路實驗室實驗室
(Embedded Systems and Wireless Networking Laboratory)(Embedded Systems and Wireless Networking Laboratory)

國立臺灣大學資訊工程學系國立臺灣大學資訊工程學系

Reading:
Kam-yiu Lam and Tei-Wei Kuo, “Real-Time Database Systems: Architecture and Techniques”, Kluwer Academic Publishers, 2000
Krishna and Kang, “Real-TimeSystems,” McGRAW-HILL, 1997.

22
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Introduction

An Informal Definition of Real-Time Databases:
A real-time database system is a database

system in which a timely response to a user
request is needed.
Types of Real-Time Database Systems:
• Hard real-time database systems, e.g., safety-critical

system such as an early warning system, etc.
• Soft real-time database systems, e.g., banking system,

airline reservation system, digital library, stock market
system, etc.

• Mixed real-time database systems, e.g., air traffic
control system, etc.

33
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

IntroductionIntroduction

Types of RealTypes of Real--Time TransactionsTime Transactions
•• Hard realHard real--time transactionstime transactions

–– No deadline violationNo deadline violation

•• Soft realSoft real--time transactionstime transactions
–– Low miss ratio or Low miss ratio or

avgavg/worst/worst--case response timecase response time

•• Firm realFirm real--time transactionstime transactions
–– No value after deadlines expire.No value after deadlines expire.

value

deadline

deadline

value

deadline

value

44
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

IntroductionIntroduction
Design IssuesDesign Issues
•• RealReal--Time Concurrency ControlTime Concurrency Control

–– Optimistic Optimistic vsvs Conservative CCConservative CC
–– IndexIndex

•• RunRun--Time System ManagementTime System Management
–– RecoveryRecovery
–– Buffer ManagementBuffer Management
–– Disk SchedulingDisk Scheduling

•• Distributed RTDBMSDistributed RTDBMS
–– Data ReplicationData Replication
–– Commit ProcessingCommit Processing
–– Mobile RTDBMSMobile RTDBMS

•• etcetc

55
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Introduction to Real-Time Database

Checklist
⊕What should we really know about the design issues of

real-time databases?

⊕What is known about concurrency control of real-time
data access?

⊕What is known about real-time recovery?

⊕Why is it so hard to have response-time predictability?

⊕What is main-memory database? Is it useful to RTDB?

⊗What is known about real-time query optimization?

⊗What is known about availability issues, real-time file
systems, and disk management?

66
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Introduction to Real-Time Database

Time

Model and Design
(Son, Lin, Singhal, Mok, Kuo,
Dayal,Ramaritham, Stankovic,

since early 1980)

Weak Correctness Criteria
(Mok, Kuo, Pu, Ramaritham,

Lin, etc, since mid 1980)

Concurrency Control (CC)
(Son, Ramaritham, Lin, Bestavos, Wolfe,
Garcia-Molina, Mok, Kuo, Lam, Zhao,

Sha, etc, since early 1980)

CC Based on
Simulation

.
Complex CC

.
CC Based on

Application Semantics
.

CC of Mixed RT Transactions
.

CC + Recovery
.

Recovery and Logging
(Ramaritham,Lam, since 1996)

Commercial Database &
Realistic Workloads

(??)

Query Optimization
(Wolfe, etc, since early 1990)

Fault Tolerance &
Availability

(Lin, 1988 &)

File Structure &
Data Caching

(??)

Active + RTDB
(Son, Mok, Lam, since 1996)

77

Introduction to Real-Time Database

Real-Time vs. General Purpose Databases

• Basic Definitions & ACID Properties
• Correctness Criteria
• Consistency Constraints
• Needs for Response-Time Predictability
• Main Memory Database for RTDB

88
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Basic Definitions & ACID Properties

A transaction is a sequence of read and write
operations, i.e., r(x) and w(y). (transaction instance)

A history/schedule over a set of transactions is
an interleaving of the read and write operations
issued by the transactions , e.g.,
w2(x),r1(x),w2(y),r1(y).

A query transaction consists of only read
operations. (vs update)

A serial schedule is a sequence of operations
which are issued by transactions one by one, e.g.,
w2(x), w2(y), r1(x), r1(y).

99
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Data Access versus Semaphore Data Access versus Semaphore
LockingLocking

Typical ScheduleTypical Schedule
•• T1 (x=xT1 (x=x--100, y=y+100)100, y=y+100) T2T2

r(xr(x))

w(xw(x))

r(xr(x))

r(yr(y))

r(yr(y))

w(yw(y))

1010
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Basic Definitions & ACID Properties

In conventional databases, transactions
must satisfy the ACID properties:
• Atomicity: all or nothing.

• Consistency: consistent transformation of DB
states.

• Isolation: invisibility for dirty data. (degrees)

• Durability: permanent committed updates.

In real-time databases, relaxing ACID
depends on application semantics.

1111
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Correctness Criteria
Conventional Criteria:
• Final-State Serializability ~ NP-hard

– Generate the same final state as a serial schedule does.

• View Serializability ~ NP-hard
– Final-State Serializability, and

– Corresponding transactions have the same view over the
database.

• Conflict Serializability ~ Polynomial
– The order of conflicting operations is the same as that of a

serial schedule.

Criteria for Real-Time Databases:
• Weak criteria are possible, but their definitions depend on

application semantics.
Reading: C. Papadimitriou, “The theory of Database Concurrency Control,” Computer Science Press, 1986.

1212
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Examples: Serializability

S = R1(X)W1(X) R2(X)R2(Y)W2(Y) W1(Y)

S is final-state equivalent to S1 = τ2 τ1
S is not view equivalent to S1 because of the transaction
view of τ2, which is a dead transaction.

S = R1(Y) R3(W) R2(Y) W1(Y)W1(X) W2(X)W2(Z) W3(X)

S is view equivalent to S1 = τ2 τ1 τ3.

S is not conflict equivalent to S1

because of the order of the two dead

W(X)’s of τ1 and τ2.

ττ1

ττ2ττ3

X

X

X

Y

1313
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Correctness Criteria - Relaxing...

An Airline Reservation Example1

• Rules:
– Reservation:

• Reserve a seat.

• If over 100 seats, assign 5 flight attendants to the flight;
otherwise assign 3 attendants.

– Cancellation
• Cancel a seat on the flight.

• If the number of reservations drops below 85, assign only3
flight attendants to the flight.

– Hysteresis: The assigned number will not oscillate rapidly.

• Scenarios: Starting from 3 attendants from TPE to LA, and LA to AUS,
99 servations on each flight.

– ReserveA(TPE,LA), CancelB(TPE,LA,), CancelB(LA,AUS), ReserveA(LA,AUS)

– TPE-LA: 5 attendants, LA-AUS: 3, An acceptable but non-serializable schedule!
1 H. Garcia-Molina and K. Salem, “Main Memory Database Systems: An Overview,” IEEE Trans. Knowledge and Data Engineering, 4(6):509-516, 1992.

1414
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Consistency Constraints

In conventional databases,
• Internal Consistency

– Database satisfies consistency and integrity constraints, e.g.,
x=y.

In real-time databases,timing properties of data are
important, too!

• Absolute/External Consistency
– Data reflect the changings of the external environment.

– For example, stock index.

• Relative/Temporal Consistency
– The ages of two data are within a tolerable length of time.

– For example, the temperature and the pressure of a boiler read
at time t.

1515
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Needs for Response-Time Predictability

Why is it so hard to have response-time
predictability for disk-based or other databases?
• Blocking and transaction abortings caused by the

requirement to meet the ACID properties.
• Unpredictability of disk access time and page faults2.
• Data dependency of transaction executions.

However, in many cases, we often only
• use main memory database, or
• need worst-case predictability, or
• use real memory addressing, or
• best effort in scheduling.

2 Only bad for disk-based databases, logging purpose, or virtual memory usage.

1616
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Main Memory Database for RTDB

Why main memory databases?
• Improve response time.

• Reduce unpredictability of response time.
– Critical factors of contentions:

• transaction duration and lock granularity.

• Hardware technology improvements.

What is the cost or research beside money?
• Higher frequency in data backup.

• Vulnerable to system failures - efficient logging
mechanism, recoverability, and recovery time to
transaction and system failures.

• Different indexing schemes beside shallow B-tree.

1717

Introduction to Real-Time Database

Concurrency Control
• Conservative Concurrency Control
• Optimistic Concurrency Control
• Semantics-Based Concurrency Control
• Concurrency Control for

Mixed Transaction Systems

1818
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Introduction to Real-Time Database

Issues for Real-Time Concurrency Control (RT-CC)

• Data consistency and integrity.

• Urgency of transaction executions.

General Approaches for RT-CC:
• Integrate real-time techniques, e.g., RM, EDF, and PCP,

and traditional concurrency control protocols, e.g., 2PL,
OCC, RWPCP, Multiversion-CC.

• Utilize application semantics to improve system
performance.

• Adopt suitable software architectures such as an object-
oriented design, etc.

1919
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Introduction to Real-Time Database
Classification of RT-CC protocols:
• Syntactic-based concurrency control

– Conservative Mechanism
• Prevention of any serializability violation in advance.

– conservative in resource usages.

• Significant blocking cost

– Optimistic Mechanism
• Three phases for each transaction execution:

– read, validation, write

• Significant aborting cost
– etc

• Semantics-based concurrency control
– CC with flexibility in reordering read and write events.

• Concurrency level vs worst-case blocking time.

– CC with reduced and simplified CC protocols, e.g., single writer.
• Such systems which totally satisfy requirements rarely exist.

– etc.

2020
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Syntactic-Based Concurrency Control

Pessimistic Concurrency Control
• Ensure that transactions will not violate serializability

consistency during their executions

• Q: How to favor high priority transactions, e.g., in the
processing of locking requests?

Optimistic Concurrency Control
• Any violation of serializability consistency from a

transaction will not be checked until its validation time.

• Q: How to favor high priority transactions if there exist
conflicts between high and low priority transactions?

2121
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Lock-Oriented Concurrency Control

Characteristics
A typical way for pessimistic concurrency control

Prevention of serializability violation by lock
management - possibly lengthy blocking time

An Example Protocol
Two-phase locking + A Priority Assignment
Scheme, such as RM or EDF.

Two-phase locking – growing phase and shrinking
phase

priority inheritance.

2222
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Lock-Based Concurrency Control

Read/Write Priority Ceiling Protocol
(RWPCP)

2-Version RWPCP

Aborting versus Blocking

2323
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Lock-Based Concurrency Control

Read/Write Priority Ceiling Protocol
(RWPCP)

2-Version RWPCP

Aborting versus Blocking

2424
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Read/Write Priority Ceiling Protocol

Ceiling definitions of data object Oi

• Write Priority Ceiling (WPLi) of Oi

• Absolute Priority Ceiling (APLi) of Oi

• Read/Write Priority Ceiling (RWPLi) of Oi
– WPLi or APLi

Ceiling rule
• A transaction may lock a data object if its

priority is higher than the highest RWPLi of
data objects locked by other transactions.

2525
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

RWPCP

τ1

τ3

τ2

S1 S2 S1&S2

4 6 8 10 12 14 16 1820 20 22 24 26 28 30

RL(S1)

UL(S1)

4 6 8 10 12 14 16 1820 20 22 24 26 28 30

RL(S2)
UL(S2)

WL(S1)

4 6 8 10 12 14 16 1820 20 22 24 26 28 30

UL(S1)

WL(S2) UL(S2)

APL1 = τ1
WPL1= τ2
APL2 = τ2
WPL2= τ3

2626
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Properties of RWPCP

Properties in Uniprocessor Environments
• Lemma1: No transitive blocking (τL->τM->τH)

• Theorem 1: One priority inversion per
transaction.

• Theorem 2 : Deadlock-freeness

• Theorem 4: Serializable schedules if the two-
phase-locking scheme (2PL) is followed.

2727
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

RWPCP in a Multiprocessor Environment

τ1

τ3

τ2

τ4

Processor 1

Processor 2

RL(S1)

RL(S2) RL(S3)

WL(S1)

UL(S3)

UL(S1)

RL(S1) UL(S1)
4 6 8 10 12 14 16 182

4 6 8 10 12 14 16 182

UL(S2)

UL(S1)

S1

S2

S3
4 6 8 10 12 14 16 182

2 4 6 8 10 12 14 16 18

Example 1 RWPCP Schedule

APL1 = τ1
WPL1= τ1
APL2 = τ2
WPL2= null
APL3 = τ2
WPL3= null

2828
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

An Observation

The number of priority inversion may be
more than one when there are more
than one processor in the system!

2929
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Why?

The priority gap between the priority of τ2

and the read write priority ceiling of the
data objects locked by τ2

How to guarantee single priority inversion
time in a multiprocessor environment ?

Priority of τ2

WPL(S2)

Reference: Tei-Wei Kuo and Hsin-Chia Hsih, 2000, "Concurrency Control in a Multiprocessor Real-Time Database System,“
the 12th Euromicro Conference on Real-Time Systems, Stockholm, Sweden, June 2000.

3030
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Lock-Based Concurrency Control

Read/Write Priority Ceiling Protocol
(RWPCP)

2-Version RWPCP (2VPCP)

Aborting versus Blocking

3131
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Two-Version Read/Write Priority
Ceiling Protocol

Objectives:
Reduce the blocking time of higher-priority
transactions
Dynamic Adjustment of Serializability Order

Lock Modes
Working/Consistent Versions

Writes on working versions
Reads from consistent versions

Read/Write/Certify Locks

3232
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Two-Version Read/Write Priority
Ceiling Protocol

Ceiling definitions of data object Oi

• Write Priority Ceiling (WPLi) of Oi

• Absolute Priority Ceiling (APLi) of Oi

• Read/Write Priority Ceiling (RWPLi) of Oi
– WPLi for read/write locks or APLi for certify locks

Ceiling rule
• A transaction may lock a data object if its

priority is higher than the highest RWPLi of
data objects locked by other transactions.

3333
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Two-Version Read/Write Priority
Ceiling Protocol

• A compatibility table for 2VPCP:
Requested locks

Lock already set Read Write Certify

Read Granted Granted Blocked

Write Granted Blocked Blocked

Certify Blocked Blocked Blocked

• Remark:
– More versions?

– Aborting allowed?

3434
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

2VPCP

τ1

τ3

τ2

S1 S2 S1&S2

4 6 8 10 12 14 16 1820 20 22 24 26 28 30

RL(S1) UL(S1)

4 6 8 10 12 14 16 1820 20 22 24 26 28 30

RL(S2)
UL(S2)

WL(S1)

4 6 8 10 12 14 16 1820 20 22 24 26 28 30

UL(S1)

WL(S2)
UL(S2)

APL1 = τ1
WPL1= τ2
APL2 = τ2
WPL2= τ3

3535
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Properties of 2VPCPProperties of 2VPCP

PropertiesProperties
•• Lemma1: No transitive blocking (Lemma1: No transitive blocking (ττLL-->>ττMM-->>ττHH))

•• Theorem 1: One priority inversion per Theorem 1: One priority inversion per
transaction.transaction.

•• Theorem 2 : DeadlockTheorem 2 : Deadlock--freenessfreeness

•• Theorem 4: Theorem 4: SerializableSerializable schedules if the twoschedules if the two--
phasephase--locking scheme (2PL) is followed.locking scheme (2PL) is followed.

3636
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Simulation ResultsSimulation Results

Miss Ratios of All Transactions
* NPNP adopts multiple versions for a data object!

3737
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Simulation ResultsSimulation Results

Miss Ratios of the Top ¼ Priority Transactions

3838
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Lock-Based Concurrency Control

Read/Write Priority Ceiling Protocol
(RWPCP)

2-Version RWPCP (2VPCP)

Aborting versus Blocking

3939
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Basic Aborting Protocol (BAP)

Main Idea:
When a lower priority transaction introduces excessive
blocking to a higher priority transaction, then higher
priority transaction will abort the lower priority
transaction.

Compatible Modules:
• Priority Ceiling Protocol (PCP)
• 2PL
• A simple aborting mechanism

Reference: Tei-Wei Kuo, Ming-Chung Liang, and LihChyun Shu, “Abort-Oriented Concurrency Control for Real-Time Databases,”
IEEE Transactions on Computers (SCI), Vol. 50, No. 7, July 2001, pp. 660-673.

4040
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

BAP Protocol Summary
Transactions are classified as abortable or non-abortable in

an off-line fashion.

Each transaction instance ττmust acquire a semaphore before
access the corresponding data object.

•• Lock grantedLock granted: when a transaction instance : when a transaction instance ττ attempts to lock a attempts to lock a
semaphore, it checks whether itsemaphore, it checks whether it‘‘s priority is higher than the s priority is higher than the priority priority
ceilingceiling of all semaphores already locked by other transaction instancesof all semaphores already locked by other transaction instances. .

•• BlockedBlocked: if there exists any non: if there exists any non--abortableabortable lower priority transaction lower priority transaction

instance instance ττ‘‘ which locked a semaphore with a priority ceiling no less than which locked a semaphore with a priority ceiling no less than

the priority of the priority of ττ, then , then ττ is blocked by is blocked by ττ‘‘, and , and ττ‘‘ inheritsinherits the priority of the priority of ττ..

•• AbortingAborting: Otherwise, : Otherwise, ττ‘‘ is is abortedaborted, and the lock is granted., and the lock is granted.

4141
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

BAP Schedule

()TH 511, ()TM 519, ()TL 7,22

4242
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

PCP+2PL Schedule

()TH 511, ()TM 519, ()TL 7,22

4343
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Properties

Lemma 1. BAP prevents deadlocks.

Theorem 1. Schedules generated by BAP are logically
correct (based on serializability).

Theorem 3. No transaction instance ττ scheduled by BAP
directly or indirectly inherits a priority level from a
transaction instance which is aborted before ττ commits or is
aborted.

Theorem 4. A transaction instance can experience at most
one time of priority inversion under BAP.

Theorem 5. A higher priority transaction instance can abort
at most one lower priority transaction instance under BAP.

4444
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Schedulability Analysis
A-cost

i,j
: maximum direct aborting cost of ττj

charged by ττi
α-cost

i,j
: max(A-cost

i,k
), where i < k <= j.

Lemma 2. The worst-case aborting cost for a request of transaction ττj
between time 0 and time t <= p

j
is at most

Lemma 3. A transaction ττi
scheduled by BAP will always meet its

deadline for all process phases if there exists a pair such
that

where b
i

and ab
i

are the worst case blocking cost and aborting cost of

transaction ττi ,,

()c
mp

p
c b ab mpj

k

jj HPC
i i i k

i

⎡

⎢
⎢

⎤

⎥
⎥ + + + ≤

∈
∑

(),

t

p i

i jHPCi j

⎡

⎢
⎢

⎤

⎥
⎥ × −

∈∑ α
τ

cost

(,)k m Ri∈

R k m k i m
p

pi
i

k

= ≤ ≤ =
⎢

⎣
⎢

⎥

⎦
⎥{(,) , , , ..., }1 1 2

4545
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Schedulability Analysis Procedure

Lemma 3 shows that the maximum blocking time
that transaction ττi

can tolerate is

MBMB
ii
= =

Initially all transactions are non-abortable.
• i=1
• If i > n then stop

• If transaction ττj
has a priority ceiling no less than ττi

and the length of the critical section is larger than MB
i
,

then ττj
becomes abortable, where j > i.

• i=i+1

max t c
t

p
c abt SP j

j
i ij HPCi i

∈ ∈−
⎡

⎢
⎢

⎤

⎥
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑

4646
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Extensions of BAP

Table-Driven Aborting Protocol (TAP)
• Give a more fine-grained fashion of aborting

relationship

• An instance of transaction ττi
can abort an

instance of transaction ττj
only when AB[i, j] =

yes.

• The rest of the TAP is the same as BAP.

• The properties of BAP remain.

4747
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Extensions of BAP

Dynamic Aborting Protocol (DAP)
• Run-Time Calculation of Tolerable Blocking Time:

– The blocking time that an instance of a transaction can
tolerate is estimated dynamically and based on the
current workload instead of the worst case situation.

• Run-Time Determination of Aborting Relationship:
– An instance of a higher priority transaction τ

H
can abort

an instance of a lower priority transaction τ
L

at time t
only if (1)τ

L
blocks τ

H
, (2)τ

L
is abortable, and (3) the

maximum tolerable blocking time of τ
H

is less than the
possible blocking time of τ

L
at time t.

4848
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

DAP: Approximate Schedulability Test

Theorem 8. A transaction τ
ii
scheduled by DAP will

always meet its deadline for all process phases if

The maximum blocking time that transaction τ
ii

can
tolerate at time t is approximated as:

where

The rest of the DAP is the same as BAP.
The properties of BAP remain.

()
d

p
c c b ab di

jj HPC
j i i i i

i

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
× + + + ≤

∈
∑

AMB d t
d t

p
c c ab ti i

i

jj HPC
j i i

i

= − −
−⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
× − −

∈
∑() () ()

ab t
d t

p
i

i

i

i jHPCi j

() (),=
−⎡

⎢
⎢

⎤

⎥
⎥ × −

∈∑ α
τ

cost

4949
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Performance Evaluation
Case Study

• Generic Avionics Platform
– 18 periodic transactions.

– 9 data objects.

• Olympus AOCS
– 10 periodic transactions.

– 4 sporadic transactions.

– 17 data objects.

Simulation Experiment

• Compare BAP, TAP, and DAP with the well known Priority
Ceiling Protocol (PCP), Rate Monotonic Scheduling
algorithm (RMS), and Abort Ceiling Protocol (ACP).

5050
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Case Study 1: Generic Avionics Platform

5151
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Schedulability Analysis: Generic Avionics Platform

* PCP + 2PL: Only the first two transactions are schedulable.

5252
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Fig 4: Top 1/4 T ransactions, DB size = 25

0

0.01

0.02

0.03

0.04

40 45 50 55 60 65 70 75 80 85 90 95

System Load (%)

M
is

s
R

at
io

PCP BAP TAP
DAP ACP RMS

Fig 5: Top 1/4 Transactions, DB size = 50

0

0.01

0.02

0.03

0.04

40 45 50 55 60 65 70 75 80 85 90 95

System Load (%)

M
is

s
R

at
io

PCP BAP TAP
DAP ACP RMS

Simulation Results

5353
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Simulation Results

Fig 6: Top 1/4 Transactions, DB size = 100

0

0.01

0.02

0.03

0.04

40 45 50 55 60 65 70 75 80 85 90 95
System Load (%)

M
is

s
R

at
io

PCP BAP TAP
DAP ACP RMS

Fig 7: Top 1/4 Transactions, DB size = 150

0

0.01

0.02

0.03

0.04

40 45 50 55 60 65 70 75 80 85 90 95

System Load (%)
M

is
s

R
at

io

PCP BAP TAP
DAP ACP RMS

5454
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Simulation Results

Fig 8: Top 1/4 T ransactions, DB size = 200

0

0.01

0.02

0.03

0.04

40 45 50 55 60 65 70 75 80 85 90 95

System Load (%)

M
is

s
R

at
io

PCP BAP TAP
DAP ACP RMS

Fig 9: The Whole Transaction Set, DB siz = 100

0

0.05

0.1

0.15

0.2

0.25

40 45 50 55 60 65 70 75 80 85 90 95
System Load (%)

M
is

s
R

at
io

PCP BAP TAP
DAP ACP RMS

5555
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Optimistic Concurrency Control

Broadcast Commit

Alternation of Serializability

5656
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Real-Time Optimistic Concurrency Control

Example A - A simple optimistic CC
• Three execution phases: read, validation, write.

• Use timestamp to validate the serializability of trans.

• Let the timestamp of A be before that of T.
Serializability consistency is not violated due to T if

– A completed its write phase before T starts its read phase,or

– The read set of A is distinct from the write set of T, and A
finished its write phase before T starts its write phase, or

– The write set of A is distinct from both the read and write sets
of T.

• Long transactions are been against because they tend
to have a lot of conflict.

5757
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Real-Time Optimistic Concurrency Control

• Variations:
– Broadcast commit protocol:

• When a transaction commits, it tells all the transactions that
it conflicts with so that they abort.

– When priority is involved...
• When T commits at its validation phase, all lower-priority

transactions abort.

• Any higher priority transactions H in conflict with T...

– Sacrifice policy - abort T.

– Wait policy - Wait until H commits. If H commits, abort
T; otherwise, commit T.

– Wait-X policy - T commits unless more than X% of the
transactions that conflict with it are of a higher priority;
otherwise, T waits… (X=50 seems very good.)

5858
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Real-Time Optimistic Concurrency Control

Example B - Alternation of Serializability
• Motivation: Reduce abortings by flexibly adjusting serializability order.

• For example,
RA(x), RA(y), RA(z), RB(x), RA(u), WA(x), WB(v)

An acceptable order is B, A instead of A, B!!

• An timestamp-based algorithm:
– The system maintains a valid interval (x,y) for each transaction to assign the transaction a

timestamp at its commit time.

– A read timestamp and a write timestamp for each data item which are the latest timestamps of
committed transactions that have read and updated it (updates done at commit times).

– Updating of a data item at the commit time of a transaction is effective if the timestamp of the
transaction is larger than the write timestamp of the data item; otherwise, the write timestamp is
not changed and the update is simply ignored.

• Example B.1:
– x1(r=40,w=3), x2(r=2,w=60), timestamp(T1)=25, ReadSet(T1)= {x1}, WriteSet(T1)={x1,x2,x3}

– After T1 commits, x1(r=40,w=25), x2(r=2,w=60), x1 is updated, x2 remains the same.

Remark: The serializability order of transactions scheduled by pessimistic CC is often determined at lock request times.

5959
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Real-Time Optimistic Concurrency Control

• Example B.2: modifications of timestamp intervals

Timestamp(T) must be in (33, 49)!

Timestamp(T) must be larger than 90!

• Rules for assigning timestamps to a transaction T:
– Determine the validity intervals of data read by T

– Take the intersection of all these validity intervals. Let it be IT=(lT , uT). If the
interval is empty, then abort T.

– Let maxT be the maximum read timestamp of all of the data items updated by T. If
maxT >= uT then abort T. Otherwise choose a timestamp for T in the interval
(maxT , uT).

Time
25 33 49 56

T reads X

The write timestamp
of each update.

Time
63 85

potential commit point for T

The read timestamp
of each read.90

Y. Lin and S.H. Son, “Concurrency control in Real-Time Databases by Dynamically Adjustment of Serializability Order,” IEEE Real-Time Systems Symposium, 1990, pp. 104-112.

6060
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Real-Time Optimistic Concurrency Control

The protocol shown in Example B only considers the
transaction that is being validated in the context of the
transactions that have already been committed.

Validation Schemes1:(not exclusively classified)

• Backward validation: The validation procedure is performed against recently
committed transactions.

– Ti: validating transaction, Tj: transactions commit between the time Ti starts
execution and the time at which Ti comes to the validation phase.

– Cond. 1: The writes of Tj should not affect the read phase of Ti.

– Abort Ti if necessary.

• Forward validation:The validation of a transaction is performed against
concurrently executing transactions.

– Ti: validating transaction, Tj: transactions which currently executes in their
read phase.

– Cond. 1: The writes of Ti should not affect the read phase of Tj.

– Abort Ti or Tj depending on properties such as priority level.
1. Kwok-Wa Lam, “Concurrency Control and Transaction Scheduling in Real-Time Database Systems,” Ph.D. thesis, Dept. of Computer Science, City University of Hong Kong, 1997.

6161
@ all rights preserved for Tei-Wei Kuo, National Taiwan University

Real-Time Concurrency Control

Other papers for discussion
• R. Abbott, H. Garcia-Molina, “Scheduling Real-Time

Transactions: A Performance Evaluation,”
Proceedings of the 14th VLDB Conference, 1988.

• M.-C. Liang, T.-W. Kuo, and L.C. Shu,”BAP: A Class
of Abort-Oriented Protocols Based on the Notion of
Compatibility,” The Third International Workshop on
Real-Time Computing Systems and Applications, 1996.

• T.-W. Kuo and A.K. Mok, “SSP: a Semantics-Based
Protocol for Real-time Data access,” IEEE 14th Real-
Time Systems Symposium, 1993.

6262

Introduction to Real-Time Database

Other Issues
• Logging and Recovery
• Query Optimization
• Availability

