Rate Monotonic Analysis
(RMA)

ktw@csie.ntu.edu.tw

(Real-Time and Embedded System L aboratory)

Major References:
An Introduction to Rate Monotonic Analysis
— Tutorial Notes SEI CMU*
Distributed Real-Time System Design Using Generalized Rate Monotonic Theory
— Tutorial Notes Lui Sha SEI CMU 1992.*

*The BMA Project i bythe U S Dent of Defense

Can we have a better way to predict the
schedulability of a process set more precisely?

Are we still able to predict the schedulability of a
process set if the basic assumptions of rate
monotonic scheduling [LL:73] are violated?

€ Rate monotonic priorities

€ Unique priority per unique period

€ Preemptive scheduling

€ Deadlines are coincident with start of period
€ Only periodic tasks

Do we have an analytical framework for
reasoning the timing behavior of a process set or

have an engineering basis for designing real-
time systems.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Why are deadlines missed?

For a given task consider
@ the time needed by higher priority tasks
@ the time needed to do this task’s work
@ delays caused by lower priority tasks
priority inversion (blocking)
To improve the performance of real-time
systems

®identify and limit sources of priority
inversion*

*check previous examples

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

A Sample Problem

Periodic tasks Servers

T s)

T J F
1 mase

s

i ="
T 2 _I." 40
P L

350 e
T3 10

/ mset

Aperiodic tasks

Emergency Event handling task
50 msec 40 msec

/5 msec -'..2 msec
d:6 msec Desired respone

4 msec on average

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Periodic Requirements

Periodic task

€ Ready to execute at fixed intervals

€ deadline = the beginning of the next period
(to be relaxed later!)

Rate Monotonic Algorithm

® Assign higher priorities to tasks with shorter
periods (tQ be relaxed later!)

@ 1f U(T)<n(2"-) for some n-process set T, T is
schedulable [KM:91,LL:73].

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Periodic Requirements

Task t,: C,=20, P,=100, U;=0.2
Task t,: C,=40, P,=150, U,=0.267
Task t5: C53=100, P;=350, U;=0.286

1
Total utilization: 75.3% <U(3):3(2° -1) = 77.9%
24.7% of the CPU is usable for lower-

priority background computation!

ADD more computation!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Periodic Requirements

Task t,: C,=40, P,=100, U,=0.4

=> the utilization factor of the first two tasks:
66.7% < U(2): 82.8%

Total utilization: 95.3% > U(3) !

The test result is inconclusive !

| I 15 A0 S0 W) 2]
]

L2 A s N s I N

150 Wl
Tp L - T
T3 o o A s Y
a S0 100 140 L) NR0a0d 240 E V]

t

The Time Line of the Example

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Improving the Schedulability Bound

Theorem 2[LSD87]: A set of n independent
periodic tasks scheduled by the rate
monotonic algorithm will always meet its

deadlines, for all task phasings, if and only
if
1| 1P«

Vil<i<n,min Cj—|7——‘ﬁl
(k1)eR ; [Pk Pj

R ={(k1<k<il=1A, [P /R }

gL [Px
i min(» G| — |-IP) <0
o mnGio] | p <o

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Improving the Schedulability Bound -
Theorem 2 Revisited

Rate Monotonic Analysis (RMA) 2
Basic Idea:

Before time t after the critical instance of process T;, a high
priority process T; may request c‘(t} amount of

computation time. | b,
deadline of 7
Pttt [
& Formula’ H t fime
i t for somet in
Wi(t)=) ¢ |—|st<d,
I() Z]Zl l|7pj—‘ {kﬁ|=/1 ’#1/("" -‘/U'p"v
¢ A sufficient and necessary condition and many
extensions...

2 Sha, “ An Intorduction to Rate Monotonic Analysis,” tutorial notes, SEI, CMU, 1992

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Improving the Schedulability
Bound - Theorem 2 Revisited

A RMA Example:
v T1(20,100), T2(30,150), T3(80, 210), T4(100,400)

Tl
cl<=100

* T2 W3(t) A
cl+c2<=100 or 210 [
2cl +c2<=150

¢ T3 190
cl+c2+c3<=100 or 170
2cl+c2+c3<=150 or 150
2cl +2c2+c3<=200 or
3cl +2c2 + ¢c3<=210 130

& T4
cl+c2+c3+c4<=100 or 50 j_gt) 150 200

+ + + <= .
2cl+c2+c3+c4 150 or Time

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Improving the Schedulability Bound

Theorem 3[JP86]: For a set of independent,
periodic tasks, if each task meets its first
deadline, with worst-case task phasings, the
deadline will always be met

Completion Time (CT) test

Let W.=completion time of task i, W, may be
computed by the following iterative formula

Wi(n+1)=C, + Z{W(”)lcj, WI(0) = 0

]
Task i isschedulableif its co ion.time,i
beforeits deadline. W, < P ?lpllgke%i ani%'!)

[LSD87] Lehoczky, Sha, and Ding, “The Rate Monotonic Scheduling Algorithm-Exact Characterization and Average Case Behavior”, TR, Dept. of
statistics, LMU,1987
[JP86] Joseph and Pandya, “Finding Response Times in a Real-Time System”, BCS Computing Journal, vol 29, no.5, 1986, pp390-395

j<i

Reference:

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Improving the Schedulability Bound -
an example

Task t,: C,=40, P,=100, U,=0.4
Task 1,: C,=40, P,=150, U,=0.267
Task t,; C,=100, P,=350, U,=0.286

Apply Theorem 2
C,+C,+C,<P, 40+40+100 > 100
or 2C,+C,+C,<P, 80+40+100 > 150
or 2C,+2C,+C, <2P, 80+80+100 > 200
or 3C,+2C,+C, <2P,*120+80+100 <= 300 *
or 4C,+3C,+C, <P, 160+120+100 > 350

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Apply Theorem 3
W3(0)=0

Ws(D) =Cs+ Z {g—‘Cj =Cs3=100

j<3 I

100 100 100
Ws3(2) = =~ ¢ =100+| — |40+| —|40=180
#2) C”;[P,—ICJ [100} (150}
180 o4 @%wzeo
100 150

290140.+| 229149 300
100 || 150

390 0.+ @]m: 300

Wa(3) =100+
Wa(4) =100+

Wa(5) =100+ | —
100 150

The computation is converged!
©W, =300< P,=d,=350= Schedulable!

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Summary

Utilization bound test is simple but conservative.

Completion time test is more exact but also more
complicated! In fact, tests based on Theorems 2 and 3
have a pseudo-polynomial-time time complexity.

To this point, UB, CT, and Schedulability-Point tests
share the same limitations.

all tasks are periodic and not interacting with each another.

& deadlines are always the end of the period.

no interrupts.

< rate monotonic priorities assigned.

¢ all tasks are on a single processor.

zero context switch overhead. (stack dispelling)

& tasks do not suspend themselves.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Practical Applications

Modeling context switching
Schedulability with priority inversion
Schedulability with Interrupts
Schedulability without a rate monotonic
priority

Handling pre-period deadlines

Important Issue:
Identify the sources of blocking & manage them!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Modeling Context Switching

cl
T U
T U

RMA:

Pure priority-driven preemptive schedules impose
two scheduling actions per task (start of the period
& end of the period)

C +2s

U =

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Modeling Context Switching - Remark

Can it be more efficient than a cyclic
executive?

Run-time scheduling certainly appears to have more
overhead than the scheduling overhead for a cyclic
executive. But there is a hidden overhead in the cyclic case.
Task periods must sometimes to be shortened to fit within
the cyclic executive structure! Machine utilization increases,
but not because more useful work is done!

* Cyclic executive - where all work(tasks) fit into a common
period (major frame) and executed non-preemptively.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Priority Inversion

Delay to a task’s execution caused by lower-
priority tasks is known as priority inversion.

Systems potentially contain many sources of
priority inversion.

= ldentifying, reducing, and modeling priority
inversion is central to schedulability analysis.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Priority Inversion

= Sources of Priority Inversion
€ Non-rate-monotonic priority assignment
(syntactically in RMA ?!I)
€ Non-preemptibility
@ Interrupts
€ Not enough priority levels
@ FIFO queues (of course, they are more!)
€ Synchronization

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Schedulability with Interrupts

Interrupt processing can be inconsistent with
the RM priority assignment:
€ Execute with a high priority despite long
“period™
@ Delay execution of tasks with higher rate
monotonic priorities.

@ Source of priority inversion!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Schedulability with Interrupts

Example

Task " 1 :C1 =20, P1 =100, U1=0.2
Task M 2 : C2 =40, P2 =150, U2=0.267
Interrupt : Cint=60, Pint=200, Uint=0.3
Task ' 3 :C3 =20, P3 =350, U3=0.057

rep .1, 31y 4y
Exec with

RM priority _int - P E—

rs, ., 0O O 0
The last task

was not

ri [1 i:l 4|—J:LD% affected!

o r2] 1 \ L1
Exec with T T T
Int t
anInterrupt pe] } !ﬁ }

priority

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Schedulability with Interrupts

Solution 1

@ Should interrupts be modeled in the same
manner as task’s context switching (i.e.,

treated as extra execution time)?

C1=C1+Cint=80

C3=20

S e P I e T B
rp, L} 4+ >
I int i i i

= f f L] f

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Schedulability with Interrupts

€ The completion time for I 1is correct!
Correct model for I 1.
& 2fails!
(® Itis too pessimistic for I 2.

I 2 should be affected at most once per
period!

& 3fails!
[3is preempted too frequently!

Consider each task separately!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Rule of Thumb

Task schedulability is affected by
4 Preemption effects:
Potentially many times per period.
€ Execution effects:
Once per period!
@ Blocking effects:

at most once per period for each source of
blocking

*Blocking effects occur at alower frequency, and thus each
blocking effect can impact the task only once per period.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Schedulability with Interrupts

Example:
7,: C,=20,P,=100,U,=0.2
7,. C,=40,P,=150,U,=0.267
Tini-Cini=60,P,,;=200,U;,,=0.3
13: C4;=20,P4;=350,U;=0.057

= Solution 2: Modeling Interrupts with Blocking Time

(Harmonic basesize=3 U(3)=0.779)

*(3) %:0.331.0

int

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

100
Ty [nt (:1;@:0.831.0 For T,
100 200
L [] |
G G+G _ _
0 150 g =086-UR=082: For 1,
2 [nt
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.
Schedulability with Interrupts
0 100 200 300 400
Ty | o B x 1 x
150 300 350
T, o O | I
200 200 For 7,4
i [nt [nt x
350
T3 - | l .
1,8, Cu G a5 ua)=0.786
Pl P2 Pint P3

Apply Theorem 2

For t,; R,={(1,1),(2,1)}

Apply Theorem 3

C,+C,+B,=20+40+C
2C,+C,+B,=40+40+C
1) C,=20,P,=100,U,=0.2
1, C,=40,P,=150, U,= 0.267
1, C,=60,P,,=200,U,,=03

For
®,(0)=0 5 [0
(1) =Co+ Byt & p
=C,+B,=100
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan Universi ty.

L =120> P,
=140 = P,

int ™

00| .
042 =C,+ By + Tl

=
= C+ B,+ C,= 120
w,(3) =C,+B,+C; %
= C,+B, +2C, = 140
w,(4) =C,+B,+C, %
=C,+B,+ 2C, = 140

®,=140< d,= P,= 150

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Summary

This modeling technique can be used to model:
* |Interrupts
* Non-preemptibility
» Non-rate-monotonic priorities
-Find priority based on pre-period deadline
-Jitter requirement (e.g. high priority 1/0-related execution)

Theorem 1: C. _ _
3 Ci GitB (i)
=i P P

Theorems 2 and 3:

Include B; in the computation time of t; when the
schedulability of 7 isunder consideration!

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Non-Rate-Monotonic

Priority Assignment
Example 1: Preemption/Exec/Blocking
Effects
T1 T5-Preemption Effects. C1, C2
T2 T6-Preemption Effects. C1, C2, C5
<€—— T7-Preemption Effects: C1, ..., C6
T3 (assume no changes over priority order)
T4 T3
T5 Preemption Effects: C1, C2
T6 | Execution Effects: C3
Blocking Effects: C5 + C6

T7
T8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Non-Rate-Monotonic
Priority Assignment

Example 2: Limited Priority Levels

T1
T2

T3
T4

TS
T6

T7
T8

T1:

T2:

T3:

Preemption: none
Execution: C1
Blocking: C2

Preemption: C1
Execution: C2
Blocking: none

Preemption: C1, C2
Execution: C3
Blocking: C4

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Non-Rate-Monotonic
Priority Assignment

Example 3: Preemption/Exec/Blocking

Effects
T1
T2h
T3

T4

TS5

T6

17

T8

T1
T2
TS

— 18

T6
T3
T4
T7

T6:
Preemption: C1, C2, C5
Execution: C6
Blocking: C8

T7.
Preemption: C1-C6
Execution: C7
Blocking: C8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Techniques for Handling Pre-Period
Deadlines

I nsert dormant time

1, [1 For 1,&7,
100 200
\ Dl | | — _
ffffff o @ OL0RA

0 100 200 300 400
T, [[1 1
w7
T3 0 [For T,

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Techniques for Handling Pre-Period
Deadlines - Insert dormant time

C, C,+D, 20 40+20
P, P, 100 150
cC, C, C, 20 40 100

S o + = <0.779 = U (3)
P P, P, 100 150 350

<0.828 =U (2)

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Techniques for Handling Pre-Period
Deadlines

= Apply critical-zone analysis
1. Determine the worst-case completion time.
@ , (0) =0

w2(1)=c2+20j@=c2=40

j<2 i
w,(2) = cz+cl%= C,+C, =60

w,(3) = cz+cl%= C,+C, =60

2.Compare worst-case compl etion time with the pre-period
deadline.

® , = 60 < d, = 130

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan Univers ty

Another thought about the calculation of worst-case

completion!
w. (N
o,(n+Y=C + Z Cj’_ ()—|+Bi
T l-hasapriority higher than z; Pj /
exec / blocking calised by
preemption

= [ncrementally increase priority if needed!!
1. If the task can not meet a specified pre-period
deadline, then raiseits priority & try again!
non-rate-monotonic priority!
2.Use the same analysis as for interrupts
Consider the schedulability of al critical tasks!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Measurement Issues

Common misconception:
The rate monotonic anaysis seems to be useful
only if accurate execution times are available!

In fact, the rate monotonic analysisisforgiving to
inaccurate measurement:
 Importance of accuracy isrelative to the
length of the period. (deadline)
» Oneismorelikely to have better estimates
for higher frequency tasks.
* Robust to change!!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'l Taiwan University.

Measurement Issues

The issue of inaccurate execution time is not
specific to the rate monotonic analysis approach;
It isinherent to hard real-time systems!

The rate monotonic approach, however,
highlights the parameters of importance.

= higher-priority execution times
= blocking times,
= and execution time

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Treatment of
Synchronization Requirements

Synchronization

4

Priority Inversion

Identifying, modeling, and reducing sources of
priority inversion is central to schedulability
analysis!!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Source of Priority Inversion

non-preemptible regions of code
interrupts

non-unique priorities for some tasks
non-rate-monotonic assignment of task
priorities

FIFO of any other non-priority-based
queues

Synchronization and mutual exclusion

Remark: Blocking effects(usually) occur at alower rate, and thus each
blocking effect can impact atask(usually) at most once per period.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Synchronization Protocols

1. No preemption

Critical sections are executed at an
“Infinitely” high priority!

T >
M T » Time
TH T »

Note that ,, & T\, have no intention to enter a
critical section!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Synchronization Protocols

2.Highest locker’s priority

Execute critical section at the priority of the
highest-priority task that may lock the
semaphore(/resource); higher-priority tasks may
preempt the critical section.

T T O,

>

T ! [,
. { o | Time
>

TuH
Note that t,,, is no longer blocked by T,

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Synchronization Protocols

3. Basic Inheritance Protocol (BIP)
Execute the critical section at the priority of the
highest-priority task being blocked; higher-priority
tasks may preempt the critical section.

T, | Si S L,
4 Do e blocked ...,
Ty {] P S S1& 2185 0,
blocked T| me
Ty ﬁ S2 >
TuH ; >
t

- Note that t,, isno longer blocked until necessary.

- However, system may be deadlocked or have chained
blocking!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'l Taiwan University.

Synchronization Protocols

4. Priority Ceiling Protocol

BIP + a*“Priority Ceiling” rule about when to grant
lock requests (see [Sha 87, 90])

T Sl Sl S1 >
ﬁ blocked §
T 2 >
blocked Time
T S1 o~
H >
TyH >

- No deadlock & chained blocking at the cost of reducing
the concurrency level of the system.

- Blocked-at-most-once.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Synchronization Protocols

Schedulability tests for Basic Inheritance Protocol (BIP)

LBy 20, 20410
R R 100 100
&+ﬂ+E<U(2)
R R R

_ 20 40+20 10

100" 150 150
e Esu
P P

2 3

L2080 10 e g
100 150 350

=0.5<1.0

—=0.667<0.828

* InPCP B,= max(20,10)

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat | Taiwan University.

Synchronization Protocols

Schedulability tests for Non-preemptible
Critical Sections

1, B0, D 54010

G.B
P B 100 100

G C+D, B, _20 40+20 10

— -0.667<U(2)=0.828

P P B, 100 150 150
&+—2+—3<U(3)
R R R

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Synchronization Protocols -
d comparison

Bounded Blocked at Most Deadlock
Priority Once Avoidance
Inversion
Nonpreemptible Yes Yes! Yes!
Critical Sections
Highest Locker’s Yes Yes! Yes!
Priority
BIP Yes No No
PCP Yes Yes? Yes

Tasks suspending themselves inside critical sections will hand over CPU to (lower-
priority) tasks. The later may lock other resources.

Tasks suspending themselves between critical sections shall not be protected!
Reasons for task suspensions: I/O

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Aperiodic Servers

Aperiodic tasks runs at irregular intervals

Aperiodic deadline
hard, minimum inter-arrival time.
Soft, best average response time.

Services such as
operator requests
device interrupts

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Scheduling Aperiodic Tasks

Polling ~ Average Response Time = 50 units
100

. [[T . [,

0 fwo T i

Deferrable Server [Lehoczkys7] ~ Average Response Time = 1 unit
. [......... [T . [,

0 fwo T T

An on-demand service type
When execution budget is used up, server execution drops to a lower
(background) priority until the budgeted execution time is replenished.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Deferrable Server (DS) [Lenoczkys7]

T, as a DS server to preserve CPU bandwidth for a
collection of aperiodic tasks.

T, has an entire period to use its C run-time and
gets replenished at the beginning of each of its
period.

Theorem 3 (enocziys7: For 1, as the highest priority DS server,
and 1, ... 1, as periodic tasks, the achievable utilization factor

U 5 when N— o0 U 12
+ +

U=U +(n-[(EE—)"" -1 U =Ul+In(z2—)
1 ()[(Ul-‘rl)] ZJ1+1

U is minimized to 0.6518 when U; = 0.186.

JP. Lehoczky, L. Sha, and J.K. Strosnider, “Enhancd Aperiodic Responsivenessin Hard Real-Time Environment,” RTSS 87, pp261-270.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Remarks:

Deferrable Servers:
—fixed execution budget
—replenishment interval
—priority adjusted to meet requirements.

Note that the response time performance improves as the replenishment rate
decreases because the execution budget increases and more services can
be provided.

Polling:
—From the scheduling point of view, polling converts the servicing of aperiodic
events into an “equivalent” periodic tasks.
—Not an on-demand service type.

—As the rate of polling increases, the response time for polling approach
improves.

The rationale behind aperiodic servers:

—No “system” benefit to finish periodic work early !

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sporadic Server [Sprunt et. al. 90]

Modeled as periodic tasks
ofixed execution budget(c)
ereplenishment interval (p)
Execution
Budget CSP @
| [1 x [1 4 |
0 + 100 4 4 200 ¢ 300

P=100ms 100ms

Replenishment occurs one “period” after the
start of usage !

<& Priority adjusted to meet requirements.

Sporadic Server [Sprunt et. al. 90]

A sporadic server differs from a deferrable
server in its replenishment policy

€ A 100 msec deferrable server replenishes its
execution budget every 100 msec , no matter
when the execution budget is used.

The affect of a sporadic server on lower priority
tasks is no worse than a periodic task with the
same period and execution time.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sporadic Server [Sprunt et. al. 90]

A sporadic server (SS) under the fixed-
priority scheduling framework.

Terms:
& Ps: the priority at which the system is executing.
& Pi: one priority level in the system.
& Active: A priority level Pj is active is Pj <= Ps.
Idle: not active

& RTi: replenishment time for SS executing at
priority level Pi

Brinkley Sprunt, “Aperiodic Task Scheduling for Real-Time Systems,” Ph.D. Thesis
Dept. of Electrical and Computer Engineering, Carnegie Mellon University, August 1990.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sporadic Server [Sprunt et. al. 90]

Rules:

& Replenishment Time RTi
If SS has execution time available, and Pi
becomes active at time t, then RTi =t + Pi.
If SS’s execution time is exhausted, and SS’s
execution time becomes non-zero (is replenished)
at time t and Pi is active, then RTi =t + Pi.

¢ Replenishment Amount
Determined when Pi becomes idle or SS’s
execution time has been exhausted.
The amount is equal to the amount of server
execution time consumed since the last time at
which the status of Pi changes from idle to active.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'l Taiwan University.

Sporadic Server [Sprunt et. al. 90]

Important theorems:

Theorem 1 [Sprunt90:p28]:Given a real-time
system composed of soft-real-time aperiodic tasks
and hard real-time periodic tasks, let the soft real-time
aperiodic tasks be serviced by a polling server that
starts at full capacity and executes at the priority level
of the highest priority periodic task. If the polling
server is replaced with a sporadic server having the
same period, execution time, and priority, the
sporadic server will provide high-priority aperiodic
service at times earlier than or equal to the times the
polling server would provide high-priority aperiodic
service.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sporadic Server [Sprunt et. al. 90]

= Theorem 5 [Sprunt90:p34]: A periodic task set that is
schedulable with a periodic task Ti, is also schedulable if Ti
is replaced by a sporadic server with the same period and
execution time.

= Schedulability analysis of sporadic servers is equivalent to
periodic tasks! -> overcome the penalty paid by the
deferrable servers!

= Remark

= Interms of server size, the sporadic server approach is better than the
deferrable server approach.

= Although the sporadic server approach claims low implementation
overhead, it seems to be a little bit higher than the deferrable server
approach.

= |f aperiodic services are requested very heavily , the differences
between DS and SS will diminish.

57

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'l Taiwan University.

A Sporadic Server Example

Spanadic et €] e b e 02

1 mit | oot

¥
Froeciss
Exsculion - - | -

T FITITI g I 1Tl I

LI I 1

Gerver |
Capuciy

Q
58

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Aperiodic Task Processing — A Compasion

A task set example

& Periodic taskl C1=1 P1=4

@ Periodic task2/ deferrable server/ sporadic server
C2=2 P2=5

@ Periodic task3 C3=3 P3=10

Periodic task executions

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan Univers ty

Aperiodic Task Processing — A Compasion

deferrable server execution

¢ Aperiodic Instant Request Time
1 1
3 1
5 2
10 2
% Y ? | l% 72
L BEEEE B .
1357 10
DS 2
Capadtyl [| x ‘ ‘ ‘ >
1 3 7
T3

0 3578 10 miss 15 20

13 T4 needs one more computation time.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Aperiodic Task Processing — A Compasion

sporadic server execution
¢ Instant RTime

Tl%%?t%t%T=11

v

8 10 13 15 18

%
%

5
l
5 8 10 15 20

Note that the 3rd and 4th requests response times are delayed by
3 & 2 time units in this case, respectively.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sample Problem: aperiodic tasks

Emergency events

€5 ms of work

®arrives every 50ms, worst case

& hard deadline 6ms after arrival
—> Emergency Server (ES)

a sporadic server
C,=5ms
P, = 50 ms (replenishment interval)

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sample Problem: aperiodic tasks

routine event
€2 ms of work on average
@ arrives every 40ms on average

& desired average response of 4ms after
arrival.
—=> Routine Server (RS)
a sporadic server
C,=10
P, = 100 ms (replenishment interval)

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sample Problem: aperiodic tasks

How to derive it ?!
Using M/M/1 queuing approximation

Response Time ,,, = e kload ServiceTime,,

avg ~ Worklo = - -

’ —% “ InterArrival Time,,,

Capacity
. . -
Sy e ResponseTime,,, * ServiceTime,,,
Interval Arrival Time,,, (ResponseTime,,, — ServiceTime,,,)

i 4*2 B ~ Budget
PV 0@-2 T T Interval

But what replenishment interval we should pick up ?? 50ms ,
80ms , 100ms ,200ms ,

Take 100ms and make RS‘s priority > any periodic Zj‘s priority.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sample Problem: all tasks

Now we have the following sample problem:

(BIP)
C P D B U
ES 5 50 0.1 Harmoically
related!
RS 10 100
7, 20 100 30 0.2

T, 40 150 20 10 0.267=40/150

73 100 350 0.286 = 100/350

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat | Taiwan University.

Sample Problem: all tasks

UB Test
O 2-1 (2*5)+10 + 20 N 30
100 100

- 0.7<1.00/

? 7, (219+10+20 40+20+10
100 150

~0.867>U(2)=0.828

> 7, (25+10+20 40 100
' 100 150 350

If PCP is used B1=max(20,10)=20 instead of 30.

~0953>U(3 =0.779

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Sample Problem: all tasks

CT Test for 7,

W,(1)=B,+C, + {WZT(O)WC{

1

=10+ 40 + 0 40 = 50
100

W, (2) =10 + 40 + | =2 |40 = 90
100

W,(2) =10 + 40 + (ﬂ%o =90 = Done
100

Since
W,=90<P,-D, =150-20=130

Copyright: Al rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

Summary

Rate monotonic analysis offers a general framework for
considering timing issues through the life cycle ~ early
detection and minimization of priority inversion.
Implementation:

@ schedulability analysis

@ facilitates separation of concerns
Testing

identification of bottlenecks

@ discovering of timing errors

Post-deployment

€ easy to understand effects of changes.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat'| Taiwan University.

