
1

1

Rate Monotonic Analysis
(RMA)

郭大維教授
ktw@csie.ntu.edu.tw

即時及嵌入式系統實驗室

(Real-Time and Embedded System Laboratory)
國立台灣大學資訊工程系

Major References:
An Introduction to Rate Monotonic Analysis
─Tutorial Notes，SEI，CMU*
Distributed Real-Time System Design Using Generalized Rate Monotonic Theory
─Tutorial Notes，Lui Sha，SEI，CMU，1992.*

*The RMA Project is sponsored by the U.S. Dept. of Defense

2
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Can we have a better way to predict the
schedulability of a process set more precisely?
Are we still able to predict the schedulability of a
process set if the basic assumptions of rate
monotonic scheduling [LL:73] are violated?

Rate monotonic priorities
Unique priority per unique period
Preemptive scheduling
Deadlines are coincident with start of period
Only periodic tasks

Do we have an analytical framework for
reasoning the timing behavior of a process set or
have an engineering basis for designing real-
time systems.

2

3
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Why are deadlines missed?
For a given task，consider：

the time needed by higher priority tasks
the time needed to do this task’s work
delays caused by lower priority tasks：
priority inversion (blocking)

To improve the performance of real-time
systems：

identify and limit sources of priority
inversion*

*check previous examples

4
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

A Sample Problem
Periodic tasks Servers

Aperiodic tasks
Event handling task
40 msec

Emergency
50 msec

5 msec

d:6 msec

2 msec

Desired respone
4 msec on average

τ1

τ3

τ2

3

5
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Periodic Requirements
Periodic task

Ready to execute at fixed intervals
deadline = the beginning of the next period
(to be relaxed later!)

Rate Monotonic Algorithm
Assign higher priorities to tasks with shorter
periods (to be relaxed later!)
If for some n-process set T, T is
schedulable [KM:91,LL:73].

())12(
1

−≤ nnTU

6
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Task τ1: C1=20, P1=100, U1=0.2
Task τ2: C2=40, P2=150, U2=0.267
Task τ3: C3=100, P3=350, U3=0.286

Total utilization: 75.3%
24.7% of the CPU is usable for lower-

priority background computation!

ADD more computation!

() %9.77)12(3:3 3
1

=−≤U

Periodic Requirements

4

7
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Task τ1: C1=40, P1=100, U1=0.4
the utilization factor of the first two tasks:

66.7% < U(2): 82.8%
Total utilization: 95.3% > U(3) !
The test result is inconclusive !

⇒

τ1

τ3

τ2

The Time Line of the Example

Periodic Requirements

8
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Improving the Schedulability Bound
Theorem 2[LSD87]: A set of n independent
periodic tasks scheduled by the rate
monotonic algorithm will always meet its
deadlines, for all task phasings, if and only
if

11min,1,
1

≤



≤≤∀ ∑

= j

k

k

i

j

j
P
lP

lP
Cnii

() iRlk ∈,

()  }, 1, ,1 | ,{ kPiP liklkRi Λ=≤≤=

)0)(min(
1

≤−



∑

=

k
j

k
i

j
j lP

P
lPC

() iRlk ∈,
i.e.,

5

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Improving the Schedulability Bound -
Theorem 2 Revisited

Rate Monotonic Analysis (RMA) 2

Basic Idea:
Before time t after the critical instance of process τi, a high

priority process τj may request amount of
computation time.

Formula:

A sufficient and necessary condition and many
extensions...

2 Sha, “An Intorduction to Rate Monotonic Analysis,” tutorial notes, SEI, CMU, 1992

Time

c
t

p
j

j













t

deadline of τi

t

pj













0

() i
i

j
j

ji dt
p
tctW ≤≤











= ∑ =1

for some t in
 { | ,..., ; ,..., / }kp j i k p pj i j= =1 1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

A RMA Example:
T1(20,100), T2(30,150), T3(80, 210), T4(100,400)
T1

c1 <= 100
T2

c1 + c2 <= 100 or
2c1 + c2 <= 150

T3
c1 + c2 + c3 <= 100 or
2c1 + c2 + c3 <= 150 or
2c1 + 2c2 + c3 <= 200 or
3c1 + 2c2 + c3 <= 210

T4
c1 + c2 + c3 + c4 <= 100 or
2c1 + c2 + c3 + c4 <= 150 or
.... Time

W3(t)

50 100 150 200

130

150

170

190

210

Improving the Schedulability
Bound - Theorem 2 Revisited

6

11
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Theorem 3[JP86]: For a set of independent,
periodic tasks, if each task meets its first
deadline, with worst-case task phasings, the
deadline will always be met

Completion Time (CT) test：
Let Wi=completion time of task i, Wi may be
computed by the following iterative formula：

0)0(,)()1(=



+=+ ∑

<

ij
ij j

i
ii WC

P
nWCnW

Task i is schedulable if its completion time is
before its deadline. Wi Pi≤ (*Take Pi as di !!)

Reference:
[LSD87] Lehoczky, Sha, and Ding, “The Rate Monotonic Scheduling Algorithm-Exact Characterization and Average Case Behavior”, TR, Dept. of
statistics, LMU,1987
[JP86] Joseph and Pandya, “Finding Response Times in a Real-Time System”, BCS Computing Journal, vol 29, no.5, 1986, pp390-395

Improving the Schedulability Bound

12
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Task τ1: C1=40, P1=100, U1=0.4
Task τ2: C2=40, P2=150, U2=0.267
Task τ3: C3=100, P3=350, U3=0.286

Apply Theorem 2
C1+C2+C3 P1 40+40+100 > 100

or 2C1+C2+C3 P2 80+40+100 > 150
or 2C1+2C2+C3 2P1 80+80+100 > 200
or 3C1+2C2+C3 2P2*120+80+100 <= 300 *
or 4C1+3C2+C3 P3 160+120+100 > 350

≤
≤
≤
≤
≤

Improving the Schedulability Bound –
an example

7

13
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Apply Theorem 3
() 003 =W

1000)1(3

3

33 ==



+= ∑

<

CC
P

CW j

j j

j

j j
C

P
CW ∑

<




+=

3

33
100)2(18040

150
10040

100
100100 =



+



+=

26040
150
18040

100
180100)3(3 =



+



+=W

30040
150
26040

100
260100)4(3 =



+



+=W

30040
150
30040

100
300100)5(3 =



+



+=W

The computation is converged!
⇒==≤= 350300 333 dPWΘ Schedulable !

14
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Summary
Utilization bound test is simple but conservative.
Completion time test is more exact but also more
complicated! In fact, tests based on Theorems 2 and 3
have a pseudo-polynomial-time time complexity.
To this point, UB, CT, and Schedulability-Point tests
share the same limitations.

all tasks are periodic and not interacting with each another.
deadlines are always the end of the period.
no interrupts.
rate monotonic priorities assigned.
all tasks are on a single processor.
zero context switch overhead. (stack dispelling)
tasks do not suspend themselves.

8

15
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Practical Applications

Modeling context switching
Schedulability with priority inversion
Schedulability with Interrupts
Schedulability without a rate monotonic
priority
Handling pre-period deadlines

Important Issue:
Identify the sources of blocking & manage them!

16
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Modeling Context Switching

RMA:
Pure priority-driven preemptive schedules impose
two scheduling actions per task (start of the period
& end of the period)

c1

c2 c2

i

i
i P

scU 2+
=

9

17
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Modeling Context Switching - Remark

Can it be more efficient than a cyclic
executive?

Run-time scheduling certainly appears to have more
overhead than the scheduling overhead for a cyclic
executive. But there is a hidden overhead in the cyclic case.
Task periods must sometimes to be shortened to fit within
the cyclic executive structure! Machine utilization increases,
but not because more useful work is done!

* Cyclic executive - where all work(tasks) fit into a common
period (major frame) and executed non-preemptively.

18
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Priority Inversion

Delay to a task’s execution caused by lower-
priority tasks is known as priority inversion.

Systems potentially contain many sources of
priority inversion.
Identifying, reducing, and modeling priority
inversion is central to schedulability analysis.

⇒

10

19
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Priority Inversion

Sources of Priority Inversion
Non-rate-monotonic priority assignment
(syntactically in RMA ?!!)
Non-preemptibility
Interrupts
Not enough priority levels
FIFO queues (of course, they are more!)
Synchronization

⇒

20
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Schedulability with Interrupts
Interrupt processing can be inconsistent with
the RM priority assignment:

Execute with a high priority despite long
“period”!
Delay execution of tasks with higher rate
monotonic priorities.
Source of priority inversion!

11

21
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Schedulability with Interrupts
Example
Task Γ1 : C1 =20, P1 =100, U1=0.2
Task Γ2 : C2 =40, P2 =150, U2=0.267
Interrupt : Cint=60, Pint=200, Uint=0.3
Task Γ3 :C3 =20, P3 =350, U3=0.057

Γ1

Γ2

Γ3

Int

10 100 200 300

Exec with
RM priority

Γ1

Γ2

Γ3

Int

10 100 200 300

Exec with
an Interrupt
priority

The last task
was not
affected!

22
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Schedulability with Interrupts
Solution 1

Should interrupts be modeled in the same
manner as task’s context switching (i.e.,
treated as extra execution time)?

Γ1

Γ2

Γ3

Γint

0

Int Int Int Int C1=C1+Cint=80

C2=40

C3=20

12

23
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Schedulability with Interrupts
The completion time for Γ1is correct!
＝〉Correct model for Γ1.
Γ2fails!

It is too pessimistic for Γ2.
Γ2should be affected at most once per

period!
Γ3fails!
Γ3is preempted too frequently!

＝〉Consider each task separately!

Θ

24
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Rule of Thumb
Task schedulability is affected by

Preemption effects:
Potentially many times per period.

Execution effects:
Once per period!

Blocking effects:
at most once per period for each source of

blocking

*Blocking effects occur at a lower frequency, and thus each
blocking effect can impact the task only once per period.

13

25
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Schedulability with Interrupts

Example:
τ1: C1=20,P1=100,U1=0.2
τ2: C2=40,P2=150,U2=0.267
τint:Cint=60,Pint=200,Uint=0.3
τ3: C3=20,P3=350,U3=0.057

Intτ1 0.18.0
1

int1 ≤=
+
P

CC For τ1
100

100 200

828.0)2(86.0
2

int2

1

1 =>=
+

+ U
P

CC
P
C For τ2

Int
0 150

τ1

τ2

Solution 2: Modeling Interrupts with Blocking Time

26
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

100 200 300 400

For τ3

0τ1

150 300 350

200 400
Int

350

τ2

τint

τ3

756.0)4(824.0
3

3

int

int

2

2

1

1 =>=+++ U
P
C

P
C

P
C

P
C

(Harmonic base size = 3 U(3)=0.779)

*(3) 0.13.0
int

int ≤=
P
C

Int

Schedulability with Interrupts

14

27
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Apply Theorem 2
For τ2: R2={(1,1),(2,1)}

C1 + C2 + B2 = 20 + 40 + Cint = 120 > P1
2C1 + C2 + B2 = 40 + 40 + Cint = 140 ≦ P2

τ1: C1 = 20 , P1 = 100 , U1 = 0.2
τ 2: C2 = 40 , P2 = 150 , U2 = 0.267
τ int: Cint = 60 , Pint = 200 ,Uint = 0.3

Apply Theorem 3

For τ2:
ω2(0) = 0
ω2(1) = C2 + B2 +

= C 2+ B2 = 100

∑
< 2

]0[
j

j
j

C
p

28
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

ω2(2) = C2 + B2 +

= C2+ B2 + C1 = 120

ω2(3) = C2 + B2 + C1

= C2 + B2 + 2C1 = 140

ω2(4) = C2 + B2 + C1

=C2 + B2 + 2C1 = 140

ω2 = 140 < d2 = P2 = 150

 ∑
<

<
2

100
j j

j
P

 
100
120

 
100
140

15

29
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Summary
This modeling technique can be used to model:

• Interrupts
• Non-preemptibility
• Non-rate-monotonic priorities

-Find priority based on pre-period deadline
-Jitter requirement (e.g. high priority I/O-related execution)

Theorem 1:
∑
<

≤
+

+
ij i

ii

j

j iU
P

BC
P
C

)(

Theorems 2 and 3:

Include Bi in the computation time of τi when the
schedulability of τi is under consideration!

30
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Non-Rate-Monotonic
Priority Assignment

Example 1: Preemption/Exec/Blocking
Effects
T1
T2
T3
T4
T5
T6
T7
T8

T5-Preemption Effects: C1, C2
T6-Preemption Effects: C1, C2, C5
T7-Preemption Effects: C1, …, C6

(assume no changes over priority order)
T3:

Preemption Effects: C1, C2
Execution Effects: C3
Blocking Effects: C5 + C6

16

31
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Non-Rate-Monotonic
Priority Assignment

Example 2: Limited Priority Levels
T1
T2
T3
T4
T5
T6
T7
T8

T1: Preemption: none
Execution: C1
Blocking: C2

T2:
Preemption: C1
Execution: C2
Blocking: none

T3:
Preemption: C1, C2
Execution: C3
Blocking: C4

32
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Non-Rate-Monotonic
Priority Assignment

Example 3: Preemption/Exec/Blocking
Effects
T1
T2
T3
T4
T5
T6
T7
T8

T1
T2
T5
T8
T6
T3
T4
T7

T6:
Preemption: C1, C2, C5
Execution: C6
Blocking: C8

T7:
Preemption: C1-C6
Execution: C7
Blocking: C8

17

33
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Techniques for Handling Pre-Period
Deadlines

Insert dormant time

For τ1&τ2
100 200

150
τ2 0

D P2 – d2 = 150- 130 = 20

τ1

0 100 200 300 400

τ2

τ3

τ1

For τ3

34
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

)3(779.0
350
100

150
40

100
20

)2(828.0
150

2040
100
20

3

3

2

2

1

1

2

22

1

1

U
P
C

P
C

P
C

U
P

DC
P
C

=≤++=++

=≤
+

+=
+

+

Techniques for Handling Pre-Period
Deadlines - Insert dormant time

18

35
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Apply critical-zone analysis
1. Determine the worst-case completion time.

 

 

  60
100
60)3(

60
100
40)2(

40)0()1(

0)0(

12122

12122

2
2

2
22

2

=+=+=

=+=+=

==+=

=

∑
<

CCCC

CCCC

C
P

CC
j j

j

ω

ω

ωω

ω

2.Compare worst-case completion time with the pre-period
deadline.

13060 22 =≤= dω

Techniques for Handling Pre-Period
Deadlines

36
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Another thought about the calculation of worst-case
completion!

Incrementally increase priority if needed!!
1. If the task can not meet a specified pre-period

deadline, then raise its priority & try again!
non-rate-monotonic priority!

2.Use the same analysis as for interrupts
Consider the schedulability of all critical tasks!

 ∑ ++=+
in higher thapriority a has

)()1(
ττ

ωω
j

i
j

i
jii B

P
nCCn

exec
preemption

blocking caused by …...

19

37
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Measurement Issues

Common misconception:
The rate monotonic analysis seems to be useful
only if accurate execution times are available!

In fact, the rate monotonic analysis is forgiving to
inaccurate measurement:

• Importance of accuracy is relative to the
length of the period. (deadline)

• One is more likely to have better estimates
for higher frequency tasks.

• Robust to change!!

38
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Measurement Issues

The issue of inaccurate execution time is not
specific to the rate monotonic analysis approach;
it is inherent to hard real-time systems!

The rate monotonic approach, however,
highlights the parameters of importance.

higher-priority execution times
blocking times,
and execution time

20

39
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Treatment of
Synchronization Requirements

Synchronization

Priority Inversion

Identifying, modeling, and reducing sources of
priority inversion is central to schedulability
analysis!!

40
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Source of Priority Inversion
non-preemptible regions of code
interrupts
non-unique priorities for some tasks
non-rate-monotonic assignment of task
priorities
FIFO of any other non-priority-based
queues
Synchronization and mutual exclusion

Remark: Blocking effects(usually) occur at a lower rate, and thus each
blocking effect can impact a task(usually) at most once per period.

21

41
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

1. No preemption
Critical sections are executed at an

“infinitely” high priority!

Synchronization Protocols

τL

τM

τH

Note that τH & τM have no intention to enter a
critical section!

Time

42
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Synchronization Protocols
2.Highest locker’s priority

Execute critical section at the priority of the
highest-priority task that may lock the
semaphore(/resource); higher-priority tasks may
preempt the critical section.

τL

τM

τH

τvH

Note that τvH is no longer blocked by τL

Time

22

43
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

3. Basic Inheritance Protocol (BIP)
Execute the critical section at the priority of the

highest-priority task being blocked; higher-priority
tasks may preempt the critical section.

S1τL

τM

τH

τvH

S1

S2

S2

S2

t

blocked

blocked

Time

- Note that τM is no longer blocked until necessary.

- However, system may be deadlocked or have chained
blocking!

Synchronization Protocols

S2S1 & S2

44
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

4. Priority Ceiling Protocol
BIP + a “Priority Ceiling” rule about when to grant

lock requests (see [Sha 87, 90])

S1τL

τM

τH

τvH

S1

S2

S1
blocked Time

- No deadlock & chained blocking at the cost of reducing
the concurrency level of the system.

- Blocked-at-most-once.

Synchronization Protocols

blocked

S1

23

45
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Schedulability tests for Basic Inheritance Protocol (BIP)

() 0.15.0
100

1020
100
201

1

1

1

1 ≤=
+

+⇒≤+ U
P
B

P
C

()2
2

2

2

22

1

1 U
P
B

P
DC

P
C

≤+
+

+

828.0667.0
150
10

150
2040

100
20

≤=+
+

+⇒

779.0753.0
350
100

150
40

100
20

≤=++⇒

* In PCP，B1= max(20,10)

()3
3

3

2

2

1

1 U
P
C

P
C

P
C

≤++

Synchronization Protocols

46
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Schedulability tests for Non-preemptible
Critical Sections

0.14.0
100
20

100
20

1

1

1

1 ≤=+=+
P
B

P
C

828.0)2(667.0
150
10

150
2040

100
20

2

2

2

22

1

1 =≤=+
+

+=+
+

+ U
P
B

P
DC

P
C

()3
3

3

2

2

1

1 U
P
C

P
C

P
C

≤++

Synchronization Protocols

24

47
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Synchronization Protocols –
a comparison

Bounded
Priority

Inversion

Blocked at Most
Once

Deadlock
Avoidance

Nonpreemptible
Critical Sections

Yes Yes1 Yes1

Highest Locker’s
Priority

Yes Yes1 Yes1

BIP Yes No No

PCP Yes Yes2 Yes

1Tasks suspending themselves inside critical sections will hand over CPU to (lower-
priority) tasks. The later may lock other resources.
2Tasks suspending themselves between critical sections shall not be protected!
3Reasons for task suspensions: I/O

48
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Aperiodic Servers
Aperiodic tasks runs at irregular intervals

Aperiodic deadline
hard, minimum inter-arrival time.
Soft, best average response time.

Services such as
operator requests
device interrupts
…………...

25

49
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Scheduling Aperiodic Tasks
– Polling ~ Average Response Time = 50 units

99

100

– Interrupt Handler ~ Average Response Time = 1 unit

100

– Deferrable Server [Lehoczky87] ~ Average Response Time = 1 unit

1000

0

0

An on-demand service type
When execution budget is used up, server execution drops to a lower
(background) priority until the budgeted execution time is replenished.

50
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Deferrable Server (DS) [Lehoczky87]

τ1 as a DS server to preserve CPU bandwidth for a
collection of aperiodic tasks.
τ1 has an entire period to use its C run-time and
gets replenished at the beginning of each of its
period.
Theorem 3 [Lehoczky87]: For τ1 as the highest priority DS server,
and τ2 … τn as periodic tasks, the achievable utilization factor

when

U is minimized to 0.6518 when U1 = 0.186.
J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhancd Aperiodic Responsiveness in Hard Real-Time Environment,” RTSS’87, pp261-270.

]1)
1
2)[(1()1/(1

1

1
1 −

+
+

−+= −n

U
UnUU

∞→n
)

12
2ln(1

1

1

+
+

+=
U

UUU

26

51
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Remarks:
– Deferrable Servers:

–fixed execution budget
–replenishment interval
–priority adjusted to meet requirements.

Note that the response time performance improves as the replenishment rate
decreases because the execution budget increases and more services can
be provided.

– Polling:
–From the scheduling point of view, polling converts the servicing of aperiodic

events into an “equivalent” periodic tasks.
–Not an on-demand service type.
–As the rate of polling increases, the response time for polling approach

improves.

– The rationale behind aperiodic servers:
–No “system” benefit to finish periodic work early !

52

Sporadic Server [Sprunt et. al. 90]

Modeled as periodic tasks
fixed execution budget(c)
replenishment interval (p)

5 5 5

0 100 200 300

Execution
Budget

P=100ms 100ms
Replenishment occurs one “period” after the
start of usage !

Priority adjusted to meet requirements.

27

53
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

A sporadic server differs from a deferrable
server in its replenishment policy ：

A 100 msec deferrable server replenishes its
execution budget every 100 msec , no matter
when the execution budget is used.

The affect of a sporadic server on lower priority
tasks is no worse than a periodic task with the
same period and execution time.

Sporadic Server [Sprunt et. al. 90]

54
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Sporadic Server [Sprunt et. al. 90]

A sporadic server (SS) under the fixed-
priority scheduling framework.
Terms:

Ps: the priority at which the system is executing.
Pi: one priority level in the system.
Active: A priority level Pj is active is Pj <= Ps.
Idle: not active
RTi: replenishment time for SS executing at
priority level Pi

Brinkley Sprunt, “Aperiodic Task Scheduling for Real-Time Systems,” Ph.D. Thesis
Dept. of Electrical and Computer Engineering, Carnegie Mellon University, August 1990.

28

55
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Rules:
Replenishment Time RTi

• If SS has execution time available, and Pi
becomes active at time t, then RTi = t + Pi.

• If SS’s execution time is exhausted, and SS’s
execution time becomes non-zero (is replenished)
at time t and Pi is active, then RTi = t + Pi.

Replenishment Amount
• Determined when Pi becomes idle or SS’s

execution time has been exhausted.
• The amount is equal to the amount of server

execution time consumed since the last time at
which the status of Pi changes from idle to active.

Sporadic Server [Sprunt et. al. 90]

56
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Important theorems:
Theorem 1 [Sprunt90:p28]:Given a real-time
system composed of soft-real-time aperiodic tasks
and hard real-time periodic tasks, let the soft real-time
aperiodic tasks be serviced by a polling server that
starts at full capacity and executes at the priority level
of the highest priority periodic task. If the polling
server is replaced with a sporadic server having the
same period, execution time, and priority, the
sporadic server will provide high-priority aperiodic
service at times earlier than or equal to the times the
polling server would provide high-priority aperiodic
service.

Sporadic Server [Sprunt et. al. 90]

29

57
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Theorem 5 [Sprunt90:p34]: A periodic task set that is
schedulable with a periodic task Ti, is also schedulable if Ti
is replaced by a sporadic server with the same period and
execution time.
Schedulability analysis of sporadic servers is equivalent to
periodic tasks! -> overcome the penalty paid by the
deferrable servers!
Remark

In terms of server size, the sporadic server approach is better than the
deferrable server approach.
Although the sporadic server approach claims low implementation
overhead, it seems to be a little bit higher than the deferrable server
approach.
If aperiodic services are requested very heavily , the differences
between DS and SS will diminish.

Sporadic Server [Sprunt et. al. 90]

58
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

A Sporadic Server Example

30

59
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

A task set example
Periodic task1：C1=1 ，P1=4
Periodic task2/ deferrable server/ sporadic server
：C2=2 ，P2=5

Periodic task3：C3=3，P3=10
Periodic task executions

0 5 10 15 20

1τ

2τ

3τ

Aperiodic Task Processing – A Compasion

60
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

deferrable server execution
Aperiodic Instant Request Time

1
3
5
10

1
1

2
2

5 101 3
2
1

1 3

0 5 10 15 20miss

DS
Capacity

1τ
2τ

3τ
3 7 8

7

7

8 12

13 τ3 needs one more computation time.

Aperiodic Task Processing – A Compasion

31

61
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

sporadic server execution

5 101 3

1 3

0 5 10 15 20

8 9 13

5 108 13 15

0

18

RT2

SS
Capacity

Note that the 3rd and 4th requests response times are delayed by
3 & 2 time units in this case, respectively.

1τ

2τ

3τ

Aperiodic Task Processing – A Compasion

Instant RTime

1
3
5
10

1
1

2
2

8

8

62
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Sample Problem: aperiodic tasks

Emergency events
5 ms of work
arrives every 50ms, worst case
hard deadline 6ms after arrival
Emergency Server (ES)

a sporadic server
Ci = 5 ms
Pi = 50 ms (replenishment interval)

32

63
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

routine event
2 ms of work on average
arrives every 40ms on average
desired average response of 4ms after
arrival.

Routine Server (RS)
a sporadic server

Ci = 10
Pi = 100 ms (replenishment interval)

Sample Problem: aperiodic tasks

64
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

How to derive it ?!
Using M/M/1 queuing approximation

)1(
Capacity

Workload
eServiceTim

avg

avg

−
Response Time avg =

avg

avg

alTimeInterArriv
eServiceTim

Workload avg =

)(Re
*Re

avgavgavg

avgavg

eServiceTimsponseTimerivalTimeIntervalAr
eServiceTimsponseTime

−
Capacity =

)24(40
2*4
− Interval

Budget
Capacity = = 0.1 =

But what replenishment interval we should pick up ?? 50ms ,
80ms , 100ms ,200ms ,．．．

Take 100ms and make RS‘s priority > any periodic ‘s priority.iτ

Sample Problem: aperiodic tasks

33

65
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Now we have the following sample problem:
(BIP)

C P D B U

ES

RS

5

10

20

40

100

50

100

350

0.1

0.1

0.2

0.267 = 40/150

0.286 = 100/350

20

30

10

100

150

Harmoically
related!

1τ

2τ

3τ

Sample Problem: all tasks

66
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

UB Test

00.17.0
100
30

100
2010)5*2(

<=+
++

779.0)3(953.0
350
100

150
40

100
2010)5*2(

=>=++
++ U

1τ

2τ

3τ

?

?

828.0)2(867.0
150

102040
100

2010)5*2(
=>=

++
+

++ U

Sample Problem: all tasks

If PCP is used B1=max(20,10)=20 instead of 30.

34

67
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

CT Test for 2τ

1302015090 222 =−=−≤= DPW

*
1

1

2
222

)0()1(C
P

WCBW 







++=

5040
100

04010 =



++=

9040
100
504010)2(2 =



++=W

DoneW ⇒=



++= 9040
100
904010)2(3

Since

Sample Problem: all tasks

68
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, Nat’l Taiwan University.

Summary

Rate monotonic analysis offers a general framework for
considering timing issues through the life cycle ~ early
detection and minimization of priority inversion.
Implementation:

schedulability analysis
facilitates separation of concerns

Testing
identification of bottlenecks
discovering of timing errors

Post-deployment
easy to understand effects of changes.

