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Independent Process Scheduling
Processes share nothing but CPU

Papers for discussions:
C.L. Liu and James. W. Layland, “Scheduling Algorithms for 
Multiprogramming in a Hard Real-Time Environment,” JACM, 
Vol. 20, No.1, January 1973, pp. 46-61.

Major references:
Aloysius K. Mok, “Fundamental Design Problems of Distributed 
Systems for the Hard Real-Time Environment,” Ph.D. dissertation, 
MIT, 1983
Tei-Wei Kuo and Aloysius K, Mok, “Incremental Reconfiguration 
and Load Adjustment in Adaptive Real-Time Systems,” IEEE 
Transactions on Computer, 1997, IEEE 12th Real-Time System 
Symposium, 1991.
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Motivation:
Studying: 2 days per 4 days
Playing Basketball: 1.5 days per 3 days

Case 1: Playing basketball (or studying) is more important!

0        1        2        3        4        5      6
Case 2: Doing whatever is more urgent!

0        1        2        3        4        5      6
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Questions:
Can we find an optimal scheduler, that always 
produces a feasible schedule, whenever it is 
possible to do so? What does optimal means?
Can we find a quick schedulability test for a set 
of processes? Is it simple and accurate?
Processes whose periods are more harmonically 
related is likely to be schedulable? Why? More 
accurate schedulability tests possible? Better 
system configurations can be found?
How do we model scheduling overheads, such 
as the cost of context switching?
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Tentative Assumptions:
Processes are independent.
Processes are all periodic.

We will show you how to model sporadic processes 
and solve their schedulability problem later.

The deadline of a request is its next request time.
A scheduler consists of a priority assignment policy 
and a priority-driven scheduling mechanism.

The paper of the week:
C.L. Liu and James. W. Layland, “Scheduling Algorithms for Multiprogramming in 

a Hard Real-Time Environment,” JACM, Vol. 20, No.1, January 1973, pp. 46-61.
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Definitions
The response time of a request for a process is the 
time span between the request and the end of the 
response to that request.
A critical instant of a process is an instant at which a 
request of that process has the largest response time.
A critical time zone for a process is the time interval 
between a critical instant and the end of the response to 
the corresponding request of the process.
A critical interval for a process is the time interval 
between a critical instant and the deadline of the 
corresponding request of the process.

An observation: If a process can complete its execution 
within its critical interval, it is schedulable at all time!
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Theorem 1 [LL73] A critical instant for any process occurs 
whenever the process is requested simultaneously with 
requests for all higher priority processes.

Proof.
Case 1: TL does not run at t.

Case 2: TL runs at t.

TimeTH

TL Time
t

TimeTH

TL Time
t
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Rate Monotonic Scheduling
The rate monotonic priority assignment (RMS)
assigns processes priorities according to their request 
rates.

Theorem 2 [LL73] If a feasible fixed priority assignment 
exists for some process set, then the rate monotonic 
priority assignment is feasible for that process set.

Proof. Start the proof from i = 1. Exchange the priorities of  τi and τi+1 if 
their priorities are out of RMS order.

Hint:  before: HPCi-1 + ci+1 + ci≦ pi

=> 

after: HPCi-1 + floor(pi+1/ pi) ci + ci+1≦ pi+1

where HPCi-1 = CPU time consumed by {τi ,..., τi-1} = j
j
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An RMS example:

Two processes with p1 = 4, p2 = 5, and 
c1 = 2, c2 = 1.

An observation: c2 can be increased based on the 
concept of critical instant!!

Time0 1 2 3 4 5 6 7 8
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Definitions:
The utilization factor of a process τi is ci/pi .

The fraction of CPU time spent in executing τi .
The utilization factor of a set of m processes is 

For a given priority assignment, a process set fully 
utilizes the processor if the priority assignment is 
feasible for the set and if any increase in the run time 
of any processes in the set will make the priority 
assignment infeasible.
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The achievable utilization factor (least upper bound of 
utilization factor) of a scheduling policy Ua is a real 
number such that for any process set TП, U(TП) <= Ua
implies the schedulability of the process setП T.

Theorem 3[LL73] For a set of two processes with a fixed 
priority assignment, the achievable utilization factor is 

2(21/2 – 1)
Proof.

U

C1 = P2 – P1 * floor(P2/P1)
0 P1 P2

已知 P1 & P2
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U = { process sets }
infeasible
schedules feasible schedules without 

CPU fully utilization

feasible schedules with 
CPU fully utilization

Let T be infeasible but U(T) < Ua
Create a feasible schedule T’

from such that the CPU is fully
utilized U(T’) < U(T) < Ua
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Theorem 4 [LL73] For a set of m processes with a fixed 
priority order and the restriction that the ratio between any 
two request periods is less than 2, the achievable utilization 
factor is

m(21/m – 1)
Proof.

……c1 cm-1

0 p1 p2 pm-1 pm Time

Each process in {τ1,…,τm-1 } executes twice within Pm.
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Theorem 5 [LL73] For a set of m processes with fixed 
priority order, the achievable utilization factor is

m(21/m – 1)
Proof.

If pm = q * pi + r, q > 1,
then pi = q * pi and increase cm till the process 
set fully utilizes the processor again. (cm <= cm 
+ ci * (q – 1)).

Show that U is reduced!

An observation: If a process set are fully harmonically 
related, U = 100%; otherwise U -> ln2 -> 70%!

q -1

pm

1
p1 p1 p1 r

( ) ( ) ( )[ ]iii qp1rqp11-q c  U U −++≤′

( )[ ] iiiimi pcpcpc1-q   U U −++<′
or
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Earliest Deadline First
The Earliest Deadline First algorithm (EDF)
assigns processes priorities according to the 
deadlines of their current request. 

An EDF example:
Two processes with p1 = 2, p2 = 7, and c1 = 1, 
c2 = 1.

Time0 1 2 3 4 5 6 7 8
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For a set of processes scheduled according to some 
scheduling algorithm, we say that an overflow occurs at 
time t if t is the deadline of an unfulfilled request.

Theorem 6[LL73] When the EDF algorithm is used to 
schedule a set of processes on a processor, there is no 
processor idle time prior to an overflow.

Proof.

Time

Time

Time0

idle overflow

overflow should happen earlier.Θ
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Theorem 7[LL73] For a given set of m processes, the EDF  
algorithm is feasible if and only if 

U = (c1/p1) + (c2/p2) + … + (cm/pm) <= 1

The achievable utilization factor of the EDF algorithm is 
100%.The EDF algorithm is an optimal dynamic priority 
scheduling policy in the sense that a process set is 
schedulable if its CPU utilization is no larger than 100%.
The achievable utilization factor of the RMS algorithm is 
about ln2. The RMS algorithm is an optimal fixed priority 
scheduling policy in the sense that if a process set is 
schedulable by some fixed priority scheduling algorithm, 
then it is schedulable by the RMS algorithm.
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Another thought of the above results?

Theorem For a set of m processes with fixed priority 
order , the ith process is schedulable if 

Can we extend Theorem 7 in the same way ? No! What 
is the implication?

What is the priority of a process not reflecting its 
importance/criticality properly in the real world?

How far can we go from here?
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Theorem Given a set of m processes, it is schedulable by 
some fixed priority scheduler if U ≤ 1.

Proof.

For every time slice, τi receive a share of is ci/pi .
Within pi , τi receives ci/pi!!

Brain Damage!

a time slice a time slice ….

Time
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Context Switching
Needed either when a process is preempted by another 
process, or when a process completes its execution!
Stack Discipline

If process A preempts process B , process A must 
complete before process B can resume.

If it is obeyed, charge the cost of preemption (context  
switching cost) once to the preempting process!

Scheduling Overheads

B BA

A

B
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The least slack time algorithm (LST), which assigns 
processes priorities inversely proportional to their slack 
times is also optimal if context switching cost can be 
ignored [Mok83].

The slack time of a process is d(t) - t - c(t).

Is there any other optimal dynamic priority 
scheduling algorithm beside the EDF 
algorithm?

t

d(t)-t

c(t)

d(t)

Proof. Swap the scheduling units of processes out of LST order.

An LST example:
c1 = c2 = 2, p1 = p2 = 4

0 1 2 3 4

s1=2
s2=2

S1=2
S2=1

S1=1
S2=1

τ1 τ2 τ2 τ1
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Summary:
Definitions

Critical instant and critical interval.
Utilization factor, achievable utilization factor, and 
least upper bound of utilization factor.
RMS and EDF.

The achievable utilization factor of RMS and EDF are 
ln2 and 100%, respectively.
The properties and applications of RMS and EDF.
Modeling of context switching cost, stack discipline, and 
the properties of least slack time (LST).
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Process Synchronization
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(1) Find and adopt a suboptimal algorithms. Note that a scheduler 
derived by a scheduling algorithm shall guarantee the 
schedulability of a process set. A suboptimal algorithm seems 
only for off-line computations. (Hard Real-Time constraints)

(2)Put as many restrictions on the use of the communication 
primitives as it is deemed reasonable for programming real-
time systems and hope that the restricted scheduling problem 
can be efficiently solved.

Qs: In general, interprocess coordination by means of semaphores 
is far too unstructured for real-time analysis. Shall we have a 
more abstract-level language construct or more structed usages 
of communication primitives? Shall we provide a language 
construct for exclusion and synchronization?

Alternative Approaches
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Process Synchronization

Papers for discussions:
L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority 
Inheritance Protocols: An Approach to Real-Time 
Synchronization,” IEEE Transactions on 
Computers, 1990.
A.K. Mok, “The Design of Real-Time 
Programming Systems Based on Process Models,”
IEEE Real-Time Systems Symposium, Dec 1994.

Processes Might Share Non-Preemptible
Resources or Have Precedence Constraints!
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Process Synchronization

Motivation
Can we find an efficient way to analyze the 
schedulability of a process set (systematically) ?
What kinds of restrictions on the use of 
communication primitives are needed so as to 
efficiently solve the restricted scheduling problem?
How can we control the priority inversion problem?
The lengths of critical sections might be quite 
different.
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The Priority Inversion Problem

blocking vs preemption
Example:

τ3

τ1

lock S unlock S

lock S lock S

Blocked !

many intermediate priority 
processes may preempt τ1

Approaches:
• No preemption of critical sections

is allowed!
=>They must be short!

• If preemption may be allowed,
what priority we should assign 
the execution of a critical section?

Priority Inversion: A phenomenon where a higher-priority process 
is forced to wait for the execution of a lower-priority process.

Priority Inheritance 
Protocols: An Approach to 
Real-Time Synchronization

L. Sha, R. Rajkumar, J.P. Lehoczky, 
IEEE Transactions on Computers, 
1990.
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Notation:
Zi, j, k: the kth critical section in job (process) Ji guarded 
by semaphore Sj.
P(Si) and V(Si) are indivisible operations wait and signal 
respectively on the binary semaphore Si.

Assumptions:
Each shared data structure is guarded by a binary 
semaphore.
No job attempts to lock a semaphore that has already 
been locked.
Locks on semaphores will be released before or at the 
end of a job.
A fixed set of jobs executes on a processor.

Notations and Assumptions

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The Basic Priority Inheritance Protocol
Priority-Driven Scheduling

The process which has the highest priority among the ready 
processes is assigned the processor.

Synchronization
Process τi must obtain the lock on the semaphore guarding a 
critical section before τi enters the critical section.
If τi obtains the required lock , τi enters the corresponding 
critical section ; otherwise, τi is blocked and said to be blocked 
by the process holds the lock on the corresponding semaphore.
Once τi  exits a critical section, τi unlocks the corresponding 
semaphore and makes its blocked processes ready.

Priority Inheritance
If a process τi blocks higher priority processes, τi inherits the 
highest priority of the process blocked by τi
Priority inheritance is transitive.
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Blocking

Lemma 1 A semaphore S can be used to cause 
inheritance blocking to job J only if S is accessed 
by a job which has a priority lower than that of J
and might be accessed by a job which has a 
priority equal to or higher than that of J.

S

S

τ1
S

τ2

τ3

lock S
direct blocking

τ2 faces inheritance blocking

Properties

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties
Lemma 2 A job J can be blocked by a 
lower priority job JL only if JL has 
entered and remained within a critical 
section when J arrives.
Lemma 3 A job JL can block a high 
priority job J for at most the duration of 
a critical section regardless of the 
number of semaphores J and JL share.
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Properties

Theorem 4 Under the basic priority 
inheritance protocol, if there are n lower 
priority jobs , a job J can be blocked for 
at most the duration of n critical sections.
Lemma 5 A semaphore can be used by 
at most one lower priority job’s critical 
section to block a higher priority process.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 6 Under the basic priority inheritance 
protocol , if there are m semaphores that can be 
used to block job J , then J can be blocked for 
at most the duration of m critical sections.
Concerns:

A chain of blocking is possible.
A deadlock can be formed!

τ3 S1

τ2 S2

τ1
Request S2

Request S1

Properties
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The Priority Ceiling Protocol

The priority ceiling of a semaphore is the 
priority of the highest priority job that may lock 
the semaphore.
The Basic Priority Inheritance Protocol + 
Priority Ceiling
A job J may successfully lock a semaphore S if 
S is available, and the priority of J is higher than 
the highest priority ceiling of all semaphores 
currently locked by jobs other than J
Priority inheritance is transitive

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Example: Deadlock Avoidance

τ1

Time
τ2

S2

blocked by τ2
(attempt to lock S1)

S1, S2

t2

S2

t4

priority inheritance
unlock S2 and reset priority

S1 S1, S2

τ0

t3

S0

S2 S2

t5 t6t1

S1

t7 t8

S0 locked S0 unlocked

S2 locked

S1 locked S1 unlocked
S2 locked S2 unlocked

S1 locked S1 unlocked

t0
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Example: Chain Blocking Avoidance

τ0

τ1

Time
τ2

S1 S1

t2

S1

t4

Avoidance blocking occurs!

S2

S2 S1, S2

t6

S1, S2 S1, S2

t1t0 t3 t5 t7 t8

S2

blocked by τ2
(attempt to lock S2)

S2 locked S2 unlocked

blocked by τ2
(attempt to lock S2)

S2 locked S2 unlocked
S1 locked S1 unlocked

S1 locked S2 locked S2 unlocked S1 unlocked

* Price paid for deadlock avoidance & chain blocking avoidance!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties

Lemma 7 A job J can be blocked by a lower 
priority job JL only if the priority of job J is no 
higher than the highest priority ceiling of all the 
semaphores that are locked by job JL when J
arrives.
Lemma 8 Suppose that job Ji preempts job Jj
which enters a critical section. Under the 
priority ceiling protocol, job Jj cannot inherit a 
priority level which is higher than or equal to 
that of Ji until Ji completes.
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Properties

Lemma 9 The priority ceiling protocol 
prevents transitive blockings.

Proof. Follows Lemma 8. t3→ t2 → t1

Theorem 10 The Priority ceiling Protocol 
prevents deadlock.

Proof. Lemma 9 shows that the number of jobs 
in the  blocking cycle can only be 2.

t2       t1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties
Lemma 11No job can be blocked for more 
than one critical section of a lower priority 
job JL.

Proof. Follows Lemma 2 and Theorem 10.

Theorem 12 No job can be blocked for more 
than one critical section of any lower priority 
job.

Proof. Lemma 11 suggests that job J can only be 
blocked by n different processes’ critical sections if 
n > 1. The correctness of the proof them follows 
Lemma 7.
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Properties
Theorem 15: A set of n periodic tasks under 
the priority ceiling protocol can be scheduled 
by the rate monotonic algorithm if the 
following conditions are satisfied:

where Bi is the worst-case blocking time for τi
Proof. Consider Bi as an additional computation 

requirement.
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Properties

More accurate calculations can be derived 
by considering the relationship between 
critical sections and their corresponding 
semaphores.

kj,i
ij βτ

MaxB section critical
∈
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})())Ceiling(-Priority( &)){ i
jjiji PrisMax Pri(Pri( |  
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∈

{ }jj τsS by  accesses is  Semaphore s =
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Theorem 14 [Loc87] A set of n periodic tasks 
scheduled by the rate-monotonic algorithm will 
meet all their deadlines (for all task phasings) iff

where
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Pyi = {(k, l) | 1 ≤ k ≤ i,    l = 1, …,           }

Properties – Schedulability Analysis

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Another Thought:

0min
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Pyi = {(k, l) | 1 ≤ k ≤ i,    l = 1, …,           }

CPU requests of processes τi,…, τj are satisfied?

0 lPk

Check every request time of processes, i.e, lPk.

Properties – Schedulability Analysis
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Theorem 16 A set of n periodic tasks using the 
priority ceiling protocol can be scheduled by 
the rate-monotonic algorithm for all task 
phasings if
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Properties – Schedulability Analysis
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Example – Schedulability Analysis

τ1 : C1 = 40,  P1 = 100,  B1 = 20,  U1 = 0.4

τ2 : C2 = 40,  P2 = 150,  B2 = 30,  U2 = 0.267

τ3 : C3 = 100,  P3 = 350,  B3 = 0,  U3 = 0.286
block

block

Apply Theorem 15.

U1 + B1 / P1 = 0.4 + 0.2 = 0.6 < 1

U2 + B2 / P2 + U1 = 0.267 + 0.2 + 0.4 = 0.867

U = U1 + U2 + U3 = 0.953          is far too large!
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Apply Theorem 16.1. τ1 y1 = {(1, 1)}

ˇ C1 + B1≦ P1 ??  =>  40 + 20 < 100

2. τ2 y2 = {(1, 1), (2, 1)}

C1 + C2 + B2≦ P1 ??  =>  40 + 40 + 30 > 100

ˇ 2C1 + C2 + B2≦ P2 ??  =>  80 + 40 + 30 ≦ 150

3. τ3 y3 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} * B3 = 0

C1 + C2 + C3≦ P1 ??  =>  40 + 40 + 100 > 100

2C1 + 2C2 + C3≦ 2P1 ??  =>  80 + 80 + 100 > 200

ˇ 3C1 + 2C2 + C3≦ 3P1 ??  =>  120 + 80 + 100 ≦ 300

2C1 + C2 + C3≦ P2 ??  =>  80 + 40 + 100 > 150

ˇ 3C1 + 2C2 + C3≦ 2P2 ??  =>  120 + 80 + 100 ≦ 300

4C1 + 3C2 + C3≦ P3 ??  =>  160 + 120 + 100 > 350

schedulable !

schedulable !

schedulable !

Example – Schedulability Analysis
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Other Issues
Implementation Considerations

Priority Inheritance Protocol (PIP)
Priority queues: one for each semaphore
P( ) & V( ) operations must support priority 
inheritance

Priority Ceiling Protocol (PCP)
A single priority queue     ∵ avoidance 
blocking
A list of blocked semaphores and their 
respective owners and ceilings
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Other Issues
Other synchronization mechanisms

Monitor (used for scheduling mutual exclusion)
Define ceiling for each monitor.
Operations on monitors are executed in an 
order complying with PCP.

Server-Client Model
Server runs at the lowest priority unless it is 
servicing or requested by some clients.
PCP is implemented as usual, when servers 
are treated as “monitors”!
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ADA rendezvous
Priority queues: one per entry call.
When there are multiple entries for a server 
task, the server task must select the highest 
priority task waiting on one of the entries.
PCP is implemented as usual.

Other Issues
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Summary
Definitions

Critical instant, critical interval, achievable utilization 
factor
Harmonic base, harmonic chain, adaptive process optimal 
scheduler, optimal partition of a process set, deferrable 
server,  polling

RMS & EDF are optimal fixed-priority & dynamic-
priority schedulers, respectively. RMS is stable, but 
EDF has a high achievable utilization factor.
Process sets with a smaller harmonic base tend to be 
more schedulable and have better achievable utilization 
factor.
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Consider the trade-off between the minimization 
of the priority inversion problem & the 
maximization of the concurrency level of a 
system.
Consider the ideas behind the schedulability tests 
of PCP.

After all,
we only have limited pieces of knowledge in 

predicting the schedulability of a system. 
However, we begin to understand and find out 
better ways in allocating resources for processes !

Summary
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Process Synchronization

Papers for discussions:
L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority 
Inheritance Protocols: An Approach to Real-Time 
Synchronization,” IEEE Transactions on 
Computers, 1990.
A.K. Mok, “The Design of Real-Time 
Programming Systems Based on Process Models,”
IEEE Real-Time Systems Symposium, Dec 1994.

Processes Might Share Non-Preemptible
Resources or Have Precedence Constraints!

The Design of Real-Time 
Programming Systems Based 
on Process Models

A.K. Mok, 
IEEE Real-Time Systems Symposium, 
Dec 1994.
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Definitions
A totally on-line scheduler makes scheduling decisions 
independent from a priori knowledge of the future 
request-times of the processes.
A run-time scheduler is the code for allocating resources 
in response to requests generated at run time, e.g., timer 
or external device interrupts.
A run-time scheduler is clairvoyant if it has an oracle 
which can predict with absolute certainty the future 
request times of all processes.
A run-time scheduler is optimal if it always generates a 
feasible schedule whenever it is possible for a 
clairvoyant scheduler to do so.
Remark: Check definitions in previous transparencies.
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Theorem 2 [Mok84] When there are mutual exclusion 
constraints, it is impossible to find a totally on-line 
optimal run-time scheduler.

Proof.
Consider two mutually exclusive processes:
τs : cs=1, ds=1, ps=4
τp : cp=2, dp=4, pp=4

Select the request time of τs to fail any totally on-line
optimal run-time scheduler. Let τp occur at time 0, 
and τs occur at time 1.

The result can be trivially generalized to the cases of 
multiprocessor by creating a periodic process with c = p
for each additional processor.
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Theorem 4 [Mok84] The problem of deciding whether it 
is possible to  schedule a set of periodic processes which 
use semaphores only to enforce mutual exclusion is NP-
hard.
Proof.

A 3-partition problem:
A = {a1, a2,…, a3m}, B a positive integer, and w1, w2, …,  
w3m be integral weights of elements of A respectively such
that B/4 ≤ wi ≤ B/2, and the sum of wi is equal to mB.
The decision is whether A can be partitioned into m
disjoint sets such that each of which has weight B.

Create 3m processes, where the ith process has computation 
time wi , and period (mB+m) , deadline (mB+m). In addition, 
we create a process τ3m+1 with period (B+1) , deadline 1 , and 
run-time 1.
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The Deterministic Rendezvous Model
The Primary Purpose:

Establish precedence constraints between the 
scheduling blocks of processes.
Issues:

Rendezvous overheads
Charge it in the scheduling blocks right before the 

rendezvous.
=> Rendezvous can be preempted!

No mutual exclusion!
Compatibility of processes that rendezvous with each 
another.

1. Periodic processes
→ Having periods being an exact multiple of each another.

2. Otherwise
→ “Server” is the made ready whenever it is needed.
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EDF is not optimal for the process model
Example:

C11* = C12 = 1, d1 = 3 ,    p1 = 5τ1:

C21* = 1 , C22* = 3, d2 = p2 = 10τ2:

C3 = 1 , d3 = 9 ,    p3 = 10τ3:

τ1
c11 c12 c11 c12

τ3
c3

τ2
c21 c22

rendezvous rendezvous

EDF c22c11 c21 c12 c13 c22 c11
C12 fails!※If c21 is not scheduled here,

c11 c3 c21 C12 fails!

Example
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A deadline-modification technology
Consider the computations performed in the interval [0, L]
Sort the scheduling blocks generated in [0, L] in a reverse 
topological order.
Set the deadline of the kth instant of τij to (k-1) * pi + di

Revise the deadlines in reverse topological order by the 
formula:

Run-time scheduler repeats the revised deadlines every L
time units 
(L is the longest period among processes that rendezvous 
with each another.)

{ }( )sscddd ssss ′→−= ′′ :,min

Deadline Modification
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Lemma 5 [Mok 84] The feasibility of an instance of the 
process model is not violated by the above revising 
technology. The technology will not violate or damage the 
precedence constraints involving any two processes.
＊check the previous example!

Theorem 6 [Mok 84] If a feasible schedule exists for an 
instance of a process model restricted by rendezvous 
constraints, then it can be scheduled by EDF modified to 
schedule the ready process which is not blocked by a 
rendezvous and which has the nearest dynamic deadline.

※Remarks: A pseudo-polynomial-time approach is presented!

Deadline Modification
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The Kernelized Monitor Model

Idea:
Processes are given processor time in an 
uninterruptible quantum, say q.
If sporadic processes are of length multiple of q, and 
each q is treated as critical sections, the process model 
is reduced to an independent process scheduling with 
the provision that a process may be interrupted only 
after it has received an integer number of q. Sporadic 
processes are called monitors.

EDF is still not optimal!
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An EDF Example: q = 2
τ1 : c1 = 2, d1 = 2, p1 = 5 
τ2 : c21 = c22 = 2, d2 = p2 = 10

τ1

τ2

c1 c1

c21

c22

c1

c21

c22 c1

fail

forbidden region?!

The Kernelized Monitor Model
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How to find the forbidden regions in the interval [0, L] 
where L is the longest period among the compatible 
processes?  ( L = LCM(pi) )
1.  Each process is considered as a chain of mini scheduling 

blocks: each of which is of a quantum.
2.  Revise request times and deadlines of the block.

(1)  Sort the blocks in [0, L] in a forward topological order.
(2)  Initialize the request time of the kth instance of each mini 

scheduling block of Ti to (k-1)*pi.
(3)  Revise the request times in forward topological order by the 

formula:         rs = Max(rs, {rs’ + q : s’→ s})
(4)  Sort the blocks in [0, L] in a reverse topological order.
(5)  Initialize the deadline of the kth instance of each mini 

scheduling block of Ti to (k-1)* pi+ di

(6)  Revise the deadlines in reverse order by the following 
formula:         ds = Max(ds, {ds’ – q : s→ s’})

request-
time 
revising

deadline 
revising
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3. Compute the set of forbidden regions in [0, L] in  the 
following way:
(1)  Sort the request times in a reverse chronological order and

determine the forbidden region associated with each request 
time as follows: Initially, there are no forbidden regions.

(2)  For each request time rs and any deadline d for which L ≥ d 
≥ ds , let nr,d be the number of mini blocks which must be 
scheduled in [rs, d]. (rs’ ≥ rs and ds’ ≤ d)
If Sr,d is the latest time at which the first mini blocks must 
be scheduled, (stack blocks close to each anothor from d)
(I)   Sr,d < rs→ System fails
(II)  Sr,d < rs + q→ (Sr,d – q, rs) is a forbidden region.
(III) otherwise, no action is taken !

*Complexity: O(n) for each request time
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There are no more than n forbidden regions when n is the 
number of mini scheduling blocks generated in [0, L]

W = {(xi, yi) : yi is the revised request-time of 
some mini scheduling block in [0, L], and 
no process should start pass xi before yi}

The kernelized monitor scheduler:
At any time t, if t does not lie in a forbidden region, the 
scheduler allocates the next quantum to the ready process 
which is not blocked by a rendezvous and has the earliest 
deadline. If t is in a forbidden region, the process is 
allowed to be idle until the end of region.

Theorem 7[Mok 84] If a feasible schedule exists for a 
process set with rendezvous and monitor communication 
primitives, the kernelized monitor scheduler can schedule 
it.
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Theorem [Mok, et al. 87] If EDF is applied to schedule 
a set of independent periodic processes whose 
utilization factor is not more than 1, and the scheduler 
is subject to restriction that every process must be 
allowed to run for at least q time units before it can be 
preempted, then no process will ever miss its deadline 
by more than q – 1 time units.
Schedulability Test:

Add q – 1 time units to the computation time of 
each process & check the total utilization factor.
Applications:

Put conflicting resource accesses in the q-time-unit 
code for applications based on dataflow graphs.

A Related Theorem
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Overload Detection for Sporadic 
Processes

A sporadic process is one whose request times are not 
known a priori.
Model a sporadic process by a pair (p , c , d) where 

c = computation time
p = minimum separation time between two instances.
d = deadline

How should we set the separation parameter p for a 
sporadic process?

It is a tradeoff. If p is too big, we risk having two more 
requests within p time units . If p is set too small , we 
might have large gaps between requests and waste CPU 
capacity.
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Theorem 1 [Baruah, Mok, Rosier, RTSS90]
A set T of n sporadic processes is not feasible ( or 
schedulable by EDF) if either

(1)              or,

(2)

s.t. T fails at or before t, where P = lcm{ pi }

∑
=

n

i i

i

p
c

1

{ } { }






 −

−
+<∃ iii dp

u
udPtt max

1
,maxmin:

Is there an analysis method to evaluate the hypothesis of 
the choice of timing parameters on system reliability?

Overload Detection for Sporadic 
Processes
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Define

T is feasible iff

Lemma 3 [Baruah, Mok, Rosier, RTSS90] The 
minimum t that fails the above formula is the earliest 
time that the EDF algorithm can report a failure.

}1,0max{)(
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dtcth
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Overload Detection for Sporadic 
Processes
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Modeling of Sporadic Processes
Lemma 3[Mok, RTSS84]: Suppose we replace every 
sporadic process τi = (ci, pi, di) with a periodic process 
τ'i = (c'i, p'i, d'i) with c'i = ci ,  p'i = min(pi , (di – ci + 1)), 
and d'i = ci .  If the result set of all periodic processes 
can be successfully scheduled, then the original set of 
processes can be scheduled without a priori knowledge 
of the request times of the sporadic processes.

Proof.

Time

p'i = di – ci + 1

1 ci

di
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In general, we can replace each sporadic process 
τi = (ci, pi, di) with a periodic process τ'i = (c'i, 
p'i, d'i) if the following conditions are satisfied: 
[Mok, RTSS84]

(1) d ≥ d' ≥ c;
(2) c' = c;
(3) p' ≤ d - d' + 1

Proof.

Time

p' = d – d' + 1

1 d'

d

Modeling of Sporadic Processes
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Definitions:
totally on-line scheduler, clairvoyant scheduler, optimal 
run-time scheduler
critical region
compatibility, rendezvous model monitor model

The difficulty in finding a totally on-line optimal run-
time scheduler.
The NP-hard nature of the problem in scheduling a set of 
periodic processes that use semaphores to enforce 
mutual exclusion.
EDF with the deadline-revising technology for the 
deterministic rendezvous model.
EDF with forbidden regions technology for the 
kernelized monitor model.

Summary


