
1

郭大維教授
ktw@csie.ntu.edu.tw

即時暨嵌入式系統實驗室

(Real-Time and Embedded Systems Laboratory)

國立臺灣大學資訊工程系

Real-Time Process Scheduling

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Independent Process Scheduling
Processes share nothing but CPU

Papers for discussions:
C.L. Liu and James. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,” JACM,
Vol. 20, No.1, January 1973, pp. 46-61.

Major references:
Aloysius K. Mok, “Fundamental Design Problems of Distributed
Systems for the Hard Real-Time Environment,” Ph.D. dissertation,
MIT, 1983
Tei-Wei Kuo and Aloysius K, Mok, “Incremental Reconfiguration
and Load Adjustment in Adaptive Real-Time Systems,” IEEE
Transactions on Computer, 1997, IEEE 12th Real-Time System
Symposium, 1991.

2

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Motivation:
Studying: 2 days per 4 days
Playing Basketball: 1.5 days per 3 days

Case 1: Playing basketball (or studying) is more important!

0 1 2 3 4 5 6
Case 2: Doing whatever is more urgent!

0 1 2 3 4 5 6

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Questions:
Can we find an optimal scheduler, that always
produces a feasible schedule, whenever it is
possible to do so? What does optimal means?
Can we find a quick schedulability test for a set
of processes? Is it simple and accurate?
Processes whose periods are more harmonically
related is likely to be schedulable? Why? More
accurate schedulability tests possible? Better
system configurations can be found?
How do we model scheduling overheads, such
as the cost of context switching?

3

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Tentative Assumptions:
Processes are independent.
Processes are all periodic.

We will show you how to model sporadic processes
and solve their schedulability problem later.

The deadline of a request is its next request time.
A scheduler consists of a priority assignment policy
and a priority-driven scheduling mechanism.

The paper of the week:
C.L. Liu and James. W. Layland, “Scheduling Algorithms for Multiprogramming in

a Hard Real-Time Environment,” JACM, Vol. 20, No.1, January 1973, pp. 46-61.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Definitions
The response time of a request for a process is the
time span between the request and the end of the
response to that request.
A critical instant of a process is an instant at which a
request of that process has the largest response time.
A critical time zone for a process is the time interval
between a critical instant and the end of the response to
the corresponding request of the process.
A critical interval for a process is the time interval
between a critical instant and the deadline of the
corresponding request of the process.

An observation: If a process can complete its execution
within its critical interval, it is schedulable at all time!

4

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 1 [LL73] A critical instant for any process occurs
whenever the process is requested simultaneously with
requests for all higher priority processes.

Proof.
Case 1: TL does not run at t.

Case 2: TL runs at t.

TimeTH

TL Time
t

TimeTH

TL Time
t

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Rate Monotonic Scheduling
The rate monotonic priority assignment (RMS)
assigns processes priorities according to their request
rates.

Theorem 2 [LL73] If a feasible fixed priority assignment
exists for some process set, then the rate monotonic
priority assignment is feasible for that process set.

Proof. Start the proof from i = 1. Exchange the priorities of τi and τi+1 if
their priorities are out of RMS order.

Hint: before: HPCi-1 + ci+1 + ci≦ pi

=>

after: HPCi-1 + floor(pi+1/ pi) ci + ci+1≦ pi+1

where HPCi-1 = CPU time consumed by {τi ,..., τi-1} = j
j

i c
p
p∑ 








1i
i

1i
i

i

1i
i

i

1i
1i

i

1i
1-i p

p
pp

p
pc

p
pc

p
pHPC +

+++
+

+
≤








≤








+








+








imply

5

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

An RMS example:

Two processes with p1 = 4, p2 = 5, and
c1 = 2, c2 = 1.

An observation: c2 can be increased based on the
concept of critical instant!!

Time0 1 2 3 4 5 6 7 8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Definitions:
The utilization factor of a process τi is ci/pi .

The fraction of CPU time spent in executing τi .
The utilization factor of a set of m processes is

For a given priority assignment, a process set fully
utilizes the processor if the priority assignment is
feasible for the set and if any increase in the run time
of any processes in the set will make the priority
assignment infeasible.

∑
=

=
m

i i

i

p
cU

1

6

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The achievable utilization factor (least upper bound of
utilization factor) of a scheduling policy Ua is a real
number such that for any process set TП, U(TП) <= Ua
implies the schedulability of the process setП T.

Theorem 3[LL73] For a set of two processes with a fixed
priority assignment, the achievable utilization factor is

2(21/2 – 1)
Proof.

U

C1 = P2 – P1 * floor(P2/P1)
0 P1 P2

已知 P1 & P2

12 2/1 −=



−
2

1

2

1

P

P

P

PThe minimum U occurs when &1=




2

1

P

P

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

U = { process sets }
infeasible
schedules feasible schedules without

CPU fully utilization

feasible schedules with
CPU fully utilization

Let T be infeasible but U(T) < Ua
Create a feasible schedule T’

from such that the CPU is fully
utilized U(T’) < U(T) < Ua

7

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 4 [LL73] For a set of m processes with a fixed
priority order and the restriction that the ratio between any
two request periods is less than 2, the achievable utilization
factor is

m(21/m – 1)
Proof.

……c1 cm-1

0 p1 p2 pm-1 pm Time

Each process in {τ1,…,τm-1 } executes twice within Pm.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 5 [LL73] For a set of m processes with fixed
priority order, the achievable utilization factor is

m(21/m – 1)
Proof.

If pm = q * pi + r, q > 1,
then pi = q * pi and increase cm till the process
set fully utilizes the processor again. (cm <= cm
+ ci * (q – 1)).

Show that U is reduced!

An observation: If a process set are fully harmonically
related, U = 100%; otherwise U -> ln2 -> 70%!

q -1

pm

1
p1 p1 p1 r

() () ()[]iii qp1rqp11-q c U U −++≤′

()[] iiiimi pcpcpc1-q U U −++<′
or

8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Earliest Deadline First
The Earliest Deadline First algorithm (EDF)
assigns processes priorities according to the
deadlines of their current request.

An EDF example:
Two processes with p1 = 2, p2 = 7, and c1 = 1,
c2 = 1.

Time0 1 2 3 4 5 6 7 8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

For a set of processes scheduled according to some
scheduling algorithm, we say that an overflow occurs at
time t if t is the deadline of an unfulfilled request.

Theorem 6[LL73] When the EDF algorithm is used to
schedule a set of processes on a processor, there is no
processor idle time prior to an overflow.

Proof.

Time

Time

Time0

idle overflow

overflow should happen earlier.Θ

9

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 7[LL73] For a given set of m processes, the EDF
algorithm is feasible if and only if

U = (c1/p1) + (c2/p2) + … + (cm/pm) <= 1

The achievable utilization factor of the EDF algorithm is
100%.The EDF algorithm is an optimal dynamic priority
scheduling policy in the sense that a process set is
schedulable if its CPU utilization is no larger than 100%.
The achievable utilization factor of the RMS algorithm is
about ln2. The RMS algorithm is an optimal fixed priority
scheduling policy in the sense that if a process set is
schedulable by some fixed priority scheduling algorithm,
then it is schedulable by the RMS algorithm.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Another thought of the above results?

Theorem For a set of m processes with fixed priority
order , the ith process is schedulable if

Can we extend Theorem 7 in the same way ? No! What
is the implication?

What is the priority of a process not reflecting its
importance/criticality properly in the real world?

How far can we go from here?

()12 /1

1
−≤∑

=

i
i

j
i

p
c

j

j

10

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem Given a set of m processes, it is schedulable by
some fixed priority scheduler if U ≤ 1.

Proof.

For every time slice, τi receive a share of is ci/pi .
Within pi , τi receives ci/pi!!

Brain Damage!

a time slice a time slice ….

Time

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Context Switching
Needed either when a process is preempted by another
process, or when a process completes its execution!
Stack Discipline

If process A preempts process B , process A must
complete before process B can resume.

If it is obeyed, charge the cost of preemption (context
switching cost) once to the preempting process!

Scheduling Overheads

B BA

A

B

11

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The least slack time algorithm (LST), which assigns
processes priorities inversely proportional to their slack
times is also optimal if context switching cost can be
ignored [Mok83].

The slack time of a process is d(t) - t - c(t).

Is there any other optimal dynamic priority
scheduling algorithm beside the EDF
algorithm?

t

d(t)-t

c(t)

d(t)

Proof. Swap the scheduling units of processes out of LST order.

An LST example:
c1 = c2 = 2, p1 = p2 = 4

0 1 2 3 4

s1=2
s2=2

S1=2
S2=1

S1=1
S2=1

τ1 τ2 τ2 τ1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Summary:
Definitions

Critical instant and critical interval.
Utilization factor, achievable utilization factor, and
least upper bound of utilization factor.
RMS and EDF.

The achievable utilization factor of RMS and EDF are
ln2 and 100%, respectively.
The properties and applications of RMS and EDF.
Modeling of context switching cost, stack discipline, and
the properties of least slack time (LST).

12

郭大維教授
ktw@csie.ntu.edu.tw

即時暨嵌入式系統實驗室

(Real-Time and Embedded Systems Laboratory)

國立臺灣大學資訊工程系

Process Synchronization

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

(1) Find and adopt a suboptimal algorithms. Note that a scheduler
derived by a scheduling algorithm shall guarantee the
schedulability of a process set. A suboptimal algorithm seems
only for off-line computations. (Hard Real-Time constraints)

(2)Put as many restrictions on the use of the communication
primitives as it is deemed reasonable for programming real-
time systems and hope that the restricted scheduling problem
can be efficiently solved.

Qs: In general, interprocess coordination by means of semaphores
is far too unstructured for real-time analysis. Shall we have a
more abstract-level language construct or more structed usages
of communication primitives? Shall we provide a language
construct for exclusion and synchronization?

Alternative Approaches

13

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Process Synchronization

Papers for discussions:
L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization,” IEEE Transactions on
Computers, 1990.
A.K. Mok, “The Design of Real-Time
Programming Systems Based on Process Models,”
IEEE Real-Time Systems Symposium, Dec 1994.

Processes Might Share Non-Preemptible
Resources or Have Precedence Constraints!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Process Synchronization

Motivation
Can we find an efficient way to analyze the
schedulability of a process set (systematically) ?
What kinds of restrictions on the use of
communication primitives are needed so as to
efficiently solve the restricted scheduling problem?
How can we control the priority inversion problem?
The lengths of critical sections might be quite
different.

14

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The Priority Inversion Problem

blocking vs preemption
Example:

τ3

τ1

lock S unlock S

lock S lock S

Blocked !

many intermediate priority
processes may preempt τ1

Approaches:
• No preemption of critical sections

is allowed!
=>They must be short!

• If preemption may be allowed,
what priority we should assign
the execution of a critical section?

Priority Inversion: A phenomenon where a higher-priority process
is forced to wait for the execution of a lower-priority process.

Priority Inheritance
Protocols: An Approach to
Real-Time Synchronization

L. Sha, R. Rajkumar, J.P. Lehoczky,
IEEE Transactions on Computers,
1990.

15

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Notation:
Zi, j, k: the kth critical section in job (process) Ji guarded
by semaphore Sj.
P(Si) and V(Si) are indivisible operations wait and signal
respectively on the binary semaphore Si.

Assumptions:
Each shared data structure is guarded by a binary
semaphore.
No job attempts to lock a semaphore that has already
been locked.
Locks on semaphores will be released before or at the
end of a job.
A fixed set of jobs executes on a processor.

Notations and Assumptions

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The Basic Priority Inheritance Protocol
Priority-Driven Scheduling

The process which has the highest priority among the ready
processes is assigned the processor.

Synchronization
Process τi must obtain the lock on the semaphore guarding a
critical section before τi enters the critical section.
If τi obtains the required lock , τi enters the corresponding
critical section ; otherwise, τi is blocked and said to be blocked
by the process holds the lock on the corresponding semaphore.
Once τi exits a critical section, τi unlocks the corresponding
semaphore and makes its blocked processes ready.

Priority Inheritance
If a process τi blocks higher priority processes, τi inherits the
highest priority of the process blocked by τi
Priority inheritance is transitive.

16

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Blocking

Lemma 1 A semaphore S can be used to cause
inheritance blocking to job J only if S is accessed
by a job which has a priority lower than that of J
and might be accessed by a job which has a
priority equal to or higher than that of J.

S

S

τ1
S

τ2

τ3

lock S
direct blocking

τ2 faces inheritance blocking

Properties

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties
Lemma 2 A job J can be blocked by a
lower priority job JL only if JL has
entered and remained within a critical
section when J arrives.
Lemma 3 A job JL can block a high
priority job J for at most the duration of
a critical section regardless of the
number of semaphores J and JL share.

17

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties

Theorem 4 Under the basic priority
inheritance protocol, if there are n lower
priority jobs , a job J can be blocked for
at most the duration of n critical sections.
Lemma 5 A semaphore can be used by
at most one lower priority job’s critical
section to block a higher priority process.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 6 Under the basic priority inheritance
protocol , if there are m semaphores that can be
used to block job J , then J can be blocked for
at most the duration of m critical sections.
Concerns:

A chain of blocking is possible.
A deadlock can be formed!

τ3 S1

τ2 S2

τ1
Request S2

Request S1

Properties

18

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The Priority Ceiling Protocol

The priority ceiling of a semaphore is the
priority of the highest priority job that may lock
the semaphore.
The Basic Priority Inheritance Protocol +
Priority Ceiling
A job J may successfully lock a semaphore S if
S is available, and the priority of J is higher than
the highest priority ceiling of all semaphores
currently locked by jobs other than J
Priority inheritance is transitive

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Example: Deadlock Avoidance

τ1

Time
τ2

S2

blocked by τ2
(attempt to lock S1)

S1, S2

t2

S2

t4

priority inheritance
unlock S2 and reset priority

S1 S1, S2

τ0

t3

S0

S2 S2

t5 t6t1

S1

t7 t8

S0 locked S0 unlocked

S2 locked

S1 locked S1 unlocked
S2 locked S2 unlocked

S1 locked S1 unlocked

t0

19

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Example: Chain Blocking Avoidance

τ0

τ1

Time
τ2

S1 S1

t2

S1

t4

Avoidance blocking occurs!

S2

S2 S1, S2

t6

S1, S2 S1, S2

t1t0 t3 t5 t7 t8

S2

blocked by τ2
(attempt to lock S2)

S2 locked S2 unlocked

blocked by τ2
(attempt to lock S2)

S2 locked S2 unlocked
S1 locked S1 unlocked

S1 locked S2 locked S2 unlocked S1 unlocked

* Price paid for deadlock avoidance & chain blocking avoidance!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties

Lemma 7 A job J can be blocked by a lower
priority job JL only if the priority of job J is no
higher than the highest priority ceiling of all the
semaphores that are locked by job JL when J
arrives.
Lemma 8 Suppose that job Ji preempts job Jj
which enters a critical section. Under the
priority ceiling protocol, job Jj cannot inherit a
priority level which is higher than or equal to
that of Ji until Ji completes.

20

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties

Lemma 9 The priority ceiling protocol
prevents transitive blockings.

Proof. Follows Lemma 8. t3→ t2 → t1

Theorem 10 The Priority ceiling Protocol
prevents deadlock.

Proof. Lemma 9 shows that the number of jobs
in the blocking cycle can only be 2.

t2 t1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties
Lemma 11No job can be blocked for more
than one critical section of a lower priority
job JL.

Proof. Follows Lemma 2 and Theorem 10.

Theorem 12 No job can be blocked for more
than one critical section of any lower priority
job.

Proof. Lemma 11 suggests that job J can only be
blocked by n different processes’ critical sections if
n > 1. The correctness of the proof them follows
Lemma 7.

21

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties
Theorem 15: A set of n periodic tasks under
the priority ceiling protocol can be scheduled
by the rate monotonic algorithm if the
following conditions are satisfied:

where Bi is the worst-case blocking time for τi
Proof. Consider Bi as an additional computation

requirement.

,i∀ ,1 ni ≤≤ ()12 /1
1

1
−≤

+
+∑

−

=

i

i

ii
i

j j

j i
p

Bc
p
c

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Properties

More accurate calculations can be derived
by considering the relationship between
critical sections and their corresponding
semaphores.

kj,i
ij βτ

MaxB section critical
∈

=

})())Ceiling(-Priority(&)){ i
jjiji PrisMax Pri(Pri(|

Ss
ττττβ ≥>=

∈

{ }jj τsS by accesses is Semaphore s =

22

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 14 [Loc87] A set of n periodic tasks
scheduled by the rate-monotonic algorithm will
meet all their deadlines (for all task phasings) iff

where





∑

=
∈ j

k
i

j k
j

ylk P
lP

lP
c

i 1),(

1mini, 1 ≤ i ≤ n,

A

1min
1),(

≤



= ∑

=
∈ j

k
i

j k

j
j

ylk P
lP

lP
PU

i







k

i

P
Pyi = {(k, l) | 1 ≤ k ≤ i, l = 1, …, }

Properties – Schedulability Analysis

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Another Thought:

0min
1),(

≤−



∑

=
∈

k
j

k
i

j
j

ylk
lP

P
lPc

i







k

i

P
Pyi = {(k, l) | 1 ≤ k ≤ i, l = 1, …, }

CPU requests of processes τi,…, τj are satisfied?

0 lPk

Check every request time of processes, i.e, lPk.

Properties – Schedulability Analysis

23

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 16 A set of n periodic tasks using the
priority ceiling protocol can be scheduled by
the rate-monotonic algorithm for all task
phasings if

1min
1

1),(
≤







 +
+











∑

−

=
∈ k

ii
i

j j

k

k

j
j

ylk lP
Bc

P
lP

lP
PU

i
i, 1 ≤ i ≤ n,

A

0min
1

1),(
≤








−++



∑

−

=
∈

kii

i

j j

k
j

ylk
lPBc

P
lPc

i

Properties – Schedulability Analysis

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Example – Schedulability Analysis

τ1 : C1 = 40, P1 = 100, B1 = 20, U1 = 0.4

τ2 : C2 = 40, P2 = 150, B2 = 30, U2 = 0.267

τ3 : C3 = 100, P3 = 350, B3 = 0, U3 = 0.286
block

block

Apply Theorem 15.

U1 + B1 / P1 = 0.4 + 0.2 = 0.6 < 1

U2 + B2 / P2 + U1 = 0.267 + 0.2 + 0.4 = 0.867

U = U1 + U2 + U3 = 0.953 is far too large!

24

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Apply Theorem 16.1. τ1 y1 = {(1, 1)}

ˇ C1 + B1≦ P1 ?? => 40 + 20 < 100

2. τ2 y2 = {(1, 1), (2, 1)}

C1 + C2 + B2≦ P1 ?? => 40 + 40 + 30 > 100

ˇ 2C1 + C2 + B2≦ P2 ?? => 80 + 40 + 30 ≦ 150

3. τ3 y3 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} * B3 = 0

C1 + C2 + C3≦ P1 ?? => 40 + 40 + 100 > 100

2C1 + 2C2 + C3≦ 2P1 ?? => 80 + 80 + 100 > 200

ˇ 3C1 + 2C2 + C3≦ 3P1 ?? => 120 + 80 + 100 ≦ 300

2C1 + C2 + C3≦ P2 ?? => 80 + 40 + 100 > 150

ˇ 3C1 + 2C2 + C3≦ 2P2 ?? => 120 + 80 + 100 ≦ 300

4C1 + 3C2 + C3≦ P3 ?? => 160 + 120 + 100 > 350

schedulable !

schedulable !

schedulable !

Example – Schedulability Analysis

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Other Issues
Implementation Considerations

Priority Inheritance Protocol (PIP)
Priority queues: one for each semaphore
P() & V() operations must support priority
inheritance

Priority Ceiling Protocol (PCP)
A single priority queue ∵ avoidance
blocking
A list of blocked semaphores and their
respective owners and ceilings

25

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Other Issues
Other synchronization mechanisms

Monitor (used for scheduling mutual exclusion)
Define ceiling for each monitor.
Operations on monitors are executed in an
order complying with PCP.

Server-Client Model
Server runs at the lowest priority unless it is
servicing or requested by some clients.
PCP is implemented as usual, when servers
are treated as “monitors”!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

ADA rendezvous
Priority queues: one per entry call.
When there are multiple entries for a server
task, the server task must select the highest
priority task waiting on one of the entries.
PCP is implemented as usual.

Other Issues

26

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Summary
Definitions

Critical instant, critical interval, achievable utilization
factor
Harmonic base, harmonic chain, adaptive process optimal
scheduler, optimal partition of a process set, deferrable
server, polling

RMS & EDF are optimal fixed-priority & dynamic-
priority schedulers, respectively. RMS is stable, but
EDF has a high achievable utilization factor.
Process sets with a smaller harmonic base tend to be
more schedulable and have better achievable utilization
factor.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Consider the trade-off between the minimization
of the priority inversion problem & the
maximization of the concurrency level of a
system.
Consider the ideas behind the schedulability tests
of PCP.

After all,
we only have limited pieces of knowledge in

predicting the schedulability of a system.
However, we begin to understand and find out
better ways in allocating resources for processes !

Summary

27

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Process Synchronization

Papers for discussions:
L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization,” IEEE Transactions on
Computers, 1990.
A.K. Mok, “The Design of Real-Time
Programming Systems Based on Process Models,”
IEEE Real-Time Systems Symposium, Dec 1994.

Processes Might Share Non-Preemptible
Resources or Have Precedence Constraints!

The Design of Real-Time
Programming Systems Based
on Process Models

A.K. Mok,
IEEE Real-Time Systems Symposium,
Dec 1994.

28

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Definitions
A totally on-line scheduler makes scheduling decisions
independent from a priori knowledge of the future
request-times of the processes.
A run-time scheduler is the code for allocating resources
in response to requests generated at run time, e.g., timer
or external device interrupts.
A run-time scheduler is clairvoyant if it has an oracle
which can predict with absolute certainty the future
request times of all processes.
A run-time scheduler is optimal if it always generates a
feasible schedule whenever it is possible for a
clairvoyant scheduler to do so.
Remark: Check definitions in previous transparencies.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 2 [Mok84] When there are mutual exclusion
constraints, it is impossible to find a totally on-line
optimal run-time scheduler.

Proof.
Consider two mutually exclusive processes:
τs : cs=1, ds=1, ps=4
τp : cp=2, dp=4, pp=4

Select the request time of τs to fail any totally on-line
optimal run-time scheduler. Let τp occur at time 0,
and τs occur at time 1.

The result can be trivially generalized to the cases of
multiprocessor by creating a periodic process with c = p
for each additional processor.

29

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 4 [Mok84] The problem of deciding whether it
is possible to schedule a set of periodic processes which
use semaphores only to enforce mutual exclusion is NP-
hard.
Proof.

A 3-partition problem:
A = {a1, a2,…, a3m}, B a positive integer, and w1, w2, …,
w3m be integral weights of elements of A respectively such
that B/4 ≤ wi ≤ B/2, and the sum of wi is equal to mB.
The decision is whether A can be partitioned into m
disjoint sets such that each of which has weight B.

Create 3m processes, where the ith process has computation
time wi , and period (mB+m) , deadline (mB+m). In addition,
we create a process τ3m+1 with period (B+1) , deadline 1 , and
run-time 1.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The Deterministic Rendezvous Model
The Primary Purpose:

Establish precedence constraints between the
scheduling blocks of processes.
Issues:

Rendezvous overheads
Charge it in the scheduling blocks right before the

rendezvous.
=> Rendezvous can be preempted!

No mutual exclusion!
Compatibility of processes that rendezvous with each
another.

1. Periodic processes
→ Having periods being an exact multiple of each another.

2. Otherwise
→ “Server” is the made ready whenever it is needed.

30

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

EDF is not optimal for the process model
Example:

C11* = C12 = 1, d1 = 3 , p1 = 5τ1:

C21* = 1 , C22* = 3, d2 = p2 = 10τ2:

C3 = 1 , d3 = 9 , p3 = 10τ3:

τ1
c11 c12 c11 c12

τ3
c3

τ2
c21 c22

rendezvous rendezvous

EDF c22c11 c21 c12 c13 c22 c11
C12 fails!※If c21 is not scheduled here,

c11 c3 c21 C12 fails!

Example

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

A deadline-modification technology
Consider the computations performed in the interval [0, L]
Sort the scheduling blocks generated in [0, L] in a reverse
topological order.
Set the deadline of the kth instant of τij to (k-1) * pi + di

Revise the deadlines in reverse topological order by the
formula:

Run-time scheduler repeats the revised deadlines every L
time units
(L is the longest period among processes that rendezvous
with each another.)

{ }()sscddd ssss ′→−= ′′ :,min

Deadline Modification

31

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Lemma 5 [Mok 84] The feasibility of an instance of the
process model is not violated by the above revising
technology. The technology will not violate or damage the
precedence constraints involving any two processes.
＊check the previous example!

Theorem 6 [Mok 84] If a feasible schedule exists for an
instance of a process model restricted by rendezvous
constraints, then it can be scheduled by EDF modified to
schedule the ready process which is not blocked by a
rendezvous and which has the nearest dynamic deadline.

※Remarks: A pseudo-polynomial-time approach is presented!

Deadline Modification

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The Kernelized Monitor Model

Idea:
Processes are given processor time in an
uninterruptible quantum, say q.
If sporadic processes are of length multiple of q, and
each q is treated as critical sections, the process model
is reduced to an independent process scheduling with
the provision that a process may be interrupted only
after it has received an integer number of q. Sporadic
processes are called monitors.

EDF is still not optimal!

32

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

An EDF Example: q = 2
τ1 : c1 = 2, d1 = 2, p1 = 5
τ2 : c21 = c22 = 2, d2 = p2 = 10

τ1

τ2

c1 c1

c21

c22

c1

c21

c22 c1

fail

forbidden region?!

The Kernelized Monitor Model

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

How to find the forbidden regions in the interval [0, L]
where L is the longest period among the compatible
processes? (L = LCM(pi))
1. Each process is considered as a chain of mini scheduling

blocks: each of which is of a quantum.
2. Revise request times and deadlines of the block.

(1) Sort the blocks in [0, L] in a forward topological order.
(2) Initialize the request time of the kth instance of each mini

scheduling block of Ti to (k-1)*pi.
(3) Revise the request times in forward topological order by the

formula: rs = Max(rs, {rs’ + q : s’→ s})
(4) Sort the blocks in [0, L] in a reverse topological order.
(5) Initialize the deadline of the kth instance of each mini

scheduling block of Ti to (k-1)* pi+ di

(6) Revise the deadlines in reverse order by the following
formula: ds = Max(ds, {ds’ – q : s→ s’})

request-
time
revising

deadline
revising

33

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

3. Compute the set of forbidden regions in [0, L] in the
following way:
(1) Sort the request times in a reverse chronological order and

determine the forbidden region associated with each request
time as follows: Initially, there are no forbidden regions.

(2) For each request time rs and any deadline d for which L ≥ d
≥ ds , let nr,d be the number of mini blocks which must be
scheduled in [rs, d]. (rs’ ≥ rs and ds’ ≤ d)
If Sr,d is the latest time at which the first mini blocks must
be scheduled, (stack blocks close to each anothor from d)
(I) Sr,d < rs→ System fails
(II) Sr,d < rs + q→ (Sr,d – q, rs) is a forbidden region.
(III) otherwise, no action is taken !

*Complexity: O(n) for each request time

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

There are no more than n forbidden regions when n is the
number of mini scheduling blocks generated in [0, L]

W = {(xi, yi) : yi is the revised request-time of
some mini scheduling block in [0, L], and
no process should start pass xi before yi}

The kernelized monitor scheduler:
At any time t, if t does not lie in a forbidden region, the
scheduler allocates the next quantum to the ready process
which is not blocked by a rendezvous and has the earliest
deadline. If t is in a forbidden region, the process is
allowed to be idle until the end of region.

Theorem 7[Mok 84] If a feasible schedule exists for a
process set with rendezvous and monitor communication
primitives, the kernelized monitor scheduler can schedule
it.

34

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem [Mok, et al. 87] If EDF is applied to schedule
a set of independent periodic processes whose
utilization factor is not more than 1, and the scheduler
is subject to restriction that every process must be
allowed to run for at least q time units before it can be
preempted, then no process will ever miss its deadline
by more than q – 1 time units.
Schedulability Test:

Add q – 1 time units to the computation time of
each process & check the total utilization factor.
Applications:

Put conflicting resource accesses in the q-time-unit
code for applications based on dataflow graphs.

A Related Theorem

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Overload Detection for Sporadic
Processes

A sporadic process is one whose request times are not
known a priori.
Model a sporadic process by a pair (p , c , d) where

c = computation time
p = minimum separation time between two instances.
d = deadline

How should we set the separation parameter p for a
sporadic process?

It is a tradeoff. If p is too big, we risk having two more
requests within p time units . If p is set too small , we
might have large gaps between requests and waste CPU
capacity.

35

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Theorem 1 [Baruah, Mok, Rosier, RTSS90]
A set T of n sporadic processes is not feasible (or
schedulable by EDF) if either

(1) or,

(2)

s.t. T fails at or before t, where P = lcm{ pi }

∑
=

n

i i

i

p
c

1

{ } { }






 −

−
+<∃ iii dp

u
udPtt max

1
,maxmin:

Is there an analysis method to evaluate the hypothesis of
the choice of timing parameters on system reliability?

Overload Detection for Sporadic
Processes

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Define

T is feasible iff

Lemma 3 [Baruah, Mok, Rosier, RTSS90] The
minimum t that fails the above formula is the earliest
time that the EDF algorithm can report a failure.

}1,0max{)(
1

+






 −
= ∑

= i

i
n

i
iR p

dtcth

ttht R ≤∀)(

Overload Detection for Sporadic
Processes

36

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Modeling of Sporadic Processes
Lemma 3[Mok, RTSS84]: Suppose we replace every
sporadic process τi = (ci, pi, di) with a periodic process
τ'i = (c'i, p'i, d'i) with c'i = ci , p'i = min(pi , (di – ci + 1)),
and d'i = ci . If the result set of all periodic processes
can be successfully scheduled, then the original set of
processes can be scheduled without a priori knowledge
of the request times of the sporadic processes.

Proof.

Time

p'i = di – ci + 1

1 ci

di

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

In general, we can replace each sporadic process
τi = (ci, pi, di) with a periodic process τ'i = (c'i,
p'i, d'i) if the following conditions are satisfied:
[Mok, RTSS84]

(1) d ≥ d' ≥ c;
(2) c' = c;
(3) p' ≤ d - d' + 1

Proof.

Time

p' = d – d' + 1

1 d'

d

Modeling of Sporadic Processes

37

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Definitions:
totally on-line scheduler, clairvoyant scheduler, optimal
run-time scheduler
critical region
compatibility, rendezvous model monitor model

The difficulty in finding a totally on-line optimal run-
time scheduler.
The NP-hard nature of the problem in scheduling a set of
periodic processes that use semaphores to enforce
mutual exclusion.
EDF with the deadline-revising technology for the
deterministic rendezvous model.
EDF with forbidden regions technology for the
kernelized monitor model.

Summary

